最新-2018年九年级数学4月份中考模拟预测试卷【低塘中

合集下载

最新-2018年九年级数学中考最新模拟试卷及答案 精品

最新-2018年九年级数学中考最新模拟试卷及答案 精品

2018年中考数学模拟试卷2018.4.18(总分 150分 时间 120分钟)一、选择题:(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一...项.是符合题目要求的,请将正确选项的代号填在括号内.) 1.|3|-的相反数是( ) A .3 B .13C .13-D . 3-2.下列各式运算结果为8x 的是( )A . x 4·x 4 B . (x 4)4 C .x 16÷x 2 D .x 4+x 43.下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中既是轴对称图形又是中心对称图形的是( )4.某几何体的三视图如左图所示,则此几何体是( ) A .正三棱柱 B .圆柱 C .长方体 D .圆锥 5.在Rt△ABC 中,∠C=90°,sinA=41,则tanB 的值是( ) A .415 B .1515C .15D .416.在2018年的世界无烟日(5月31日),小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了1000个成年人,结果其中有150个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A .调查的方式是普查 B .本地区约有15%的成年人吸烟 C .样本是150个吸烟的成年人 D .本地区只有850个成年人不吸烟7.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )A .相交 B .内含 C .内切 D .外切8.如图,点A 是函数y=x1的图象上的点,点B 、C 的坐标分别为B(-2,-2)、C(2,2).试利用性质:“函数y=x1的图象上任意一点A 都满足|AB -AC|=22”求解下面问题:“作∠BAC 的内角平分线AE ,过B 作AE 的垂线交AE 于F ,已知当点A 在函数y=x1的第4题图图象上运动时,点F 总在一条曲线上运动,则这条曲线为( )A .抛物线 B .圆 C .反比例函数的曲线 D .以上都不对二、填空题:(本大题共10小题,每小题3分共30分.不需写出解答过程,请将最后结果填写在题目中的横线上.) 9.分解因式:24x y y -=____________________ .10.在函数52-=x x y 中,自变量x 的取值范围是___________.11.2018年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43681000000元人民币.这笔款额用科学记数法表示(保留三个有效数字)为 元.12.一个圆锥形的圣诞帽高为10cm ,母线长为15cm ,则圣诞帽的表面积为_______cm 2(结果保留π).13.如果代数式b a 35+的值为-4,那么代数式)2(4)(2b a b a +++的值为 . 14.已知二次函数2(0)y ax bx c a =++≠的图像向左平移2个单位,向下平移1个单位后得到二次函数22y x x =+的图像,则二次函数2(0)y ax bx c a =++≠的解析式为______________.15.有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.下图是反映所挖河渠长度y (米)与挖掘时间x (时)之间关系的部分图象.开挖 小时后,甲队所挖掘河渠的长度开始超过乙队. 16.观察下列等式:第一个等式是1+2=3, 第二个等式是2+3=5,第三个等式是4+5=9, 第四个等式是8+9=17,……猜想:第n 个等式是 .17.一个定滑轮起重装置如图所示,滑轮的半径是10cm ,当重物上升20cm 时,滑轮的一条半径OA 绕轴心按逆时针方向旋转的角度(假设绳索之间没有滑动,结果精确到1°)约为_______.18.Rt△ABC 中,∠BAC=90°,AB=3,AC=4,P 为边BC 上一动点,PE⊥AB 于E ,PF⊥AC 于F ,M 为EF 中点,则AM 的最小值为 . 第17题图 第15题图 A B CPEFM 第18题图 第8题图三、解答题:(本大题共10小题,共96分.解答时,在答题纸的相应的位置上写出文字说明、证明过程或演算步骤) 19.(本题共8分)(1)计算:102006)21()23(1-+--- (2) 解方程:xx x 212112--=-20.(本题共8分)先化简分式23111xx x x x x ⎛⎫-÷⎪-+-⎝⎭,再从-1、0、1、2、3这五个数据中选一个合适的数作为x 的值代入求值. 21.(本题共8分)某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2∶3∶4∶6∶4∶1.请你回答: (1)本次活动共有 件作品参赛;上交作 品最多的组有作品 件;(2)经评比,第四组和第六组分别有10件和2件 作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?1222.(本题共8分)如图某幢大楼顶部有广告牌CD .张老师目高MA 为1.60米,他站立在离大楼45米的A 处测得大楼顶端点D 的仰角为30;接着他向大楼前进14米站在点B 处,测得广告牌顶端点C 的仰角为45.(计算结果保留一位小数) (1)求这幢大楼的高DH ; (2)求这块广告牌CD 的高度.23.(本题共10分)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴. (2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最 大高度不变且球刚好进洞,则球飞行路线应满足怎样 的抛物线,求出其解析式.24.(本题共10分)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘)。

最新18年九年级第四次模拟考试数学试题(附答案)

最新18年九年级第四次模拟考试数学试题(附答案)

2018年初中学业水平考试第四次模拟数学科试题(考试时间120分钟,赋分120分)第Ⅰ卷(选择题 共36分)一、选择题(共12小题,每小题3分,满分36分)每小题都给出标号为(A )、(B )、(C )、(D )的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑).1.5-的倒数是( )A .5-B .51-C .15D .5 2.下列计算正确的是( )A .236()a a =B .236a a a ⋅=C .236a a a +=D .632a a a ÷=3.下列各式从左到右的变形中,为因式分解的是( )A .()x a b ax bx -=-B .()()222111x y x x y -+=-++ C .()ax bx c x a b c ++=++ D .21(1)(1)y y y -=+-4.如图,已知⊙O 的半径为5,弦AB=8,则圆心O 到AB 的距离是( )A .1B .2C .3D .4 5.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )6. 将抛物线()2241y x =--先向左平移4个单位长度,再向下平移2个单位长度,平移后所得抛物线的顶点坐标为( )A .(0,-3)B .(4,1) C.(8,1) D .(8,-3)7.下列四个命题中假命题的是( )A.对顶角相等B.三角形的外心在三角形的边上C.全等三角形对应角相等D.两直线平行,同位角相等.8.如图,AB 、BC 是⊙O 的弦,OM ∥BC 交AB 于M ,若∠AOC=100°,则∠AMO 的度数为( )A 50°B 35°C 25°D 20°9.如图是反比例函数1k y x=和2k y x =(12k k <)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A 、B 两点,若2AOB S ∆=,则21k k -的值是( )A.1B.2C.4D.810.如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C ′的位置,且BC ′与AC 交于点D ,则'C D CD的值为( ) A.32 B. 32- C. 23- D. 33-11.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )A .B .2C .D .12.如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P .若AB=6,BC=33,则下列结论:①F 是CD 的中点;②⊙O 的半径是2;③AE=29CE ; ④S 阴影=23.其中正确的个数为( ) A.1 B.2 C.3 D.4第Ⅱ卷(非选择题 共84分)二、填空题(共6小题,每小题3分,满分18分)13. 12--= .14.函数y =中,自变量x 的取值范围是 . 15. 受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.将2.88亿元用科学记数法表示为 元.16.已知圆锥的底面圆半径是1,母线长是3,则圆锥的侧面积是 .17. 二次函数y=x 2﹣bx+b ﹣2图象与x 轴交于点A (x 1,0),B (x 2,0),且0<x 1<1,2<x 2<3,则满足条件的b 的取值范围是 .18.如图,点(1A 在直线2:l y =上,过点1A 作112A B l ⊥交直线1:3l y x =于点1B ,以11A B 为边在11OA B ∆外侧作等边三角形111A B C ,再过点1C 作222A B l ⊥,分别交直线2l 和1l 于22,A B 两点,以22A B 为边在22OA B ∆外侧作等边三角形222,A B C 按此规律进行下去,则第n 个等边三角形n n n A B C 的边长为__________.(用含n 的代数式表示)三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本题满分10分,每小题5分)(1)计算:010120181()2cos 453---++.(2) 解不等式组26415x x -≤⎧⎨+<⎩①②,并写出该不等式组的所有整数解.20.(本题满分5分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC (顶点是网格线的交点).(1)先将△ABC 竖直向上平移5个单位,再水平向右平移4个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)将△A 1B 1C 1绕B 1点顺时针旋转90°,得△A 2B 1C 2,请画出△A 2B 1C 2;(3)若∠B=63.40,则∠C 1B 1A 2= .21. (本题满分7分)如图,直线y ax b =+与双曲线ky x=交于,A B 两点,与y 轴交于点C ,点A 的纵坐标为6,点B的坐标为()3,2--.(1)求双曲线和直线的解析式;(2)若点P 在x 轴上,且满足PC=OA ,求点P 的坐标.22. (本题满分7分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:(1)本次调查所得数据的众数是____________部,中位数是___________部;扇形统计图中“1部”所在扇形的圆心角为____________度;(2)请将条形统计图补充完整;(3)没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为______________.23.(本题满分8分)某公司准备组织一批员工外出考察,若请4座的车若干台还差2人没有座位,若请6座的车8台则有一台车没有坐满人.(1)求这批员工共有多少人;(2)是否存在所请的每台车都刚好满座的方案,若存在,请帮该公司找出这些具体的租车方案.24. (本题满分8分)如图,在Rt ABC ∆中, 90=∠C ,以BC 为直径的⊙O 交AB 于点D,并且A ADE ∠=∠.(1)求证:直线DE 是⊙O 的切线.(2)若16AD =,10DE =,求BC 的长.25.(本题满分11分)如图,抛物线243(0)y mx mx m m =-+<与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,连接AC ,对称轴与x 轴交于点D .(1)求点A 、B 的坐标及对称轴的方程;(2)若∠OAC=450,求该抛物线的函数表达式;(3)在(2)的条件下,点P 在y 轴上,连接AP分别交对称轴和抛物线于点M 、N ,若PM=N 的坐标.26. (本题满分10分)如图,在△ABC中,P为AB上的点.(1)如图1,若∠ACP=∠则BP= ;(2)已知,M是PC的中点.①如图2,若∠ACP=∠PBM, 求证:222AC AP BPAP-=;②如图3,若AC=2, ∠ABC=450, ∠A=∠BMP=600, 求BP的长.2018年初中学业水平考试第四次模拟数学科试题参考答案一、选择题:1B 2A 3D 4C 5D 6A 7B 8A 9C 10B 11B 12C二、填空题:13. 14. 15.16. 17. 18.19. (本题满分10分)(1)解:原式.........4分...........5分(2) 解不等式①得........1分解不等式②得..........2分∴原不等式组的解为.........4分∴该不等式组的整数解为:.........5分20. (本题满分5分)(1)如图中的△A1B1C1为所求作的三角形.........2分(2)如图中的△A2B1C2为所求作的三角形.........4分(3)26.60..........5分21. (本题满分7分)解:(1)将点的坐标代入得.........1分解得所以双曲线的解析式为.......2分设,将代入解得∴.........3分将代入直线方程得.........4分解得∴直线的方程为...........5分(2)由直线方程得设,所以而 (6)或∴点P的坐标为和.........7分22. (本题满分7分)解(1)本次调查所得数据的众数是_ 1 部,中位数是__2 部;扇形统计图中“1部”所在扇形的圆心角为__126_度;..........3分(每空1分)(2)如图为所补全的条形图........5分(3).........7分23. (本题满分8分)解:设请4座的车台,则这批员工共有人.........1分解此不等式组得∵为正整数∴答: 这批员工共有46人..........5分(2)设当请4座的车台和6座的车台时刚好坐满人. 则有由此得.........6分∵∴..........7分∵为正整数∴刚好坐满人方案有4种:方案①,方案②方案③方案④..........8分24. (本题满分8分)解:(1)连结OD,则∠B=∠ODB.......1分∵∴∠A+∠B=900..........2分∵∴∠A+∠B=∠ADE+∠ODB=900∴∠ODE=900..........3分∴OD⊥AB∴直线是⊙O的切线..........4分(2)∵EC=ED=10.......5分连结CD,则∠ADC=900∴Rt△ABC∽Rt△ACD.......6分∴∴∴........8分25.(本题满分11分)解:(1)令得∵∴解得或∴A(3,0),B(1,0),对称轴的方程为:............3分(2)∵∠OAC=450∴OA=OC...............4分即∵∴...............5分∴抛物线的函数表达式为............6分(3)设,∵MD∥y轴∴∴由此得............7分∴∴即.............8分Ⅰ、当时,直线AP的方程为联立得........9分解这方程得(舍去)∴N(2,1)......................10分Ⅱ、当时,N,P,C三点重合,此时N(0,-3)综上,所求的N点的坐标为(2,1)或(0,-3)...................11分26. (本题满分10分)解:(1) ....................2分(2)①过M作MG∥AC交AB于G.......3分∴∠GMP=∠ACP=∠PBM, G为AP的中点∴△BMG∽△MPG.................4分∴∴...................5分∴∴................6分②过C作CG⊥AB于G,延长AB到E使BP=BE,并设BP=BE=,连结CE,则,BM∥EC∴................7分∵∠A=∠BMP∴∠ECP=∠BMP=∠A∴△ECP∽△EAC∴∴..............8分∴整理、化简得解得,(舍去)...............9分∴.................10分。

最新-2018年九年级数学4月份中考模拟预测试卷3【河南

最新-2018年九年级数学4月份中考模拟预测试卷3【河南

2018年河南中考最新模拟试卷(4月)数学(三)注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟.请用钢笔或圆珠笔直接答在试卷上.一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.的相反数是. 【】A B.C.D2.2011小灵通将会退市,据统计目前全国约有7000万小灵通用户,将7000万用科学计数法表示为(结果保留两个有效数字)【】A.7×104B.7×118C.7.0×118D.7.0×1183.化简32216()2m mn的结果是【】A.523m n B.5432m n C.3432m n D.4432m n 4.将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体的主视图是【】5.一次函数483y x=-+的图象与x轴、y轴分别交于A、B两点(如图所示),若∠1=∠2,则△ABC的面积为【】A.212B.214C.48 D.246.如图,已知四边形AOBE和四边形CBFD均为正方形,反比例函数4yx=的图象经过D、E两点,则△DOE的面积等于【】A1B.52C.2 D二、填空题:请将正确答案直接写在题中的横线上(每小题3分,共27分)7.将32242x x x -+-因式分解的结果是________.8.如图,已知AB ∥DE ,CF 与AB 和DE 分别交于点G 、H ,∠DHF =60°,GQ ⊥CF ,则∠BGQ 的度数是______.9.已知点P(m -4,2m -4)在第二象限,若m 为整数,则点P 到坐标原点的距离是______.10.已知21x y =⎧⎨=⎩是方程组18mx ny nx my -=⎧⎨+=⎩的解,则m 、n 的值分别是________.11.把一个半径为8cm 的半圆围成一个圆锥的侧面,则该圆锥的高是_______. 12.已知37===a c e b d f ,且b+2d-3f ≠0,则2323a c e b d f +-+-的值是________. 13.分式程542332x x x+=--的根是______. 14.如图,将矩形纸片ABCD 沿着对角线BD 折叠,使点C 落在C ′上处,BC ′交AD 于E ,若∠DBC =22.5°,则在不添加任何辅助线的情况下,图中45°的角,有______个.(第6题)15.如图,⊙O 2与半圆O 1内切于点C ,与半圆的直径AB 切于点D ,若AB =6,⊙O 2的半径为1,则∠ABC 的度数为________. 三、解答题:(本大题8小题,共75分)16.(8分)化简求值2741(3)3469---÷∙-+-+x x x x x x ,其中x 是方程x 2-4x=0的根.17.(9分)向阳中学在艺术月活动中举办了演讲、书法、剪纸、小品、歌曲、漫画六项比赛(每个同学限报一项),各类项目参赛情况如下表.(1) 请将上面统计表补充完整.(2) 本次参加比赛的总人数是多少?本次比赛项目的“众数”呢?(3) 小品剪纸作品的获奖人数分别是6人和3人,有同学说“小品比剪纸作品的获奖率高”,你认为这种说法是否正确?请说明理由.18.9分)明珠在超市先花30元钱买了梨,后又花同样多的钱买了一些苹果.她从超市的购物清单上发现,苹果的单价是梨的1.5倍,而所买的苹果比梨少2.5千克.请你求出明珠所买苹果和梨的单价.19.(9分)如图.四张背面完全相同的卡片,在其正面分别写有一个数.小华和小亮用卡片做游戏.游戏规则是:将四张写有数的卡片背面朝上放在桌子上,从四张卡片中一次性抽出两张卡片.如果上面的数都是无理数小华赢,否则小亮赢.请你说明游戏是否公平?说明理由.如果不公平,应在上述规则的基础上怎么修改?20(9)分,如图,在等腰 ABCD 中,AD ∥BC ,AB =CD ,BA ,CD 的延长线交于点M ,EG ∥BM ,EF ∥CM ,点E 为BC 的中点.(1) 试判断四边形EGMF 是什么特殊四边形.(2) 当∠B 等于多少度,四边形EGMF 为正方形?并说明你的理由.21.(10分)如图,在平面直角坐标系中,A 为x 轴正半轴上一点,点B在第一角限内且到原点的距离为5,sin ∠BOA =35,tan ∠BAO =12, (1) 求点B 的坐标.(2) 求线段AB 的函数解析式,并注明自变量x 的取值范围.22.(10分)如图,以Rt △ABC 的直角边AB 为直径作圆O 与斜边AC交于点D ,E 为BC 边的中点,连接DE .(1) DE 与⊙O 什么位置关系?并说明理由.(2) 连结OE 、AE 、当△ABC 满足什么条件时,四边形AOED 是平行四边形?在此条件下,sin ∠CAE 的值是多少?23.(11分)OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴上,点C 在y 轴上,OA =10,OC =6.(1)如图,点M 在AB 上,且△CBM 沿着CM 翻折后,B 落在x 轴上的B ′处,求B ′的坐标.(2)求折痕CM 所在直线的解析式.(3)作B ′G ∥AB 交CM 于点G ,若抛物线216y x m =+经过点G ,求抛物线的解析式,并判断以原点O 为圆心,OG 为半径的圆与抛物线的公共点除点G 外,是否还有公共点?若有,请写出公共点的坐标.参考答案一、选择题(每小题3分,满分18分)1.D 2.D 3.B 4.D 5.A 6.C二、填空题(每小题3分,满分27分)7.-2x(x-1)28.30°910.m=2,n=3 11.12.3713.x=1 14.5 15.75°三、解答题(本大题共8个小题,满分75分)16.解:原式=()()()24431344x x x x x x -+--∙∙--+ =-x +3 ………………………5分解x 2-4x =0,得x 1 =0, x 2 = 4 ………………………6分当x =0时,原式=3 ………………………7分当x =4时,原式无意义 ………………………8分17.解:(1)书法参赛人数150人,剪纸参赛48人, 歌曲参赛人数占30%.……………………3分(2)总人数600人;众数是“歌曲”.……………………5分(3)这种说法不对,理由是:小品获奖率为6120=5%. 剪纸作品获奖率为348=6.25%.……………………9分18.解:设梨的单价为x 元/千克.30x =301.5x+2.5 . ……………………5分 去分母得60-40=5x .x =4 ……………………7分经检验,得x =4适合所列方程,此时1.5x =1.5×4=6.答:明珠所买梨和苹果的单价分别是4元/千克、6元/千克. …………………9分 19.解:游戏不公平,理由如下:……………………5分共12种情况,都是无理数的只有2种. ∴P (两张都是无理数)=21126=. ……………………7分可修改为若两张卡片中有一张是﹣3则小花赢,否则小亮赢.(答案不唯一)……………………9分20.(1)四边形EGMF 是菱形,理由如下:∵梯形ABCD 是等腰梯形; ∴∠B =∠C . ∵EG ∥AB ;∴∠B =∠GEC .同理∠C =∠FEB . ……………………2分 又∵BE =CE ;∴△BFE ≌△CGE .∴EF =EG . ……………………4分 又∵EF ∥CM , EG ∥BM ;∴四边形EFMG 为菱形. ……………………5分 (2)当∠B =45°时,四边形EGMF 为正方形,理由如下:可得∠C =∠GEC =∠FEB =∠B =45°. ……………………7分 从而∠FEG =90°.∴菱形EGMF 是正方形. ……………………9分 21.解:(1)作BC ⊥OA 于C ,在Rt △OBC 中 BC =DB sin ∠BOA =5×35=3. OC4==.∴点B 坐标为(4,3). ……………………4分 (2)在Rt △ABC 中,AC =36an 2==∠BC t BAD .可得AO =10.∴A (10,0) . ……………………6分 设线段AB 的函数解析式为y =k x +b ,则43100k b k b +=⎧⎨+=⎩解之得125k b ⎧=-⎪⎨⎪=⎩ ……………………9分∴y =152x -+(4≤x ≤10). ……………………10分 22.(1)解:DE 与⊙O 相切,理由如下: 连接BD ,DO ;∵AB 为⊙O 直径. ∴∠ADB =90°.∴△CDB 为直角三角形. ∵E 为BC 中点; ∴DE =BE .∴∠EDB =∠EBD .……………………3分 ∵DO =OB ;∴∠ODB =∠OBD .∴∠ODB+∠EDB=∠OBD+∠DBE=∠ABC=90°.即∠EDO=90°.∴DE与⊙O相切于点D.……………………4分(2)当∠CAB=45°时,四边形AOED是平行四边形理由如下∵∠ADB=90°,∠CAB=45°;∴∠DBA=∠CAB=45.∵AO=BO;∴DO⊥AB.∵DE切⊙O于D;∴DE⊥DO.∴DE∥AO.……………………6分可证△DOE≌△BOE,从而∠1=∠2=45°.∴∠CAO=∠EOB.∴OE∥AD.∴四边形AOED为平行四边形.……………………8分作EF⊥AC于F,设EF=k,可得BE=CE,AB=从而得AE.∴sin∠CAE=EFAE==……………………10分23.解:(1)∵△CB′M ≌△CBM ∴CB′=CB=OA=10∴OB′8 =∴B′(8,0) ……………………3分(3)设AM=n,则MB′=6-n,AB′=10﹣8=2∴n2+22=(6﹣n)2∴n=8 3∴M(10, 83),C(0,6) ……………………5分设CM解析式为y=k x+b,则8 1036k bb⎧+=⎪⎨⎪=⎩∴136k b ⎧=-⎪⎨⎪=⎩∴CN 的解析式为y =13-x +6. ……………………8分 (3)设G 点坐标为(8,a ),则a =1108633-⨯+= ∴G (8,103) . 由2110863m ⨯+=得m =-223. ∴y =12263x - . ……………………10分 除G 点外,另外的公共点有一个坐标为(-8,103). ……………………11分。

2018年4月中考数学模拟卷答案

2018年4月中考数学模拟卷答案

2018-2019学年九年级一模数学参考答案一、 选择题(30分)二、填空题(18分)11.-12 12.1 13.65 14.114 15. 0<a <3 16. 5106 . 三、解题题(共8小题,共72分)17.解:去括号得5x +2=3x +6,---------------3分移项合并得2x =4,---------------6分 ∴x =2.---------------8分 18.证明:∵BE =CF ,∴BC =EF在△ABC 和△DEF 中,∵⎪⎩⎪⎨⎧===.,,EF BC DF AC DE AB∴△ABC ≌△DEF (SSS), ---------------5分 ∴∠B =∠DEF, ∴AB ∥DE.---------------8分 19.(1)补全条形统计图如下图---------------3分(2)由(1)知样本容量是60∴该市2018年空气质量达到“优”的天数约为:(天).该市2018年(365天)空气质量达到“良”的天数约为:(天).∴该市2018年(365天)空气质量达到“优”、“良”的总天数约为:73+219=292(天).- --------------6分 (3)随机选取2018年内某一天,空气质量是“优”的概率为: --------------8分20.(1)每辆A 型车和B 型车的售价分别是x 万元、y 万元.则,解得.答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元; --------------4分(2)设购买A 型车a 辆,则购买B 型车(6﹣a )辆,则依题意得, 解得 2≤a ≤3.∵a 是正整数,∴a=2或a=3. ∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车;方案二:购买3辆A 型车和3辆B 型车. --------------8分 21.(1)证明:连结OC .∵直线CD 与⊙O 相切于点C , ∴OC ⊥CD .∵AD ⊥CD , ∴OC ∥AD . ∴∠DAC =∠ACO . ∵OA =OC ∴∠OAC =∠ACO .∴∠DAC =∠CAO .即AC 平分∠DAB . ---------------3分 (2)解:连接BC ,∵AB 是⊙O 的直径,∴∠ACB =90°=∠ADC . ∵∠DAC =∠CAO ,∴△ADC ∽△ACB .∴ABACAC AD =. ∵325AD =,AC =8, ∴AB =10. ----------------------------------------5分∵点E 为⌒AB 的中点,∴∠ACE =45°.过点A 作CE 的垂线,垂足为F ,∴CF =AE =AC sin45°=8在Rt △ACB 中,6BC ==, ∴84tan tan =63E B ==.在Rt △AEF 中,4tan =3AF E = ,∴3=4EF ⨯∴CE ------------------------------8分22.(1)求出B )5,1(-、C )2,25(-两点坐标, 当x <-1或0<x <25,反比例函数的值小于一次函数的值; -------------2分 (2)可求得A (,0),点P (m ,n )在直线AB 上,∴32+-=m n . 而231<<-m ,所以0<n <5. ∴点P (,n ),PD ∥x 轴,则D 、P 的纵坐标都是n ,此时D 点坐标是(﹣,n ), 则PD=+,由S=•n •PD ,可求△PAD 的面积表达式为S=•n •PD=(+)×n=﹣(n ﹣)2+,∴当n=,即P (,)时,S 的最大值是. --------------5分(3)(4,45-) --------------8分23.(1)3; --------------3分 (2)①作法:在AD 上取点G,使AG=DE;再连接EG,然后作EF 的垂直平分线交AD 于点F.点F 就是所求的点.连接OA,OG,OF,OE.可证△AOG ≌△DOE,∴∠AOG=∠DOE,∴∠EOG=∠DOA=90º, 又证△EOF ≌△GOF ,∴∠EOF=∠GOF=45º. --------------7分 (3)连接OC,∵∠ECO=∠EOF=∠OAF=45º,∠EOC=∠AFO∴△COE ∽△AFO∴CE OAOE OF CO AF ==∴=⋅CE OA CO AF ⋅OE OF OEOF∴=CE AF 22)322()(=OE OF =98. --------------10分24.(1)y=(x+1)2﹣3,D(-1,-3) --------------3分(2)作∠OBC 的角平分线BE 角y 轴于点E,过点E 作EF ⊥BC,垂足为点C,设OE=t,EF=t,由△CEF ∽△CBO ,求出t=1,直线BE 的解析式为121-=x y 若BP 满足条件,则BE 的解析式为121-+=x y ,与抛物线的解析式联立方程组解得 P(415,211-) --------------7分(3)设P (x 1,y 1)、Q (x 2,y 2)且过点H (﹣1,0)的直线PQ 的解析式为y=kx+b , ∴﹣k+b=0,∴b=k ,∴y=kx+k .由,∴+(﹣k )x ﹣﹣k=0,∴x 1+x 2=﹣2+3k ,y 1+y 2=kx 1+k+kx 2+k=3k 2,∵点M 是线段PQ 的中点,∴由中点坐标公式的点M (k ﹣1, k 2). --------------8分假设存在这样的N 点如图,直线DN ∥PQ ,设直线DN 的解析式为y=kx+k ﹣3由,解得:x 1=﹣1,x 2=3k ﹣1,∴N (3k ﹣1,3k 2﹣3) --------------9分当DN=DM 时,(3k )2+(3k 2)2=()2+()2,整理得:3k 4﹣k 2﹣4=0,∵k 2+1>0,∴3k 2﹣4=0, 解得k=±,∵k <0,∴k=﹣, --------------10分∴P (﹣3﹣1,6),M (﹣﹣1,2),N (﹣2﹣1,1)∴PM=DN=2,∵PM ∥DN ,∴四边形DMPN 是平行四边形, ∵DM=DN ,∴四边形DMPN 为菱形,∴以DP 为对角线的四边形DMPN 能成为菱形,此时点N 的坐标为(﹣2﹣1,1).--------------12分。

2018年九年级数学中考模拟试题附答案

2018年九年级数学中考模拟试题附答案

数学试题 (第 1 页 共 8 页)九年级数学中考模拟试题一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.16的算术平方根是 ( ▲ ) A .±4 B .±2 C .4D .-42.下列运算正确的是 ( ▲ )A .(ab )2=ab 2B .a 2·a 3= a 6C .(-2)2=4D .2×3= 63.若a <b ,则下列式子中一定成立的是 ( ▲ ) A .a -3<b -3 B .a 3>b3C .3a >2bD .3+a >3+b4.把多项式x 2+ax +b 分解因式,得(x +1)(x -3),则a ,b 的值分别是 ( ▲ ) A .a =2,b =3 B .a =-2,b =-3C .a =-2,b =3D .a =2,b =-35.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最 后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是 ( ▲ ) A .96,88, B .86,88, C .88,86,D .86,866.tan30°的值为 ( ▲ ) A .12 B .22C .32D .337.将抛物线y =x 2-4x -3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式 为 ( ▲ ) A .y =(x +1)2-2 B .y =(x -5)2-2 C .y =(x -5)2-12 D .y =(x +1)2-12 8.如图,已知BC 是⊙O 的直径,AB 是⊙O 的弦,切线AD 交BC 的延长线于D ,若∠D =400, 则∠B 的度数是 ( ▲ ) A .400 B .500C .250D .11509.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上, ∠BOC =60°,顶点C 的坐标为(m , 33),反比例函数ky x的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是 ( ▲ )参赛者编号 1 2 3 4 5 成绩/分9688869386数学试题 (第 2 页 共 8 页)FE DC BAA .6 3B .-6 3C .12 3D .-123(第8题) (第9题) (第10题)10.如图,在△ABC 中,∠ACB =90°,AB =18,cos B =23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ▲ ) A .6 5B .7 5C .8 5D .95二、填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 11.在△ABC 中,已知D 、E 分别为边AB 、AC 的中点,若△ADE 的周长为3 cm ,则△ABC的周长为 ▲ cm .12.若圆锥底面圆的直径和母线长均为4cm ,则它的侧面展开图的面积等于 ▲ cm 2. 13.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为 ▲ . 14.如图,点B 、E 、C 、F 在一条直线上, AC ∥DF ,且AC =DF ,请添加一个条件 ▲ ,使△ABC ≌△DEF .(第16题) (第17题) (第18题)15.如图,在正方形纸片ABCD 中,EF ∥AB ,M ,N 是线段EF 的两个动点,且MN =13EF ,若把该正方形纸片卷成一个圆柱,使点A 与点B 重合,若底面圆的直径为6cm ,则正方形纸片上M ,N 两点间的距离是 ▲ cm .16.如图,在△ABC 中,AB =13cm ,AC =12cm ,BC =5cm .D 是BC 边上的一个动点,连接CB O AN F AE MEABC D AD数学试题 (第 3 页 共 8 页)AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是 ▲ cm. 三、解答题(本大题共8小题,共计66分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 17.计算与化简(6分)(1)||-3-⎝⎛⎭⎫12-2+(1-π)0; (2)(x +2y )2+(x +2y ) (x -2y ) .18.(本题共有2小题,共6分)(1)解方程:2x -32-2+ x2=-1; (2)解不等式组:⎩⎪⎨⎪⎧2-x >0,5x +12+119.(本题满分6分)已知:如图,在平行四边形ABCD 和矩 形ABEF 中, AC 与DF 相交于点G . (1) 试说明DF =CE ;(2) 若AC =BF =DF ,求∠ACE 的度数.20.(本题满分8分)已知:如图,已知⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,AC =6cm ,BC =8cm.(1)求⊙O 的半径;(2)请用尺规作图作出点P ,使得点P 在优弧..CAB ...上时,△PBC 的面积最大,请保留作图痕迹,并求出△PBC 面积的最大值.21.(本题满分8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大 会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写 出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表. 组别 成绩x 分 频数(人数)第1组 50≤x <60 6 第2组 60≤x <70 8 第3组70≤x <8014数学试题 (第 4 页 共 8 页)请结合图表完成下列各题: (1)① 表中a 的值为 ▲ ;② 把频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?22.(本题满分10分)已知:如图,一次函数y =-2x 与二次函数y =ax 2+2ax +c 的图像交于A 、B 两点(点 A 在点B 的右侧),与其对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D ,点C 与点D关于 x 轴对称,且△ACD 的面积等于2.① 求二次函数的解析式;② 在该二次函数图像的对称轴上求一点P (写出其坐标),使△PBC 与△ACD 相似.第4组 80≤x <90 a 第5组 90≤x <10010xy数学试题 (第 5 页 共 8 页)23.(本题满分10分)如图(1),在矩形ABCD 中,AB =4,BC =3,点E 是射线..CD 上的一个动点,把△BCE 沿BE 折叠,点C 的对应点为F .(1)若点F 刚好落在线段AD 的垂直平分线上时,求线段CE 的长; (2)若点F 刚好落在线段AB 的垂直平分线上时,求线段CE 的长; (3)当射线AF 交线段CD 于点G 时,请直接..写出CG 的最大值 ▲ .24.(本题满分12分)如图(1),在△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,动点P 在线段 AC 上以5cm/s 的速度从点A 运动到点C ,过点P 作PD ⊥AB 于点D ,将△APD 绕PD 的 中点旋转180°得到△A ′DP ,设点P 的运动时间为x (s ). (1)当点A ′落在边BC 上时,求x 的值;(2)在动点P 从点A 运动到点C 过程中,当x 为何值时,△A ′BC 是以A ′B 为腰的等腰三 角形;(3)如图(2),另有一动点Q 与点P 同时出发,在线段BC 上以5cm/s 的速度从点B 运 动到点C ,过点Q 作QE ⊥AB 于点E ,将△BQE 绕QE 的中点旋转180°得到△B ′EQ ,连 结A ′B ′,当直线A ′B ′与△ABC 的一边垂直时,求线段A ′B ′的长.图(1)A图(2)A图(1)C备用图C2017年初三调研考试数学试题参考答案一、选择题(本大题共10小题.每小题3分.共30分)1.C;2.D;3.A;4.B;5.B;6.D;7.A;8.C;9.D;10.C.二、填空题(本大题共6小题,每小题4分,共24分)11.6;12.π8;13.五;61-.14.答案不唯一,如∠A=∠D;15.π2;16.6三、解答题(本大题共8小题.共66分)17(1)原式=3-4+1 =0.(2)原式=x2+4xy+y2+x2-4y2=2x2+4xy.18.(1)去分母,得2x-3-x-2=-2解得x=3.(2)由(1),得x<2,由(2),得x≥-1.∴原不等式组的解集为-1≤x<2.19.(1)∵四边形ABCD是平行四边形,∴AB=DC,AB//DC 又∵四边形ABEF是矩形,∴AB=EF,AB//EF ∴DC=EF,DC//EF.∴四边形DCEF是平行四边形.∴DF=CE.(2)连结AE,∵四边形ABEF是矩形∴BF=AE又∵AC=BF=DF ∴AC=AE=CE .∴△AEC是等边三角形,∴∠ACE=60°. 20.(1)∵AB为⊙O的直径,AC=cm,BC=8cm.∴∠C为直角,AB=10cm.∴AO=5cm.(2)作图正确.作BC的垂直平分线交优弧CAB于P,S△PBC=32.22.(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.数学试题(第6 页共8 页)数学试题 (第 7 页 共 8 页)又∵一次函数y =-2x 与对称轴交于点C ,∴y =2. ∴C 点的坐标为(-1,2).(2)①∵点C 与点D 关于x 轴对称,∴点D 的坐标为(-1,-2). ∴CD =4,∵△ACD 的面积等于2.∴点A 到CD 的距离为1,C 点与原点重合,点A 的坐标为(0,0)设二次函数为y =a (x+1)2-2过点A ,则a =2, ∴y =2x 2+4x .②交点B 的坐标为(-3,6). 当△PBD ∽△CAD ,点P 的坐标为(-1, 10), 当△PBD ∽△ACD ,点P 的坐标为(-1,92),∴点P 的坐标为(-1, 10),(-1,92).23.(1)∵点F 刚好落在线段AD 的垂直平分线上,∴FB =FC .∵折叠 ,∴FB =BC =3. ∴△FBC 是等边三角形∴∠FBC =60°, ∠EBC =30°. 在Rt △EBC ∴CE =33BC =3. (2)如图(1)∵点F 刚好落在线段AB 的垂直平分线MN 上, ∵折叠,∴FE =EC .∴BM =2,在Rt △MFB 中,MF =5.∵△MBF ∽△NFE , ∴ MB BF =ENEF.∴CE =EN =9-352.如图(2)∵折叠 ,∴FE =EC .同理MF =5,FN =3+5. ∵△MBF ∽△NFE ,∴ MB BF =ENEF. ∴CE =EN =9+352.(3)CG 的最大值是4-7.24.(1)如图(1)当点A ′落在边BC 上时,由题意得四边形AP A ′D 为平行四边形 ∵△APD ∽△ABC ,AP =5x ,图(1)A数学试题 (第 8 页 共 8 页)∴ A ′P =AD =4x ,PC =4-5x . ∵A ′P//AB ∴△A ′PC ∽△ABC . x =2041.当点A ′落在边BC 上时, x =2041.(2)当A ′B =BC 时,()()2223385=+-x x ,解得:x . ∵ x ≤45 ,∴x =.当A ′B =A ′C 时,x =58.(3) 当A ′B ′⊥AB 时,x =514,A 1B 1=514.当A ′B ′⊥BC 时x =1546, A 1B 1=2546 .当A ′B ′⊥AC 时x =2053, A 1B 1=2553.。

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。

2018年九年级中考数学模拟试题及答案(四)

2018年九年级中考数学模拟试题及答案(四)

2018 年九年级中考数学模拟试题及答案(四)中考模拟试卷:数学一、选择题 (此题共 12 小题,每题 3 分,共 36 分.. )1.在- 4,0,- 1,3 这四个数中,既不是正数又不是负数的数是A.- 4B.0C.- 1D.32.由 5 个完整相同的正方体构成的立体图形如下图,则它的俯视图是3.如图,直线AB ∥ CD,直线 EF 分别与直线AB,CD 订交于点G,H .若∠ 1= 135 °,则∠ 2 的度数为21 教育网A.35°B. 45°C. 55° D .65°4.计算 (a2b)3的结果是A . a6b3 B. a2b3 C. a5b3 D .a6b5. 2016 年我市参加中考的学生的为85000 人.将数据 85000 用科学记数法表示为A.85×10 3 3 5 4B.× 10 C.× 10 D .× 106.正六边形的内角和为A.1080°B. 900 °C. 720 ° D .540 °7.不等式2x- 4≤ 0 的解集在数轴上表示为8.以下检查中,最适适用普查方式的是A.检查某中学九年级一班学生视力状况B.检查一批电视机的使用寿命状况C.检查遵义市初中学生锻炼所用的时间状况D.检查遵义市初中学生利用网络媒体自主学习的状况9.今年“五一”节,小明出门登山,他从山脚爬到山顶的过程中,半途歇息了一段时间,设他从山脚出发后所用的时间为t(分钟 ),所走的行程为s(米 ),s 与 t 之间的函数关系如图所示,以下说法错误的选项是A .小明半途歇息用了 20 分钟B.小明歇息前爬上的速度为每分钟70 米C.小明在上述过程中所走的行程为6600 米D.小明歇息前登山的均匀速度大于歇息后登山的均匀速度10.如图,在⊙ O 中,弦 AC∥半径 OB,∠ BOC= 50°,则∠ OAB 的度数为A . 25°B. 50°C. 60° D .30°k11.如图,已知双曲线y=x(k< 0)经过直角三角形OAB 斜边 OA 的中点 D,且与直角边AB 订交于点 C.若点 A 的坐标为 (- 6,4),则△ AOC 的面积为21·cn·jy·comA . 4 B. 6 C. 9 D .1212.如图,都是由相同大小的圆按必定的规律构成,此中,第①个图形中一共有 2 个圆;第②个图形中一共有 7 个圆;第③个图形中一共有16 个圆;第④个图形中一共有29 个圆;, ;则第⑦个图形中圆的个数为2·1·c·n·j·yA.121 B. 113 C. 105 D .92二、填空题 (此题共 6 小题,每题 4 分,共 24 分.答题请用黑色墨水笔或黑色署名笔直接答在答题卡的相应地点上. ) www-2-1-cnjy-com13.分解因式: 4a2- b2= ______▲ ______.14.某同学碰到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是 ______▲ ______.2-1-c-n-j-y15.菱形的两条对角线的长分别是6cm 和 8cm,则菱形的周长是 ______▲______cm.16.通讯市场竞争日趋强烈,某通讯企业的手机当地话费标准按原标准每分钟降低 a 元后,再次下调了20%,此刻收费标准是每分钟 b 元,则原收费标准每分钟是 ______▲ ______ 元. 21*cnjy*com17.若1+ a= 3,则 (1- a)2的值是 ______ ▲______.a a18.如图,两条抛物线y1=-1 2 1 2- 1 与分别经过点 (- 2,0) , (2,0) 且平行x + 1、 y2=-x2 2于 y 轴的两条平行线圈成的暗影部分的面积为______▲ ______.】【根源: 21cnj*y.co*m三、解答题 ( 此题共 9 小题,共 90 分.答题请用黑色墨水笔或黑色署名笔书写在答题卡的相应地点上.解答时应写出必需的文字说明,证明过程或演算步骤.) 19. (6 分) 计算:18- |- 4|- 2cos45 °- (3-π)0 .1- x x20. (8 分)) 解方程:=-1.21. (8 分) 已知:如图, AB= AE,∠ 1=∠ 2,∠ B=∠ E.求证: BC =ED.22.(10 分 )某班在一次班会课上,就“遇到老人跌倒后怎样办理”的主题进行议论,并对全班50 名学生的办理方式进行统计,得出有关统计表和统计图.【出处: 21教育名师】组别 A B C D办理方式快速走开立刻救援视状况而定只看喧闹人数m 30 n 5 请依据表图所供给的信息回答以下问题:(1)统计表中的m=____▲ ____, n=____ ▲ ____;(2)补全频数散布直方图;(3) 若该校有2000 名学生,请据此预计该校学生采纳“立刻救援”方式的学生有多少人?23.(10 分 )数学兴趣小组想利用所学的知识认识某广告牌的高度,已知CD = 2m,经测量,获得其余数据如下图.此中∠CAH = 30°,∠ DBH = 60°, AB= 10m. 请你依据以上数据计算广告牌的高度GH 的长. ( 3≈,要求结果精准到0.1m)24.(10 分 )有 5 张形状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D ,E 和一个等式,反面完整一致.现将 5 张卡片分红两堆,第一堆:A, B,C;第二堆: D,E,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片,反面向上洗匀.(1)请用画树形图或列表法表示出所有可能结果;(卡片可用A, B, C, D, E 表示 )(2)将“第一张卡片上x 的值是第二张卡片中方程的解”记作事件M,求事件 M 的概率.25.(12 分 )某商场第一次用 10000 元购进甲、乙两种商品,销售达成后共赢利2200 元,此中甲种商品每件进价60 元,售价 70 元;乙种商品每件进价50 元,售价 65 元.(1)求该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,且购进甲、乙商品的数目分别与第一次相同,甲种商品按原售价销售,而乙种商品降价销售,要使第二次购进的两种商品所有售出后,赢利许多于1800 元,乙种商品最多能够降价多少元?【版权所有:21教育】26.(12 分 )如图,已知在△ ABP 中, C 是 BP 边上一点,∠ PAC=∠ PBA,⊙ O 是△ ABC 的外接圆, AD 是⊙ O 的直径,且交 BP 于点 E.21教育名师原创作品(1)求证: PA 是⊙ O 的切线;(2)过点 C 作 CF ⊥AD ,垂足为点 F ,延伸 CF 交 AB 于点 G,若 AG·AB = 12,求 AC 的长.1 2 127. (14 分 )如图,抛物线y=2x -3x- 2 与 x 轴交于 A、 B 两点 (点 A 在点 B 的左边 ),与 y 轴交于点 C, M 是直线 BC 下方的抛物线上一动点.【根源:21·世纪·教育·网】(1)求 A、 B、 C 三点的坐标.(2)连结 MO 、 MC ,并把△ MOC 沿 CO 翻折,获得四边形MOM ′ C,那么能否存在点M,使四边形MOM ′ C 为菱形?若存在,求出此时点M 的坐标;若不存在,说明原因.21·世纪 *教育网(3)当点 M 运动到什么地点时,四边形ABMC 的面积最大,并求出此时M 点的坐标和四边形ABMC 的最大面积.21*cnjy*com答题卡(第 1— 12 题请用 2B 铅笔填涂 )(第 13— 27 题答题请用黑色署名笔书写 )13.(2a+ b)(2a- b) 14. 14515.20 16. a+4b17. 5 18. 8三、解答题19. (6 分)解:原式= 3 2- 4-2-14 分=2 2-5.6 分20. (8 分)解:化为整式方程得:2- 2x= x- 2x+4, 2 分解得: x=- 2, 4 分把 x=- 2 代入原分式方程中,等式两边相等, 6 分经查验 x=- 2 是分式方程的解.8 分21. (8 分)证明:∵∠ 1=∠ 2,∴∠ 1+∠ BAD =∠ 2+∠ BAD,即:∠ EAD =∠ BAC. 2 分在△ EAD 和△ BAC 中,∠ B=∠ E,AB= AE, 6 分∠BAC=∠ EAD,∴△ ABC≌△ AED (ASA) ,7 分∴BC=ED. 8 分22. (10 分)解: (1)依据条形图能够获得:m= 5, n= 50- 5- 30-5= 10.故答案是: 5,10. 3 分(2)如图:6 分30 =1200(人 ). 10(3)2000×50分23. (10 分)解:依据已知绘图,过点 D 作 DE ⊥ AH 于点 E.设 DE = x,则 CE= x+ 2. 1 分在 Rt△AEC 和 Rt△ BED 中,有 tan30 °=CEAE, tan60 °=DEBE,∴ AE= 3(x+ 2), BE=33 分3 x,∴ 3(x+ 2)-3,3 x= 10∴ x= 5 3- 3, 6 分∴GH=CD+DE=2+5 3-3= 5 3- 1≈ 7.7(m) 9 分答: GH 的长为 7.7m. 10 分24. (10 分)解: (1)画树状图得:共有 6 种等可能状况, (A ,D ), (A ,E), (B , D),(B , E),(C , D), (C , E).6 分(2)由 (1) 中的树状图可知切合条件的有 3 种,P(事件 M )=3= 1.106 2分25. (12 分)解: (1)设商场购进甲 x 件,购进乙 y 件.则60x +50y = 10000, 10x +15y = 2200.2 分x = 100,5 分解得y = 80.答:该商场购进甲、乙两种商品分别是 100 件、 80 件.6 分(2)设乙种商品降价 z 元,则10× 100+ (15- z)× 80≥1800, 9 分解得 z ≤分答:乙种商品最多能够降价5 元 .12分26. (12 分) 证明: (1)连结 CD . ∵ AD 是⊙ O 的直径, ∴∠ ACD = 90°,∴∠ CAD +∠ ADC = 90°.1 分又 ∵∠ PAC =∠ PBA ,∠ ADC =∠ PBA , ∴∠ PAC =∠ ADC ,∴∠ CAD +∠ PAC = 90°.3 分∴ PA ⊥ OA ,而 AD 是⊙ O 的直径,∴PA 是⊙ O 的切线 .5 分(2)解: 由 (1)知, PA ⊥ AD ,2018 年九年级中考数学模拟试题及答案(四)∴ CF ∥ PA ,∴∠ GCA =∠ PAC.7 分又 ∵∠ PAC =∠ PBA ,∴∠ GCA =∠ PBA ,而∠ CAG =∠ BAC ,∴△ CAG ∽△ BAC.9 分∴AC = AG ,AB AC 即 AC 2= AG ·AB.10 分∵ AG ·AB = 12, ∴ AC 2= 12,分∴AC =2 3.分27. (14 分)解: (1)令 y = 0,则 1 2 32 x - x -2= 0,2解得: x 1=4, x 2=- 1, 2 分∵点 A 在点 B 的左边,∴ A(-1,0), B(4,0).3 分令 x = 0,则 y =- 2,∴ C(0,- 2).4 分(2)存在点 M ,使四边形 MOM ′C 是菱形,如答图 1 所示:1 2 3.设 M 点坐标为 (x , x - x -2)22若四边形 MOM ′C 是菱形,则 MM ′垂直均分 OC.∵ OC =2,∴ M 点的纵坐标为- 1,1 2 3∴ 2x - 2x - 2=- 1,解得: x 1= 3+ 17 , x 2= 3- 172 2 (不合题意,舍去 ),∴ M 点的坐标为 (3+ 17,- 1).211125 分6 分7 分8 分9 分2018年九年级中考数学模拟试题及答案(四)2018 年九年级中考数学模拟试题及答案(四)(3)过点 M 作 y 轴的平行线与 BC 交于点 Q ,与 OB 交于点 H ,连结 CM 、BM ,如答图 2 所示.设直线 BC 的分析式为y = kx + b ,将 B(4,0),C(0,- 2)代入得: k =12, b =- 2,∴直线 BC 的分析式为1 10y = x - 2.2分1 2 3 1∴可设 M( x , x- x - 2), Q(x , x - 2),2221 1 23 1 2+ 2x , 11∴ MQ = x - 2- (x - x - 2)=- 2 x222分∴ S 四边形 ABMC = S △ ABC + S △ CMQ + S △ BQM111= 2AB ·OC + 2QM ·OH + 2QM ·HB= 1× 5× 2+ 1QM ·(OH +HB)22= 5+1QM ·OB211 2= 5+2(- 2x + 2x) ·4=- x 2+ 4x +5=- (x - 2)2+ 912分∴当 x =2 时,四边形 ABMC 的面积最大,且最大面积为9.13分当 x = 2 时, y =- 3,∴当 M 点的坐标为 (2 ,- 3)时,四边形ABMC 的面积最大,且最大面积为 9. 14分11。

2018年九年级数学模拟试卷及答案

2018年九年级数学模拟试卷及答案

2018年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .06.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,若CD=4,AC=12,则△ABC 的面积 为( ▲ )A .48B .50C .54D .60(第4题) A BCD (第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ . 10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算 33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =kx 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °. 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m .(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a = ▲ ,初赛成绩为1.70m 所在扇形图形的圆心角为 ▲ °; (2)补全条形统计图;(3)这组初赛成绩的众数是 ▲ m ,中位数是 ▲ m ; (4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m 的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n 个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n 的值为 ▲ ;(2)当n =2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD 绕点C 旋转得到矩形FECG ,点E 在AD 上,延长ED 交FG 于点H . (1)求证:△EDC ≌△HFE ; (2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 ▲ 时,四边形BEHC 为菱形.(第21题)ACDGFEH22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题: (1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点. (1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

2018年中考模拟押题预测试卷(数学4)后附答案

2018年中考模拟押题预测试卷(数学4)后附答案

1 2018年中考模拟押题预测试卷(数学4第Ⅰ卷(选择题共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目的要求的.)1.下列计算正确的是( )A= B.1= C4 D2有意义的实数x 的取值范围是( ) A .x ≤2 B .x <2且x ≠0 C .x ≤2且x ≠0 D .x<23.下列说法正确的是( )A .打开电视机,正在播放“安岳新闻”,是必然事件B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .某种彩票的中奖率为1%,则买100张彩票一定有1张中奖D .“明天降雨的概率是80%”,表示明天有80%的时间降雨4.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,设每次降价的百分率为x ,则下面所列的方程中正确的是( )A .560(1﹣x )2=315 B. 560(1+x )2=315 C .560(1﹣2x )2=315 D .560(1﹣x 2)=3155.如图1,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕点A 逆时针旋转得到△AC 'B ',则tan B '的值为( )A .14B .13C .12D .246.已知G 是△ABC 的重心,且GP ∥BC 交AB 于点P ,BC=GP 的长为( )ABCD7.一次函数y =(m -3)x +n -2 (m ,n 为常数)的图象如图2所示,则化简:1m -的结果为( )A .-2n +3B .-2m +3C .m -3D .-1。

2018年九年级数学中考模拟试题附答案

2018年九年级数学中考模拟试题附答案

数学试题 (第 1 页 共 8 页)九年级数学中考模拟试题一、选择题(本大题共10题,每小题3分,共计30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请用2B 铅笔把答题卡上相应的答案.........涂黑.) 1.16的算术平方根是 ( ▲ ) A .±4 B .±2 C .4D .-42.下列运算正确的是 ( ▲ )A .(ab )2=ab 2B .a 2·a 3= a 6C .(-2)2=4D .2×3= 63.若a <b ,则下列式子中一定成立的是 ( ▲ ) A .a -3<b -3 B .a 3>b3C .3a >2bD .3+a >3+b4.把多项式x 2+ax +b 分解因式,得(x +1)(x -3),则a ,b 的值分别是 ( ▲ ) A .a =2,b =3 B .a =-2,b =-3C .a =-2,b =3D .a =2,b =-35.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最 后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是 ( ▲ ) A .96,88, B .86,88, C .88,86,D .86,866.tan30°的值为 ( ▲ ) A .12 B .22C .32D .337.将抛物线y =x 2-4x -3向左平移3个单位,再向上平移5个单位,得到抛物线的表达式 为 ( ▲ ) A .y =(x +1)2-2 B .y =(x -5)2-2 C .y =(x -5)2-12 D .y =(x +1)2-12 8.如图,已知BC 是⊙O 的直径,AB 是⊙O 的弦,切线AD 交BC 的延长线于D ,若∠D =400, 则∠B 的度数是 ( ▲ ) A .400 B .500C .250D .11509.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上, ∠BOC =60°,顶点C 的坐标为(m , 33),反比例函数ky x的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是 ( ▲ )参赛者编号 1 2 3 4 5 成绩/分9688869386数学试题 (第 2 页 共 8 页)FE DC BAA .6 3B .-6 3C .12 3D .-123(第8题) (第9题) (第10题)10.如图,在△ABC 中,∠ACB =90°,AB =18,cos B =23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E 处,则线段AE 的长为 ( ▲ ) A .6 5B .7 5C .8 5D .95二、填空题(本大题共6小题,每小题4分,共计24分.请把答案直接填写在答题卡相应位......置.上.) 11.在△ABC 中,已知D 、E 分别为边AB 、AC 的中点,若△ADE 的周长为3 cm ,则△ABC的周长为 ▲ cm .12.若圆锥底面圆的直径和母线长均为4cm ,则它的侧面展开图的面积等于 ▲ cm 2. 13.已知一个多边形的内角和与外角和之比是3:2,则这个多边形的边数为 ▲ . 14.如图,点B 、E 、C 、F 在一条直线上, AC ∥DF ,且AC =DF ,请添加一个条件 ▲ ,使△ABC ≌△DEF .(第16题) (第17题) (第18题)15.如图,在正方形纸片ABCD 中,EF ∥AB ,M ,N 是线段EF 的两个动点,且MN =13EF ,若把该正方形纸片卷成一个圆柱,使点A 与点B 重合,若底面圆的直径为6cm ,则正方形纸片上M ,N 两点间的距离是 ▲ cm .16.如图,在△ABC 中,AB =13cm ,AC =12cm ,BC =5cm .D 是BC 边上的一个动点,连接CB O AN F AE MEABC D AD数学试题 (第 3 页 共 8 页)AD ,过点C 作CE ⊥AD 于E ,连接BE ,在点D 变化的过程中,线段BE 的最小值是 ▲ cm. 三、解答题(本大题共8小题,共计66分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.) 17.计算与化简(6分)(1)||-3-⎝⎛⎭⎫12-2+(1-π)0; (2)(x +2y )2+(x +2y ) (x -2y ) .18.(本题共有2小题,共6分)(1)解方程:2x -32-2+ x2=-1; (2)解不等式组:⎩⎪⎨⎪⎧2-x >0,5x +12+119.(本题满分6分)已知:如图,在平行四边形ABCD 和矩 形ABEF 中, AC 与DF 相交于点G . (1) 试说明DF =CE ;(2) 若AC =BF =DF ,求∠ACE 的度数.20.(本题满分8分)已知:如图,已知⊙O 是△ABC 的外接圆,AB 为⊙O 的直径,AC =6cm ,BC =8cm.(1)求⊙O 的半径;(2)请用尺规作图作出点P ,使得点P 在优弧..CAB ...上时,△PBC 的面积最大,请保留作图痕迹,并求出△PBC 面积的最大值.21.(本题满分8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大 会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写 出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表. 组别 成绩x 分 频数(人数)第1组 50≤x <60 6 第2组 60≤x <70 8 第3组70≤x <8014数学试题 (第 4 页 共 8 页)请结合图表完成下列各题: (1)① 表中a 的值为 ▲ ;② 把频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?22.(本题满分10分)已知:如图,一次函数y =-2x 与二次函数y =ax 2+2ax +c 的图像交于A 、B 两点(点 A 在点B 的右侧),与其对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D ,点C 与点D关于 x 轴对称,且△ACD 的面积等于2.① 求二次函数的解析式;② 在该二次函数图像的对称轴上求一点P (写出其坐标),使△PBC 与△ACD 相似.第4组 80≤x <90 a 第5组 90≤x <10010xy数学试题 (第 5 页 共 8 页)23.(本题满分10分)如图(1),在矩形ABCD 中,AB =4,BC =3,点E 是射线..CD 上的一个动点,把△BCE 沿BE 折叠,点C 的对应点为F .(1)若点F 刚好落在线段AD 的垂直平分线上时,求线段CE 的长; (2)若点F 刚好落在线段AB 的垂直平分线上时,求线段CE 的长; (3)当射线AF 交线段CD 于点G 时,请直接..写出CG 的最大值 ▲ .24.(本题满分12分)如图(1),在△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,动点P 在线段 AC 上以5cm/s 的速度从点A 运动到点C ,过点P 作PD ⊥AB 于点D ,将△APD 绕PD 的 中点旋转180°得到△A ′DP ,设点P 的运动时间为x (s ). (1)当点A ′落在边BC 上时,求x 的值;(2)在动点P 从点A 运动到点C 过程中,当x 为何值时,△A ′BC 是以A ′B 为腰的等腰三 角形;(3)如图(2),另有一动点Q 与点P 同时出发,在线段BC 上以5cm/s 的速度从点B 运 动到点C ,过点Q 作QE ⊥AB 于点E ,将△BQE 绕QE 的中点旋转180°得到△B ′EQ ,连 结A ′B ′,当直线A ′B ′与△ABC 的一边垂直时,求线段A ′B ′的长.图(1)A图(2)A图(1)C备用图C2017年初三调研考试数学试题参考答案一、选择题(本大题共10小题.每小题3分.共30分)1.C;2.D;3.A;4.B;5.B;6.D;7.A;8.C;9.D;10.C.二、填空题(本大题共6小题,每小题4分,共24分)11.6;12.π8;13.五;61-.14.答案不唯一,如∠A=∠D;15.π2;16.6三、解答题(本大题共8小题.共66分)17(1)原式=3-4+1 =0.(2)原式=x2+4xy+y2+x2-4y2=2x2+4xy.18.(1)去分母,得2x-3-x-2=-2解得x=3.(2)由(1),得x<2,由(2),得x≥-1.∴原不等式组的解集为-1≤x<2.19.(1)∵四边形ABCD是平行四边形,∴AB=DC,AB//DC 又∵四边形ABEF是矩形,∴AB=EF,AB//EF ∴DC=EF,DC//EF.∴四边形DCEF是平行四边形.∴DF=CE.(2)连结AE,∵四边形ABEF是矩形∴BF=AE又∵AC=BF=DF ∴AC=AE=CE .∴△AEC是等边三角形,∴∠ACE=60°. 20.(1)∵AB为⊙O的直径,AC=cm,BC=8cm.∴∠C为直角,AB=10cm.∴AO=5cm.(2)作图正确.作BC的垂直平分线交优弧CAB于P,S△PBC=32.22.(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.数学试题(第6 页共8 页)数学试题 (第 7 页 共 8 页)又∵一次函数y =-2x 与对称轴交于点C ,∴y =2. ∴C 点的坐标为(-1,2).(2)①∵点C 与点D 关于x 轴对称,∴点D 的坐标为(-1,-2). ∴CD =4,∵△ACD 的面积等于2.∴点A 到CD 的距离为1,C 点与原点重合,点A 的坐标为(0,0)设二次函数为y =a (x+1)2-2过点A ,则a =2, ∴y =2x 2+4x .②交点B 的坐标为(-3,6). 当△PBD ∽△CAD ,点P 的坐标为(-1, 10), 当△PBD ∽△ACD ,点P 的坐标为(-1,92),∴点P 的坐标为(-1, 10),(-1,92).23.(1)∵点F 刚好落在线段AD 的垂直平分线上,∴FB =FC .∵折叠 ,∴FB =BC =3. ∴△FBC 是等边三角形∴∠FBC =60°, ∠EBC =30°. 在Rt △EBC ∴CE =33BC =3. (2)如图(1)∵点F 刚好落在线段AB 的垂直平分线MN 上, ∵折叠,∴FE =EC .∴BM =2,在Rt △MFB 中,MF =5.∵△MBF ∽△NFE , ∴ MB BF =ENEF.∴CE =EN =9-352.如图(2)∵折叠 ,∴FE =EC .同理MF =5,FN =3+5. ∵△MBF ∽△NFE ,∴ MB BF =ENEF. ∴CE =EN =9+352.(3)CG 的最大值是4-7.24.(1)如图(1)当点A ′落在边BC 上时,由题意得四边形AP A ′D 为平行四边形 ∵△APD ∽△ABC ,AP =5x ,图(1)A数学试题 (第 8 页 共 8 页)∴ A ′P =AD =4x ,PC =4-5x . ∵A ′P//AB ∴△A ′PC ∽△ABC . x =2041.当点A ′落在边BC 上时, x =2041.(2)当A ′B =BC 时,()()2223385=+-x x ,解得:x . ∵ x ≤45 ,∴x =.当A ′B =A ′C 时,x =58.(3) 当A ′B ′⊥AB 时,x =514,A 1B 1=514.当A ′B ′⊥BC 时x =1546, A 1B 1=2546 .当A ′B ′⊥AC 时x =2053, A 1B 1=2553.。

2018初中数学中考模拟试卷(最新整理)

2018初中数学中考模拟试卷(最新整理)
8.如图.已知点 A 是一次函数 y= x(x≥0)图象上一点.过点 A 作 x 轴的垂 线 l.B 是 l 上一点(B 在 A 上方).在 AB 的右侧以 AB 为斜边作等腰直角三角 形 ABC.反比例函数 y= (x>0)的图象过点 B.C.若△OAB 的面积为 6.则△ABC 的面积是 .
.
.
(1)求证:AB 是⊙O 的切线; (2)若 DF=2.DC=6.求 BE 的长.
20.某超市销售一种成本为每台 20 元的台灯.规定销售单价不低于成本价.
又不高于每台 32 元.销售中平均每月销售量 y(台)与销售单价 x(元)的
关系可以近似地看做一次函数.如下表所示:
x
22
24
26
28
y
90
.
25.如图.已知一次函数 y=kx+b 的图象与 x 轴交于点 A.与反比例函数 y= (x
<0)的图象交于点 B(﹣2.n).过点 B 作 BC⊥x 轴于点 C.点 D(3﹣3n.1) 是该反比例函数图象上一点. (1)求 m 的值; (2)若∠DBC=∠ABC.求一次函数 y=kx+b 的表达式.
24.如图所示.AB 是⊙O 的直径.P 为 AB 延长线上的一点.PC 切⊙O 于点 C.AD⊥ PC.垂足为 D.弦 CE 平分∠ACB.交 AB 于点 F.连接 AE. (1)求证:∠CAB=∠CAD; (2)求证:PC=PF; (3)若 tan∠ABC= .AE=5 .求线段 PC 的长.
.
(1)当 t=2 时.连接 DE、DF.求证:四边形 AEDF 为菱形; (2)在整个运动过程中.所形成的△PEF 的面积存在最大值.当△PEF 的面积 最大时.求线段 BP 的长; (3)是否存在某一时刻 t.使△PEF 为直角三角形?若存在.请求出此时刻 t 的值;若不存在.请说明理由. 16.如图.抛物线 y=﹣x2+2x+3 与 x 轴相交于 A、B 两点(点 A 在点 B 的左侧). 与 y 轴相交于点 C.顶点为 D. (1)直接写出 A、B、C 三点的坐标和抛物线的对称轴; (2)连接 BC.与抛物线的对称轴交于点 E.点 P 为线段 BC 上的一个动点.过 点 P 作 PF∥DE 交抛物线于点 F.设点 P 的横坐标为 m; ①用含 m 的代数式表示线段 PF 的长.并求出当 m 为何值时.四边形 PEDF 为平 行四边形? ②设△BCF 的面积为 S.求 S 与 m 的函数关系式.

最新-2018年九年级中考数学模拟检测试题及答案 精品

最新-2018年九年级中考数学模拟检测试题及答案 精品

2018年中考模拟试题(一)命题:徐云班级______________ 学号_______ 姓名_____________ 分数__________(考试时间:120分钟;满分:150分)一、选择题:(本大题共10个小题,每小题4分,共40分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。

1.2的相反数是( )(A )-2 (B )2 (C )21 (D )21- 2.计算)3(623m m -÷的结果是( )(A )m 3- (B )m 2- (C )m 2 (D )m 33.重庆直辖十年以来,全市投入环保资金约3730000万元,那么3730000万元用科学记数法表示为( ) (A )37.3×118万元 (B )3.73×118万元(C )0.373×118万元 (D )373×104万元 4.在下列各电视台的台标图案中,是轴对称图形的是( )(A ) (B ) (C ) (D )5.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )∙DCB AC BA5 题图6.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )(A )相交 (B )内含 (C )内切 (D )外切7.分式方程1321=-x 的解为( )(A )2=x (B )1=x (C )1-=x (D )2-=x8.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为( ) (A )200 (B )1200 (C )200或1200 (D )3609从射击成绩的平均数评价甲、乙两人的射击水平,则( ) (A )甲比乙高 (B )甲、乙一样(C )乙比甲高 (D )不能确定10.如图,在矩形ABCD中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP=x ,AE =y ,则能反映y 与x 之间函数关系的大致图象是( )(A ) (B ) (C ) (D ) 二、填空题:(本大题10个小题,每小题3分,共30分)请将答案直接填写在题后的横线上。

九年级数学4月份中考模拟预测试卷

九年级数学4月份中考模拟预测试卷

低塘中学数学中考模拟试卷低塘中学 .4.5.一、选择题(本题共有10小题,每小题3分,共30分)1.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258 0002m 。

将举行奥运会、残奥会开闭幕式、田径比赛及足球比赛决赛。

奥运会后将成为北京市具有地标性的体育建筑和奥运遗产。

其中,258 0002m 用科学计数法表示为( ). A .258×310 B .25.8×410 C .2.58×510 D .0.258×610 2.一元二次方程230x x -=的解是( ) A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3. 若23a b b -=,则ab=( ) A .13B .23C .43D .534.我市某一周的最高气温统计如下表:最高气温(℃)25 26 27 28 天数1123则这组数据的中位数与众数分别是( )A .27,28B .27.5,28C .28,27D .26.5,27A.15 B. 25 C.35 D.456、如图,小圆经过大圆的圆心O ,且,ADB x ACB y ∠=∠=, 则y 与x 之间的关系是( )A 、2y x = B、01802y x =-C、1(90)2y x =- D、01(180)2y x =-7.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=- B 、289)x 1(2562=- C 、256)x 21(289=- D 、289)x 21(256=-8.正方形网格中,AOB ∠如下图放置,则sin ∠AOB 的值为( ) A.2B.255 C.12D.55O CB DA 第6题9、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( ) A 、③④B 、②③C 、①④D 、①②③10.如图甲,将三角形纸片ABC 沿EF 折叠可得图乙(其中EF ∥BC ),已知图乙的面积与原三角形的面积之比为3∶4,且阴影部分的面积为82cm ,则原三角形面积为( ).A .122cmB .162cmC .202cmD .322cm二、填空题(本题有8小题,每小题3分,共24分) 11.方程92=x 的解为 。

2018年中考数学模拟试卷及答案

2018年中考数学模拟试卷及答案

13.2017 14.4 15. 21 16. 6 2 72
三、解答题
17。原式= 1 2a
当 a 2 3 时, 3 3
18。连接 AF,则
ABF CBE
BF BE
BAF

BCE
BA BC
F A
B
D E C
所以,△BAF 绕点 B 顺时针旋转 600 与△BCE 重合。
19。 因为△= b2 4 0 所以,b 取 2 或 3 方可有解. 当 x=2 时, x2 2x 1 0 (x 1)2 0
1
2018 年中考数学模拟试卷及答案(word 版可编辑修改)
2018 年中考模拟卷(2018。05.31)
一、选择题(共 40 分)
1.下列各式中,计算结果为 1 的是( ).
A.—2—1
B.1 1 2
2
C. 12
D. 11
2.如果 和 互为余角,那么下列表示 的补角的式子中,错误的是( ).
20.(8 分)如图,矩形 ABCD 中,E 在 BC 上,且 AE=AD. (1)尺规作图:求作 DF⊥AE,垂足为点 F;(保留痕迹,不写作法)
3
2018 年中考数学模拟试卷及答案(word 版可编辑修改)
(2)若 AD=5,AB=3,连接 DE.求 tan∠FDE.
A
D
B
C
E
21.(8 分)“三等分角"是数学史上一个著名的问题,但仅用尺规作图不可能“三等分角”.
(3)当 ABF 是等腰三角形时,求它的周长.
G
A
B
A
D
D
E
C
(图 1)
F
5
B
C
(备用图)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年低塘中学数学中考模拟试卷低塘中学 2018.4.5.一、选择题(本题共有10小题,每小题3分,共30分)1.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258 0002m 。

将举行奥运会、残奥会开闭幕式、田径比赛及足球比赛决赛。

奥运会后将成为北京市具有地标性的体育建筑和奥运遗产。

其中,258 0002m 用科学计数法表示为( ). A .258×310 B .25.8×410 C .2.58×510 D .0.258×610 2.一元二次方程230x x -=的解是( ) A .0x =B .1203x x ==,C .1210,3x x ==D .13x = 3. 若23a b b -=,则ab =( )A .13B .23C .43D .534.A .27,28B .27.5,28C .28,27D .26.5,275.已知下列命题:①同位角相等;②若a>b>0,则11a b<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x 2-2x 与坐标轴有3个不同交点;⑤已知一圆锥的高为4,母线长为5,则该圆锥的侧面积为15π。

从中任选一个命题是真命题的概率为( ) A.15 B. 25 C.35 D.456、如图,小圆经过大圆的圆心O ,且,ADB x ACB y ∠=∠=, 则y 与x 之间的关系是( )A 、2y x = B、01802y x =-C、1(90)2y x =- D、01(180)2y x =-7.某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=- B 、289)x 1(2562=- C 、256)x 21(289=- D 、289)x 21(256=-OCB DA8.正方形网格中,AOB ∠如下图放置,则sin ∠AOB 的值为( ) A.2B.5 C.12D.59、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②a -b +c <0;③b +2a <0;④abc >0.其中所有正确结论的序号是( ) A 、③④B 、②③C 、①④D 、①②③10.如图甲,将三角形纸片ABC 沿EF 折叠可得图乙(其中EF ∥BC ),已知图乙的面积与原三角形的面积之比为3∶4,且阴影部分的面积为82cm ,则原三角形面积为( ). A .122cm B .162cm C .202cm D .322cm二、填空题(本题有8小题,每小题3分,共24分) 11.方程92=x 的解为 。

12.六边形的内角和等于 . 13.化简111x x x÷--的结果为 . 14.已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,sin ∠A = . 15.已知数据x 1,x 2,…,x n 的平均数是x ,则数据x 1+8,x 2+8,…,x n +8的平均数是x +8. 16.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,则c 的值等于 。

17.把正整数1,2,3,4,5,……,按如下规律排列: 12,3,4,5,6,7,8,9,10,11,12,13,14,15,… … … … 按此规律,可知第n 行有 个正整数 . (n ≥1)18.如图, 在Rt △ABC 内有三个正方形CDEF 、FGHM 、MNPQ , 已知DE =9, GH =6, 则(第9题图) (第10题图甲)(第10题图乙)A BCF E A B O (第8题图)Q P NM H G FE(18题图) D C B A第三个正方形的边长NP= .三、解答题(共66分)19.(本题8分)(1)计算:(01123---+-030sin-(2)解方程:2112x x=++20.(本小题满分6分)先化简再求值:2221121x x xx x x--⋅+-+,其中x满足2320x x-+=.21.(本题满分6分)如图,某种雨伞的伞面可以看成由12块完全相同的等腰三角形布料缝合而成,量得其中一个三角形OAB的边OA=OB=56cm.(1)求∠AOB的度数;(2)求△OAB的面积.(不计缝合时重叠部分的面积)22.(8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的经统计发现两班总数相等.此时有学生建议,可以通过考察数据中其他信息作为参考. 请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)估计两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.23.(本题满分8分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A、B、D在同一直线上),测得由点B看(第21题)AB CD 大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米.请你根据 以上数据求出大树CD 的高度.(可能用到的参考 数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)24.(本题8分) 如图,AB 为圆O 的直径,PQ 切圆O 于T ,AC PQ ⊥于C ,交圆O 于D .(1)求证:AT 平分BAC ∠;(5分) (2)若2AD =,TC =O 的半径.(5分)25.(本题10分) “一方有难,八方支援”。

在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据右表提供的信息,解答下列问题:(1)设装运食品的车辆数为x ,装运药品的车辆数为y .求y 与x 的函数关系式; (2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆, 那么车辆的安排有几种方案?并写出每种安排方案;若要总运费最少,应采用哪种安排方案?并求出最少总运费.26.(本题满分12分) 如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标.(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 与∆PCA 相似.若存在,请求出M (第24题图)2018年数学中考模拟试卷参考答案 低塘中学11.__3或-3_______; 12.___720度_____; 13.__- x____;14.____3/5______;15. x +8 ; 16.___14_______; 17 ___2n-1___;18. ____4_______。

三、解答题:(共66分)19.(1)原式=1-21+3-21-------------------------------------3分 =3----------------------------------- 4分(2)解:去分母得:2(X+2)=X+1-----------------1分 解之得:X =-3 --------------------------------- 2分经检验:X=-3 是原方程的解------------------3分 ∴原方程的解是 X =-3---------------------- 4分 20.解:略.21.解: (1)∠AOB =360÷12=30 (度) . (2分)(2)作高BD ,在Rt △BDO 中,∠AOB =30°,OB =56cm ∴BO =2BD ,BD =28,(4分)(或写成DB =BO sin30°=28)∴△OAB 的面积=12×OA ×BD =784 (cm 2) (6分) 22. (1)甲班的优秀率是60%;乙班的优秀率是40%; (2分)(2)甲班5名学生比赛成绩的中位数是100个,乙班5名学生的比赛成绩的中位数是97个;(2分)(3)估计甲班5名学生比赛成绩的方差小; (2分)(4)将冠军奖状发给甲班,因为甲班5人比赛成绩的优秀率比乙班高、中位数比乙班大、方差比乙班小,综合评定甲班比较好. (2分) 23(8分)解:在ACD Rt ∆中,35tan CD AD =在BCD Rt ∆中,045tan CD BD =…………………………………………(2分)而5.4=-BD AD即5.445tan 35tan 00=-CDCD …………………………………………(5分) 解得:5.10=CD所以大树的高为5.10米………………………………………………(8分)24题 解:(1)证明:连接OT ,PQ 切圆O 于T ,OT PQ ∴⊥. ································································ 1分 又AC PQ ⊥,OT AC ∴∥TAC ATO ∴∠=∠ ··································································································· 3分 又OT OA =ATO OAT ∴∠=∠.OAT TAC ∴∠=∠,即AT 平分BAC ∠. ································································· 5分 (2)解:过点O 作OMAC ⊥于M , ········································································· 6分 12ADAM MD ∴===. 又90OTCACT OMC ∠=∠=∠=·········································································· 7分∴四边形OTCM 为矩形. ··························································································· 8分OM TC ∴==∴在Rt AOM △中,2AO ===.即圆O 的半径为2. ···································································································· 10分 25题 解(1)根据题意,装运食品的车辆数为x ,装运药品的车辆数为y ,那么装运生活用品的车辆数为(20)x y --. ··································································· 1分 则有654(20)100x y x y ++--=, ········································································· 2分整理得, 202y x =-. ·························································································· 3分 (2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为202x x x -,,, 由题意,得5202 4.x x ⎧⎨-⎩≥,≥ ························································································· 5分(第23题图)解这个不等式组,得85≤≤x 因为x 为整数,所以x 的值为 5,6,7,8.所以安排方案有4种方案一:食品5辆、药品10辆,生活用品5辆; 方案二:食品6辆、药品8辆,生活用品6辆; 方案三:食品7辆、药品6辆,生活用品7辆; 方案四:食品8辆、药品4辆,生活用品8辆. 设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x . 因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需W 最小,则x =8. ·············································································· 10分 26解:(1) A (1,0)- B (1,0) C (0,1)- ························································· (2分) (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45 ∵A P ∥CB , ∴∠P AB =45 过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形令O E =a ,则P E =1a + ∴P (,1)a a +∵点P 在抛物线21y x =-上 ∴211a a +=-解得12a =,21a =-(不合题意,舍去)∴P E =3 ······················································································································ 4分) ∴四边形ACB P 的面积S =12AB •O C +12AB •P E =112123422⨯⨯+⨯⨯= ···························································· 6分) (3)假设存在∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90在Rt △A O C 中,O A =O C =1 ∴AC在Rt △P AE 中,AE =P E =3 ∴AP= ········································································ 8分)设M 点的横坐标为m ,则M 2(,1)m m -①点M 在y 轴左侧时,则1m <-(ⅰ) 当∆A MG∽∆P CA 时,有AG PA =MGCA∵A G=1m --,MG=21m -2=解得11m =-(舍去) 223m =(舍去) (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2=,解得:1m =-(舍去) 22m =- ∴M (2,3)- ······························································10分)② 点M 在y 轴右侧时,则1m >(ⅰ) 当∆A MG∽∆P CA 时有AG PA =MGCA∵A G=1m +,MG=21m -∴2= 解得11m =-(舍去) 243m =∴M 47(,)39(ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MGPA即2= 解得:11m =-(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似47 (,) 39,(4,15)···································································(12分)M点的坐标为(2,3),。

相关文档
最新文档