第二十三章 旋转测试题
人教版九年级数学上册第二十三章《旋转》测试带答案解析
人教版九年级数学上册第二十三章《旋转》测试带答案解析学校:___________姓名:___________班级:___________考号:___________一、单选题(本大题12个小题,每小题4分,共48分)1.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列垃圾分类的标志中,既是轴对称图形又是中心对称图形的是()A.可回收物B.厨余垃圾C.有害垃圾D.其它垃圾物3.下列垃圾分类图标分别表示:“可回收垃圾”、“有害垃圾”、“厨余垃圾”、“其它垃圾”,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.观察下列图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.7.2022年油价多次上涨,新能源车企迎来了更多的关注,如图是理想、蔚来、小鹏、哪吒四款新能源汽车的标志,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.如图,在平面直角坐标系中,△ABC的边AB⊥x轴,A(﹣2,0),C(﹣4,1),二次函数y=x2﹣2x﹣3的图象经过点B.将△ABC沿x轴向右平移m(m>0)个单位,使点A平移到点A′,然后绕点A'顺时针旋转90°,若此时点C的对应点C′恰好落在抛物线上,则m的值为()A B C D .9.如图,将ABC 绕点A 逆时针旋转40︒得到ADE ,AD 与BC 相交于点F ,若80E ∠=︒且AFC 是以线段FC 为底边的等腰三角形,则BAC ∠的度数为( )A .55︒B .60︒C .65︒D .70︒10.如图,在平面内将五角星绕其中心旋转180︒后所得到的图案是( )A .B .C .D .11.如图,矩形ABCD 中,AD =2,ABAC 上有一点G (异于A ,C ),连接 DG ,将△AGD 绕点A 逆时针旋转60°得到△AEF ,则BF 的长为( )A B .C D .=60°,在x 轴正半轴上有一点C ,点C 坐标为()1,0,将线段AC 绕点A 逆时针旋转120°,得线段AD ,连接BD .则BD 的长度为( )A .B .4CD .152二、填空题(本大题4个小题,每小题4分,共16分)13.点(6,1)-关于原点的对称点是__________.14.如图,在ABC 中,80ACB ∠=︒,将ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,使CC '平分B C A ''∠,则旋转角的度数为__________.15.如图,在ABC 中,70CAB ∠=︒,在同一平面内,将ABC 绕点A 逆时针旋转到AB C ''△的位置,使CC AB '∥,作B D AC '∥交BC 于点D ,则AB D '∠=______.16.如图,在ABC 中,90B ,4AB BC ==,将ABC 绕点A 逆时针旋转60︒,得到ADE ,则点D 到BC 的距离是______.三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)17.如图所示的正方形网格中,画出将△ABC 绕点C 逆时针旋转90°得到的△MNC ,A 、B 的对应点分别为M 、N .18.如图,ABC 的顶点坐标分别为(4,5)A -,(5,2)B -,(3,4)C -.(1)画出与ABC 关于原点O 对称的111A B C △,并写出点1A 的坐标为___________.(2)D 是x 轴上一点,使DB DC 的值最小,画出点D (保图痕迹),D 点坐标为___________.(3)(,0)P t 是x 轴上的动点,将点C 绕点P 顺时针旋转90︒至点E ,直线25y x =-+经过点E ,则t 的值为___________.19.阅读理解,并解答问题:观察发现:如图1是一块正方形瓷砖,分析发现这块瓷砖上的图案是按图2所示的过程设计的,其中虚线所在的直线是正方形的对称轴.问题解决:用四块如图1所示的正方形瓷砖按下列要求拼成一个新的大正方形,并在图3和图4中各画一种拼法.(1)图3中所画拼图拼成的图案是轴对称图形,但不是中心对称图形;(2)图4中所画拼图拼成的图案既是轴对称图形,又是中心对称图形.20.如图,在平面直角坐标系内,ABC 的顶点坐标分别为(4,4)A -,(2,5)B -,(2,1)C -.(1)平移ABC ,使点C 移到点1(2,2)C ,画出平移后的111A B C △;(2)将ABC 绕点(0,0)旋转180︒,得到222A B C △,画出旋转后的222A B C △;(3)连接12A C ,21A C ,求四边形1221A C A C 的面积.21.如图,在平面直角坐标系中,点A 的坐标为()1,1,点B 的坐标为()4,1,点C 的坐标为()3,3.(1)画出将ABC 向下平移5个单位长度得到的111A B C △;(2)画出将ABC 绕点原点O 逆时针旋转90°后得到的222A B C △,写出2C 的坐标.22.如图,在△ABC 中,AB =AC ,∠BAC =α,点D 在边BC 上(不与点B ,C 重合),连接AD ,以点A 为中心,将线段AD 逆时针旋转180°﹣α得到线段AE ,连接BE .(1)∠BAC +∠DAE = °;(2)取CD 中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明.23.对于平面直角坐标系xOy 中的图形M 和点P ,给出如下定义:将图形M 绕点P 顺时针旋转90 得到图形N ,图形N 称为图形M 关于点P 的“垂直图形”.例如,图1中点D 为点C 关于点P 的“垂直图形”.(1)点A 关于原点O 的“垂直图形”为点B .①若点A 的坐标为()0,3,则点B 的坐标为___________;②若点B 的坐标为()3,1,则点A 的坐标为___________;(2)(3,3)E -,(2,3)F -,(,0)G a ,线段EF 关于点G 的“垂直图形”记为E F '',点E 的对应点为E ',点F 的对应点为F '.①求点E '的坐标(用含a 的式子表示);②若O 的半径为2E F '',上任意一点都在O 内部或圆上,直接写出满足条件的EE '的长度的最大值.24.已知AOB 和MON △都是等腰直角三角形OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =;(2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.25.如图,在Rt ABC △中,90BAC ∠=︒,将Rt ABC △绕点A 旋转一定的角度得到Rt ADE △,且点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.参考答案:1.C【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.既是轴对称图形,又是中心对称图形,故本选项符合题意;D.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意.故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,正确掌握相关定义是解题关键.2.C【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既不是中心对称图形,也不是轴对称图形,故本选项不合题意;B.不是中心对称图形,是轴对称图形,故本选项不合题意;C.既是中心对称图形又是轴对称图形,故本选项符合题意;D.既不是中心对称图形,也不是轴对称图形,故本选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.既是轴对称图形,又是中心对称图形.故本选项符合题意;C.是轴对称图形,不是中心对称图形.故本选项不合题意;D.既不是轴对称图形,也不是中心对称图形.故本选项不合题意.故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】A是轴对称图形不是中心对称图形,不符合题意;B是轴对称图形不是中心对称图形,不符合题意;C既不是轴对称图形也不是中心对称图形,不符合题意;D既是轴对称图形又是中心对称图形,符合题意;故选:D.【点睛】本题考查了轴对称图形和中心对称图形的定义,即轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.A【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【详解】解:A.既是轴对称图形,又是中心对称图形,故本选项符合题意;B.是轴对称图形,不是中心对称图形,故本选项不合题意;C.不是轴对称图形,是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.B【分析】根据轴对称图形及中心对称图形的概念可直接进行排除选项.【详解】解:A、文字上方的图案既不是轴对称图形也不是中心对称图形,故不符合题意;B、文字上方的图案既是轴对称图形也是中心对称图形,故符合题意;C、文字上方的图案是轴对称图形但不是中心对称图形,故不符合题意;D、文字上方的图案既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B.【点睛】本题主要考查轴对称图形及中心对称图形的识别,熟练掌握轴对称图形及中心对称图形的概念是解题的关键.7.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.既不是轴对称图形,也不是中心对称图形.故本选项不合题意;B.是轴对称图形,不是中心对称图形.故本选项不符合题意;C.既是轴对称图形又是中心对称图形.故本选项符合题意;D.是轴对称图形,不是中心对称图形.故本选项不合题意.故选:C.【点睛】此题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.C【分析】作CD⊥AB于D,C'D'⊥A'B'于D',先根据已知条件求出点B坐标,由A、B、C三点坐标可得CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).进而表示出点C'的坐标为(m﹣1,2),最后将C'坐标代入二次函数解析式中计算即可得到点C坐标.【详解】解:作CD⊥AB于D,C'D'⊥A'B'于D',∵AB⊥x轴,二次函数y=x2﹣2x﹣3的图象经过点B,∴点B(﹣2,5)∵A(﹣2,0),C(﹣4,1),∴CD=2,AD=1.设点A(﹣2,0)向右平移m个单位后得点A'(m>0),则点A'坐标为(m﹣2,0).∵A'D'=AD=1,C'D'=CD=2,∴点C'坐标为(m﹣1,2),又点C'在抛物线上,∴把C'(m﹣1,2)代入y=x2﹣2x﹣3中,得:(m ﹣1)2﹣2(m ﹣1)﹣3=2,整理得:m 2﹣4m ﹣2=0.解得:m 1=m 2=2(舍去).故选:C .【点睛】此题考查了二次函数图象上点的坐标特点,平移的性质,解一元二次方程,正确理解平移的性质是解题的关键.9.B【分析】由旋转的性质得出80E C ∠=∠=︒,40BAD ∠=︒,由等腰三角形的性质得出80C AFC ∠=∠=︒,求出20CAF ∠=︒,根据BAC BAD CAF ∠=∠+∠即可得出答案. 【详解】解:将ABC 绕点A 逆时针旋转40︒得到ADE ,且80E ∠=︒,80E C ∴∠=∠=︒,40BAD ∠=︒,又AFC 是以线段FC 为底边的等腰三角形,AC AF ∴=,80C AFC ∴∠=∠=︒,180180808020CAF C AFC ∴∠=︒-∠-∠=︒-︒-︒=︒,402060BAC BAD CAF ∴∠=∠+∠=︒+︒=︒,故选:B .【点睛】本题考查了旋转的性质、等腰三角形的性质、三角形内角和定理,熟练掌握旋转的性质是解题的关键.10.C【分析】根据旋转的性质找出阴影部分三角形的位置即可得答案.【详解】∵将五角星绕其中心旋转180︒,∴图中阴影部分的三角形应竖直向下,故选:C .【点睛】本题考查旋转的性质,图形旋转前后,对应边相等,对应角相等,前后两个图形全等;熟练掌握旋转的性质是解题关键.11.A【分析】过点F 作FH ⊥BA 交BA 的延长线于点H ,则∠FHA =90°,△AGD 绕点A 逆时针旋转60°得到△AEF ,得∠F AD =60°,AF =AD =2,又由四边形ABCD 是矩形,∠BAD =90°,得AF=1,由勾股定理得AH=,得到到∠F AH=30°,在Rt△AFH中,FH=12BH=AH+AB,再由勾股定理得BF=【详解】解:如图,过点F作FH⊥BA交BA的延长线于点H,则∠FHA=90°,∵△AGD绕点A 逆时针旋转60°得到△AEF∴∠F AD=60°,AF=AD=2,∵四边形ABCD是矩形∴∠BAD=90°∴∠BAF=∠F AD+ ∠BAD=150°∴∠F AH=180°-∠BAF=30°AF=1在Rt△AFH中,FH=12由勾股定理得AH=在Rt△BFH中,FH=1,BH=AH+AB由勾股定理得BF=故BF故选:A【点睛】本题考查了图形的旋转,矩形的性质,含30度角的直角三角形的性质,勾股定理等知识,解决此题的关键在于作出正确的辅助线.12.C【分析】连接CD,过点A作AE⊥CD于点E,过点E作FG⊥x轴于点F,过点A作AG⊥FG于点G,设E(m,n),根据旋转证∠ACG=30°,CE,根据两角对应相等证△AEG∽△ECF,求出74E ⎛ ⎝⎭,52D ⎛ ⎝⎭,结合B (-2,0)求出BD =. 【详解】连接CD ,过点A 作AE ⊥CD 于点E ,过点E 作FG ⊥x 轴于点F ,过点A 作AG ⊥FG 于点G ,则∠AEC =∠OFG =∠G =90°,∵∠AOF =90°,∴∠OAG =90°,∴四边形AOFG 是矩形,∵(0,A ,∴FG =OA设E (m ,n ),∴AG =OF =m ,EF =n ,∴CF =m -1,EGn ,由旋转知,∠CAD =120°,AC =AD ,∴CE =DE ,∠ACG =30°,∴CE,∵∠CEF +∠ECF =∠AEG +∠CEF =90°,∴∠AEG =∠ECF ,∴△AEG ∽△ECF ,∴EF CE AG AE ==,∴=n m∵CF CE EG AE==∴74m =,n∴74E ⎛ ⎝⎭, ∵73144-=,735442+=,∴52D ⎛ ⎝⎭,∵∠ABO=60°,=OA∴OB =2,B (-2,0),∴BD =. 故选C .【点睛】本题主要考查了旋转,等腰三角形,含30°的直角三角形,两点间的距离公式,熟练掌握旋转图形全等性质,三线合一含30°角的直角三角形边的性质,两点间的距离公式是解决此题的关键.13.(6,1)-【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是点P '(﹣x ,﹣y ),进而得出答案.【详解】解:点(6,﹣1)关于原点的对称点的坐标为(﹣6,1).故答案为:(﹣6,1).【点睛】此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键. 14.100︒##100度【分析】根据旋转的性质得出80B C A ''∠=︒,C A AC '=,再根据角平分线的性质得出40CC A '∠=︒,利用等腰三角形的性质可求旋转角.【详解】解:∵ABC 在平面内绕点A 逆时针旋转到AB C ''△的位置,∴80C B C A A B ∠︒==''∠,C A AC '=,∵CC '平分B C A ''∠,∴1402CC A B C A '''∠=∠=︒,∴40CC A C CA ''∠=∠=︒,∴100C AC '∠=︒,故答案为:100°.【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练运用旋转的性质得出角的度数.15.30°##30度【分析】利用旋转的性质可求得AC =AC ′,∠CAB =∠C ′AB ′,由平行线性质和三角形内角和定理可求得∠C ′AC ;进而求得∠CAB ′即可解答;【详解】解:∵CC AB '∥,∴∠C ′CA =∠CAB =70°,由旋转的性质可得:AC =AC ′,∠CAB =∠C ′AB ′=70°,∴∠ACC ′=∠AC ′C =70°,∴∠C ′AC =180°-70°-70°=40°,∴∠CAB ′=∠C ′AB ′-∠C ′AC =70°-40°=30°,∵B D AC '∥,∴∠AB ′D =∠CAB ′=30°,故答案为:30°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质;掌握旋转的性质是解题关键.16.2【分析】由旋转的性质可得4AB AD ==,60BAD ∠=︒,可证ABD △是等边三角形,由直角三角形的性质可求解.【详解】解:如图,连接BD ,过点D 作DH BC ⊥于H ,将ABC 绕点A 逆时针旋转60︒,4AB AD ∴==,60BAD ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,60ABD ∠=︒,30DBC ∴∠=︒,DH BC ⊥,122DH BD ∴==, ∴点D 到BC 的距离是2,故答案为:2.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.17.见解析【分析】根据题意画出旋转后的图形即可;【详解】:如图,【点睛】本题主要考查了图形的旋转,掌握旋转图形的画法是解题的关键.18.(1)作图见详解,(4,5)-(2)作图见详解,13,03⎛⎫- ⎪⎝⎭(3)2-【分析】(1)已知ABC 三点坐标,ABC 关于原点O 对称的111A B C △各对应点的坐标与原坐标的横纵坐标均为相反数,由此即可作图;(2)作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小; (3)构造全等三角形求出等E 坐标,利用待定系数法即可解问题.【详解】(1)解:已知ABC 三点坐标(4,5)A -,(5,2)B -,(3,4)C -,关于原点对称,则对应点的坐标分别是1(4,5)A -,1(5,2)B -,1(3,4)C -,连接1A ,1B ,1C 所组成的图形为所求图形111A B C △,如图所示,(2)解:作点B 关于x 轴的对称点B',连接'CB 交x 轴于点D ,此时BD CD +的值最小,如图所示,已知(4,5)A -,(5,2)B -,(3,4)C -,点B'是点B 关于x 轴的对称点,∴'(5,2)B --、(34)C -,, ∴直线'BC 解析式为313y x =+,当0y =时,133x , ∴1303D ⎛⎫- ⎪⎝⎭,. (3)解:如图所示,作CH x ⊥轴于H EK x ⊥,轴于K ,根据题意得,(34)C -,,90CHP CPE PKE ∠=∠=∠=︒, ∴9090CPH HCP CPH EPK ∠+∠=︒∠+∠=︒,,∴PCH EPK ∠=∠,∵PC PE =,∴(AAS)PCH EPK △≌△,∴43PK CH EK PH t ====+,,∴4OK t =+,∴(43)E t t ++,,∵点E 在直线25y x =-+上,∴3245t t +=-++(),∴2t =-.【点睛】本题考查平面直角坐标系中图形的旋转变换,一次函数图像上的点的特征,轴对称最短问题等知识,解题的关键是熟练掌握旋转变换的性质,根据题意添加常用辅助线,构造全等三角形解决问题.19.(1)见解析(2)见解析【分析】(1)按照轴对称的意义得出答案即可;(2)按照轴对称的定义和中心对称的定义设计,所设计的图案既是中心对称图形,又是轴对称图形.(1)解:(1)参考图案,如图所示:(2)(2)参考图案,如图所示:【点睛】本题考查利用轴对称或中心对称设计图案,关键是理解轴对称和中心对称的定义.20.(1)见解析(2)见解析(3)6【分析】(1)首先确定C 点的平移规律,依此规律平移A 、B 两点,从而得到111A B C △; (2)利用中心对称的性质作出A 、B 、C 的对应点2A 、2B 、2C 即可;(3)先求112AC C 的面积,四边形1221A C A C 的面积为112AC C 面积的2倍.(1)解:如图所示,111A B C △为所求作;(2)解:如图所示,222A B C △为所求作; (3)解:如图,123C C =,1A 到12C C 距离为2; 则112AC C 的面积为:13232⨯⨯=. ∴由图可得四边形1221A C A C 的面积为236S =⨯=.【点睛】本题考查了坐标的平移,中心对称图形的画法,网格中图形面积的求法,解题的关键是根据题意画出图象. 21.(1)见解析 (2)见解析,()3,3-【分析】(1)利用平移的坐标特征写出1A 、1B 、1C 的坐标,然后描点依次连接即可; (2)利用网格特点和旋转的性质找出 A 、B 、C 的对应点 2A 、2B 、2C ,然后描点依次连接即可得 (1)解:经过平移可得:()11,4A -,()14,4B -,()13,2C -,顺次连接,如图所示:111A B C △即为所求作;(2)解:旋转后的点的坐标分别为:()21,1A -,()21,4B -,()23,3C -,然后顺次连接, 如图所示:222A B C △即为所求作,2C 的坐标()3,3-【点睛】本题考查了作图:平移及旋转变换,找到对应点的坐标,然后顺次连接各点是解题关键. 22.(1)180 (2)12AF BE =,证明见解析;【分析】(1)由旋转可知∠DAE =180°-a ,所以得到:∠BAC +∠DAE =a +180°-a =180°; (2)连接并延长AF ,使FG =AF ,连接DG ,CG ;因为DF =CF ,AF =GF ;可以得到四变形ADGC 为平行四边形;从而有∠DAC +∠ACG =180°,再证∠ACG =∠BAE 继而证明△ABE ≌△CAG 得到BE =AG ,即可得线段AF 与BE 的数量关系; 【详解】(1)解:由旋转可知∠DAE =180°-a , ∠BAC +∠DAE =a +180°-a =180° 故答案为:180(2)解:如图所示:连接并延长AF ,使FG =AF ,连接DG ,CG ; ∵DF =CF ,AF =GF ;∴四变形ADGC 为平行四边形; ∴∠DAC +∠ACG =180°,即∠ACG =180°-∠DAC ,∠BAE =∠BAC +∠DAE-∠DAC =180°-∠DAC , 所以∠ACG =∠BAE ,∵四变形ADGC 为平行四边形; ∴AD =CG , 又∵AD =AE , AE =CG ,在△ABE 和△CAG 中,{AB CA BAE ACG AE CG=∠=∠=∴△ABE ≌△CAG , ∴BE =AG , ∴AF =12AG =12BE ,故线段AF 与BE 的数量关系:AF =12BE ;【点睛】本题考查了旋转的性质,旋转角的定义,以及全等三角形的性质的判定,解题的关键是熟悉并灵活应用以上性质. 23.(1)①()3,0,②()1,3- (2)①(3,3)a a ++,【分析】(1)①②根据“垂直图形”的定义可得答案;(2)①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,利用AAS证明PEG HGE '△≌△得3E H PG a '==+,3GH EP ==,从而得出答案;②由点E '的坐标可知,满足条件的点E '在第一象限的O 上,求出点E '的坐标,从而解决问题. (1)解:①点A 的坐标为()0,3, ∴点B 的坐标为()3,0,故答案为:()3,0;②当()3,1B 时,如图,()1,3A -,故答案为:()1,3-; (2)解:①过点E 作EP x ⊥轴于点P ,过点E '作E H x '⊥轴于点H ,90EGE ∠'=︒,EG E G =',90EGP E GH ∴∠+∠'=︒,90EGP E ∠+∠=︒, E E GH ∴∠=∠',EPG GHE ∠=∠',∴AAS HG PEG E '△≌△(), 3E H PG a ∴'==+,3GH EP ==,3OH a ∴=+,3,3E a a ∴'++();②如图,观察图象知,满足条件的点E '在第一象限的O 上,()3,3E a a '++,2OE '=,()()222332a a ∴+++=,3a +=负值舍去),3a ∴=,E ∴',EE ∴'EE ∴'【点睛】本题是几何变换综合题,主要考查了全等三角形的判定与性质,“垂直图形”的定义,坐标与图形,求出点E '的坐标是解题的关键.24.(1)见解析;(2)①见解析; 【分析】(1)证明△AMO ≌△BNO 即可;(2)①连接BN ,证明△AMO ≌△BNO ,得到∠A =∠OBN =45°,进而得到∠MBN =90°,且△OMN 为等腰直角三角形,再在△BNM 中使用勾股定理即可证明; ②分两种情况分别画出图形即可求解.【详解】解:(1)∵AOB 和MON △都是等腰直角三角形, ∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON ,∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOBBOM BOM , ==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45A OBN,AM BN =,∴454590ABNABOOBN,且OMN ∆为等腰直角三角形,∴MN ,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAH HM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AH HM;故46322AM或.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 25.(1)见解析 (2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C ∴∠=∠AED AEC ∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠,1802EAC C ∠=︒-∠, ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒, 90ABC C ∴∠+∠=︒, 90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.。
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)
人教版九年级数学上册第二十三章《旋转》综合测试卷(含答案)班级 座号 姓名 成绩一、选择题(每小题4分,共40分)1. 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A. B . C. D.2.将左图按顺时针方向旋转90°后得到的是( )3.在平面直角坐标系中,点.(4,3)A -关于原点对称点的坐标为( ) A. .(4,3)A --B. .(4,3)A -C. .(4,3)A -D. .(4,3)A4.将△AOB 绕点O 旋转180°得到△DOE ,则下列作图正确的是( )A. B. C. D.5.如图,将三角尺ABC (其中∠ABC=60°,∠C=90°)绕B 点按顺时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ) A 、120° B 、90° C 、60° D 、30°6.将如图所示的正五角星绕其中心旋转,要使旋转后与它自身重合,则至少应旋转( ).A .36°B .60°C .72°D .180°7.若点A 的坐标为(6,3),O 为坐标原点,将OA 绕点O 按顺时针方向旋转90°得到OA′,则点A′的坐标是( )A 、(3,﹣6)B 、(﹣3,6)C 、(﹣3,﹣6)D 、(3,6) 8. 如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( ) A .55° B .60° C .65° D .70°9.如图,在正方形ABCD 中有一点P ,把⊿ABP 绕点B 旋转到⊿CQB ,连接PQ ,则⊿PBQ 的形状是( )A. 等边三角形B. 等腰三角形C.直角三角形D.等腰直角三角形10. 如图,设P 到等边三角形ABC 两顶点A 、B 的距离分别 为2、3,则PC 所能达到的最大值为( )A .5B .13C .5D .6 二、填空题(每题4分,共24分)11.如图,将ABC △绕点A 顺时针旋转60︒得到AED △, 若线段3AB =,则BE = .12.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A ′B ′C , 连接BB',若∠A′B′B =20°,则∠A 的度数是 .13将点A (-3,2)绕原点O 逆时针旋转90°到点B ,则点B 的坐标为 . 14.若点(2,2)M a -与(2,)N a -关于原点对称,则______.15.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是_________16.如图,在平面直角坐标系中,已知点A (-3,0),B (0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O 最远距离的坐标是(21,0),第2020个三角形离原点O 最远距离的坐标是 .•第5题图第6题图第8题图第9题图第16题图第15题图第12题图第10题图第11题图三、解答题(共86)17.在平面直角坐标系中,已知点A(4,1),B(2,0),C(3,1).请在如图的坐标系上上画出△ABC,并画出与△ABC关于原点O对称的图形.18.如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-1),B(-4,-3),C(-4,-1).C1;(1)作出△ABC关于原点O的中心对称图形△A1B1(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2;19.如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.20.如图,△ABC中,AD是中线.(1)画出将△ACD关于点D成中心对称的△EBD(2)如果AB=7,AC=5,若中线AD长为整数,求AD的最大值21.如图甲,在Rt△ACB中,四边形DECF是正方形.(1)将△AED绕点按逆时针方向旋转°,可变换成图乙,此时∠A1DB的度数是°.(2)若AD=3,BD=4,求△ADE与△BDF的面积之和.22.如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α.将△AOC绕直角顶点C按顺时针方向旋转90°得△BDC,连接OD.(1)试说明△COD是等腰直角三角形;(2)当α=95°时,试判断△BOD的形状,并说明理由.23.已知△ABC中,△ACB=135°,将△ABC绕点A顺时针旋转90°,得到△AED,连接CD,CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1,AC=2,求四边形ACED的面积.24.建立模型:(1)如图 1,已知△ABC,AC=BC,△C=90△,顶点C 在直线 l 上。
第二十三章旋转章节测试
第二十三章旋转章节测试(考试时间120分钟,全卷共24题,满分120分)班级_____________ 学号__________ 姓名_________ 成绩评定________一、看准了再选(每题3分,共27分)1.在下列图形中,既是轴对称图形,又是中心对称图形的是( )2.下列命题中的真命题是 ( ) A)全等的两个图形是中心对称图形. (B)关于中心对称的两个图形全等. (C)中心对称图形都是轴对称图形. (D)轴对称图形都是中心对称图形.3.单词N 、A 、M 、E 的四个字母中,是中心对称图形的是( )A .N B .A C.M D .E4.如图,将正方形图案绕中心O 旋转180°后,得到的图案是 ()5.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是( )A.72 B.108 C.144D.216A .B .C .D .(第5题) (第6题)6. 在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )7.4张扑克牌如图(1)所示放在桌子上,小新把其中一张旋转180°后得到如图(2)所示,那么他所旋转的牌从左起是( )A .第一张、第二张B .第二张、第三张C .第三张、第四张D .第四张、第一张(1) (2)8.如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A顺时针旋转90°后得到△AO B '',则点B '的坐标是A . (3,4)B . (4,5)C .(7,3)ABCABCD(第9题)9.如图,88⨯方格纸的两条对称轴EF MN ,相交于点O ,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点O 为中心旋转180,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a 变换成图b 的是( )A .①②B .①③C .②③D .③二、想好了再填(每题3分,共27分)10、如果点(45)P -,和点()Q a b ,关于原点对称,则点Q 为 . 11、下午2点30分时,•时钟的分针与时针所成角的度数为___________. 12、有以下图形:平行四边形、矩形、等腰三角形、线段、菱形中,既是轴对称图形又是中心对称图形的是 13、如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O 至少经过____________次旋转而得到, 每一次旋转_______ 度.14、直线 y = x + 3上有一点P (m -5,2m ),则P 点关于原点的对称点P ′为______.(第15题) (第16题)15、如图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“________________”交通标志(不画图案,只填含义). 16、将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15后得到AB C ''△,则图中阴影部分的面积是 2cm 。
第二十三章《旋转》整章测试题(含答案)
第二十三章《旋转》整章测试题附答案一、填空题:(每题3分)1.(2009年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( )2.(2008江苏省盐城市)已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图2.则旋转的牌是( )3.(2008湖北省宜昌市)如图,将三角尺ABC (其中∠ABC=60°,∠C =90°)绕B 点按顺 时针方向转动一个角度到A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( ).A .120°B .90°C .60°D .30°4.(2009年崇左)已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( ).A ()a b -,B .()a b -,C .()b a -,D .()b a -, 5.(2009年山东省日照市)在下图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是A .点AB .点BC .点CD .点D6.(2009年牡丹江市)ABC △在如图所示的平面直角坐标系中,将ABC △向右平移3个单位长度后得111A B C △,再将111A B C △绕点甲乙甲乙A .B .C .D .甲乙甲乙11图1图2A B CD(第9题)1A 1AA BCEFO 旋转180°后得到222A B C △,则下列说法正确的是( )A .1A 的坐标为()31, B .113ABB A S =四边形C.2B C = D .245AC O ∠=°7.(2008内蒙古自治区包头市)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将ACB △绕点C 按顺时针方向旋转到A CB ''△的位置,其中A C '交直线AD 于点E ,A B ''分别交直线AD AC ,于点F G ,,则旋转后的图中,全等三角形共有( ) A .2对B .3对C .4对D .5对8. (2008河北省)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图-2,图-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右二、填空题:(每题3分)9. (2008甘肃省白银九市)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 .10(2008吉林省长春市)如图,在平面内将Rt ABC △绕着直角顶点C 逆时针旋转90得到Rt EFC △.若AB =1BC =,则线段BE 的长为 .图-1图-2图-3…'BA PCBP 'P′P CBAB '11. (2008辽宁省大连市,3分)如图,P 是正△ABC 内的一点,若将△P AC 绕点A 逆时针旋转到△P′AB ,则∠P AP′的度数为 .(第11题) (第12题) (第13题)12.(2008江苏省扬州市)如图△ABC 是等腰直角三角形,BC 是斜边,P 为△ABC 内一点,将△ABP 绕点A 逆时针旋转后与△ACP ´重合,如果AP =3,那么线段PP '的长等于____. 13.(2008四川省宜宾市)将直角边长为5cm 的等腰直角ABC △绕点A 逆时针旋转15后得到AB C ''△,则图中阴影部分的面积是 2cm . 14.. (2008福建省厦门市)如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180得到BDE △,则DE = cm ,ABC △的面积= cm 2.15.(2007的正方形ABCD 绕点A逆时针方向旋转30o 后得到正方形AB C D ''',则图中阴影部分的面积为 ____________平方单位.16. (2007江苏泰州课改)如图,直角梯形ABCD 中,AD BC ∥,AB BC ⊥,2AD =,3BC =,45BCD ∠=,将腰CD 以点D 为中心逆时针旋转90至ED ,连结AE CE ,,则ADE △的面积是 .答案: 三、解答题:(共52分)17.(6分)(2008云南省双柏市)如图是某设计师在方格纸中 设计图案的一部分,请你帮他完成余下的工作: (1)作出关于直线AB 的轴对称图形;(2)将你画出的部分连同原图形绕点O 逆时针旋转90°; (3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.A BG CDA BCDEAOB18. (9分)(2008山西省)如图,在4× 3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).(1) (2) (3)19.(12分)(2008江苏省徐州市)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点B 的坐标为(1,0). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)画出将△ABC 绕原点O 按逆时针方向旋转90所得的△A 2B 2C 2; (3)△A 1B 1C 1与△A 2B 2C 2成轴对称吗?若成轴对称,画出所有的对称轴; (4)△A 1B 1C 1与△A 2B 2C 2成中心对称吗?若成中心对称,写出对称中心的坐标. 解:20.(12分)(2008山东省枣庄市)把一副三角板如图甲放置,其中90ACB DEC ==∠∠,45A =∠,30D =∠,斜边6cm AB =,7cm DC =.把三角板DCE 绕点C 顺时针旋转15°得到△D 1CE 1(如图乙).这时AB 与CD 1相交于点O ,与D 1E 1相交于点F . (1)求1OFE ∠的度数; (2)求线段AD 1的长;(3)若把三角形D 1CE 1绕着点C 顺时针再旋转30°得△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?说明理由.(甲)ACE DB(乙)AE 1CD 1OF21.(13分)(2009年牡丹江)已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.AE CF BD图1图3ADFECBADBCE 图2F参考答案一、选择题:1. C2. A3. A4. C5. B6. D7. C8. C二、填空题:9.9010. 3 11. 6012.13. 14. 2,1815. 316. 1三、解答题:17. 答案:如图.三步各计2分,共6分.18.解:(1)(2)(3)19解:(1)如图;(2)如图;(3)成轴对称,对称轴如图;(4)成中心对称,对称中心坐标11()22,.AOB20.解:(1)如图所示,315∠=,190E ∠=,∴1275∠=∠=.又45B ∠=,∴114575120OFE B ∠=∠+∠=+=. (2)1120OFE ∠=,∴∠D 1FO =60°.1130CD E ∠=,∴490∠=.又AC BC =,6AB =,∴3OA OB ==.90ACB ∠=,∴116322CO AB ==⨯=.又17CD =,∴11734OD CD OC =-=-=.在1Rt AD O △中,15AD ===. (3)点B 在22D CE △内部.理由如下:设BC (或延长线)交22D E 于点P ,则2153045PCE ∠=+=. 在2Rt PCE △中,2CP ==3CB =<,即CB CP <,∴点B 在22D CE △内部. 21.解:图2成立;图3不成立. 证明图2:过点D 作DM AC DN BC ⊥⊥, 则90DME DNF MDN ∠=∠=∠=°再证MDE NDF DM DN ∠=∠=, 有DME DNF △≌△ D M E D NF S S ∴=△△1EC 1D E FC EF D M C N D E C F S S SS∴==+△△四边形四边形由信息可知12ABC DMCN S S =△四边形 12D E F C E F AB C S S S ∴+=△△△ 图3不成立,DEF CEF ABC S S S △△△、、的关系是:12DEF CEF ABC S S S -=△△△。
九年级数学上册《第二十三章 旋转》单元测试卷及答案-人教版
九年级数学上册《第二十三章 旋转》单元测试卷及答案-人教版一、选择题1.如图,将ABC 绕点A 顺时针旋转60︒得到AED (点B 旋转至点E ,点C 旋转至点D ),若线段4AB =,则BE 的长为( )A .4B .5C .6D .72.古典园林中的花窗通常利用对称构图,体现对称美.下面四个花窗图案,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列图形既是轴对称图形,又是中心对称图形的是( )A .等边三角形B .等腰三角形C .平行四边形D .菱形4.若点()2A a -,,()3B b ,关于原点成中心对称,则a ,b 的值分别为( ) A .3a =和2b =- B .3a =-和2b =- C .3a =和2b =D .3a =-和2b =5.下列大学校微可以看成是由图案自身的一部分经平移后得到的为( )A .B .C .D .6.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,45EAF ∠=︒若αBAE ∠=,则FEC ∠一定等于( )A .2αB .902α︒-C .45α︒-D .90α︒-7.如图,在平面直角坐标系中,点A 的坐标是()23-,,将线段OA 绕点O 顺时针旋转90︒得到线段OB ,则点B 的坐标为( )A .()23,B .()32,C .()32--,D .()23-,8.如图,以平行四边形ABCD 对角线的交点O 为原点.平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若D 点坐标为()53,.则B 点坐标为( )A .()43--,B .()35--,C .()53--,D .()34--,9.下面四个图案中,不能由基本图案(图中阴影部分)旋转得到的是( )A .B .C .D .10.如图,在 33⨯ 的正方形网格中两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有( )A .4种B .5种C .6种D .7种二、填空题11.如图,将ABC 绕着点A 逆时针旋转得到ADE ,使得点B 的对应点D 落在边AC 的延长线上若8AB =,5AE =则线段CD 的长为 .12.在①平行四边形、②正方形、③等边三角形、④等腰梯形、⑤圆、⑥正八边形这些图形中,既是轴对称图形又是中心对称图形的是 (填序号).13.在直角坐标系中,点(4,5)绕原点O 逆时针方向旋转90°,得到的点的坐标是 .14.把18个边长都为1的等边三角形如图拼接成平行四边形,且其中6个涂上了阴影,现在,可以旋转、翻折或平移某一个阴影等边三角形到某一个空白的等边三角形处,使新构成的阴影部分图案是轴对称图形,共可得 种轴对称图形.三、解答题15.如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,且45EAF ∠=︒.把ADF 绕点A 顺时针旋转90︒得到ABG .求证:AGE AFE ≌.16.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).( 1 )把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C ; ( 2 )把111A B C 绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的122A B C .17.ABC 在平面直角坐标系xoy 中的位置如图所示.( 1 )作ABC 关于点C 成中心对称的111A B C .( 2 )将111A B C 向右平移3个单位,作出平移后的222A B C .( 3 )在x 轴上求作一点P ,使12PA PC +的值最小,并求出点P 的坐标.18.如果点 (11)P x y --,在第二象限,那么点 (11)Q x y --, 关于原点的对称点 M 在第几象限?19.如图是4×4的正方形网格,请选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.四、综合题20.如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点24DE AB ==,(1)将CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将CDE绕顶点C逆时针旋转120 (如图2),求MN的长.21.知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线EF经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个矩形如图所示摆放,O为小矩形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用两种方法分割).22.阅读材料:课堂上,老师设计了一个活动:将一个4×4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图①、图②、图③所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图③)逆时针旋转90°后得到的划分方法与我的划分方法(图①)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图④的划分方法是否正确?(2)判断图⑤的划分方法与图②小易的划分方法是否相同,并说明你的理由.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图⑥中画出来.参考答案与解析1.【答案】A【解析】【解答】解:由旋转的性质得:60BAE AE AB ∠=︒=,ABE ∴是等边三角形4BE AB ∴==故答案为:A.【分析】由旋转的性质得∠BAE=60°,AE=AB ,根据有一个角是60°的等腰三角形是等边三角形得∠ABE 是等边三角形,进而根据等边三角形的三边相等得BE=AB=4.2.【答案】C【解析】【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、即不是轴对称图形,也不是中心对称图形,故此选项不符合题意;C 、即是轴对称图形,也是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意. 故答案为:C.【分析】把一个平面图形,沿着某一条直线折叠,直线两旁的部分能完全重合的平面图形就是轴对称图形;把一个平面图形,沿着某一点旋转180°后,能与自身重合的图形就是中心对称图形,根据定义即可一一判断得出答案.3.【答案】D【解析】【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形,故不符合题意;B 、等腰三角形是轴对称图形,不是中心对称图形,故不符合题意;C 、平行四边形是中心对称图形,不是轴对称图形,故不符合题意;D 、菱形既是轴对称图形,又是中心对称图形,故符合题意; 故答案为:D.【分析】中心对称图形:把一个图形绕着某一点旋转180°后,旋转后的图形能够与原来的图形重合,轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此逐项判断即可.4.【答案】D【解析】【解答】解:∵A (a ,-2)、B (3,b )关于原点成中心对称∴a=-3,b=2. 故答案为:D.【分析】关于原点对称的点:横、纵坐标均互为相反数,据此解答.5.【答案】C【解析】【解答】解:A 、是一个轴对称图形,不能由平移得到,故此选项错误,不符合题意;B 、是一个轴对称图形,不能由平移得到,故此选项错误,不符合题意;C 、图案是由自身一部分沿着直线平移后得到的, 故此选项正确,符合题意;D 、此图案不能由平移得到,故此选项错误,不符合题意. 故答案为:C.【分析】根据平移不会改变图形的方向、形状及大小,只会改变图形的位置,即可一一判断得出答案.6.【答案】A【解析】【解答】解:将∠FDA 绕点A 逆时针旋转90°到∠HBA ,如图所示:∵四边形ABCD 为正方形∴∠C=∠D=∠DAB=∠ABC=90°,AB=AD由旋转可知AF=AH ,∠ABH=90°,∠HAF=90°,∠AHB=∠AFD ,∠FAD=∠HAB ∵45EAF ∠=︒ αBAE ∠= ∴∠FAD=45°-α ∴∠FAD=∠HAB=45°-α∴∠AHB=∠AFD=45°+α,∠HAE=45° ∴∠AEH∠∠AEF (SAS ) ∴∠AHB=∠AFE=45°+α ∴∠EFD=90°+2α ∵∠EFD 为∠CEF 的外角 ∴∠EFD=∠C+∠CEF ∴2FEC α∠= 故答案为:A【分析】将∠FDA 绕点A 逆时针旋转90°到∠HBA ,先根据正方形性质得到∠C=∠D=∠DAB=∠ABC=90°,AB=AD ,再根据旋转的性质得到AF=AH ,∠ABH=90°,∠HAF=90° ∠AHB=∠AFD ,∠FAD=∠HAB ,进而得到∠AHB=∠AFD=45°+α,∠HAE=45°,再根据三角形全等的判定与性质结合外角的性质即可求解。
第23章旋转测试题
第6题图第二十三章 旋转检测题一、 选择题(每小题3分,共30分)1.下面图形中,既是轴对称图形又是中心对称图形的是( )2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形3.如右上图,四边形ABCD 是正方形,ΔADE 绕着点A 旋转900后到达ΔABF 的位置,连接EF ,则ΔAEF 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 4.已知0a <,则点(2,1a a --+)关于原点的对称点 在( )A .第一象限B .第二象限C .第三象限D .第四象限 5.下列命题中是真命题的是( )A.全等的两个图形是中心对称图形B.关于中心对称的两个图形全等C.中心对称图形都是轴对称图形D.轴对称图形都是中心对称图形 6.如图,把图中的△ABC 经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P 的坐标为(a ,b ),那么它的对应点P′的坐标为( ) A .(a -2,b ) B .(a +2,b ) C .(a -2,-b ) D .(a +2,-b )7.四边形ABCD 的对角线相交于O ,且AO BO CO DO ===,则这个四边形( )A.仅是轴对称图形 B.仅是中心对称图形 C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形,又不是中心对称图形 8.如图所示,A 、B 、C 三点在正方形网格线的交点处.若将△绕着点A 逆时针旋转到如图位置,得到△,使三点共线,则的值为( )FED CBA陕西省教育科学规划课题《整体优化县域初中数学课堂教学有效策略》(编号:SGH13888)子课题《整体优化县域初中数学试卷讲评课有效策略》教学设计第14题图A. 1B.223C.310D. 2 9.如图所示,在正方形中,,点在上,且,点是上一动点,连接,将线段绕点逆时针旋转90°得到线段.要使点恰好落在 上, 则的长是( )A .1B .2C .3D .4 10.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .30,2B .60,2C .60,32D .60, 3二、填空题(本大题共6小题,每小题3分,共18分)11.给出以下4个图形:①平行四边形,②正方形,③等边三角形,④圆.其中,既是轴对称图形又是中心对称图形的是________________(填序号) 12.如图,正方形ABCD 边长为2,E 为CD 的中点,以点A 为中心,把△ADE 顺时针旋转90°得△ABF ,连接EF ,则EF 的长等于__________.13.如图等边三角形AOB ,绕点O 逆时针旋转到△COD 的位置,设旋转角 为α,AC 、BD相交于点E ,AC 与OB 相交于点M ,BD 与OC 相交于点N ,写出图中一对全等的三角形是: ________________(写出一对即可)14.如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在△ABC 内,△AP ′C 是由△BPC绕着点C 旋转得到的,PA = 5 ,PB =1,∠BPC =135°.则PC =_______________ 15.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是__________.16.如图,在直角坐标系中,射线OA 与x 轴正半轴重合,以O 为旋转中心将OA 逆时针旋转:OA →OA 1→OA 2→…→OA n …,旋转角∠AOA 1=2°,∠A 1OA 2=4°,∠A 2OA 3=8°,…要求下一个旋转角(不超过360°)是前一个旋转角的2倍.当旋转角大于360°时,又从2°开始旋转,即∠A 8OA 9=2°,∠A 9OA 10=4°,…周而复始.则当OA n 与y 轴正半轴第一次重合时,n 的值为_________________.(提示:2+22+23+24+25+26+27+28=510)第10题图第12题图第13题图三、解答题(共52分)17. (6分)画出△ABC 关于原点O 对称的△A 1B 1C 1,并求出点A 1,B 1,C 1的坐标。
第二十三章《旋转》测试题
18.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8, 点D在边BC上,以AD为折痕将△ABD折叠得到△AB′D, AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是 ____.
三、解答题(共9小题,共90分) 19.(8分)画出△ABC关于点O的对称图形△A′B′C′.(不写作法, 保留作图痕迹) 略
20.(8分)如图1,是由2个白色和2个黑色全等正方形组成的 “L”型图案,请你分别在图2,图3上按下列要求画图:
(1)在图2中,添1个白色或黑色正方形,使它成中心对称图 案; 解:如图所示. (2)在图3中,先改变1个正方形的位置,再添1个白色或黑色 正方形,使它既成中心对称图案,又成轴对称图案. 解:如图所示.
二、填空题(每小题4分,共24分) 13.(海南中考)如图,△COD是△AOB绕点O顺时针旋转 40°后得到的图形,若点C恰好落在AB上,且∠AOD的度 数为90°,则∠B的度数是___.
14.如图所示的图案由三个叶片组成,绕点O旋转120°后 可以和自身重合.若每个叶片的面积为4 cm2,∠AOB= 120°,则图中阴影部分的面积之和为____cm2.
21.(8分)如图,已知BC与CD重合,∠ABC=∠CDE= 90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转 而得到.请你利用尺规作出旋转中心O(不写作法,保留作图 痕迹),并直接写出旋转角度. 略
22.(10分)如图,在正方形ABCD中,点E在AB边上,点F 在BC的延长线上,且AE=CF. (1)求证:△AED≌△CFD; (2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合, 旋转中心是什么?
3.下面的四个图案中,既可用旋转来分析整个图案的形成 过程,又可用轴对称来分析整个图案的形成过程的图案有 ( D ) A.4个 B.3个 C.2个 D.1个
人教版九年级数学上册第二十三章《旋转》测试题(含答案)
人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。
人教版九年级数学(上)第二十三章《旋转》检测卷含答案
人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。
人教版数学九年级上册:第二十三章 《旋转》单元测试卷(附参考答案)
第二十三章 《旋转》单元测试卷(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分)1.下列现象中属于旋转的是( )A .摩托车在急刹车时向前滑动B .拧开水龙头C .雪橇在雪地里滑动D .电梯的上升与下降2.在下列图案中,不是中心对称图形的是( )A B C D3.如图,已知△OAB 是正三角形,OC ⊥OB ,OC =OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD ,则旋转的角度是( )A .150°B .120°C .90°D .60°第3题图 第6题图 第5题图 第7题图4.点A(3,-1)关于原点的对称点A ′的坐标是( )A .(-3,-1)B .(3,1)C .(-3,1)D .(-1,3)5.如图,已知△ABC 与△A ′B ′C ′关于点O 成中心对称,则下列判断不正确的是( )A .∠ABC =∠A ′B ′C ′ B .∠BOC =∠B ′A ′C ′C .AB =A ′B ′D .OA =OA ′6.如图,把一个直角三角尺绕着30°角的顶点B 顺时针方向旋转,使得点A 与CB 延长线上的点E 重合,连接CD 交AB 于点F ,则∠AFC =( )A .45°B .30°C .60°D .90°7.如图,点O 是▱ABCD 的对称中心,EF 是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABFE 和四边形EFCD 的面积分别记为S 1,S 2,那么S 1,S 2之间的关系为( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .无法确定8.如图,直线y =-43x +4与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标是( )A.(3,4) B.(4,5) C.(4,3) D.(7,3)第8题图第9题图第10题图9.如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为( )A.(5,2) B.(2,5) C.(2,1) D.(1,2)10.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AEFG,则图中阴影部分的面积为( )A.12B.33C.1-34D.1-33二、填空题(每小题3分,共30分)11.小明、小辉两家所在位置关于学校中心对称,如果小明家距学校2公里,那么他们两家相距公里.12.等边三角形至少旋转度才能与自身重合.13.如图,▱ABCD中,对角线AC,BD相交于点O,则图中成中心对称的三角形共有对.第13题图第14题图第16题图14.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为8.15.若点A(3-m,2)在函数y=2x-3的图象上,则点A关于原点对称的点的坐标是.16.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.17.如图,线段AB绕点A逆时针旋转60°得到线段AC,BD⊥AC于点D.若CD=1,则线段BD的长为.第17题图第18题图第19题图18.如图,E,F分别是正方形ABCD的边BC,CD上的点,BE=CF,连接AE,BF,将△ABE 绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则∠α=.19.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG,EG,则∠CGE=.20.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.三、(本大题12分)21.平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.四、(本大题12分)22.在平面直角坐标系中,△ABC的位置如图,网格中小正方形的边长为1个单位长度,请解答下列问题:(1)将△ABC向下平移3个单位长度得到△A1B1C1,作出平移后的△A1B1C1;(2)作出△ABC关于点O的中心对称图形△A2B2C2,并写出点A2的坐标.23.如图,已知△ABC是等边三角形,D是BC上一点,△ABD经旋转后到达△ACE的位置.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?六、(本大题14分)24.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点B,C,B1,C1的坐标.25.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.八、(本大题16分)26.如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;(3)若BC=8,DE=6,求△AEF的面积.参考答案: 题号1 2 3 4 5 6 7 8 9 10 选项B B AC B A CD A D11.4.12.120.13.4.14.8.15.(-52,-2). 16.(2,3).17.3.18.90°.19.45°.20.(-1,3).21.解:根据题意,得(x 2+2x)+(x +2)=0,y =-3.∴x 1=-1,x 2=-2.∵点P 在第二象限,∴x 2+2x<0.∴x =-1.∴x +2y =-7.22.解:(1)如图.(2)如图,点A 2的坐标是(-1,-2).23.解:(1)∵△ABD 经旋转后到达△ACE ,它们的公共顶点为A ,∴旋转中心是点A.(2)线段AB 旋转后,对应边是AC ,∠BAC 就是旋转角,也是等边三角形的内角, ∴旋转了60°.(3)∵旋转前后AB ,AC 是对应边,故AB 的中点M 旋转后就是AC 的中点了, ∴点M 转到了AC 的中点.24. 解:(1)根据对称中心的性质,可得对称中心的坐标是D 1D 的中点,∵D 1,D 的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A ,D 的坐标分别是(0,4),(0,2),∴正方形ABCD 与正方形A 1B 1C 1D 1的边长都是4-2=2.∴B ,C 的坐标分别是(-2,4),(-2,2).∵A 1D 1=2,D 1的坐标是(0,3),∴A 1的坐标是(0,1).∴B 1,C 1的坐标分别是(2,1),(2,3).综上可得顶点B ,C ,B 1,C 1的坐标分别是(-2,4),(-2,2),(2,1),(2,3). 25.解:(1)如图.(2)如图.(3)旋转中心的坐标为(0,-2).26.解:(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°.而F 是CB 的延长线上的点,∴∠ABF =90°.在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB ,∠ADE =∠ABF ,DE =BF ,∴△ADE ≌△ABF(SAS).(3)∵BC =8,∴AD =8.在Rt △ADE 中,DE =6,AD =8,∴AE =AD 2+DE 2=10.∵△ABF 可以由△ADE 绕旋转中心 A 点,按顺时针方向旋转90度得到,∴AE =AF ,∠EAF =90°.1 2AE2=12×100=50.∴S△AEF=。
第23章《旋转》全章测试含答案
(4)△AOE与△COF成中心对称,其中正确的个数为( )
A.1
B.2
C.3
D.4
6. 在如图 4×4的正方形网格中,△MNP绕某点旋转一定的角 度,得到△M N1 1P1,则其旋转中心可能是( )
第1页共6页
第 23 章《旋转》全章测试
测试时间 45 分钟,满分 100 分
(3)根据(2)的坐标系作出与△ABC 关于原点对称的图形△A B2 C2 ,2 并标出 B 、2 C 两2 点 的坐标.
13. ∠PBD=53°,∠BPD=64°,∠PDB=63°. 14. (1)证明:在正方形 ABCD 中, ∴∠ABE=∠ADG,AD=AB, 在△ABE 和△ADG 中,
∴△ABE≌△ADG(SAS), ∴∠BAE=∠DAG,AE=AG, ∴∠EAG=90°, 在△FAE 和△GAF 中,
第5页共6页
12.如图,在 Rt△ABC 中,∠ACB=90°,∠B=30°,将△ABC 绕点 C 按顺时针方向旋转 n
度后,得到△DEC,点 D 刚好落在 AB 边上. (1) 求 n 的值; (2)若 F 是 DE 的中点,判断四边形 ACFD 的形状,并说明理由.
13. 已知:如图,P 为等边△ABC 内一点,∠APB=113°,∠APC=123°,试说明:以 AP、 BP、CP 为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
第3页共6页
第 23 章《旋转》全章测试
测试时间 45 分钟,满分 100 分
参考答案 1.C 2.D 3.D 4.D 5.D 6.B
7. (2,4) 8. 75
0
3 9. 3
10. 10070. 11. (1)△AB C1 1如图所示;
人教版第二十三章__旋转单元测试题
(A)第二十三章旋转单元测试题一、选择题1、下列说法中正确的是()A、会重合的图形一定是轴对称图形;B、两个成中心对称的图形的对称点连线必过对称中心C、中心对称图形一定是会重合的图形;D、两个会重合的三角形一定关于某一点成中心对称2、在图形旋转中,下列说法错误的是()A、图形上的每一个点到旋转中心的距离相等B、图形上每一点移动的角度都相同C、图形上可能存在不动的点D、图形上任意两点的连接线段与旋转后对应两点的连接线段相等3、如图所示的图中,既是轴对称又是中心对称图形的是()(B)(C)(D)4、将一张正方形纸片沿右图中虚线剪开后,能拼成下列四个图形,则其中是中心对称图形的是()5、下列用英文字母设计的五个图案中既是轴对称图形,又是中心对称图形的有( )(A) 0个(B) 1个(C) 2个(D)3个6、下列图形中,中心对称图形的个数是个B.2个C.3个D.4个二、填空题AR PB QCc b a 7、下列图形中,旋转60度后可以和原图形重合的是( )A 、正六边形B 、正五边形C 、正方形D 、正三角形8、如图 15-3-3 所示, △OA B 绕点O 旋转 180°得到 △OCD ,连结 AD 、 BC ,得到四边形ABCD ,则 AB________CD (填位置关系);与 △AOD 成中心对称的是__________由此可得到 AD______ BC (填位置关系)。
9、如图:P 是等边∆ABC 内的一点,把∆ABP 通过旋转分别得到∆BQC 和∆ACR 。
(1)指出旋转中心是 、旋转方向是 旋转角度是 。
(2) ∆ACR 是否可以直接通过把∆BQC 旋转得到? (3)若PA=5,PC=4,PB=3,则△PQC 是什么三角形? 说明理由。
10、如果正方形CDEF 旋转后能与正方形ABCD 重合,那么图形所在的平面上可以作为旋转中心的点共有______个,并指出11、现实生活中有很多图形中都有圆的影子,它们看上去非常漂亮,这是因为圆不仅是轴对称图形,还是中心对称图形。
第二十三章旋转测试卷(新人教版附答案)讲解
九年级上册数学第23章旋转测试卷23 . 1图形的旋转谍后IN 固捉升—1. 下列事件中,属于旋转运动的是 A.小明向北走了 4米 B C.电梯从1楼到12楼D2. 将图23-1-8按顺时针方向旋转 ( )方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则4.如图23-1-10 ,△ ABO 绕着点 0旋转至△ ABQ 此时:(1) 点B 的对应点是 ______ . (2) 旋转中心是 ________ ,旋转角是 ____________ .(3) / A 的对应角是 ________ ,线段0B 的对应线段是 ___________ .5. 如图23-1-11,将△ ABC 绕点A 逆时针旋转 30°得到△ AEF 连接EB 则/ AEB=6. __________________________ 如图23-1-12,以点0为旋转中心,将/ 1按顺时针方向旋转100°得到/ 2,若/ 1 =40°,则/ 2的余角为 度.7.如图23-1-13,在画有方格图的平面直角坐标系中,△ABC 的三个顶点均在格点上.(1) △ ABC 是 ________ 三角形,它的面积等于 __________; (2) 将厶ACB 绕点B 按顺时针方向旋转90°,在方格图中用直尺画出旋转后对应的厶A C B,则点A'的坐标是(_, __),点C 的坐标是(_ , __).格点 M B .格点 N 格点P D.格点 QA.小朋友们在荡秋千时做的运动 .一物体从高空坠下3.如图 23-1-9,在 6X4 其旋转中心是()A. C. 图 23-1-9图 23-1-10图 23-1-11学匪韻丹&已知:如图23-1-14,点P 是正方形内一点,△ ABP 旋转后能与厶CBE 重合. (1) △ ABP 旋转的旋转中心是什么?旋转了多少度?⑵若BP= 2,求PE 的长.9•如图23-1-15 ,四边形EFG!是由四边形 ABCD§过旋转得到的.如果用有序数对(2,1) 表示方格纸上点 A 的位置,用(1,2)表示点B 的位置,那么四边形 ABCDS 转得到四边形 EFGH 时的旋转中心用有序数对表示是图 23-1-15- - - rlLTIU- = _rr卜LT —JI —J- - -J-+亠图 23-1-13图 23-1-14拓展琛空23-1-16 , K 是正方形 ABC 呐一点,以 AK 为一边作正方形 连接BK 和DM 试用旋转性质说明线段 BK 与 DM 的大小关系10.如图 在AK 的同旁,AKLM 使点 L , MA fi 图 23-1-16图 23-2-1123. 2 中心对称第1课时 中心对称与中心对称图形1 .下列命题正确的个数是 ( )① 关于中心对称的两个三角形是全等三角形;② 两个全等三角形必定关于某一点成中心对称;③ 两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称; ④ 关于中心对称的两个三角形,对称点的连线都经过对称中心. A. 1个 B . 2个 C . 3个 D . 4个2.如图23-2-8 ,已知菱形ABC [与菱形EFGH 关于直线BD 上某个点成中心对称,则点B的对称点是()A.点E B .点F C .点G D .点H4. __________________________________________________________________ 如图23-2-9的四组图形中,左边图形与右边图形成中心对称的有 ___________________________ 组.王王王至—(1)(2)⑶(站图 23-2-95. 在图23-2-10中,作出△ ABC 关于点E 成中心对称的图形.3. 图 23-2-8F 面的图形中,( )D-I-IT_ir图23-2-106. —块如图23-2-11所示的钢板,如何用一条直线将其分成面积相等的两部分?图23-2-117. 已知:如图23-2-12,已知△ ABC点O为BC的中点.⑴画出△ ABC绕边BC的中点0旋转180°得到的△ DCB ⑵求证:四边形ABDC是平行四边形.学匪捱丹&如图23-2-13,已知BC为等腰三角形纸片ABC的底边,ADL BC / BAO90°,将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则能拼出中心对称图形_________________________ 个.图23-2-139. 如图23-2-14 ,在每个边长均为1的小正方形的方格纸中,△ ABC的顶点和点0均与小正方形的顶点重合.(1) 在方格纸中,将△ ABC向下平移5个单位长度得到厶ABC,请画出厶ABC;(2) 在方格纸中,将△ ABC绕点0旋转180°得到△ ABC,请画出厶图23-2-14拓雇拯护10. 如图23-2-15,在4X3的网格上,由个数相同的白色方块与黑色方块组成的一幅图案,请依照此图案分别设计出符合要求的图案(注:①不得与原图案相同;②黑白方块的个数相同).⑴是轴对称图形,又是中心对称图形;(2) 是轴对称图形,但不是中心对称图形;(3) 是中心对称图形,但不是轴对称图形.第2课时 关于原点对称的点的坐标■ K F H n II ! a n fl-11 Ik r ■》谍后Wl 因愠升势裁础1.在平面直角坐标系中,与点 (2 , - 3)关于原点中心对称的点是( )A. ( — 3,2) B . (3 , - 2) C . (— 2,3) D . (2,3)2.如图23-2-17 ,矩形OABC 勺顶点0为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如 果将矩形OABC 绕点0旋转180°,旋转后的图形为矩形 OABG ,那么点B i 的坐标为( )1斗图 23-2-17值为 _____________ . 6.如图23-2-20 ,△ ABC 三个顶点的坐标分别为A ( -2,3),巳-3,1) , C ( - 1,2).Vi图 23-2-20.(-2,1).(2 , - 1)A. (2,1)C. (— 2,一 1)3.如图23-2-18,已知平行四边形 ABCD 勺两条对角线 AC 与 BD 交于平面直角坐标系的 原点,点D 的坐标为 (-2, - 3) (3 , - 2)A. C. (3,2),则点B 的坐标为(BD .(-3,2) .(—3,一 2)A八 D上BC图 23-2-18如图23-2-19,阴影部分组成的图案既是关于 原点O 成中心对称的图形,若点A 的坐标是 M 1 , - 3) , N - 1, - 3)B M - 1,- 3) , N1 , - 3)D4. A. C.5. 在数轴上,点 A, B 对应的数分别为 x 轴成轴对称的图形,又是关于坐标 (1,3),则点M 和点N 的坐标分别为().M -1,- 3) , N ( - 1,3).M - 1,3) , N (1 , - 3)x 一 5,且A , B 两点关于原点对称,则 x 的2,(1)将厶ABC向右平移4个单位,画出平移后的厶ABC;(2)画出△ ABC关于x轴对称的厶ARG;⑶将厶ABC绕原点O旋转180°,画出旋转后的△ ABG;⑷在厶ABC △ AB1C1 ,△ AB bQ,A A3B3C3中,_________ 与________ 成轴对称,对称轴是__; ______ 与 _____ 成中心对称,对称中心是________________________ .7•在平面直角坐标系中,若点P(x —2, x)关于原点的对称点在第四象限,贝U x的取值范围是_________ •学龍提丹&若△ ABC的三边为a, b, c,且点A(| c —2|,1)与点B( b —4,—1)关于原点对称, |a—4| = 0,则厶ABC是_______________ 三角形.9. 如图23-2-21,下列网格中,每个小方格的边长都是 1.(1) 分别作出四边形ABC咲于x轴、y轴、原点的对称图形;(2) 求出四边形ABCD勺面积.拓辰赛10. 如图23-2-22,在直角坐标系中,已知点P( —2,—1),点T(t, 0)是x轴上的一个动点.(1)求点P关于原点的对称点P'的坐标; ⑵当t取何值时,△ P'23. 3课题学习图案设计1 •下列基本图形中,经过平移、旋转或轴对称变换后,不能得到如图23-3-6的是()令图 23-3-62•要在一块长方形的空地上修建一个既是轴对称图形又是中心对称图形的花坛,下列 图案中不符合设计要求的是 ( )HU 力CD3•经过平移和旋转变换可以将甲图案变成乙图案的是()占R "月R动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消甲 乙 甲 乙A B4•在俄罗斯方块的游戏中,已拼好的图案如图甲 乙 甲 乙CD23-3-7,现又出现一小方格体正向下运A图 23-3-7A. 顺时针旋转B. 逆时针旋转C. 顺时针旋转D. 逆时针旋转90°,向右平移90°,向右平移90°,向下平移90°,向下平移5.如图23-3-8,桌面上有两个完全相同的直角三角形, 在它们所能拼成的部分图形中,运用旋转、平移可以拼成的图形是 (6. _____________________________________ 如图23-3-9,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基 本图形(图中的阴影部分)绕中心O 至少经过 _____________ 次旋转而得到, ______________________________________ 每一次旋转度.7. 图23-3-10是由4个正三角形构成的,它可以看作由其中一个正三角形经过怎样的 变化得到的?学匪1是丹&已知图形 B 是一个正方形,图形 A 由三个图形 B 构成,如图23-3-11,请用图形 A与B 合拼成一个轴对称图形,并把它画在图23-3-12所示网格中.A a图 23-3-129•如图23-3-13,方格纸中有三个点A , B, C,要求作一个四边形使这三个点在这个四图 23-3-11 r -- : -- ■ - :边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1) 在图23-3-14甲中作出的四边形是中心对称图形但不是轴对称图形;(2) 在图23-3-14乙中作出的四边形是轴对称图形但不是中心对称图形;(3) 在图23-3-14丙中作出的四边形既是轴对称图形又是中心对称图形.11C图23-3-1310.在平面上,7个边长均为1的等边三角形,分别用①至⑦表示(如图23-3-15).从④⑤⑥⑦组成的图形中,取出一个三角形,使剩下的图形经过一次平移,与①②③组成的图形拼成一个正六边形.(1) 取出的是哪个三角形?写出平移的方向和平移的距离;(2) 将取出的三角形任意放置在拼成的正六边形所在平面上,问:正六边形没有被三角5形盖住的面积能否等于㊁?请说明理由.图23-3-15第二十三章 旋转 23. 1图形的旋转 【课后巩固提升】 1. B 2.A 3.B4.⑴点B i⑵点0 / AOA 或/ BOB(3) / AOB5. 75°6.507. (1)等腰直角三角形5(2)按题意要求画出图形,由图&解:(1) △ ABP 旋转的旋转中心是点 B ,按顺时针方向旋转 90°.(2)由旋转的性质,得PB= BE / PBE 是旋转角,为 90°.••• PE={ PB + B E = 2 返 9.(5,2)解析:首先确定坐标轴, 根据旋转的性质,对应点连线的垂直平分线都经过 旋转中心.故连接 DH AE 作它们的垂直平分线,垂直平分线的交点即为旋转中心.10. 解:•••四边形 ABCD 四边形AKLM 是正方形, • AB= AD AK = AM 且/ BAD=Z KAM= 90°,且为旋转角.•••△ ADMH 以点A 为旋转中心,/ BAD 为旋转角,由△ ABK 按逆时针旋转而成的. ••• B 匕 DM23. 2 中心对称第1课时 中心对称与中心对称图形 【课后巩固提升】 1. B 2.D 3.D5.解:如图D13.4. 3 解析:(1)(2)(3) 符合条件.D9可以看出,A (3,3) , C (0,2)图D9一L -I —-T- —T 1 -匸彳■■卜t6•解:如图D14,将图形分成两个矩形,画一条同时经过两个矩形中心的直线即可. 三种思路:⑵ 证明:因为△ DCB 是由厶ABC 绕点0旋转180°所得, 所以点A 和D, B 和C 关于点0中心对称.所以 0B= OC 0A= OD 所以四边形ABDCI 平行四边形.10.解:⑴如图D17.⑵如图D18.⑶如图D19.图D17第2课时关于原点对称的点的坐标 【课后巩固提升】 1. C 2.C 3.D4. C 解析:点A 与点N 关于x 轴对称,点A 与点M 关于原点对称.5. 16. 解:(1)〜⑶作图略;(4) △ ARG △ A 3B 3C 3 y 轴 △ ABC △ A 3B 3C 3 (2,0)7. 0v x v 2 解析:点P (x — 2, x )关于原点的对称点的坐标为 (2 — x , - X ),由题意, 2 — x >0, 得 解得0 v x v 2. I — x v 0.&等腰9. 解:(1)如图D21所示.7.⑴解:如图D15.& 39.解:⑴、⑵如图D16.图D16图D191(2)四边形ABCD勺面积=2&ABD= 2X g 2X 1= 2.10. 解:(1)点P关于原点的对称点P'的坐标为(2,1).(2) OP =店.①动点T在原点左侧.当TO= P' C= 5时,△ P TO是等腰三角形,•••点T( - 5 , 0).②动点T在原点右侧.①当TC= TP时,△ P' TO是等腰三角形,得T5, 0 ;②当TO= P' O时,△ P' TO是等腰三角形,得点T( 5, 0);③当TP = P' O时,△ P TO是等腰三角形,得点T(4,0).5综上所述,符合条件的t的值为-.5, 4, 5, 4.23. 3课题学习图案设计【课后巩固提升】1. C2.D3.D4.A5.C6.4 727•解:可以看作由正三角形ADE以DE为轴作轴对称,再把正三角形向分别平移而得到的.10.解:⑴ 当取出的是⑦时,将④⑤⑥向上平移1,如图D27(1); 将⑥⑦向上平移2,如图D27(2).ADE沿AB AC方&解:如图D25.9.解:如图D26(答案不唯一).T/\/B当取出的是⑤时,图D27(2)能.每个等边三角形的面积为-43,则五个等边三角形的面积和为形的面积为一,而一<2<—,所以正六边形没有被三角形盖住的面积能等于而正六边52.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十三章旋转测试题
(时间:60分满分:100分)
一、选择题(每小题4分,共20分):
1.时钟上的分针匀速旋转一周需要60min,则经过10min,分针旋转了()
(A)10°. (B)20°. (C)30°. (D)60°.
2.平面直角坐标系内一点P(-2,3)关于原点对称点的坐标是()
(A)(3,-2) . (B)(2,3) . (C)(―2,―3) . (D)(2,-3).
3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()
(A)60°.(B)90°. (C)72°.(D)120°.
4.同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图所示是看到的万花筒
的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG可以看成
是把菱形ABCD以A为中心()
(A)顺时针旋转60°得到. (B)顺时针旋转120°得到.
(C)逆时针旋转60°得到.(D)逆时针旋转120°得到.
5.右上图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是
()(A)90°. (B)60°.(C)45°.(D)30°.
二、填空题(每题4分,共16分):
6.已知a<0,则点)3
,1
(2+
-
-
-a
a
P关于原点的对称点
1
P在第象限.
7.如图所示,下列各图中,绕一点旋转180°后能与原来位置重合.
8.写出两个既是中心对称,又是轴对称的图形:.
9.如图,已知五边形ABCDE中,AB∥ED, ∠A=∠B=90°,则
可以将该五边形ABCDE分成面积相等的两部分的直线有B
A
C
D
E
(第题)
(第3题)
(1)(5)
(4)
(3)
(2)
(第7题)
条,满足条件的直线可以这样确定: .
三做一做:
10.(8分)如图,不用量角器,在方格纸中画出六边形ABCDEF 绕O 点逆时针旋转
90°后的六边形.F E D C B A ''''''
11.(10分)如图,已知△ABC 和两相交于O 点且夹角为60°的直线m,n.画出△ABC 关于 直线m 的对称C B A '''∆,再画出C B A '''∆关于直线n 的对称C B A ''''''∆,则C B A ''''''∆可视为由△ABC 旋转得到的图形,则其旋转中心是哪一点?旋转角是多少度?
(第10题) n m
O C
B A (第11题)
12.(10分)如图,画出△ABC 关于原点O 对称的111C B A ,并求出点111,,C B A 的坐标.
四、证一证
13.(10分)如图,正方形ABCD 的对角线AC,BD 相交于O ,E 是AC 上一点,过点A 作
AG ⊥EB,垂足为G ,AG 交BD 于点F,求证:OE=OF.
五、算一算
14.(10分)如图,在正方形ABCD ,M 是BC 上一点,连接AM,作AM 的垂直平分线
GH 交AB 于G 点,交CD 于H 点,已知AM=10cm,求GH 的长.
E O G
F B
C
D
A
(第13题)
M
H
G B
C
D A
(第14题)
(第12题)
y
x
(-3,2) (-2,-1) C
(2,3)
B A
O
六、想一想
15.(10分)如图,石头A 和石头B 相距80cm ,且关于竹竿l 对称,一只电动青蛙在
距离竹竿30cm ,距石头A 为60cm 的
(1)请你画出青蛙跳跃的路径(画图工具不作限制);
(2)青蛙跳跃25次后停下,此时它与石头A 相距
cm ,与竹竿l
相距 cm.
16.(10分)如图,在△ABC 中,BC=1,AC=2,∠C=90°.将△ABC 称为“基本图形”,
请你利用“基本图形”,借助旋转、平移或轴对称变换,在另一张方格纸中设计一个以点O 为对称中心,并且以直线l 为对称轴的图案.
(第15题) 石头A
1P
石头B 竹竿l
l。