数学中考知识点梳理(北师大版)下
(完整版)新北师大九年级数学下册知识点总结
新北师大版九年级数学下册知识点总结第一章直角三角形边的关系一•锐角三角函数 1.正切:定义:在Rt △ ABC 中,锐角/A 的对边与邻边的比叫做/A的正切,记作tanA ,① tanA 是一个完整的符号,它表示/A的正切,记号里习惯省去角的符号“/”;② tanA 没有单位,它表示一个比值,即直角三角形中/A 的对边与邻边的比;③ tanA 不表示"tan ”乘以"A ”;④ 初中阶段,我们只学习直角三角形中,/A是锐角的正切;⑤ tanA 的值越大,梯子越陡,ZA 越大;ZA 越大,梯子越陡,tanA 的值越大。
2. 正弦:定义:在Rt △ ABC 中,锐角/A 的对边与斜边的比叫做/A 的正弦,记作sinA ,即sin AA的对边................................... """■ 斜边3. 余弦:定义:在Rt △ ABC 中,锐角/A 的邻边与斜边的比叫做/A 的余弦,记作cosA ,即cosA A的邻边 .............................. ■■■■■斜边之变化三•三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为 仰角2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为 俯角值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大 < sin a< 1, 0< cos a< 1。
4. 坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度i tan Al5. 方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
如图3,OA OB OC 的方位角分别为 45 °、135 °、225 °。
6. 方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角.。
北师大版九年级数学知识点汇总(总16页)
北师大版九年级数学知识点汇总(总16页)第一章整式与代数式一、定义1、定义1:整式整式是由常数和未知数的乘积以及未知数的幂次构成的一个或多个项的表达式。
2、定义2:代数式代数式是数学中由常数、未知数、及他们的运算符号组成的符号表达式的总称。
二、运算1、加减运算在加减运算中,同类项要求具有相同的底数和指数,再将它们的系数相加减,整式中一些未知数有相同指数,可以合并为一项。
2、乘除运算乘除运算中,同一式子中的若干未知数及其指数要求相同,否则将它们拆开,系数则相乘、相除,未知数则相乘、相除。
三、同类因式1、定义:同类因式是指有相同底数和指数的项。
2、形式当底数相同,有两种形式出现:(1)乘积形式,如:(a+b)2;(2)对比形式,如a2:b2;当指数相同,有三种形式出现:(1)口诀形式,如:a2b2;(2)引号形式,如:(a+b)2;(3)下标形式,如:a2/b2。
第二章平方差一、定义1、定义1:平方平方是数学中指一个数的平方,也可以表示为n²。
2、定义2:差差是指在数学中表示两个或多个数之间的差,也可以表示为a-b。
二、运算1、解平方差要解方程:x²-a=b,须将a和b分别平方,变为x²-a²=b²,再根据等式左右两边分别加或减a²,变为:x²±2a x±a²=b²,再用平方根法求出x的值。
2、完全平方差要解方程:ax²+2bx+c=0,首先设:x²+2px+q=0,其中p=b/a,q=c/a,再将上式化为完全平方差的形式:(x+p)²=q-p²,最后解出 x=–p±√q–p² 。
三、巧解平方差当a、b、c的数值比较简单且不能完全平方差时,则可用巧解方法。
只要将a、b、c 做互质处理,即将a与b、c求公约数,将a、b、c分解为两个数的乘积,如果形式中乘积可以分解完全平方式,则可用巧解方法解方程。
(精选版)北师数学中考知识点汇总
(精选版)北师数学中考知识点汇总(精选版)北师数学中考知识点汇总一直以来,数学都是很多学生的薄弱科目,但是初中的学生一定要学好数学,因为数学在升中考的时候占据了很大的分值。
下面小编为大家带来北师数学中考知识点汇总,希望对您有所帮助!北师数学中考知识点汇总轴对称1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.性质(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
一次函数(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。
特别地,当b=0时,y=kx+b(k 为常数,k≠0),y叫做x的正比例函数。
(二)函数三要素1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。
(三)一次函数的表示方法1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。
2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。
3.图像法:用图象来表示函数关系的方法叫做图象法。
(四)一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k。
即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。
北师数学中考知识点归纳
北师数学中考知识点归纳北师大版数学中考知识点归纳涵盖了初中数学的各个重要领域,包括数与代数、几何、统计与概率等。
以下是对这些知识点的详细归纳:数与代数1. 实数:包括有理数和无理数的概念,实数的分类和性质。
2. 代数式:包括代数式的运算法则,如加减乘除、乘方、开方等。
3. 方程与不等式:涉及一元一次方程、一元二次方程的解法,以及不等式的解集。
4. 函数:包括函数的概念、性质、图像,以及线性函数、二次函数等基本函数类型。
5. 数列:包括等差数列和等比数列的定义、通项公式和求和公式。
几何1. 平面图形:涉及线段、角、三角形、四边形、圆等基本平面图形的性质和计算。
2. 立体图形:包括立体图形的表面积和体积计算,如正方体、长方体、圆柱、圆锥等。
3. 图形变换:涉及平移、旋转、反射等几何变换的性质和应用。
4. 相似与全等:包括相似三角形、全等三角形的判定和性质。
5. 坐标几何:坐标系中点的位置、线段的斜率、图形的平移和旋转等。
统计与概率1. 数据收集与处理:包括数据的收集、分类、整理和描述。
2. 统计图表:涉及条形图、折线图、饼图等统计图表的绘制和解读。
3. 平均数、中位数和众数:包括这些统计量的定义、计算方法和应用。
4. 方差和标准差:涉及数据的离散程度的度量方法。
5. 概率:包括事件的概率、条件概率、独立事件等基本概念。
解题技巧与策略1. 审题:仔细阅读题目,理解题目要求。
2. 画图:对于几何问题,画图可以帮助直观理解问题。
3. 列出已知条件:明确已知条件和需要求解的目标。
4. 选择解题方法:根据问题类型选择适当的解题方法。
5. 检查:解题后要检查答案是否合理,是否符合所有条件。
结束语北师大版数学中考知识点的归纳是帮助学生系统复习和掌握初中数学知识的重要工具。
通过这些知识点的学习和练习,学生可以更好地准备中考,提高解题能力和数学素养。
希望每位学生都能在中考中取得优异的成绩。
北师大版九年级下册数学第7讲《待定系数法求二次函数的解析式》知识点梳理
1 2 北师大版九年级下册数学第 7 讲《待定系数法求二次函数的解析式》知识点梳理【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式1. 二次函数解析式常见有以下几种形式 :(1)一般式: y = ax 2 + bx + c (a ,b ,c 为常数,a ≠0);(2)顶点式: y = a (x - h )2 + k (a ,h ,k 为常数,a ≠0);(3)交点式: y = a (x - x 1 )(x - x 2 ) ( x 1 , x 2 为抛物线与 x 轴交点的横坐标,a ≠0).2. 确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如 y = ax 2 + bx + c 或 y = a (x - h )2 + k ,或 y = a (x - x 1 )(x - x 2 ) ,其中 a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数;第四步,还原:将求出的待定系数还原到解析式中.要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为 y = ax 2 + bx + c ;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为y = a (x - h )2 + k ;③当已知抛物线与 x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为 y = a (x - x )(x - x ) .【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线 经过 A ,B ,C 三点,当 时,其图象如图 1 所示.求抛物线的解析式,写出顶点坐标.⎩∴ ⎪图 1【答案与解析】设所求抛物线的解析式为 ( ).由图象可知 A ,B ,C 的坐标分别为(0,2),(4,0),(5,-3).⎧c = 2, ⎨16a + 4b + c = 0, ⎪25a + 5b + c = -3, 解之,得抛物线的解析式为该抛物线的顶点坐标为 .【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围 .2. (2016•丹阳市校级模拟)形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,顶点坐标是 (0,﹣5)的抛物线的关系式为 .【思路点拨】形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,因此可设顶点式为 y=﹣2(x ﹣h ) 2+k ,其中(h ,k )为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x 2﹣5.【解析】解:∵形状与抛物线 y=2x 2﹣3x +1 的图象形状相同,但开口方向不同,设抛物线的关系式为 y=﹣2(x ﹣h )2+k ,将顶点坐标是(0,﹣5)代入,y=﹣2(x ﹣0)2﹣5,即 y=﹣2x 2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3.已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式.【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为:,,则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法:解法(1) :设抛物线的函数关系式为顶点式:(a≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2) :设抛物线的函数关系式为两点式:y =a(x + 4()x- 2)(a≠0),把(-1,4)代入得,所以抛物线的函数关系式为:y=-4(x+4()x- 2);9【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式.举一反三:【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式.【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a(x+2)2+,将点(1,0)代入,得a(1+2)2+=0,解得a=﹣,即y=﹣(x+2)2+ ,∴所求二次函数解析式为y=﹣x2﹣2x+ .类型二、用待定系数法解题⎩ ⎩4.(2015 春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据,(1) 求二次函数的解析式;(2) 设此二次函数的顶点为 P ,求△ABP 的面积.【答案与解析】解:(1)由二次函数图象知,函数与 x 轴交于两点(﹣1,0),(3,0),设其解析式为:y=a (x+1)(x ﹣3),又∵函数与 y 轴交于点(0,2),代入解析式得,a ×(﹣3)=2,∴a=﹣ ,∴二次函数的解析式为:,即;(2) 由函数图象知,函数的对称轴为:x=1, 当 x=1 时,y=﹣×2×(﹣2)= ,∴△ABP 的面积 S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把 A(2,0),B(0,-6)代入 y = - 1 x 2 + bx + c 2得⎧-2 + 2b + c = 0, 解得⎧b = 4, ⎨c = -6, ⎨c = -6. ∴ 这个二次函数的解析式为 y = - 1 x 2 + 4x - 6 . 2(2)∵ 该抛物线的对称轴为直线 x = - 4 2 ⨯⎛ - 1 ⎫= 4 , 2 ⎪ ⎝ ⎭ ∴ 点 C 的坐标为(4,0),∴AC=OC-OA=4-2=2.∴S△ABC =1g AC g OB =1⨯ 2 ⨯ 6 = 6 .2 2【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A、B 两点坐标分别代入解析式求出b,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:⎛0 3 ⎫【变式】已知二次函数图象的顶点是(-1,2) ,且过点 ⎝ ,⎪.2 ⎭(1)求二次函数的表达式;(2)求证:对任意实数m,点M (m,-m2 ) 都不在这个二次函数的图象上.【答案】(1)y =-1 x 2-x +3 ;2 2(2)证明:若点M (m,-m2 ) 在此二次函数的图象上,则-m2=-1(m+1)2+2.2得m2- 2m + 3 = 0 .△=4 -12 =-8 < 0 ,该方程无实根.所以原结论成立.。
北师大版初中数学中考考点梳理
北师大版初中数学知识点梳理北师大版初中数学知识点梳理,按照中考一轮复习的顺序整理的,知识点很全面,适合所有采用北师大版教材的地区,稍作改动后,也可适用于人教版或其他版本教材的地区; 供大家参考学习第一章实数考点一、实数的概念及分类 3分1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,,归纳起来有四类:1开方开不尽的数,2有特定意义的数,如圆周率π,或化简后含有π的数,等;4某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 3分1、相反数实数与它的相反数时一对数只有符号不同的两个数叫做互为相反数,零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立;2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0;正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小;3、倒数如果a与b互为倒数,则有ab=1,反之亦成立;倒数等于本身的数是1和-1;零没有倒数;考点三、平方根、算数平方根和立方根 3—10分1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根或二次方跟;一个数有两个平方根,;正数a2、算术平方根正数a 的正的平方根叫做a 的算术平方根,正数和零的算术平方根都只有一个,零的算术平方根是零;3、立方根 如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;这说明三次根号内的负号可以移到根号外面;考点四、科学记数法和近似数 3—6分1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字;2、科学记数法把一个数写做na 10⨯±的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法; 考点五、实数大小的比较 3分1、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,要注意上述规定的三要素缺一不可;解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用;2、实数大小比较的几种常用方法1数轴比较:在数轴上表示的两个数,右边的数总比左边的数大;2求差比较:设a 、b 是实数,3求商比较法:设a 、b 是两正实数4绝对值比较法:设a 、b 是两负实数,5平方法:设a 、b 是两负实数,则b a b a <⇔>22;考点六、实数的运算 做题的基础,分值相当大 1、加法交换律 a b b a +=+2、加法结合律 )()(c b a c b a ++=++3、乘法交换律 ba ab =4、乘法结合律 )()(bc a c ab =5、乘法对加法的分配律 a ab c b a +=+)(6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的;第二章 代数式考点一、整式的有关概念 3分1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式;单独的一个数或一个字母也是代数式;2、单项式只含有数字与字母的积的代数式叫做单项式;注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如这种表示就是错误的,一个单项式中,所有字母的指数的和叫做这个单项式的次数;如c b a 235-是6次单项式;考点二、多项式 11分1、多项式几个单项式的和叫做多项式;其中每个单项式叫做这个多项式的项;多项式中不含字母的项叫做常数项;多项式中次数最高的项的次数,叫做这个多项式的次数;单项式和多项式统称整式;用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值;注意:1求代数式的值,一般是先将代数式化简,然后再将字母的取值代入;2求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入;2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项;几个常数项也是同类项;3、去括号法则1括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号;2括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号;4、整式的运算法则整式的加减法:1去括号;2合并同类项; 整式的乘法:),(都是n m a a a n m n m +=• 整式的除法:)0,,(≠=÷-a n m a a a nm n m 都是正整数注意:1单项式乘单项式的结果仍然是单项式;2单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;3计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号;4多项式与多项式相乘的展开式中,有同类项的要合并同类项;5公式中的字母可以表示数,也可以表示单项式或多项式;7多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的;考点三、因式分解 11分1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式;2、因式分解的常用方法 1提公因式法:)(c b a ac ab +=+2运用公式法:))((22b a b a b a -+=-3分组分解法:))(()()(d c b a d c b d c a bd bc ad ac ++=+++=+++ 4十字相乘法:))(()(2q a p a pq a q p a ++=+++3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提取公因式;2在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式3分解因式必须分解到每一个因式都不能再分解为止;考点四、分式 8~10分1、分式的概念一般地,用A 、B 表示两个整式,A÷B ,如果B 中含有字母,叫做分式;其中,A 叫做分式的分子,B 叫做分式的分母;分式和整式通称为有理式;2、分式的性质1分式的基本性质:分式的分子和分母都乘以或除以同一个不等于零的整式,分式的值不变;2分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;3、分式的运算法则考点五、二次根式 初中数学基础,分值很大1、二次根式,a必须是非负数;2、最简二次根式若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式;化二次根式为最简二次根式的方法和步骤:1如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简;2如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来;3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式;4、二次根式的性质5、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号;第三章方程组考点一、一元一次方程的概念 6分1、方程含有未知数的等式叫做方程;2、方程的解能使方程两边相等的未知数的值叫做方程的解;3、等式的性质1等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式;2等式的两边都乘以或除以同一个数除数不能是零,所得结果仍是等式;4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程0a x 0≠=+b a x 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项;考点二、一元二次方程 6分1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程;2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项;考点三、一元二次方程的解法 10分1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法;直接开平方法适用于解形如b a x =+2)(的一元二次方程;根据平方根的定义可知,a x +是b 的平方根,当0≥b 时当b<0时,方程没有实数根; 2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用;配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x,并用x 代替,则有222)(2b x b bx x±=+±; 3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法; 一元二次方程)0(02≠=++a c bx ax 的求根公式:4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法;考点四、一元二次方程根的判别式 3分根的判别式 一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即a b 42-=∆考点五、一元二次方程根与系数的关系 3分如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商;考点六、分式方程 8分1、分式方程分母里含有未知数的方程叫做分式方程;2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”;它的一般解法是:1去分母,方程两边都乘以最简公分母2解所得的整式方程3验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根;3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法;考点七、二元一次方程组 8~10分1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解;3、二元一次方程组两个或两个以上二元一次方程合在一起,就组成了一个二元一次方程组;4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解;5、二元一次方正组的解法1代入法2加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程;7、三元一次方程组由三个或三个以上一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组; 第四章 不等式组考点一、不等式的概念 3分1、不等式用不等号表示不等关系的式子,叫做不等式;2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解;对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集;求不等式的解集的过程,叫做解不等式;3、用数轴表示不等式的方法考点二、不等式基本性质 3~5分1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变;2、不等式两边都乘以或除以同一个正数,不等号的方向不变;3、不等式两边都乘以或除以同一个负数,不等号的方向改变;考试题型:考点三、一元一次不等式 6~8分1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式;2、一元一次不等式的解法解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x 项的系数化为1考点四、一元一次不等式组 8分1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组;几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集; 求不等式组的解集的过程,叫做解不等式组;当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集;2、一元一次不等式组的解法1分别求出不等式组中各个不等式的解集2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集;第五章 统计初步与概率初步考点一、平均数 3分1、平均数的概念1平均数:一般地,如果有n 个数,,,,21n x x x 那么n个数的平均数拔”;2加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次这里n f f f k=++ 21,那么,根据平均数的定义,这n 个数的平均数可以表示为,其中k f f f ,,,21 叫做权; 2、平均数的计算方法1定义法当所给数据,,,,21n x x x 比较分散时,2加权平均数法:当所给数据重复出现时,其中n f f f k=++ 21; 3新数据法:当所给数据都在某一常数a 的上下波动时,其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -=';数通常把,,,,21nx x x 叫做原数据,,',,','21n x x x 叫做新数据; 考点二、统计学中的几个基本概念 4分1、总体所有考察对象的全体叫做总体;2、个体总体中每一个考察对象叫做个体;3、样本从总体中所抽取的一部分个体叫做总体的一个样本;4、样本容量样本中个体的数目叫做样本容量;5、样本平均数样本中所有个体的平均数叫做样本平均数;6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数; 考点三、众数、中位数 3~5分1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数;2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据或最中间两个数据的平均数叫做这组数据的中位数;考点四、方差 3分1、方差的概念在一组数据,,,,21nx x x 中,,叫做这组数据的方差;通常用“2s ”表示,即2、方差的计算1基本公式:2简化计算公式Ⅰ:此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方;3简化计算公式Ⅱ:当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么](此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方;4新数据法: 原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得,',,','21nx x x 的方差就等于原数据的方差; 3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即考点五、频率分布 6分1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布;2、研究频率分布的一般步骤及有关概念1研究样本的频率分布的一般步骤是:①计算极差最大值与最小值的差②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图2频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数样本容量n的比值叫做这一小组的频率;考点六、确定事件和随机事件 3分1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件;不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件;2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件;考点七、随机事件发生的可能性 3分一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同;对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小;要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样;所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题;考点八、概率的意义与表示方法 5~6分1、概率的意义一般地,在大量重复试验中,如果事件A p附近,那么这个常数p就叫做事件A的概率;2、事件和概率的表示方法一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为PA=P考点九、确定事件和随机事件的概率之间的关系 3分1、确定事件概率1当A是必然发生的事件时,PA=12当A是不可能发生的事件时,PA=02、确定事件和随机事件的概率之间的关系事件发生的可能性越来越小0 1概率的值不可能发生必然发生事件发生的可能性越来越大考点十、古典概型 3分1、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等;我们把具有这两个特点的试验称为古典概型;2、古典概型的概率的求法一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为考点十一、列表法求概率 10分1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法; 2、列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法;考点十二、树状图法求概率 10分 1、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法; 2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率; 考点十三、利用频率估计概率8分 1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率;2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验;3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作;把这些随机产生的数据称为随机数;第六章 一次函数与反比例函数考点一、平面直角坐标系 3分 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系;其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O 即公共的原点叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面;为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限;注意:x 轴和y 轴上的点,不属于任何象限; 2、点的坐标的概念点的坐标用a,b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒;平面内点的坐标是有序实数对,当b a ≠时,a,b 和b,a 是两个不同点的坐标; 考点二、不同位置的点的坐标的特征 3分 1、各象限内点的坐标的特征点Px,y 在第一象限0,0>>⇔y x点Px,y 在第二象限0,0><⇔y x 点Px,y 在第三象限0,0<<⇔y x 点Px,y 在第四象限0,0<>⇔y x2、坐标轴上的点的特征点Px,y 在x 轴上0=⇔y ,x 为任意实数 点Px,y 在y 轴上0=⇔x ,y 为任意实数点Px,y 既在x 轴上,又在y 轴上⇔x,y 同时为零,即点P 坐标为0,0 3、两条坐标轴夹角平分线上点的坐标的特征 点Px,y 在第一、三象限夹角平分线上⇔x 与y 相等 点Px,y 在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同; 5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 点Px,y 到坐标轴及原点的距离:1点Px,y 到x2点Px,y 到y 3点Px,y 考点三、函数及其相关概念 3~8分 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;一般地,在某一变化过程中有两个变量x 与y,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数;2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式; 使函数有意义的自变量的取值的全体,叫做自变量的取值范围; 3、函数的三种表示法及其优缺点 1解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法;2列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法;3图像法用图像表示函数关系的方法叫做图像法; 4、由函数解析式画其图像的一般步骤 1列表:列表给出自变量与函数的一些对应值2描点:以表中每对对应值为坐标,在坐标平面内描出相应的点3连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来; 考点四、正比例函数和一次函数 3~10分 1、正比例函数和一次函数的概念一般地,如果b kx y +=k,b 是常数,k ≠0,那么y 叫做x 的一次函数;特别地,当一次函数b kx y +=中的b 为0时,kx y =k 为常数,k ≠0;这时,y 叫做x 的正比例函数;2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点0,b 的直线;正比例函数kx y =的图像是经过原点0,0的直线;。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
(完整版)北师大版九年级数学下册知识点归纳复习提纲
图1 新北师大版九年级数学下册知识点总结第一章 直角三角形边的关系一.锐角三角函数 1.正切:定义:在Rt△ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA , 即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切;⑤tanA 的值越大,梯子越陡,∠A 越大;∠A 越大,梯子越陡,tanA 的值越大。
2.正弦..: 定义:在Rt△ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;3.余弦:定义:在Rt△ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ; 锐角A 的正弦、余弦和正切都是∠A 的三角函数当锐角A 变化时,相应的正弦、余弦和正切之也随之变化。
二.特殊角的三角函数值30 º45 º 60 º sin α21 22 23 h i=h:lBC三.三角函数的计算1. 仰角:当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角..2. 俯角:当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角..3.规律:利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值随着角度的增大(或减小)而减小(或增大)。
(2)0≤sin α≤1,0≤cos α≤1。
4.坡度:如图2,坡面与水平面的夹角叫做坡角坡角的正切称为坡度........... (或坡比..)。
用字母i 表示,即A lhi tan ==5.方位角:从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角...。
北师大版九年级下册数学[圆的对称性—知识点整理及重点题型梳理](提高)
北师大版九年级下册数学重难点突破知识点梳理及重点题型巩固练习圆的对称性—知识讲解(提高)【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3. 掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)∴直径AB是⊙O中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2. 圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3. 圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015春•安岳县月考)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.【总结升华】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O两弦AB、CD垂直相交于H,AH=4,BH=6,CH=3,DH=8,求⊙O半径.【答案】如图所示,过点O分别作OM⊥AB于M,ON⊥CD于N,则四边形MONH为矩形,连结OB,∴12MO HN CN CH CD CH==-=-11()(38)3 2.522CH DH CH=+-=+-=,111()(46)5222BM AB BH AH==+=+=,∴在Rt△BOM中,OB==【变式2】如图,AB为⊙O的弦,M是AB上一点,若AB=20cm,MB=8cm,OM=10cm,求⊙O的半径.【答案】14cm.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O中,平行弦AB、CD间的距离是14cm或2cm.【总结升华】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O中,直径MN⊥AB,垂足为C,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O处有一座喷泉,小明为测量湖的半径,在湖边选择A、B两个点,在A处测得∠OAB=45°,在AB延长线上的C处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O作OD⊥AC于点D,则AD=BD,∵∠OAB=45°,∴AD=OD,∴设AD=x,则OD=x,OA=x,CD=x+BC=x+50).∵∠OCA=30°,∴=tan30°,即=,解得x=25﹣25,∴OA=x=×(25﹣25)=(25﹣25)(米).答:人工湖的半径为(25﹣25)米.【总结升华】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l交⊙O于C、D两点,AB是⊙O的直径,AE⊥l于E,BF⊥l于F.(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA=OB除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【总结升华】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形. 类型三、圆心角、弧、弦之间的关系及应用5.已知:如图所示,⊙O 中弦AB =CD .求证:AD =BC .【思路点拨】本题主要是考查弧、弦、圆心角之间的关系,要证AD =BC ,只需证AD BC =或证∠AOD=∠BOC 即可.【答案与解析】证法一:如图①,∵ AB =CD ,∴ A B C D =.∴ A B B DC D B D -=-,即AD BC =, ∴ AD =BC .证法二:如图②,连OA 、OB 、OC 、OD ,∵ AB =CD ,∴ ∠AOB =∠COD .∴ ∠AOB -∠DOB =∠COD -∠DOB ,即∠AOD =∠BOC ,∴ AD =BC .【总结升华】在同圆或等圆中,证两弦相等时常用的方法是找这两弦所对的弧相等或所对的圆心角相等,而图中没有已知的等弧和等圆心角,必须借助已知的等弦进行推理.举一反三:【变式】如图所示,已知AB 是⊙O 的直径,M 、N 分别是AO 、BO 的中点,CM ⊥AB ,DN ⊥AB . 求证:AC BD =.【答案】证法一:如上图所示,连OC、OD,则OC=OD,∵OA=OB,且12OM OA=,12ON OB=,∴OM=ON,而CM⊥AB,DN⊥AB,∴Rt△COM≌Rt△DON,∴∠COM=∠DON,∴A C B D=.证法二:如下图,连AC、BD、OC、OD.∵M是AO的中点,且CM⊥AB,∴AC=OC,同理BD=OD,又OC=OD.∴AC=BD,∴A C B D=.。
北师大版初三(下)数学重点知识点汇总
初三(下)重点知识点汇总第1课锐角三角函数1.锐角三角函数的定义在Rt△ABC中,∠C=90°.(1)正弦:我们把锐角A的对边a与斜边c的比叫做∠A的______,记作sinA.即sinA=∠A的对边斜边=ac.(2)余弦:锐角A的邻边b与斜边c的比叫做∠A的______,记作cosA.即cosA=∠A的邻边斜边=bc.(3)正切:锐角A的对边a与邻边b的比叫做∠A的______,记作tanA.即tanA=∠A的对边∠A的邻边=ab.(4)三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.2.锐角三角函数的增减性(1)锐角三角函数值都是___值.(2)当角度在0°~90°间变化时,①正弦值随着角度的增大(或减小)而增大(或减小);②余弦值随着角度的增大(或减小)而减小(或增大);③正切值随着角度的增大(或减小)而增大(或减小).(3)当角度在0°≤∠A≤90°间变化时,0≤sinA≤1,0≤cosA≤1.当角度在0°<∠A<90°间变化时,tanA>0.3.互余两角三角函数的关系在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:(1)一个角的正弦值等于这个角的余角的______值,即sinA=(90°﹣∠A);(2)一个角的余弦值等于这个角的余角的______值,即cosA=sin(90°﹣∠A);也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.参考答案:1.(1)正弦;(2)余弦;(3)正切2.(1)正3.(1)余弦正弦第2课特殊角的三角函数值1.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;2.特殊角的三角函数值的应用(1)应用中熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐_______,余弦逐渐_______,正切逐渐_______;二是按特殊直角三角形中各边特殊值规律去记.(2)特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.参考答案:1. 30°、45°、60°2.(1)增大减小增大第2课解直角三角形(1)1.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角直角的关系:∠A+∠B=90°;②三边之间的关系:__________;③边角之间的关系:sinA=∠A的对边:斜边=a:c,cosA=∠A的邻边:斜边=b:c,tanA=∠A的对边:邻边=a:b.(a,b,c分别是∠A、∠B、∠C的对边)2.特殊角的三角函数值特指___、_____、_____角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=;参考答案:1.(2)a2+b2=c22. 30°、45°、60°第3课解直角三角形(2)1.解直角三角形的应用(1)通过解直角三角形能解决实际问题中的很多有关测量问.如:测不易直接测量的物体的高度、测河宽等,关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.(2)解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.2.解直角三角形的应用-坡度坡角问题(1)坡度是坡面的铅直高度h和水平宽度l的比,又叫做_____,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.(2)把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h/l=tanα.(3)在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.应用领域:①测量领域;②航空领域③航海领域:④工程领域等.3.解直角三角形的应用-仰角俯角问题(1)概念:仰角是_____的视线与水平线的夹角;俯角是_____向下看的视线与水平线的夹角.(2)解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.4.解直角三角形的应用-方向角问题(1)在辨别方向角问题中:一般是以第一个方向为始边向另一个方向旋转相应度数.(2)在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.参考答案:2.(1)坡比3.(1)向上看向下看第4课二次函数1.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为_____,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是__________,对实际问题,自变量的取值范围还需使实际问题有意义.2.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是______________,对称轴直线____________,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向____,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.3.根据实际问题列二次函数关系式根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据_______的取值范围来确定.①描点猜想问题需要动手操作,这类问题需要真正的去描点,观察图象后再判断是二次函数还是其他函数,再利用待定系数法求解相关的问题.②函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化;有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.参考答案:1.(1)整式;(2)全体实数2.(﹣,)x=﹣①上;②下3.自变量第5课二次函数的图像1.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①_______:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②_______:在平面直角坐标系中描出表中的各点.③_______:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.2.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的______和_______.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大,开口就越___.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.3.二次函数图象与几何变换由于抛物线平移后的形状____,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.参考答案:1.(1)①列表;②描点;③连线;2.①开口方向大小小3.不变第6课二次函数解析式的判定1.二次函数解析式的三种常见形式二次函数的解析式有三种常见形式:①_________:y=ax2+bx+c(a,b,c是常数,a≠0);②_________:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标;③_________:y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0);2.待定系数法求二次函数解析式用待定系数法求二次函数的解析式.在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择________,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为________来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为_______来求解.参考答案:1.①一般式;②顶点式;③交点式2. 一般式 顶点式 交点式第7课 用函数观点看一元二次函数1.二次函数与一元二次方程的关系如果抛物线与x 轴有公共点,公共点的横坐标是,那么当时,函数的值是0,因此______就是方程ax bx c 20++=的一个根。
BS北师大版 初三九年级数学 下册第二学期春(中考易考常考 教材知识点梳理) 系统总复习
第一部分教材知识梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解一、知识清单梳理第3讲分式第4讲二次根式三、知识清单梳理第二单元方程(组)与不等式(组)第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组) x≥a x>a x≤a x<a第三单元函数第9讲平面直角坐标系与函数第10讲一次函数九、知识清单梳理第11讲反比例函数的图象和性质(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程>S△BOD.OPE第12讲二次函数的图象与性质第13讲二次函数的应用十二、知识清单梳理第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形cDcD第17讲相似三角形10cm的线段进行黄金分的比叫做黄金比.)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍.第18讲 解直角三角形十七、 知识清单梳理EC解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形,每一个外角为第20讲特殊的平行四边形如图,四边形形.(变式:如图④,四边形图①图②图③图④第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图c第22讲与圆有关的位置关系已知△ABC的三边长a=3,b=4则它的外切圆半径是2.5.第23讲与圆有关的计算(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOCa:r:R=2:1:2 a:r:R=2::2知识点二:与圆有关的计算公式第七单元图形与变换第24讲平移、对称、旋转与位似第25讲视图与投影第八单元统计与概率第26讲统计二十四、知识清单梳理第27讲概率二十五、知识清单梳理。
北师大版初二数学下册知识点归纳
【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
北师大版九年级下册数学知识点
北师大版九年级下册数学知识点北师大版九年级下册数学知识点1 二次函数及其图像二次函数(quadratic function)是指未知数的次数为二次的多项式函数。
二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。
其图像是一条主轴平行于y轴的抛物线。
一般的,自变量x和因变量y之间存在如下关系:一般式y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;顶点式y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线] ;重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。
a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
牛顿插值公式(已知三点求函数解析式)y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)+(y2(x-x1)(x-x3))/((x2-x1)(x2-x 3)+(y1(x-x2)(x-x3))/((x1-x2)(x1-x3) 。
由此可引导出交点式的系数a=y1/(x1x2) (y1为截距)求根公式二次函数表达式的右边通常为二次三项式。
求根公式x是自变量,y是x的二次函数x1,x2=[-b±(√(b^2-4ac))]/2a(即一元二次方程求根公式)(如右图)求根的方法还有因式分解法和配方法在平面直角坐标系中作出二次函数y=2x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
北师大版七年级数学下册全册知识点总结
北师大版七年级数学下册全册知识点总结第一章:整式的运算单项式整式多项式同底数幂的乘法幂的乘方 积的乘方幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘 整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
四、同底数幂的乘法1、n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
北师大版八年级数学下知识点汇总
全册知识点总结第一章三角形的证明一、全等三角形判定、性质:定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法四、直角三角形1 、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。
2 、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3 、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1 、线段的垂直平分线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(外心)判定:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2 、角平分线。
性质:角平分线上的点到这个角的两边的距离相等。
三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。
(内心)判定:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
第二章一元一次不等式和一元一次不等式组1..定义:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式。
2.. 基本性质:性质1:.不等式的两边都加(或减)同一个整式,不等号的方向不变. 如果a>b,那么a+c>b+c, a-c>b-c.(注:移项要变号,但不等号不变)性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变. 如果a>b,并且c>0,那么ac>bc,性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变. 如果a>b,并且c<0,那么ac<bc,< span="">说明:比较大小: 作差法a>b <===> a- b> 0a=b <===> a- b= 0 a<b <===> a- b< 03.. 不等式的解:能使不等式成立的未知数的值,叫做不等式的解4.. 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
北师大版数学九年级下册:章节知识点总结
北师大版初中数学九年级(上册)各章标题第一章 证明(二) 第二章 一元二次方程 第三章 证明(三) 第四章 视图与投影 第五章 反比例函数 第六章 频率与概率北师大版初中数学九年级(下册)各章标题第一章 直角三角形边的关系 第二章 二次函数 第三章 圆第四章 统计与概率北师大版初中数学九年级(上册)各章知识点第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形. 三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形 (2)三个角都相等的三角形是等边三角形 (3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形 (一)、直角三角形的性质 1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四单元图形的初步认识与三角形
第15讲一般三角形及其性质
第16讲等腰、等边及直角三角形
c
D
c
D
第17讲相似三角形
10cm的线段进行黄金分的比叫做黄金比.
C
E
第18讲解直角三角形
解题方法:这两种模型种都有一条公
共的直角边,解题时,往往通过这条
边为中介在两个三角形中依次求边,弄清题中名词、术语,根据题意画出图形,建立数学模型;
第五单元四边形
第19讲多边形与平行四边形:平行四边形的判定
第20讲特殊的平行四边形
如图,四边形
形.
(变式:如图④,四边形图①图②图③图④
第六单元圆
第21讲圆的基本性质
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
的直径垂直于弦,并且平分弦所对的两条弧;
弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
只要满足其中两个,另外三个结论一定成立,即推二知三.
图a 图b 图c
BAC=40°,则∠D
第22讲与圆有关的位置关系
已知△ABC的三边长a=3,b=4
则它的外切圆半径是2.5.
第23讲与圆有关的计算(2)特殊正多边形中各中心角、长度比:
中心角=120°中心角=90°中心角=60°,△BOC
a:r:R=2:1:2 a:r:R=2::2
知识点二:与圆有关的计算公式
n
第七单元图形与变换
第24讲平移、对称、旋转与位似
第25讲视图与投影
第八单元统计与概率
第27讲概率。