物理化学第五版课后答案
物理化学第五版课后习题答案
物理化学第五版课后习题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第七章 电化学7-1.用铂电极电解CuCl 2溶液。
通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu (2) 在阳阴极上能析出多少体积的27℃, 100 kPa 下的Cl 2(g )解:(1) m Cu =201560635462.F ⨯⨯⨯=5.527 g n Cu =2015602F⨯⨯=0.09328 mol(2) 2Cl n =2015602F ⨯⨯=0.09328 mol 2Cl V =00932830015100.R .⨯⨯=2.328 dm 37-2.用Pb (s )电极电解Pb (NO 3) 2溶液,已知溶液浓度为1g 水中含有Pb (NO 3) 21.66×10-2g 。
通电一段时间,测得与电解池串联的银库仑计中有0.1658g 的银沉积。
阳极区溶液质量为62.50g ,其中含有Pb (NO 3) 21.151g ,计算Pb 2+的迁移数。
解: M [Pb (NO 3) 2]=331.2098考虑Pb 2+:n 迁=n 前-n 后+n e=262501151166103312098(..)..--⨯⨯-11513312098..+0165821078682..⨯=3.0748×10-3-3.4751×10-3+7.6853×10-4 =3.6823×10-4 molt +(Pb 2+)=4436823107685310..--⨯⨯=0.4791 考虑3NO -: n 迁=n 后-n 前=11513312098..-262501151166103312098(..)..--⨯⨯=4.0030×10-3 molt -(3NO -)=4440030107658310..--⨯⨯=0.52097-3.用银电极电解AgNO 3溶液。
物理化学第五版课后习题答案解析
第五章 化学平衡5-1.在某恒定的温度和压力下,取n 0﹦1mol 的A (g )进行如下化学反应:A (g )B (g )若0B μ﹦0A μ,试证明,当反应进度﹦0.5mol 时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。
解: 设反应进度为变量A (g )B (g )t ﹦0 n A , 0﹦n 0 0 0﹦0t ﹦t 平 n A n B﹦BBn ν n B ﹦B,n A ﹦n 0-n B ﹦n 0-B,n ﹦n A +n B ﹦n 0气体的组成为:y A ﹦A n n ﹦00B n n νξ-﹦01n ξ-,y B ﹦B nn﹦0n ξ各气体的分压为:p A ﹦py A ﹦0(1)p n ξ-,p B ﹦py B ﹦p n ξ各气体的化学势与的关系为:0000ln ln (1)A A AA p p RT RT p p n ξμμμ=+=+- 0000lnln B B B B p p RT RT p p n ξμμμ=+=+⋅ 由 G =n AA+n BB=(n A 0A μ+n B 0B μ)+00ln(1)A p n RT p n ξ-+00ln B p n RT p n ξ⋅ =[n 0-A μ+0B μ]+n 00lnpRT p +00()ln(1)n RT n ξξ--+0ln RT n ξξ 因为 0B μ﹦0A μ,则G =n 0(0A μ+0lnpRT p )+00()ln(1)n RT n ξξ--+0ln RT n ξξ ,0()ln T p G RT n ξξξ∂=∂- 20,20()()T p n RT Gn ξξξ∂=-∂-<0 令 ,()0T p Gξ∂=∂011n ξξξξ==-- ﹦0.5 此时系统的G 值最小。
5-2.已知四氧化二氮的分解反应 N 2O 4 (g) 2 NO 2(g )在298.15 K 时,0r m G ∆=4.75kJ ·mol -1。
物理化学第五版课后习题答案
第十二章胶体化学12-1 如何定义胶体系统?总结胶体系统的主要特征。
答:(1) 胶体定义:胶体系统的主要研究对象是粒子直径d至少在某个方向上在1-100nm之间的分散系统。
(2) 胶体系统的主要特征:溶胶系统中的胶粒有布朗运动,胶粒多数带电,具有高度分散性,溶胶具有明显的丁达尔效应。
胶体粒子不能透过半透膜。
[注] 溶胶系统中的胶粒的布朗运动不是粒子的热运动,且只有溶胶才具有明显的丁达尔效应。
12-2 丁铎尔效应的实质及产生的条件是什么?答:丁铎尔现象的实质是光的散射作用。
丁铎尔效应产生的条件是分散相粒子的直径小于入射光波长、分散相与分散介质的直射率相差较大。
12-3 简述斯特恩双电层模型的要点,指出热力学电势、斯特恩(Stern)电势和ζ电势的区别。
答:斯特恩认为离子是有一定大小的,而且离子与质点表面除了静电作用外还有范德华力。
(1) 在靠近质点表面1~2个分子厚的区域内,反离子受到强烈地吸引而牢固地结合在质点表面,形成一个紧密地吸附层-斯特恩层,(2) 在斯特恩层,非离子的电性中心将形成一假想面-斯特恩面。
在斯特恩面内电势呈直线下降的变化趋势,即由质点表面的ϕ0直线下降至处的ϕs,ϕs称为斯特恩电势;(3) 其余的反离子扩散地分布在溶液中,构成双电层的扩散层部分。
在扩散层中,电势由ϕs降至零。
因此斯特恩双电层由斯特恩层和扩散层构成;(4) 当固、液两相发生相对运动时,紧密层中吸附在质点表面的反离子、溶剂分子与质点作为一个整体一起运动,滑动面与溶液本体之间的电势差,称为ζ电势。
热力学电势ϕ0是质点表面与液体内部的总的电位差,即固液两相之间双电层的总电势。
它与电极∕溶液界面的双电层总电势相似,为系统的热力学性质,在定温定压下,至于质点吸附的(或电离产生的)离子在溶液中活度有关,而与其它离子的存在与否无关。
斯特恩电势ϕs是斯特恩面与容液本体的电势差,其值与集中在斯特恩层里的正负离子的电荷总数有关,即与双电层的结构状态有关。
物理化学课后答案第五版_科学出版社_董元彦主编
第一章 化学热力学基础1-1 气体体积功的计算式 dV P W e ⎰-= 中,为什么要用环境的压力e P ?在什么情况下可用体系的压力体P ? 答:在体系发生定压变化过程时,气体体积功的计算式 dV P W e ⎰-= 中,可用体系的压力体P 代替e P 。
1-2 298K 时,5mol 的理想气体,在(1)定温可逆膨胀为原体积的 2 倍; ( 2 )定压下加热到373K ;(3)定容下加热到373K 。
已知 C v,m = 28.28J·mol -1·K -1。
计算三过程的Q 、W 、△U 、△H 和△S 。
解 (1) △U = △H = 0(2) kJ nC Q H m P P 72.13)298373(,=-==∆ W = △U – Q P = - 3.12 kJ(3) kJ nC Q U m V V 61.10)298373(,=-==∆ W = 01-3 容器内有理想气体,n=2mol , P=10P ,T=300K 。
求 (1) 在空气中膨胀了1dm 3,做功多少? (2) 膨胀到容器内压力为 lP ,做了多少功?(3)膨胀时外压总比气体的压力小 dP , 问容器内气体压力降到 lP 时,气体做多少功? 解:(1)此变化过程为恒外压的膨胀过程,且Pa P e 510= (2)此变化过程为恒外压的膨胀过程,且Pa P e 510= (3) Vn R TP dP P P e =≈-= 1-4 1mol 理想气体在300K 下,1dm 3定温可逆地膨胀至10dm 3,求此过程的 Q 、W 、△U 及△H 。
解: △U = △H = 01-5 1molH 2由始态25℃及P 可逆绝热压缩至 5dm -3, 求(1)最后温度;(2)最后压力; ( 3 ) 过程做功。
W f dl p A dl p dVδ=-⋅=-⋅⋅=-⋅外外外解:(1) 3511178.2410298314.81-=⨯⨯==dm P nRT V (2) Pa V nRT P 53222104.91053.565314.81⨯=⨯⨯⨯==- (3) )2983.565(314.85.21)(12,-⨯⨯⨯-=--=∆-=T T nC U W m V1-6 40g 氦在3P 下从25℃加热到50℃,试求该过程的△H 、△U 、Q 和W 。
物理化学第五版全册课后习题答案
n H 2O nC H 2 2 n H 2O nC H 2 2
p H 2O 进 p C2 H 2 p H 2O 出 p C 2 H 2
3.17 0.02339(mol ) 进 138.7 3.17 123 0.008947(mol ) 出 138.7 123
可见,隔板抽去前后,H2 及 N2 的摩尔体积相同。 (3) y H 2
3n N 2 n N 2 3n N 2
3 , 4
y N2
1 4
3 1 p; p N 2 y N 2 p p 4 4
pH2 yH2 p
所以有
p H2 : p N2 3 1 p : p 3 :1 4 4
3
VO2 y O2 V
n pV 101325 200 10 6 0.008315mol RT 8.314 293.15
3
M
m 0.3897 y AM A yB M B 46.867 g mol 1 n 0.008315 30.0694 y A 58.123 y B
(1)
第七章 电化学
余训爽
1-8 如图所示一带隔板的容器中, 两侧分别有同温同压的氢气与氮气, 二者均克视为理 想气体。 H2 p 3dm T
3
N2 p
1dm T
3
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体 混合后的压力。 (2)隔板抽去前后,H2 及 N2 的摩尔体积是否相同? (3)隔板抽去后,混合气体中 H2 及 N2 的分压力之比以及它们的分体积各为若干? 解: (1)抽隔板前两侧压力均为 p,温度均为 T。 n H RT n N RT (1) p H 2 2 3 p N2 2 3 p 3dm 1dm 得: nH 3n N
物理化学第五版课后习题答案
大学物理化学课后答案详解第一章气体的pVT性质1.1物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5两个容积均为V的玻璃球泡之间用细管连结,泡密封着标准状态下的空气。
若将其中的一个球加热到100 C,另一个球则维持0 C,忽略连接细管中气体体积,试求该容器空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜通氮气直到4倍于空气的压力,尔后将釜混合气体排出直至恢复常压。
重复三次。
求釜最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
实验值为。
解:用理想气体状态方程计算用van der Waals计算,查表得知,对于N2气(附录七),用MatLab fzero函数求得该方程的解为也可以用直接迭代法,,取初值,迭代十次结果1.16 25 C时饱和了水蒸气的湿乙炔气体(即该混合气体中水蒸气分压力为同温度下水的饱和蒸气压)总压力为138.7 kPa,于恒定总压下冷却到10 C,使部分水蒸气凝结为水。
物理化学第五版课后习题答案
第七章 电化学7-1.用铂电极电解CuCl 2溶液。
通过的电流为20 A ,经过15 min 后,问:(1)在阴极上能析出多少质量的Cu ? (2) 在阳阴极上能析出多少体积的27℃, 100 kPa 下的Cl 2(g )? 解:(1) m Cu =201560635462.F⨯⨯⨯=5.527 g n Cu =2015602F⨯⨯=0.09328 mol(2) 2C l n =2015602F⨯⨯=0.09328 mol 2C l V =00932830015100.R .⨯⨯=2.328 dm 37-2.用Pb (s )电极电解Pb (NO 3) 2溶液,已知溶液浓度为1g 水中含有Pb (NO 3) 21.66×10-2g 。
通电一段时间,测得与电解池串联的银库仑计中有0.1658g 的银沉积。
阳极区溶液质量为62.50g ,其中含有Pb (NO 3) 21.151g ,计算Pb 2+的迁移数。
解: M [Pb (NO 3) 2]=331.2098考虑Pb 2+:n 迁=n 前-n 后+n e=262501151166103312098(..)..--⨯⨯-11513312098..+0165821078682..⨯=3.0748×10-3-3.4751×10-3+7.6853×10-4 =3.6823×10-4 mol t +(Pb 2+)=4436823107685310..--⨯⨯=0.4791考虑3N O -: n 迁=n 后-n 前=11513312098..-262501151166103312098(..)..--⨯⨯=4.0030×10-3 molt -(3N O -)=4440030107658310..--⨯⨯=0.52097-3.用银电极电解AgNO 3溶液。
通电一段时间后,阴极上有0.078 g 的Ag 析出,阳极区溶液溶液质量为23.376g ,其中含AgNO 3 0.236 g 。
第五版物理化学课后习题答案
物化第二章 热力学第一定律2-1. 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解: n = 1molp 1, V 1, T 1−−−→−恒压升温p 2, V 2, T 2 W =-p a m b ΔV =-p (V 2-V 1) =-nR (T 2-T 1) =-8.314J2-2. 1mol 水蒸气(H 2O ,g )在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1molH 2O (g )−−−−−→−kPa101.325100℃,H 2O (l ) W =-p a m b ΔV =-p (V l -V g ) ≈ pVg = nRT = 3.102kJ2-3. 在25℃及恒定压力下,电解1mol 水(H 2O ,l ),求过程的体积功。
H 2O (l ) H 2(g ) + 12O 2(g )解: n = 1molH 2O (l )−−−−−→−kPa 101.325100℃,H 2(g ) + O 2(g )n 1=1mol 1mol + 0.5mol = n 2 V 1 = V l V (H 2) + V (O 2) = V 2W =-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT =-1.5×R ×298.15=-3.718kJ2-4.系统由相同的始态经过不同的途径达到相同的末态。
若途径a 的Q a =2.078 kJ ,W a =-4.157 kJ ,而途径b 的Q b =-0.692kJ 。
求W b 。
解:Q a +W a =Q b +W bW b =Q a +W a -Q b =2.078-4.157+0.692=-2.079+0.692=-1.387kJ2-5.始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
物理化学第五版课后习题答案解析
第五章 化学平衡5-1.在某恒定的温度和压力下,取n 0﹦1mol 的A (g )进行如下化学反应:A (g )垐?噲? B (g ) 若0B μ﹦0A μ,试证明,当反应进度﹦时,系统的吉布斯函数G 值为最小,这时A ,B 间达到化学平衡。
解: 设反应进度为变量A (g )垐?噲?B (g )t ﹦0 n A , 0﹦n 0 0 0﹦0 t ﹦t 平 n A n B ﹦BBn ν n B ﹦B ,n A ﹦n 0-n B ﹦n 0-B ,n ﹦n A +n B ﹦n 0气体的组成为:y A ﹦A n n ﹦00B n n νξ-﹦01n ξ-,y B ﹦B nn﹦0n ξ各气体的分压为:p A ﹦py A ﹦0(1)p n ξ-,p B ﹦py B ﹦p n ξ各气体的化学势与的关系为:0000ln ln (1)A A AA p p RT RT p p n ξμμμ=+=+- 0000lnln B B B B p p RT RT p p n ξμμμ=+=+⋅ 由 G =n AA +n BB =(n A 0A μ+n B 0B μ)+00ln(1)A p n RT p n ξ-+00ln B p n RT p n ξ⋅ =[n 0-0A μ+0B μ]+n 00lnpRT p +00()ln(1)n RT n ξξ--+0ln RT n ξξ 因为 0B μ﹦0A μ,则G =n 0(0A μ+0lnpRT p)+00()ln(1)n RT n ξξ--+0ln RT n ξξ ,0()ln T p G RT n ξξξ∂=∂- 20,20()()T p n RT Gn ξξξ∂=-∂-<0 令 ,()0T p Gξ∂=∂011n ξξξξ==-- ﹦ 此时系统的G 值最小。
5-2.已知四氧化二氮的分解反应 N 2O 4 (g )垐?噲? 2 NO 2(g )在 K 时,0r m G ∆=·mol -1。
物理化学第五版课后习题答案
第十二章胶体化学12-1 如何定义胶体系统?总结胶体系统的主要特征。
答:(1) 胶体定义:胶体系统的主要研究对象是粒子直径d至少在某个方向上在1-100nm之间的分散系统。
(2) 胶体系统的主要特征:溶胶系统中的胶粒有布朗运动,胶粒多数带电,具有高度分散性,溶胶具有明显的丁达尔效应。
胶体粒子不能透过半透膜。
[注] 溶胶系统中的胶粒的布朗运动不是粒子的热运动,且只有溶胶才具有明显的丁达尔效应。
12-2 丁铎尔效应的实质及产生的条件是什么?答:丁铎尔现象的实质是光的散射作用。
丁铎尔效应产生的条件是分散相粒子的直径小于入射光波长、分散相与分散介质的直射率相差较大。
12-3 简述斯特恩双电层模型的要点,指出热力学电势、斯特恩(Stern)电势和ζ电势的区别。
答:斯特恩认为离子是有一定大小的,而且离子与质点表面除了静电作用外还有范德华力。
(1) 在靠近质点表面1~2个分子厚的区域内,反离子受到强烈地吸引而牢固地结合在质点表面,形成一个紧密地吸附层-斯特恩层,(2) 在斯特恩层,非离子的电性中心将形成一假想面-斯特恩面。
在斯特恩面内电势呈直线下降的变化趋势,即由质点表面的ϕ0直线下降至处的ϕs,ϕs称为斯特恩电势;(3) 其余的反离子扩散地分布在溶液中,构成双电层的扩散层部分。
在扩散层中,电势由ϕs降至零。
因此斯特恩双电层由斯特恩层和扩散层构成;(4) 当固、液两相发生相对运动时,紧密层中吸附在质点表面的反离子、溶剂分子与质点作为一个整体一起运动,滑动面与溶液本体之间的电势差,称为ζ电势。
热力学电势ϕ0是质点表面与液体内部的总的电位差,即固液两相之间双电层的总电势。
它与电极∕溶液界面的双电层总电势相似,为系统的热力学性质,在定温定压下,至于质点吸附的(或电离产生的)离子在溶液中活度有关,而与其它离子的存在与否无关。
斯特恩电势ϕs是斯特恩面与容液本体的电势差,其值与集中在斯特恩层里的正负离子的电荷总数有关,即与双电层的结构状态有关。
物理化学第五版课后习题答案
第十章 界面现象10-1 请回答下列问题:(1) 常见的亚稳定状态有哪些为什么产生亚稳态如何防止亚稳态的产生(2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象(3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由 (4) 物理吸附与化学吸附最本质的区别是什么(5) 在一定温度、压力下,为什么物理吸附都是放热过程答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。
产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。
(2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。
(3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。
(4) 最本质区别是分子之间的作用力不同。
物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。
(5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。
10-2 在及下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少已知时汞的表面张力为 N ·m -1。
解: 3143r π=N×3243r π N =3132r rΔG =21A A dA γ⎰=(A 2-A 1)=4·( N 22r -21r )=4·(312r r -21r )=4××(339 (110)110--⨯⨯-10-6)=J10-3 计算时时,下列情况下弯曲液面承受的附加压力。
物理化学第五版课后习题答案
第十章 界面现象10-1 请回答下列问题:(1) 常见的亚稳定状态有哪些?为什么产生亚稳态?如何防止亚稳态的产生?(2) 在一个封闭的钟罩内,有大小不等的两个球形液滴,问长时间放置后,会出现什么现象?(3) 下雨时,液滴落在水面上形成一个大气泡,试说明气泡的形状和理由? (4) 物理吸附与化学吸附最本质的区别是什么?(5) 在一定温度、压力下,为什么物理吸附都是放热过程?答: (1) 常见的亚稳态有:过饱和蒸汽、过热液体、过冷液体、过饱和溶液。
产生这些状态的原因就是新相难以生成,要想防止这些亚稳状态的产生,只需向体系中预先加入新相的种子。
(2) 一断时间后,大液滴会越来越大,小液滴会越来越小,最终大液滴将小液滴“吃掉”, 根据开尔文公式,对于半径大于零的小液滴而言,半径愈小,相对应的饱和蒸汽压愈大,反之亦然,所以当大液滴蒸发达到饱和时,小液滴仍未达到饱和,继续蒸发,所以液滴会愈来愈小,而蒸汽会在大液滴上凝结,最终出现“大的愈大,小的愈小”的情况。
(3) 气泡为半球形,因为雨滴在降落的过程中,可以看作是恒温恒压过程,为了达到稳定状态而存在,小气泡就会使表面吉布斯函数处于最低,而此时只有通过减小表面积达到,球形的表面积最小,所以最终呈现为球形。
(4) 最本质区别是分子之间的作用力不同。
物理吸附是固体表面分子与气体分子间的作用力为范德华力,而化学吸附是固体表面分子与气体分子的作用力为化学键。
(5) 由于物理吸附过程是自发进行的,所以ΔG <0,而ΔS <0,由ΔG =ΔH -T ΔS ,得 ΔH <0,即反应为放热反应。
10-2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9m 的汞滴,试求此过程系统表面吉布斯函数变(ΔG )为多少?已知293.15K 时汞的表面张力为0.4865 N ·m -1。
解: 3143r π=N ×3243r π N =3132r rΔG =21A A dA γ⎰=γ(A 2-A 1)=4πγ·( N 22r -21r )=4πγ·(312r r -21r )=4π×0.47×(339(110)110--⨯⨯-10-6)=5.9062 J10-3 计算时373.15K 时,下列情况下弯曲液面承受的附加压力。