2015年数学高考零距离答案第13章

合集下载

2015年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2015年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)

2015年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题:1.(2015安徽文)下列双曲线中,渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -=(C )2212y x -= (D )2212x y -=2.(2015安徽理)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=3.(2015福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E的离心率的取值范围是( )A .B .3(0,]4C .D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式.4.(2015福建理)若双曲线22:1916x y E -= 的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于( )A .11B .9C .5D .3【答案】B 【解析】试题分析:由双曲线定义得1226PF PF a -==,即236PF -=,解得29PF =,故选B . 考点:双曲线的标准方程和定义.5. (2015广东文)已知椭圆222125x y m+=(0m >)的左焦点为()1F 4,0-,则m =( )A .9B .4C .3D .2【答案】C 【解析】试题分析:由题意得:222549m =-=,因为0m >,所以3m =,故选C . 考点:椭圆的简单几何性质.6.(2015广东理)已知双曲线C :12222=-b y a x 的离心率54e =,且其右焦点()25,0F ,则双曲线C的方程为( )A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 【答案】B .【解析】因为所求双曲线的右焦点为()25,0F 且离心率为54c e a ==,所以5c =,4a =,2229b c a =-=所以所求双曲线方程为221169x y -=,故选B . 【考点定位】本题考查双曲线的标准方程及其简单基本性质,属于容易题. 7. (2015湖北文)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e >【答案】D .【考点定位】本题考查双曲线的定义及其简单的几何性质,考察双曲线的离心率的基本计算,涉及不等式及不等关系.【名师点睛】将双曲线的离心率的计算与初中学习的溶液浓度问题联系在一起,突显了数学在实际问题中实用性和重要性,充分体现了分类讨论的数学思想方法在解题中的应用,能较好的考查学生思维的严密性和缜密性. 8.(2015湖北理)将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D考点:1.双曲线的性质,2.离心率.9、(2015湖南文)若双曲线22221x y a b -=的一条渐近线经过点(3,-4),则此双曲线的离心率为A 7B 、54C 、43D 、53【答案】D【解析】试题分析:由题利用双曲线的渐近线方程经过的点,得到a 、b 关系式,然后求出双曲线的离心率即可.因为双曲线22221x y a b-=的一条渐近线经过点(3,-4),2225349163c ba c a a e a ∴=∴-=∴=,(),=.故选D.考点:双曲线的简单性质10、(2015全国新课标Ⅰ卷文)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB = ( )(A ) 3 (B )6 (C )9 (D )12【答案】B11.(2015全国新课标Ⅰ卷理)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF ∙2MF <0,则y 0的取值范围是( )(A )( (B )()(C )() (D )(【答案】A考点:向量数量积;双曲线的标准方程12.(2015全国新课标Ⅱ卷理)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A B .2 C D【答案】D 【解析】试题分析:设双曲线方程为22221(0,0)x y a b a b-=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a =,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222a b a c ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.13. (2015陕西文) 已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)【答案】B 【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.14、(2015四川文、理)过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )(A )433(B )23 (C )6 (D )43 【答案】D【考点定位】本题考查双曲线的概念、双曲线渐近线方程、直线与直线的交点、线段长等基础知识,考查简单的运算能力.【名师点睛】本题跳出直线与圆锥曲线位置关系的常考点,进而考查直线与双曲线渐近线交点问题,考生在解题中要注意识别.本题需要首先求出双曲线的渐近线方程,然后联立方程组,接触线段AB 的端点坐标,即可求得|AB |的值.属于中档题.【名师点睛】双曲线22221x y a b-=的渐近线方程为22220x y a b -=,将直线2x =代入这个渐近线方程,便可得交点A 、B 的纵坐标,从而快速得出||AB 的值.15、(2015四川文)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆C :(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) 【答案】D【考点定位】本题考查直线、圆及抛物线等基本概念,考查直线与圆、直线与抛物线的位置关系、参数取值范围等综合问题,考查数形结合和分类与整合的思想,考查学生分析问题和处理问题的能力.【名师点睛】本题实质是考查弦的中垂线过定点问题,注意到弦的斜率不可能为0,但有可能不存在,故将直线方程设为x =ty +m ,可以避免忘掉对斜率不存在情况的讨论.在对r 的讨论中,要注意图形的对称性,斜率存在时,直线必定是成对出现,因此,斜率不存在(t =0)时也必须要有两条直线满足条件.再根据方程的判别式找到另外两条直线存在对应的r 取值范围即可.属于难题.16.(2015四川理)设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24, 【答案】D【考点定位】直线与圆锥曲线,不等式. 【名师点睛】首先应结合图形进行分析.结合图形易知,只要圆的半径小于5,那么必有两条直线(即与x 轴垂直的两条切线)满足题设,因此只需直线的斜率存在时,再有两条直线满足题设即可.接下来要解决的问题是当直线的斜率存在时,圆的半径的范围是什么.涉及直线与圆锥曲线的交点及弦的中点的问题,常常采用“点差法”.在本题中利用点差法可得,中点必在直线3x 上,由此可确定中点的纵坐标0y 的范围,利用这个范围即可得到r 的取值范围.17. (2015天津文)已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( )(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D ) 2213y x -= 【答案】D考点:圆与双曲线的性质.18.(2015天津理)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点()2,3 ,且双曲线的一个焦点在抛物线247y x = 的准线上,则双曲线的方程为( )(A )2212128x y -= (B )2212821x y -= (C )22134x y -=(D )22143x y -= 【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质.19、(2015浙江文)如图,斜线段AB 与平面α所成的角为60,B 为斜足,平面α上的动点P 满足30∠PAB =,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【解析】试题分析:由题可知,当P 点运动时,在空间中,满足条件的AP 绕AB 旋转形成一个圆锥,用一个与圆锥高成60角的平面截圆锥,所得图形为椭圆.故选C. 考点:1.圆锥曲线的定义;2.线面位置关系.20. (2015浙江理) 如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A.11BF AF -- B.2211BF AF -- C.11BF AF ++ D.2211BF AF ++21. (2015重庆文)设双曲线22221(a 0,b 0)x y a b-=>>的右焦点是F ,左、右顶点分别是12A ,A ,过F做12A A 的垂线与双曲线交于B ,C 两点,若12A B A C ⊥,则双曲线的渐近线的斜率为( )(A) 12± (B) 22± (C) 1± (D) 2±【答案】C 【解析】考点:双曲线的几何性质.22.(2015重庆理)设双曲线22221x y a b-=(a >0,b >0)的右焦点为1,过F 作AF 的垂线与双曲线交于B ,C 两点,过B ,C 分别作AC ,AB 的垂线交于点D .若D 到直线BC 的距离小于22a a b +则该双曲线的渐近线斜率的取值范围是 ( )A 、(1,0)(0,1)-B 、(,1)(1,)-∞-+∞C 、(2,0)(0,2) D 、(,2)(2,)-∞+∞ 【答案】A【考点定位】双曲线的性质.二、填空题:1、(2015北京文)已知()2,0是双曲线2221y x b-=(0b >)的一个焦点,则b = .3【解析】试题分析:由题意知2,1c a ==,2223b c a =-=,所以3b =考点:双曲线的焦点.2. (2015北京理)已知双曲线()22210x y a a-=>30x y +=,则a =.【答案】33考点:双曲线的几何性质3.(2015湖南理)设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 . 【答案】5.【考点定位】双曲线的标准方程及其性质.【名师点睛】本题主要考查了双曲线的标准方程及其性质,属于容易题,根据对称性将条件中的信息进行 等价的转化是解题的关键,在求解双曲线的方程时,主要利用222b ac +=,焦点坐标,渐近线方程等性质,也会与三角形的中位线,相似三角形,勾股定理等平面几何知识联系起来.4. (2015江苏)在平面直角坐标系xOy 中,P 为双曲线122=-y x 右支上的一个动点。

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试理科数学(陕西卷)(含答案全解析)

2015年普通高等学校招生全国统一考试陕西理科数学1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,先按规定在试卷上填写姓名、准考证号,并在答题卡上填上对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷及答题卡一并交回.第一部分(共60分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共12小题,每小题5分,共60分).1.(2015陕西,理1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]答案:A解析:解x2=x,得x=0或x=1,故M={0,1}.解lg x≤0,得0<x≤1,故N=(0,1].故M∪N=[0,1],选A.2.(2015陕西,理2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167答案:C解析:由题图知,初中部女教师有110×70%=77人;高中部女教师有150×(1-60%)=60人.故该校女教师共有77+60=137(人).选C.3.(2015陕西,理3)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sinπx+φ +k.据此函数6可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.10答案:C解析:因为sinπx+φ ∈[-1,1],所以函数y=3sinπx+φ +k的最小值为k-3,最大值为k+3.由题图可知函数最小值为k-3=2,解得k=5.所以y的最大值为k+3=5+3=8,故选C.4.(2015陕西,理4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4答案:B解析:(x+1)n的展开式通项为T r+1=C n r x n-r.令n-r=2,即r=n-2.则x2的系数为C n n−2=C n2=15,解得n=6,故选B.5.(2015陕西,理5)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案:D解析:由三视图可知,该几何体是一个半圆柱,圆柱的底面半径r=1,高h=2.所以几何体的侧面积S1=C底·h=(π×1+2)×2=2π+4.几何体的底面积S2=12π×12=12π.故该几何体的表面积为S=S1+2S2=2π+4+2×π2=3π+4.故选D.6.(2015陕西,理6)“sin α=cos α”是“cos 2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:由cos 2α=0,得cos2α-sin2α=0,即cos α=sin α或cos α=-sin α.故“sin α=cos α”是“cos 2α=0”的充分不必要条件.7.(2015陕西,理7)对任意向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2答案:B解析:A项,a·b=|a||b|cos<a,b>≤|a||b|,所以不等式恒成立;B项,当a与b同向时,|a-b|=||a|-|b||;当a与b非零且反向时,|a-b|=|a|+|b|>||a|-|b||.故不等式不恒成立;C项,(a+b)2=|a+b|2恒成立;D项,(a+b)·(a-b)=a2-a·b+b·a-b2=a2-b2,故等式恒成立.综上,选B.8.(2015陕西,理8)根据右边框图,当输入x为2 006时,输出的y=()A.2B.4C.10D.28答案:C解析:由算法框图可知,每运行一次,x的值减少2,当框图运行了1 004次时,x=-2,此时x<0,停止循环,由y=3-x+1可知,y=3-(-2)+1=10,故输出y的值为10,故选C.9.(2015陕西,理9)设f(x)=ln x,0<a<b,若p=f(ab),q=f a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.p=r<qC.q=r>pD.p=r>q答案:B解析:因为0<a<b,所以a+b>ab.又因为f(x)=ln x在(0,+∞)上单调递增,所以f a+b2>f(ab),即p<q.而r=1(f(a)+f(b))=1(ln a+ln b)=12ln(ab)=ln ab,所以r=p,故p=r<q.选B.10.(2015陕西,理10)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元答案:D解析:设该企业每天生产甲产品x吨,乙产品y吨,获利z元.则由题意知3x+2y≤12,x+2y≤8,x≥0,y≥0,利润函数z=3x+4y.画出可行域如图所示,当直线3x+4y-z=0过点B 时,目标函数取得最大值.由 3x +2y =12,x +2y =8,解得 x =2,y =3.故利润函数的最大值为z=3×2+4×3=18(万元).故选D .11.(2015陕西,理11)设复数z=(x-1)+y i (x ,y ∈R ),若|z|≤1,则y ≥x 的概率为( )A.34+12π B.12+1πC.12-1πD.14-12π答案:D解析:由|z|≤1,得(x-1)2+y 2≤1.不等式表示以C (1,0)为圆心,半径r=1的圆及其内部,y ≥x 表示直线y=x 左上方部分(如图所示). 则阴影部分面积S=1π×12-S △OAC =1π-1×1×1=π-1.故所求事件的概率P=S 阴S 圆=π4−12π×12=14-12π.12.(2015陕西,理12)对二次函数f (x )=ax 2+bx+c (a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ) A.-1是f (x )的零点 B.1是f (x )的极值点 C.3是f (x )的极值 D.点(2,8)在曲线y=f (x )上 答案:A解析:f'(x )=2ax+b.若A 正确,则f (-1)=0,即a-b+c=0, ① 若B 正确,则f'(1)=0,即2a+b=0, ② 若C 正确,则f'(x 0)=0,且f (x 0)=3, 即f −b=3,即c-b2=3.③ 若D 项正确,则f (2)=8,即4a+2b+c=8.④假设②③④正确,则由②得b=-2a ,代入④得c=8,代入③得8-4a 24a=3,解得a=5,b=-10,c=8.此时f (x )=5x 2-10x+8,f (-1)=5×(-1)2-10×(-1)+8=5+10+8=23≠0,即A 不成立.故B ,C ,D 可同时成立,而A 不成立.故选A .第二部分(共90分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分).13.(2015陕西,理13)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 . 答案:5解析:由题意知,1 010为数列首项a 1与2 015的等差中项,故a 1+2 015=1 010,解得a 1=5.14.(2015陕西,理14)若抛物线y 2=2px (p>0)的准线经过双曲线x 2-y 2=1的一个焦点,则p= .答案:2解析:双曲线x 2-y 2=1的焦点为F 1(- 2,0),F 2( 2,0).抛物线的准线方程为x=-p 2.因p>0,故-p2=- 2,解得p=2 2.15.(2015陕西,理15)设曲线y=e x 在点(0,1)处的切线与曲线y=1(x>0)上点P 处的切线垂直,则P 的坐标为 . 答案:(1,1)解析:曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1,可得y'=-12,因为曲线y=1(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,故-1P2=-1,解得x P =1,由y=1,得y P =1,故所求点P 的坐标为(1,1). 16.(2015陕西,理16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为 .答案:1.2解析:以梯形的下底为x 轴,上、下底边的中点连线为y 轴,建立如图所示的坐标系,设抛物线的方程为y=ax 2,则抛物线过点(5,2),故2=25a ,得a=2,故抛物线的方程为y=2x 2.最大流量的比,即截面的面积比,由图可知,梯形的下底长为6,故梯形的面积为(10+6)×2=16,而当前的截面面积为2 52−2x 2 d x=2 2x −2x 3 |05=40,故原始流量与当前流量的比为16403=1.2. 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共70分).17.(本小题满分12分)(2015陕西,理17)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m=(a , 3b )与n=(cos A ,sin B )平行. (1)求A ;(2)若a= 7,b=2,求△ABC 的面积.(1)解:因为m ∥n ,所以a sin B- b cos A=0.由正弦定理,得sin A sin B- 3sin B cos A=0. 又sin B ≠0,从而tan A= 3. 由于0<A<π,所以A=π3.(2)解法一:由余弦定理,得a 2=b 2+c 2-2bc cos A ,而a= 7,b=2,A=π3,得7=4+c 2-2c ,即c 2-2c-3=0. 因为c>0,所以c=3.故△ABC 的面积为12bc sin A=3 3.解法二:由正弦定理,得 7sin π3=2sin B ,从而sin B= 21.又由a>b ,知A>B ,所以cos B=2 7.故sin C=sin (A+B )=sin B +π=sin B cos π3+cos B sin π3=3 2114.所以△ABC 的面积为12ab sin C=3 32. 18.(本小题满分12分)(2015陕西,理18)如图①,在直角梯形ABCD 中,AD ∥BC ,∠BAD=π,AB=BC=1,AD=2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图②.图①图②(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明:在题图①中,因为AB=BC=1,AD=2,E 是AD 的中点,∠BAD=π,所以BE ⊥AC ,即在题图②中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC. (2)解:由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE-C 的平面角, 所以∠A 1OC=π.如图,以O 为原点,建立空间直角坐标系,因为A 1B=A 1E=BC=ED=1,BC ∥ED , 所以B 2,0,0 ,E −2,0,0 ,A 1 0,0,2,C 0,2,0 ,得BC = − 2, 2,0 ,A 1C = 0, 2,− 2,CD =BE =(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则 n 1·BC =0,n 1·A 1C =0,得 −x 1+y 1=0,y 1−z 1=0,取n 1=(1,1,1); n 2·CD =0,n 2·A 1C =0,得x 2=0,y 2−z 2=0,取n 2=(0,1,1), 从而cos θ=|cos <n 1,n 2>|=3× 2= 63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为 6.19.(本小题满分12分)(2015陕西,理19)设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T的分布列与数学期望ET;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得T的分布列为从而ET=25×0.2+30×0.3+35×0.4+40×0.1=32(分钟).(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09,故P(A)=1-P(A)=0.91.20.(本小题满分12分)(2015陕西,理20)已知椭圆E:x2a2+y2b2=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为12c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=5的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.(1)解:过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d=bcb+c2=bc,由d=1c,得a=2b=2 a2−c2,解得离心率c=3.(2)解法一:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.①依题意,圆心M (-2,1)是线段AB 的中点,且|AB|= 10.易知,AB 与x 轴不垂直,设其方程为y=k (x+2)+1,代入①得,(1+4k 2)x 2+8k (2k+1)x+4(2k+1)2-4b 2=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8k (2k +1)1+4k2,x 1x 2=4(2k +1)2−4b21+4k2.由x 1+x 2=-4,得-8k (2k +1)1+4k2=-4,解得k=1.从而x 1x 2=8-2b 2.于是|AB|= 1+ 122|x 1-x 2|= 52 (x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 2−2)= 10,解得b 2=3. 故椭圆E 的方程为x 212+y 23=1.解法二:由(1)知,椭圆E 的方程为x 2+4y 2=4b 2.②依题意,点A ,B 关于圆心M (-2,1)对称,且|AB|= 10. 设A (x 1,y 1),B (x 2,y 2),则x 12+4y 12=4b 2,x 22+4y 22=4b 2,两式相减并结合x 1+x 2=-4,y 1+y 2=2, 得-4(x 1-x 2)+8(y 1-y 2)=0. 易知AB 与x 轴不垂直,则x 1≠x 2, 所以AB 的斜率k AB =y 1−y 2x 1−x 2=12. 因此,直线AB的方程为y=12(x+2)+1,代入②得,x 2+4x+8-2b 2=0.所以x 1+x 2=-4,x 1x 2=8-2b 2. 于是|AB|= 1+ 122|x 1-x 2|= 5(x 1+x 2)2−4x 1x 2= 10(b 2−2). 由|AB|= 10,得 10(b 2−2)= 10,解得b 2=3.故椭圆E 的方程为x 2+y 2=1.21.(本小题满分12分)(2015陕西,理21)设f n (x )是等比数列1,x ,x 2,…,x n 的各项和,其中x>0,n ∈N ,n ≥2.(1)证明:函数F n (x )=f n (x )-2在 12,1 内有且仅有一个零点(记为x n ),且x n =12+12x n n +1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x ),比较f n (x )和g n (x )的大小,并加以证明.(1)证明:F n (x )=f n (x )-2=1+x+x 2+…+x n -2,则F n (1)=n-1>0,F n 12 =1+12+ 12 2+…+ 12 n-2 =1− 12n +11−12-2=-1n <0,所以F n (x )在 1,1 内至少存在一个零点. 又F n '(x )=1+2x+…+nx n-1>0, 故F n (x )在 12,1 内单调递增,所以F n (x )在 1,1 内有且仅有一个零点x n . 因为x n 是F n (x )的零点,所以F n (x n )=0,即1−x nn +1n -2=0,故x n =1+1x n n +1. (2)解法一:由假设,g n (x )=(n +1)(1+x n )2.设h (x )=f n (x )-g n (x )=1+x+x 2+…+x n -(n +1)(1+x n ),x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,h'(x )=1+2x+…+nx n-1-n (n +1)x n−1. 若0<x<1,h'(x )>x n-1+2x n-1+…+nx n-1-n (n +1)x n-1=n (n +1)x n-1-n (n +1)x n-1=0. 若x>1,h'(x )<x n-1+2x n-1+…+nx n-1-n (n +1)2x n-1=n (n +1)2x n-1-n (n +1)2x n-1=0.所以h (x )在(0,1)上递增,在(1,+∞)上递减, 所以h (x )<h (1)=0,即f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).解法二:由题设,f n (x )=1+x+x 2+…+x n ,g n (x )=(n +1)(x n +1)2,x>0. 当x=1时,f n (x )=g n (x ).当x ≠1时,用数学归纳法可以证明f n (x )<g n (x ).①当n=2时,f 2(x )-g 2(x )=-1(1-x )2<0, 所以f 2(x )<g 2(x )成立.②假设n=k (k ≥2)时,不等式成立,即f k (x )<g k (x ). 那么,当n=k+1时,f k+1(x )=f k (x )+x k+1<g k (x )+x k+1=(k +1)(1+x k )2+x k+1 =2x k +1+(k +1)x k +k +1.又g k+1(x )-2x k +1+(k +1)x k +k +12=kx k +1−(k +1)x k +1,令h k (x )=kx k+1-(k+1)x k +1(x>0),则h k '(x )=k (k+1)x k -k (k+1)x k-1=k (k+1)x k-1(x-1). 所以,当0<x<1时,h k '(x )<0,h k (x )在(0,1)上递减; 当x>1时,h k '(x )>0,h k (x )在(1,+∞)上递增. 所以h k (x )>h k (1)=0, 从而g k+1(x )>2x k +1+(k +1)x k +k +12.故f k+1(x )<g k+1(x ),即n=k+1时不等式也成立. 由①和②知,对一切n ≥2的整数,都有f n (x )<g n (x ).解法三:由已知,记等差数列为{a k },等比数列为{b k },k=1,2,…,n+1.则a 1=b 1=1,a n+1=b n+1=x n , 所以a k =1+(k-1)·x n −1(2≤k ≤n ), b k =x k-1(2≤k ≤n ),令m k (x )=a k -b k =1+(k−1)(x n −1)n-x k-1,x>0(2≤k ≤n ), 当x=1时,a k =b k ,所以f n (x )=g n (x ). 当x ≠1时,m k '(x )=k−1·nx n-1-(k-1)x k-2=(k-1)x k-2(x n-k+1-1). 而2≤k ≤n ,所以k-1>0,n-k+1≥1. 若0<x<1,x n-k+1<1,m k '(x )<0;若x>1,x n-k+1>1,m k '(x )>0,从而m k (x )在(0,1)上递减,在(1,+∞)上递增, 所以m k (x )>m k (1)=0.所以当m>0且m ≠1时,a k >b k (2≤k ≤n ), 又a 1=b 1,a n+1=b n+1,故f n (x )<g n (x ). 综上所述,当x=1时,f n (x )=g n (x ); 当x ≠1时,f n (x )<g n (x ).考生注意:请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22.(本小题满分10分)(2015陕西,理22)选修4—1:几何证明选讲 如图,AB 切☉O 于点B ,直线AO 交☉O 于D ,E 两点,BC ⊥DE ,垂足为C.(1)证明:∠CBD=∠DBA ;(2)若AD=3DC ,BC= 2,求☉O 的直径. (1)证明:因为DE 为☉O 直径,则∠BED+∠EDB=90°.又BC ⊥DE ,所以∠CBD+∠EDB=90°, 从而∠CBD=∠BED.又AB 切☉O 于点B ,得∠DBA=∠BED , 所以∠CBD=∠DBA. (2)解:由(1)知BD 平分∠CBA ,则BA =AD=3, 又BC= 2,从而AB=3 2.所以AC=2−BC 2=4,所以AD=3. 由切割线定理得AB 2=AD ·AE ,即AE=AB 2=6,故DE=AE-AD=3,即☉O 直径为3.23.(本小题满分10分)(2015陕西,理23)选修4—4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为 x =3+12t ,y = 3t(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,☉C 的极坐标方程为ρ=2 3sin θ. (1)写出☉C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=2 θ,得ρ2=2 3ρsin θ,从而有x 2+y 2=2 3y ,所以x 2+(y- 3)2=3. (2)设P 3+1t , 3t ,又C (0, 3),则|PC|= 3+1t + 3t − 3 2= t 2+12,故当t=0时,|PC|取得最小值, 此时,P 点的直角坐标为(3,0).24.(本小题满分10分)(2015陕西,理24)选修4—5:不等式选讲已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+bt的最大值.解:(1)由|x+a|<b,得-b-a<x<b-a,则−b−a=2,b−a=4,解得a=-3,b=1.(2)−3t+12+t=34−t+t≤[(3)2+12][(4−t)2+(t)2]=24−t+t=4,当且仅当4−t3=t,即t=1时等号成立.故(−3t+12+t)max=4.11。

2015年高考理科数学山东卷-答案

2015年高考理科数学山东卷-答案
3.【答案】B
【解析】 ,需将函数 的图象向右平移 个单位,答案选B.
【提示】直接利用三角函数的平移原则推出结果即可.
【考点】三角函数的图象及其变换.
4.【答案】D
【解析】由菱形ABCD的边长为 , 可知 ,
,答案选D.
【提示】根据 代入可求.
【考点】向量的运算.
5.【答案】A
【解析】 时, 成立
当 时, 解得 ;
第6题图
【提示】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
【考点】线性规划的问题.
7.【答案】C
【解析】 ,答案选C.
【提示】画出几何体的直观图,利用已知条件,求解几何体的体积即可.
【考点】空间几何体体积的计算.
8.【答案】B
【解析】 ,答案选B.
【提示】由题意 , ,
当 , 不成立,综上 ,答案选A.
【提示】运用零点分区间,求出零点为1,5,讨论①当 ,②当 ,③当 ,分别去掉绝对值,解不等式,最后求并集即可.
【考点】绝对值符号和分类讨论的思想.
6.【答案】B
【解析】由 得 ,借助图形可知:当 ,即 时在 时有最大值0,不符合题意;当 ,即 时有最大值 , ,不满足 ;当 ,即 时在 时有最大值 , ,不满足 ;当 时,即 时在 , 时有最大值 , ,满足 ,答案选B.
(Ⅱ)由 ,可得 , ,由余弦定理可得: ,且当 时等号成立,从而可求 ,从而得解.
【考点】三角函数单调区间,三角形的面积公式.
17.【答案】(Ⅰ)见解析
(Ⅱ)
【解析】(Ⅰ)证明:如图1,连接 , ,设 与 交于点 .
在三棱台 中, ,则 ,
而 是 的中点, ,则 ,

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全( 数列)

2015年全国各地高考数学试题及解答分类大全(数列)一、选择题:1.(2015北京理) 设{}n a 是等差数列. 下列结论中正确的是( )A .若120a a +>,则230a a +>B .若130a a +<,则120a a +<C .若120a a <<,则213a a a >D .若10a <,则()()21230a a a a --> 【答案】C考点:1.等差数列通项公式;2.作差比较法2.(2015福建理)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( )A .6B .7C .8D .9 【答案】D 【解析】 试题分析:由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .考点:等差中项和等比中项.3、(2015全国新课标Ⅰ卷文)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )124. (2015全国新课标Ⅱ卷文)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列5.(2015全国新课标Ⅱ卷理)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( ) A .21 B .42 C .63 D .84 【答案】B考点:等比数列通项公式和性质.6.(2015全国新课标Ⅱ卷文)已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1C.12 1D.8【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.7. (2015浙江理)已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <>8.(2015重庆理)在等差数列{}n a 中,若2a =4,4a =2,则6a = ( )A 、-1B 、0C 、1D 、6【答案】B【考点定位】本题属于数列的问题,考查等差数列的通项公式与等差数列的性质.二、填空题:1.(2015安徽文)已知数列}{n a 中,11=a ,211+=-n n a a (2≥n ),则数列}{n a 的前9项和等于 .2.(2015安徽理)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .3.(2015福建文)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.4.(2015广东理)在等差数列{}n a 中,若2576543=++++a a a a a ,则82a a += 【答案】10.【解析】因为{}n a 是等差数列,所以37462852a a a a a a a +=+=+=,345675525a a a a a a ++++==即55a =,285210a a a +==,故应填入10.【考点定位】本题考查等差数列的性质及简单运算,属于容易题.5. (2015广东文)若三个正数a ,b ,c 成等比数列,其中526a =+56c =-则b = .【答案】1 【解析】试题分析:因为三个正数a ,b ,c 成等比数列,所以(25265261b ac ==+-=,因为0b >,所以1b =,所以答案应填:1. 考点:等比中项.6. (2015浙江文)已知{}n a 是等差数列,公差d 不为零.若2a ,3a ,7a 成等比数列,且1221a a +=,则1a = ,d = . 【答案】2,13- 【解析】试题分析:由题可得,2111(2)()(6)a d a d a d +=++,故有1320a d +=,又因为1221a a +=,即131a d +=,所以121,3d a =-=. 考点:1.等差数列的定义和通项公式;2.等比中项.7.(2015湖南理)设n S 为等比数列{}n a 的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则n a = .【答案】13-n .【考点定位】等差数列与等比数列的性质.【名师点睛】本题主要考查等差与等比数列的性质,属于容易题,在解题过程中,需要建立关于等比数列基本量q 的方程即可求解,考查学生等价转化的思想与方程思想.8. (2015江苏)数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 【答案】2011【解析】试题分析:由题意得:112211(1)()()()1212n n n n n n n a a a a a a a a n n ---+=-+-++-+=+-+++=所以1011112202(),2(1),11111n n n S S a n n n n =-=-==+++ 考点:数列通项,裂项求和9、(2015全国新课标Ⅰ卷文)数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .10.(2015全国新课标Ⅱ卷理)设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =________.【答案】1n-【解析】试题分析:由已知得111n n n n n a S S S S +++=-=⋅,两边同时除以1n n S S +⋅,得1111n nS S +=--,故数列1n S ⎧⎫⎨⎬⎩⎭是以1-为首项,1-为公差的等差数列,则11(1)n S n n =---=-,所以1nS n =-. 考点:等差数列和递推关系.11. (2015陕西文、理)中位数1010的一组数构成等差数列,其末项为2015,则该数列的首项为 . 【答案】5 【解析】试题分析:设数列的首项为1a ,则12015210102020a +=⨯=,所以15a =,故该数列的首项为5,所以答案应填:5. 考点:等差中项.三、解答题:1. (2015安徽文)已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .2.(2015安徽理) 设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式; (Ⅱ)记2221321n n T x x x -=,证明14n T n≥.3、(2015北京文)已知等差数列{}n a 满足1210a a +=,432a a -=. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设等比数列{}n b 满足23b a =,37b a =,问:6b 与数列{}n a 的第几项相等? 【答案】(1)42(1)22n a n n =+-=+;(2)6b 与数列{}n a 的第63项相等.【解析】试题分析:本题主要考查等差数列、等比数列的通项公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用等差数列的通项公式,将1234,,,a a a a 转化成1a 和d ,解方程得到1a 和d 的值,直接写出等差数列的通项公式即可;第二问,先利用第一问的结论得到2b 和3b 的值,再利用等比数列的通项公式,将2b 和3b 转化为1b 和q ,解出1b 和q 的值,得到6b 的值,再代入到上一问等差数列的通项公式中,解出n 的值,即项数. 试题解析:(Ⅰ)设等差数列{}n a 的公差为d. 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(Ⅱ)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以2q =,14b =.所以61642128b -=⨯=.由12822n =+,得63n =. 所以6b 与数列{}n a 的第63项相等. 考点:等差数列、等比数列的通项公式.4. (2015北京理)已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】 ①试题分析:(Ⅰ)由16a =,可知23412,24,12,a a a ===则{6,12,24}M =;(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.第二步集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,用数学归纳法证明对任意n k ≥,n a 是3的倍数;第三步由于M 中的元素都不超过36,M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,由定义可知,1n a +和2n a 除以9的余数一样,分n a 中有3的倍数和n a 中没有3的倍数两种情况,研究集合M 中的元素个数,最后得出结论集合M 的元素个数的最大值为8.试题解析:(Ⅰ)由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.(Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,考点:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.5.(2015福建文) 等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101.【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d . 由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法.6、(2015广东文)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥时,211458n n n n S S S S ++-+=+.()1求4a 的值; ()2证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; ()3求数列{}n a 的通项公式.【答案】(1)78;(2)证明见解析;(3)()11212n n a n -⎛⎫=-⨯ ⎪⎝⎭.考点:1、等比数列的定义;2、等比数列的通项公式;3、等差数列的通项公式.7.(2015广东理)数列{}n a 满足1212242-+-=+⋅⋅⋅++n n n na a a , *N n ∈. (1) 求3a 的值;(2) 求数列{}n a 前n 项和n T ; (3) 令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足n S n ln 22+<【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)见解析.(3)依题由1211112n n n a a a b a n n -+++⎛⎫=++++ ⎪⎝⎭知11b a =,1221122a b a ⎛⎫=++ ⎪⎝⎭,【考点定位】本题考查递推数列求项值、通项公式、等比数列前n 项和、不等式放缩等知识,属于中高档题. 8.(2015湖北理)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n -+-.2345113579212222222n n n T -=++++++. ② ①-②可得221111212323222222n n n n n n T --+=++++-=-,故n T 12362n n -+=-.考点:1.等差数列、等比数列通项公式,2.错位相减法求数列的前n 项和. 9. (2015湖北文)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.10. (2015湖南文)设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且13n n a S +=*13,()n S n N +-+∈,(I )证明:23n n a a +=; (II )求n S 。

2015年普通高等学校招生全国统一考试数学理试题(天津卷,含解析)

2015年普通高等学校招生全国统一考试数学理试题(天津卷,含解析)

更多优质资料请关注公众号:诗酒叙华年2015年普通高等学校招生全国统一考试数学理试题(天津卷,含解析)第I 卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2、本卷共8小题,每小题5分,共40分.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合U A B =I ð (A ){}2,5 (B ){}3,6 (C ){}2,5,6 (D ){}2,3,5,6,8 【答案】A 【解析】试题分析:{2,5,8}U B =ð,所以{2,5}U A B =I ð,故选A. 考点:集合运算.(2)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为(A )3 (B )4 (C )18 (D )40 【答案】C更多优质资料请关注公众号:诗酒叙华年864224681510551015AB考点:线性规划.(3)阅读右边的程序框图,运行相应的程序,则输出S 的值为 (A )10- (B )6(C )14(D )18【答案】B 【解析】试题分析:模拟法:输入20,1S i ==;21,20218,25i S =⨯=-=>不成立; 224,18414,45i S =⨯==-=>不成立 248,1486,85i S =⨯==-=>成立 输出6,故选B. 考点:程序框图.(4)设x R ∈ ,则“21x -< ”是“220x x +-> ”的更多优质资料请关注公众号:诗酒叙华年(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 【答案】A考点:充分条件与必要条件.(5)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为(A )83 (B )3 (C )103 (D )52DOABM N【答案】A 【解析】试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.(6)已知双曲线()222210,0x y a b a b-=>> 的一条渐近线过点(3 ,且双曲线的一个焦点在抛物线27y x = 的准线上,则双曲线的方程为更多优质资料请关注公众号:诗酒叙华年(A)2212128x y -= (B )2212821x y -=(C )22134x y -=(D )22143x y -= 【答案】D考点:1.双曲线的标准方程及几何性质;2.抛物线的标准方程及几何性质. (7)已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a << 【答案】C 【解析】试题分析:因为函数()21x mf x -=-为偶函数,所以0m =,即()21xf x =-,所以221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭()()2log 502log 5214,2(0)210b f c f m f ==-====-=所以c a b <<,故选C.考点:1.函数奇偶性;2.指数式、对数式的运算.(8)已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭(D )7,24⎛⎫⎪⎝⎭更多优质资料请关注公众号:诗酒叙华年【解析】试题分析:由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知72b <<. 考点:1.求函数解析式;2.函数与方程;3.数形结合. 第II 卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 . 【答案】2-更多优质资料请关注公众号:诗酒叙华年试题分析:()()()12212i a i a a i -+=++-是纯度数,所以20a +=,即2a =-. 考点:1.复数相关定义;2.复数运算.(10)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .【答案】83π 【解析】试题分析:由三视图可知,该几何体是中间为一个底面半径为1,高为2的圆柱,两端是底面半径为1,高为1的圆锥,所以该几何体的体积22181221133V πππ=⨯⨯+⨯⨯⨯⨯=. 考点:1.三视图;2.旋转体体积.(11)曲线2y x = 与直线y x = 所围成的封闭图形的面积为 . 【答案】16【解析】试题分析:两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积()1122300111236S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰.考点:定积分几何意义.(12)在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516更多优质资料请关注公众号:诗酒叙华年考点:二项式定理及二项展开式的通项.(13)在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315 ,12,cos ,4b c A -==- 则a 的值为 .【答案】8 【解析】试题分析:因为0A π<<,所以215sin 1cos 4A A =-=, 又115sin 315,242ABC S bc A bc bc ∆===∴=,解方程组224b c bc -=⎧⎨=⎩得6,4b c ==,由余弦定理得 2222212cos 64264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以8a =.考点:1.同角三角函数关系;2.三角形面积公式;3.余弦定理.(14)在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==u u u r u u u r u u u r u u u r 则AE AF ⋅u u u r u u u r的最小值为 . 【答案】2918【解析】试题分析:因为1,9DF DC λ=u u u r u u u r 12DC AB =u u u r u u u r ,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==u u u r u u u r u u u r u u ur u u u r u u u r u u u r , AE AB BE AB BC λ=+=+u u u r u u u r u u u r u u u r u u u r ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r更多优质资料请关注公众号:诗酒叙华年19199421cos1201818λλλλλ++=⨯++⨯⨯⨯︒211721172929218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅u u u r u u u r 的最小值为2918.BAD C E考点:1.向量的几何运算;2.向量的数量积;3.基本不等式.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分13分)已知函数()22sin sin 6f x x x π⎛⎫=--⎪⎝⎭,R x ∈ (I)求()f x 最小正周期; (II)求()f x 在区间[,]34p p-上的最大值和最小值. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.考点:1.两角和与差的正余弦公式;2.二倍角的正余弦公式;3.三角函数的图象与性质.16. (本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(II)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.【答案】(I) 635;(II) 随机变量X的分布列为X1234P1143737114()52E X=【解析】试题分析:(I)由古典概型计算公式直接计算即可; (II)先写出随机变量X的所有可能值,求出其相应的概率,即可求概率分布列及期望.试题解析:(I)由已知,有更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年22222333486()35CC C C P A C +==所以事件A 发生的概率为635. (II)随机变量X 的所有可能取值为1,2,3,4()45348(1,2,3,4)k k C C P X k k C -=== 所以随机变量X 的分布列为X 1 2 3 4P114 37 37 114 所以随机变量X 的数学期望()512341477142E X =⨯+⨯+⨯+⨯=考点:1.古典概型;2.互斥事件;3.离散型随机变量的分布列与数学期望. 17. (本小题满分13分)如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,5AC AA AD CD ====,且点M 和N 分别为11C D B D 和的中点.(I)求证:MN ABCD P 平面; (II)求二面角11D -AC B -的正弦值;(III)设E 为棱11A B 上的点,若直线NE 和平面ABCD 所成角的正弦值为13,求线段1E A 的长更多优质资料请关注公众号:诗酒叙华年【答案】(I)见解析; (II) 310; (III) 72-. 【解析】试题分析:以A 为原点建立空间直角坐标系(I)求出直线MN 的方向向量与平面ABCD 的法向量,两个向量的乘积等于0即可;(II)求出两个平面的法向量,可计算两个平面所成二面角的余弦值的大小,再求正弦值即可;(III) 设111A E A B λ=u u u r u u u u r,代入线面角公式计算可解出λ的值,即可求出1A E 的长.试题解析:如图,以A 为原点建立空间直角坐标系,依题意可得(0,0,0),(0,1,0),(2,0,0),(1,2,0)A B C D -,1111(0,0,2),(0,1,2),(2,0,2),(1,2,2)A B C D -,又因为,M N 分别为1B C 和1D D 的中点,得11,,1,(1,2,1)2M N ⎛⎫- ⎪⎝⎭.(I)证明:依题意,可得(0,0,1)n =r 为平面ABCD 的一个法向量,50,,02MN ⎛⎫=- ⎪⎝⎭u u u u r ,由此可得,0MN n ⋅=u u u u r r,又因为直线MN ⊄平面ABCD ,所以//MN 平面ABCD(II)1(1,2,2),(2,0,0)AD AC =-=u u u u r u u u r ,设1(,,)n x y z =u r为平面1ACD 的法向量,则1110n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩u r u u u u ru r u u ur ,即22020x y z x -+=⎧⎨=⎩,不妨设1z =,可得1(0,1,1)n =u r ,更多优质资料请关注公众号:诗酒叙华年设2(,,)n x y z =u u r 为平面1ACB 的一个法向量,则21200n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u ru u r u u u r,又1(0,1,2)AB =u u u r ,得 2020y z x +=⎧⎨=⎩,不妨设1z =,可得2(0,2,1)n =-u u r 因此有12121210cos ,10n n n n n n ⋅==-⋅u r u u ru r u u r u r u u r ,于是12310sin ,10n n =u r u u r ,所以二面角11D AC B --的正弦值为31010. (I II)依题意,可设111A E A B λ=u u u r u u u u r,其中[0,1]λ∈,则(0,,2)E λ,从而(1,2,1)NE λ=-+u u u r ,又(0,0,1)n =r 为平面ABCD 的一个法向量,由已知得2221cos ,3(1)(2)1NE n NE n NE n λ⋅===⋅-+++u u u r ru u u r r u u u r r ,整理得2430λλ+-=, 又因为[0,1]λ∈,解得72λ=-,所以线段1A E 的长为72-.考点:1.直线和平面平行和垂直的判定与性质;2.二面角、直线与平面所成的角;3.空间向量的应用.18. (本小题满分13分)已知数列{}n a 满足*212(q )n N ,1,2n n a qa a a +=≠∈==为实数,且q 1,,且233445,,a a a a a a +++成等差数列.(I)求q 的值和{}n a 的通项公式; (II)设*2221log ,nn n a b n N a -=∈,求数列n {b }的前n 项和.【答案】(I) 1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数; (II) 1242n n n S -+=-.【解析】试题分析:(I)由()()()()34234534a a a a a a a a +-+=+-+得4253a a a a -=- 先求出q ,分n 为奇数与偶数讨论即可;(II)求出数列{}n b 的通项公式,用错位相减法求和即可.更多优质资料请关注公众号:诗酒叙华年试题解析:(I) 由已知,有()()()()34234534a a a a a a a a +-+=+-+,即4253a a a a -=-, 所以23(1)(1)a q a q -=-,又因为1q ≠,故322a a ==,由31a a q =,得2q =, 当21(*)n k n N =-∈时,1122122n k n k a a ---===,当2(*)n k n N =∈时,2222n kn k a a ===,所以{}n a 的通项公式为1222,2,.n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数考点:1.等差中项定义;2.等比数列及前n 项和公式.3.错位相减法.19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,43|FM|=3.(I )求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 2,求直线OP (O 为原点)的斜率的取值范围.更多优质资料请关注公众号:诗酒叙华年【答案】(I) 3; (II) 22132x y += ;(III) 23223,,⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭U .【解析】试题分析:(I) 由椭圆知识先求出,,a b c 的关系,设直线直线FM 的方程为()y k x c =+,求出圆心到直线的距离,由勾股定理可求斜率k 的值; (II)由(I)设椭圆方程为2222132x y c c+=,直线与椭圆方程联立,求出点M 的坐标,由33FM =可求出c ,从而可求椭圆方程.(III)设出直线FP :(1)y t x =+,与椭圆方程联立,求得226223(1)x t x -=>+x 的范围,即可求直线OP 的斜率的取值范围. 试题解析:(I) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有2222221c b k ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭+,解得33k =(II)由(I)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为23c ⎛⎫ ⎪⎝⎭,由222343()033FM c c c ⎛⎫=++-=⎪⎝⎭,解得1c =,所以椭圆方程为22132x y += (III)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-,与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得226223(1)x t x -=>+ 312x -<<-或10x -<<,设直线OP的斜率为m,得ymx=,即(0)y mx x=≠,与椭圆方程联立,整理可得22223mx=-.①当3,12x⎛⎫∈--⎪⎝⎭时,有(1)0y t x=+<,因此0m>,于是2223mx=-,得223,33m⎛⎫∈ ⎪⎝⎭②当()1,0x∈-时,有(1)0y t x=+>,因此0m<,于是2223mx=--,得23,3m⎛⎫∈-∞-⎪⎝⎭综上,直线OP的斜率的取值范围是23223,,333⎛⎫⎛⎫-∞-⎪ ⎪⎝⎭⎝⎭U考点:1.椭圆的标准方程和几何性质;2.直线和圆的位置关系;3.一元二次不等式.20. (本小题满分14分)已知函数()n,nf x x x x R=-∈,其中*n,n2N∈≥.(I)讨论()f x的单调性;(II)设曲线()y f x=与x轴正半轴的交点为P,曲线在点P处的切线方程为()y g x=,求证:对于任意的正实数x,都有()()f xg x≤;(III)若关于x的方程()=a(a)f x为实数有两个正实根12x x,,求证:21|-|21ax xn<+-【答案】(I) 当n为奇数时,()f x在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n为偶数时,()f x在(,1)-∞-上单调递增,()f x在(1,)+∞上单调递减. (II)见解析; (III)见解析.试题解析:(I)由()nf x nx x=-,可得,其中*n N∈且2n≥,更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)-∞- (1,1)- (1,)+∞()f x '- +- ()f x]Z]所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)证明:设点P 的坐标为0(,0)x ,则110n x n-=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x '=-,即()00()()g x f x x x '=-,令()()()F x f x g x =-,即()00()()()F x f x f x x x '=--,则0()()()F x f x f x '''=-由于1()n f x nxn -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤. (III)证明:不妨设12x x ≤,由(II)知()()2()g x n n x x =--,设方程()g x a =的根为2x ',可得202.ax x n n'=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(II)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,更多优质资料请关注公众号:诗酒叙华年()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.。

2015年全国各地高考数学试题及解答分类大全( 计数原理、二项式定理)

2015年全国各地高考数学试题及解答分类大全( 计数原理、二项式定理)

2015年全国各地高考数学试题及解答分类大全(计数原理、二项式定理)一、选择题:1.(2015广东理)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为()A.1B.2111C.2110 D.215【答案】C..【解析】从袋中任取2个球共有215105C =种,其中恰好1个白球1个红球共有1110550C C =种,所以恰好1个白球1个红球的概率为5010=10521,故选 C..【考点定位】本题考查排列组合、古典概率的计算,属于容易题.2.(2015湖南理)已知5x x 的展开式中含32x 的项的系数为30,则a =()3 B.3 C.6D .-6【答案】D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.3.(2015全国新课标Ⅰ卷理)25()x x y ++的展开式中,52x y 的系数为()(A )10(B )20(C )30(D )60【答案】C 【解析】试题分析:在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选C.考点:排列组合;二项式定理4.(2015陕西理)二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =()A.4B.5C.6D.7【答案】C考点:二项式定理.5.(2015四川理)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有(A)144个(B)120个(C)96个(D)72个【答案】B【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.6.(2015湖北理)已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.122B.112C.102D.92【答案】D考点:1.二项式系数,2.二项式系数和.二、填空题:1.(2015安徽理)371(x x+的展开式中5x 的系数是.(用数字填写答案)2.(2015北京理)在()52x +的展开式中,3x 的系数为.(用数字作答)【答案】40【解析】试题分析:利用通项公式,5152r r r r T C x -+=⋅,令3r =,得出3x 的系数为325240C ⋅=考点:二项式定理3.(2015福建理)()52x +的展开式中,2x 的系数等于.(用数字作答)【答案】80试题分析:()52x +的展开式中2x 项为2325280C x =,所以2x 的系数等于80.考点:二项式定理.4、(2015广东理)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.【考点定位】本题考查排列组合问题,属于中档题.5.(2015广东理)在4)1(-x 的展开式中,x 的系数为【答案】6.【解析】由题可知()()()44214411r rrrrr r T CxC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】本题考查二项式定理,属于容易题.6.(2015全国新课标Ⅱ卷理)4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________.【答案】3【解析】试题分析:由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.考点:二项式定理.7.(2015山东理)观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=.【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题.8、(2015上海文、理)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【考点定位】组合,分类计数原理.10.(2015上海文)在62)12(x x +的二项式中,常数项等于(结果用数值表示).【答案】240【解析】由r r r rrrr x C xx C T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).11、(2015上海理)在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为(结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭ ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C =【考点定位】二项展开式12.(2015四川理)在5(21)x -的展开式中,含2x 的项的系数是(用数字作答).【答案】40-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.13.(2015天津理)在614x x ⎛⎫- ⎪⎝⎭的展开式中,2x 的系数为.【答案】1516考点:二项式定理及二项展开式的通项.14.(2015重庆理)532x x ⎛+ ⎪⎝⎭的展开式中8x 的系数是________(用数字作答).【答案】52【考点定位】二项式定理三、解答题1.(2015江苏)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈= ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩下面用数学归纳法证明:①当6n =时,()666621323f =+++=,结论成立;②假设n k =(6k ≥)时结论成立,那么1n k =+时,1k S +在k S 的基础上新增加的元素在()1,1k +,考点:计数原理、数学归纳法。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2021 年XX省高考数学试卷参考答案与试题解析一、填空题〔本大题共14小题,每题5分,共计70分〕1.〔5分〕〔2021 ?XX〕集合A={1,2,3},B={2,4,5},那么集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},那么A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考察了集合的并集的运算,根据定义解答,注意元素不重复即可,属于根底题2.〔5分〕〔2021 ?XX〕一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:此题考察数据的均值的求法,根本知识的考察.23.〔5分〕〔2021 ?XX〕设复数z满足z=3+4i〔i是虚数单位〕,那么z的模为.考点:复数求模.专题:数系的扩大和复数.分析:直接利用复数的模的求解法那么,化简求解即可.2解答:解:复数z满足z=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:此题考察复数的模的求法,注意复数的模的运算法那么的应用,考察计算能力.4.〔5分〕〔2021 ?XX〕根据如下图的伪代码,可知输出的结果S为7.1考代码. :图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I ,S 的值,当I=10时不满足条件I <8, 退出循出S 的值为7.解答:解:模拟执行程得 S=1,I=1满足条件I <8,S=3,I=4满足条件I <8,S=5,I=7 满足条件I <8,S=7,I=10 不满足条件I <8,退出循出S 的值为7. 故答案为:7. 点评:此题主要考察了循环构造的程序,正确判断退出循环的条件是解属于根底 题. 5.〔5分〕〔2021 ?XX 〕袋中有形状、大小都一样的4只球,其中1只白球、1只红球、2 只黄球,从中一次随机摸出2只这2只球颜色不同的概率为. 考点:古典概型及其概率计算公式. :概率与统计. 分析:根据题4个小球分别编号,用列举法求出根本领件数,计算对解答:解:根据题意,记白球为A ,红球为B ,黄球为C 1、C 2,那么 一次取出2只球,根本领件为AB 、AC 1、AC 2、BC 1、BC 2、C 1C 2共6种, 其中2只球的颜色不同的是AB 、AC1、AC2、BC1、BC2共5种; 所以所求的概率是P=. 故答案为:. 点评:此题考察了用列举法求古典概型的概率的应用6.〔5分〕〔2021 ?X X 〕向量n ∈R n 的3. 考点:平面向量的根本定理及其意义. :平面向量及应用. 2分析:直接利用向量的坐标运算,求解即可.解答:解:向量=〔2,1〕,=〔1,﹣2〕,假设m+n=〔9,﹣8〕可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:此题考察向量的坐标运算,向量相等条件的应用,考察计算能力.7.〔5分〕〔2021 ?XX〕不等式2<4的解集为〔﹣1,2〕.考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.2分析:利用指数函数的单调性转化为x﹣x<2,求解即可.解答:解;∵2<4,2∴x﹣x<2,2即x﹣x﹣2<0,解得:﹣1<x<2故答案为:〔﹣1,2〕点评:此题考察了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.〔5分〕〔2021 ?XX〕tanα=﹣2,tan〔α+β〕=,那么tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan〔α+β〕=,可知tan〔α+β〕==,即=,解得tanβ=3.故答案为:3.点评:此题考察两角和的正切函数,根本知识的考察.9.〔5分〕〔2021 ?XX〕现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,假设将它们重新制作成总体积与高均保持不变,但底面半径一样的新的圆锥和圆柱各一个,那么新的底面半径为.考点:棱柱、棱锥、棱台的体积.3算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的柱和圆面半径r ,求出体积, 由前后体积相等列式求得r . 解答: 解:由题意可知,原来圆锥和圆柱的体积和为:. 设新圆锥和圆面半径为r , 那么新圆锥和圆柱的体积和为:. ∴,解得:. 故答案为:. 点评:此题考察了圆柱与圆锥的体积公根算题. 10.〔5分〕〔2021 ?X X 〕在平面直角坐标系x O y 中,以点〔1,0〕为圆心且与直线y 22 1=0〔m ∈R 〕相切的所有圆中,半径最大的圆的标准方程为1〕+y=2. 考点:圆的标准方程;圆的切线方程. 算题;直线与圆. 分析:求出圆心到直线的距离d 的最大值,即可求出所求圆的标准方程. 解答: 解:圆心到直线的距离d==≤, ∴m=1时,圆的半径最大为, ∴所求圆 2 故答案+y 点评:此题考察所圆的标准方程,考察点到直线的距离公式,考察学力,比拟基 础. * 11.〔5分〕〔210项的和为. 考点:数列的求和;数列递推式. :等差数列与等比数列. 分析: 数列{a n }满足a 1=1,且a n+1﹣a n =n+1〔n ∈N * 〕,利用“累加求和〞可得a n =.再 利用“裂项求和〞即可得出. * 解答:解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1〔n ∈N 〕, ∴当n ≥2时,a n =〔a n ﹣a n ﹣1〕+⋯+〔a 2﹣a 1〕+a 1=+n+⋯+2+1=. 当n=1时,上式也成立, ∴an=.4∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;5∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;5∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:此题考察了数列的“累加求和〞方法、“裂项求和〞方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.22﹣y12.〔5分〕〔2021 ?XX〕在平面直角坐标系xOy中,P为双曲线x=1右支上的一个动点,假设点P到直线x﹣y+1=0的距离大于c恒成立,那么实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.22分析:双曲线x﹣y=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0 的距离.22解答:解:由题意,双曲线x﹣y=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:此题考察双曲线的性质,考察学生的计算能力,比拟根底.13.〔5分〕〔2021 ?XX〕函数f〔x〕=|lnx|,g〔x〕=,那么方程|f〔x〕+g〔x〕|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1,分别作出函数的图象,即可得出结论.解答:解:由|f〔x〕+g〔x〕|=1可得g〔x〕=﹣f〔x〕±1.g〔x〕与h〔x〕=﹣f〔x〕+1的图象如下图,图象有两个交点;。

2015年湖南省高考数学试卷答案与解析

2015年湖南省高考数学试卷答案与解析

2015年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题,共10小题,每小题5分,共50分1.(5分)(2015•湖南)已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:由条件利用两个复数代数形式的乘除法法则,求得z的值.解答:解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.2.(5分)(2015•湖南)设A、B是两个集合,则“A∩B=A”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:直接利用两个集合的交集,判断两个集合的关系,判断充要条件即可.解答:解:A、B是两个集合,则“A∩B=A”可得“A⊆B”,“A⊆B”,可得“A∩B=A”.所以A、B是两个集合,则“A∩B=A”是“A⊆B”的充要条件.故选:C.点评:本题考查充要条件的判断与应用,集合的交集的求法,基本知识的应用.3.(5分)(2015•湖南)执行如图所示的程序框图,如果输入n=3,则输出的S=()A.B.C.D.考点:程序框图.分析:列出循环过程中S与i的数值,满足判断框的条件即可结束循环.解答:解:判断前i=1,n=3,s=0,第1次循环,S=,i=2,第2次循环,S=,i=3,第3次循环,S=,i=4,此时,i>n,满足判断框的条件,结束循环,输出结果:S===故选:B点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力4.(5分)(2015•湖南)若变量x、y满足约束条件,则z=3x﹣y的最小值为()A.﹣7B.﹣1C.1D.2考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.解答:解:由约束条件作出可行域如图,由图可知,最优解为A,联立,解得C(0,﹣1).由解得A(﹣2,1),由,解得B(1,1)∴z=3x﹣y的最小值为3×(﹣2)﹣1=﹣7.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.易错点是图形中的B点.5.(5分)(2015•湖南)设函数f(x)=ln(1+x)﹣ln(1﹣x),则f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:求出好的定义域,判断函数的奇偶性,以及函数的单调性推出结果即可.解答:解:函数f(x)=ln(1+x)﹣ln(1﹣x),函数的定义域为(﹣1,1),函数f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),所以函数是奇函数.排除C,D,正确结果在A,B,只需判断特殊值的大小,即可推出选项,x=0时,f(0)=0;x=时,f()=ln(1+)﹣ln(1﹣)=ln3>1,显然f(0)<f(),函数是增函数,所以B错误,A正确.故选:A.点评:本题考查函数的奇偶性以及函数的单调性的判断与应用,考查计算能力.6.(5分)(2015•湖南)已知(﹣)5的展开式中含x的项的系数为30,则a=()A.B.﹣C.6D.﹣6考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含x的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.7.(5分)(2015•湖南)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附“若X﹣N=(μ,a2),则P(μ﹣σ<X≤μ+σ)=.p(μ﹣2σ<X≤μ+2σ)=.A.2386B.2718C.3413D.4772考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:求出P(0<X≤1)=×=,即可得出结论.解答:解:由题意P(0<X≤1)=×=,∴落入阴影部分点的个数的估计值为10000×=3413,故选:C.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.8.(5分)(2015•湖南)已知A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则||的最大值为()A.6B.7C.8D.9考点:圆的切线方程.专题:计算题;直线与圆.分析:由题意,AC为直径,所以||=|2+|=|4+|.B为(﹣1,0)时,|4+|≤7,即可得出结论.解答:解:由题意,AC为直径,所以||=|2+|=|4+|.所以B为(﹣1,0)时,|4+|≤7.所以||的最大值为7.故选:B.点评:本题考查向量知识的运用,考查学生分析解决问题的能力,比较基础.9.(5分)(2015•湖南)将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用三角函数的最值,求出自变量x1,x2的值,然后判断选项即可.解答:解:因为将函数f(x)=sin2x的周期为π,函数的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=,不妨x1=,x2=,即g(x)在x2=,取得最小值,sin(2×﹣2φ)=﹣1,此时φ=,不合题意,x1=,x2=,即g(x)在x2=,取得最大值,sin(2×﹣2φ)=1,此时φ=,满足题意.故选:D.点评:本题考查三角函数的图象平移,函数的最值以及函数的周期的应用,考查分析问题解决问题的能力,是好题,题目新颖.有一定难度,选择题,可以回代验证的方法快速解答.10.(5分)(2015•湖南)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=)()考点:简单空间图形的三视图.专题:创新题型;空间位置关系与距离;概率与统计.分析:根据三视图可判断其为圆锥,底面半径为1,高为2,求解体积.利用几何体的性质得出此长方体底面边长为n的正方形,高为x,利用轴截面的图形可判断得出n=(1﹣),0<x<2,求解体积式子,利用导数求解即可,最后利用几何概率求解即.解答:解:根据三视图可判断其为圆锥,∵底面半径为1,高为2,∴V=×2=∵加工成一个体积尽可能大的长方体新工件,∴此长方体底面边长为n的正方形,高为x,∴根据轴截面图得出:=,解得;n=(1﹣),0<x<2,∴长方体的体积Ω=2(1﹣)2x,Ω′=x2﹣4x+2,∵,Ω′=x2﹣4x+2=0,x=,x=2,∴可判断(0,)单调递增,(,2)单调递减,Ω最大值=2(1﹣)2×=,∴原工件材料的利用率为=×=,故选:A点评:本题很是新颖,知识点融合的很好,把立体几何,导数,概率都相应的考查了,综合性强,属于难题.二、填空题,共5小题,每小题5分,共25分11.(5分)(2015•湖南)(x﹣1)dx= 0 .考点:定积分.专题:导数的概念及应用.分析:求出被积函数的原函数,代入上限和下限求值.解答:解:(x﹣1)dx=(﹣x)|=0;故答案为:0.点评:本题考查了定积分的计算;关键是求出被积函数的原函数.12.(5分)(2015•湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员成绩由好到差编号为1﹣35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是4 .考点:茎叶图.专题:概率与统计.分析:根据茎叶图中的数据,结合系统抽样方法的特征,即可求出正确的结论.解答:解:根据茎叶图中的数据,得;成绩在区间[139,151]上的运动员人数是20,用系统抽样方法从35人中抽取7人,成绩在区间[139,151]上的运动员应抽取7×=4(人).点评:本题考查了茎叶图的应用问题,也考查了系统抽样方法的应用问题,是基础题目.13.(5分)(2015•湖南)设F是双曲线C:﹣=1的一个焦点.若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将中点M的坐标代入双曲线方程,结合离心率公式,计算即可得到.解答:解:设F(c,0),P(m,n),(m<0),设PF的中点为M(0,b),即有m=﹣c,n=2b,将点(﹣c,2b)代入双曲线方程可得,﹣=1,可得e2==5,解得e=.故答案为:.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,同时考查中点坐标公式的运用,属于中档题.14.(5分)(2015•湖南)设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= 3n﹣1.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:利用已知条件列出方程求出公比,然后求解等比数列的通项公式.解答:解:设等比数列的公比为q,S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,可得4S2=S3+3S1,a1=1,即4(1+q)=1+q+q2+3,q=3.∴a n=3n﹣1.点评:本题考查等差数列以及等比数列的应用,基本知识的考查.15.(5分)(2015•湖南)已知函数f(x)=若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是{a|a<0或a>1} .考点:函数的零点.专题:计算题;创新题型;函数的性质及应用.分析:由g(x)=f(x)﹣b有两个零点可得f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a的范围解答:解:∵g(x)=f(x)﹣b有两个零点,∴f(x)=b有两个零点,即y=f(x)与y=b的图象有两个交点,由x3=x2可得,x=0或x=1①当a>1时,函数f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意②当a=1时,由于函数f(x)在定义域R上单调递增,故不符合题意③当0<a<1时,函数f(x)单调递增,故不符合题意④a=0时,f(x)单调递增,故不符合题意⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得,y=f(x)与y=b有两个交点综上可得,a<0或a>1故答案为:{a|a<0或a>1}本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.点评:三、简答题,共1小题,共75分,16、17、18为选修题,任选两小题作答,如果全做,则按前两题计分选修4-1:几何证明选讲16.(6分)(2015•湖南)如图,在⊙O中,相较于点E的两弦AB,CD的中点分别是M,N,直线MO与直线CD相较于点F,证明:(1)∠MEN+∠NOM=180°(2)FE•FN=FM•FO.考点:相似三角形的判定.专题:选作题;推理和证明.分析:(1)证明O,M,E,N四点共圆,即可证明∠MEN+∠NOM=180°(2)证明△FEM∽△FON,即可证明FE•FN=FM•FO.解答:证明:(1)∵N为CD的中点,∴ON⊥CD,∵M为AB的中点,∴OM⊥AB,在四边形OMEN中,∴∠OME+∠ONE=90°+90°=180°,∴O,M,E,N四点共圆,∴∠MEN+∠NOM=180°(2)在△FEM与△FON中,∠F=∠F,∠FME=∠FNO=90°,∴△FEM∽△FON,∴=∴FE•FN=FM•FO.点评:本题考查垂径定理,考查三角形相似的判定与应用,考查学生分析解决问题的能力,比较基础.选修4-4:坐标系与方程17.(6分)(2015•湖南)已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:选作题;坐标系和参数方程.分析:(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.解答:解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.选修4-5:不等式选讲18.(2015•湖南)设a>0,b>0,且a+b=+.证明:(ⅰ)a+b≥2;(ⅱ)a2+a<2与b2+b<2不可能同时成立.考点:不等式的证明.专题:不等式的解法及应用.分析:(ⅰ)由a>0,b>0,结合条件可得ab=1,再由基本不等式,即可得证;(ⅱ)运用反证法证明.假设a2+a<2与b2+b<2可能同时成立.结合条件a>0,b >0,以及二次不等式的解法,可得0<a<1,且0<b<1,这与ab=1矛盾,即可得证.解答:证明:(ⅰ)由a>0,b>0,则a+b=+=,由于a+b>0,则ab=1,即有a+b≥2=2,当且仅当a=b取得等号.则a+b≥2;(ⅱ)假设a2+a<2与b2+b<2可能同时成立.由a2+a<2及a>0,可得0<a<1,由b2+b<2及b>0,可得0<b<1,这与ab=1矛盾.a2+a<2与b2+b<2不可能同时成立.点评:本题考查不等式的证明,主要考查基本不等式的运用和反证法证明不等式的方法,属于中档题.19.(2015•湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.考点:正弦定理.专题:解三角形.分析:(Ⅰ)由题意和正弦定理可得sinB=cosA,由角的范围和诱导公式可得;(Ⅱ)由题意可得A∈(0,),可得0<sinA<,化简可得sinA+sinC=﹣2(sinA ﹣)2+,由二次函数区间的最值可得.解答:解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]点评:本题考查正弦定理和三角函数公式的应用,涉及二次函数区间的最值,属基础题.20.(2015•湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},利用A1,A2相互独立,,互斥,B1,B2互斥,然后求出所求概率即可.(2)顾客抽奖1次可视为3次独立重复试验,判断X~B.求出概率,得到X的分布列,然后求解期望.解答:解:(1)记事件A1={从甲箱中摸出一个球是红球},事件A2={从乙箱中摸出一个球是红球},事件B1={顾客抽奖1次获一等奖},事件A2={顾客抽奖1次获二等奖},事件C={顾客抽奖1次能获奖},由题意A1,A2相互独立,,互斥,B1,B2互斥,且B1=A1A2,B2=+,C=B1+B2,因为P(A1)=,P(A2)=,所以,P(B1)=P(A1)P(A2)==,P(B2)=P()+P()=+==,故所求概率为:P(C)=P(B1+B2)=P(B1)+P(B2)=.(2)顾客抽奖1次可视为3次独立重复试验,由(1)可知,顾客抽奖1次获一等奖的概率为:所以.X~B.于是,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故X的分布列为:X 0 1 2 3PE(X)=3×=.点评:期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(2015•湖南)如图,已知四棱台ABCD﹣A1B1C1D1的上、下底面分别是边长为3和6的正方形,AA1=6,且AA1⊥底面ABCD,点P、Q分别在棱DD1、BC上.(1)若P是DD1的中点,证明:AB1⊥PQ;(2)若PQ∥平面ABB1A1,二面角P﹣QD﹣A的余弦值为,求四面体ADPQ的体积.考点:二面角的平面角及求法;直线与平面垂直的性质.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)首先以A为原点,AB,AD,AA1所在直线分别为x,y,z轴,建立空间直角坐标系,求出一些点的坐标,Q在棱BC上,从而可设Q(6,y1,0),只需求即可;(2)设P(0,y2,z2),根据P在棱DD1上,从而由即可得到z2=12﹣2y2,从而表示点P坐标为P(0,y2,12﹣2y2).由PQ∥平面ABB1A1便知道与平面ABB1A1的法向量垂直,从而得出y1=y2,从而Q点坐标变成Q(6,y2,0),设平面PQD的法向量为,根据即可表示,平面AQD 的一个法向量为,从而由即可求出y2,从而得出P点坐标,从而求出三棱锥P﹣AQD的高,而四面体ADPQ的体积等于三棱锥P﹣AQD的体积,从而求出四面体的体积.解答:解:根据已知条件知AB,AD,AA1三直线两两垂直,所以分别以这三直线为x,y,z 轴,建立如图所示空间直角坐标系,则:A(0,0,0),B(6,0,0),D(0,6,0),A1(0,0,6),B1(3,0,6),D1(0,3,6);Q在棱BC上,设Q(6,y1,0),0≤y1≤6;∴(1)证明:若P是DD1的中点,则P;∴,;∴;∴;∴AB1⊥PQ;(2)设P(0,y2,z2),y2,z2∈[0,6],P在棱DD1上;∴,0≤λ≤1;∴(0,y2﹣6,z2)=λ(0,﹣3,6);∴;∴z2=12﹣2y2;∴P(0,y2,12﹣2y2);∴;平面ABB1A1的一个法向量为;∵PQ∥平面ABB1A1;∴=6(y1﹣y2)=0;∴y1=y2;∴Q(6,y2,0);设平面PQD的法向量为,则:;∴,取z=1,则;又平面AQD的一个法向量为;又二面角P﹣QD﹣A的余弦值为;∴;解得y2=4,或y2=8(舍去);∴P(0,4,4);∴三棱锥P﹣ADQ的高为4,且;∴V四面体ADPQ=V三棱锥P﹣ADQ=.点评:考查建立空间直角坐标系,利用空间向量解决异面直线垂直及线面角问题的方法,共线向量基本定理,直线和平面平行时,直线和平面法向量的关系,平面法向量的概念,以及两平面法向量的夹角和平面二面角大小的关系,三棱锥的体积公式.22.(13分)(2015•湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2.(Ⅰ)求C2的方程;(Ⅱ)过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且与同向.(ⅰ)若|AC|=|BD|,求直线l的斜率;(ⅱ)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(Ⅰ)根据两个曲线的焦点相同,得到a2﹣b2=1,再根据C1与C2的公共弦长为2,得到=1,解得即可求出;(Ⅱ)设出点的坐标,(ⅰ)根据向量的关系,得到(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,设直线l的方程,分别与C1,C2构成方程组,利用韦达定理,分别代入得到关于k的方程,解得即可;(ⅱ)根据导数的几何意义得到C1在点A处的切线方程,求出点M的坐标,利用向量的乘积∠AFM是锐角,问题得以证明.解答:解:(Ⅰ)抛物线C1:x2=4y的焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,∴a2﹣b2=1,①,又C1与C2的公共弦长为2,C1与C2的都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为(±,),联立①②得a2=9,b2=8,故C2的方程为+=1.(Ⅱ)设A(x1,y1),B(x2,y2),C(x3,y3),A(x4,y4),(ⅰ)因为与同向,且|AC|=|BD|,所以=,从而x3﹣x1=x4﹣x2,即x1﹣x2=x3﹣x4,于是(x1+x2)2﹣4x1x2=(x3+x4)2﹣4x3x4,③设直线的斜率为k,则l的方程为y=kx+1,由,得x2﹣4kx﹣4=0,而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=﹣4,④由,得(9+8k2)x2+16kx﹣64=0,而x3,x4是这个方程的两根,所以x3+x4=,x3x4=﹣,⑤将④⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±.(ⅱ)由x2=4y得y′=x,所以C1在点A处的切线方程为y﹣y1=x1(x﹣x1),即y=x1x﹣x12,令y=0,得x=x1,M(x1,0),1而=(x1,y1﹣1),于是•=x12﹣y1+1=x12+1>0,因此∠AFM是锐角,从而∠MFD=180°﹣∠AFM是钝角,故直线l绕点F旋转时,△MFD总是钝角三角形.点评:本题考查了圆锥曲线的和直线的位置与关系,关键是联立方程,构造方程,利用韦达定理,以及向量的关系,得到关于k的方程,计算量大,属于难题.23.(13分)(2015•湖南)已知a>0,函数f(x)=e ax sinx(x∈[0,+∞]).记x n为f(x)的从小到大的第n(n∈N*)个极值点.证明:(Ⅰ)数列{f(x n)}是等比数列;(Ⅱ)若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.考点:利用导数研究函数的极值;导数在最大值、最小值问题中的应用.专题:创新题型;导数的综合应用;等差数列与等比数列;不等式的解法及应用.分析:(Ⅰ)求出导数,运用两角和的正弦公式化简,求出导数为0的根,讨论根附近的导数的符号相反,即可得到极值点,求得极值,运用等比数列的定义即可得证;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),求出导数,求得最小值,由恒成立思想即可得证.解答:证明:(Ⅰ)f′(x)=e ax(asinx+cosx)=•e ax sin(x+φ),tanφ=,0<φ<,令f′(x)=0,由x≥0,x+φ=mπ,即x=mπ﹣φ,m∈N*,对k∈N,若(2k+1)π<x+φ<(2k+2)π,即(2k+1)π﹣φ<x<(2k+2)π﹣φ,则f′(x)<0,因此在((m﹣1)π,mπ﹣φ)和(mπ﹣φ,mπ)上f′(x)符号总相反.于是当x=nπ﹣φ,n∈N*,f(x)取得极值,所以x n=nπ﹣φ,n∈N*,此时f(x n)=e a(nπ﹣φ)sin(nπ﹣φ)=(﹣1)n+1e a(nπ﹣φ)sinφ,易知f(x n)≠0,而==﹣e aπ是常数,故数列{f(x n)}是首项为f(x1)=e a(π﹣φ)sinφ,公比为﹣e aπ的等比数列;(Ⅱ)由sinφ=,可得对一切n∈N*,x n<|f(x n)|恒成立.即为nπ﹣φ<e a(nπ﹣φ)恒成立⇔<,①设g(t)=(t>0),g′(t)=,当0<t<1时,g′(t)<0,g(t)递减,当t>1时,g′(t)>0,g(t)递增.t=1时,g(t)取得最小值,且为e.因此要使①恒成立,只需<g(1)=e,只需a>,当a=,tanφ==,且0<φ<,可得<φ<,于是π﹣φ<<,且当n≥2时,nπ﹣φ≥2π﹣φ>>,因此对n∈N*,ax n=≠1,即有g(ax n)>g(1)=e=,故①亦恒成立.综上可得,若a≥,则对一切n∈N*,x n<|f(x n)|恒成立.点评:本题考查导数的运用:求极值和单调区间,主要考查三角函数的导数和求值,同时考查等比数列的定义和通项公式的运用,考查不等式恒成立问题的证明,属于难题.。

2015年陕西省高考数学试题及答案(理科)及解析

2015年陕西省高考数学试题及答案(理科)及解析

2015年陕西省高考数学试卷(理科)一、选择题,共12小题,每小题5分,共60分1.(5分)(2015•陕西)设集合M={x|x2=x},N={x|lgx≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1)D.(﹣∞,1]2.(5分)(2015•陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93 B.123 C.137 D.1673.(5分)(2015•陕西)如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin (x+φ)+k.据此函数可知,这段时间水深(单位:m)的最大值为()A.5B.6C.8D.104.(5分)(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=() A.7B.6C.5D.45.(5分)(2015•陕西)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4 D.3π+46.(5分)(2015•陕西)“sinα=cosα"是“cos2α=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)(2015•陕西)对任意向量、,下列关系式中不恒成立的是()A.||≤||||B.||≤|||﹣|||C.()2=||2D.()•()=2﹣28.(5分)(2015•陕西)根据如图框图,当输入x为2006时,输出的y=()A.2B.4C.10 D.289.(5分)(2015•陕西)设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q10.(5分)(2015•陕西)某企业生产甲、乙两种产品均需用A、B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产一吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为()甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8A.12万元B.16万元C.17万元D.18万元11.(5分)(2015•陕西)设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣12.(5分)(2015•陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上二、填空题,共4小题,每小题5分,共20分13.(5分)(2015•陕西)中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为.14.(5分)(2015•陕西)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=.15.(5分)(2015•陕西)设曲线y=e x在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为.16.(5分)(2015•陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线所示),则原始的最大流量与当前最大流量的比值为.三、解答题,共5小题,共70分17.(12分)(2015•陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量=(a,b)与=(cosA,sinB)平行.(Ⅰ)求A;(Ⅱ)若a=,b=2,求△ABC的面积.18.(12分)(2015•陕西)如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点,将ABE沿BE折起到A1BE的位置,如图2.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.19.(12分)(2015•陕西)某校新、老校区之间开车单程所需时间为T,T只与道路通畅状况有关,对其容量为100的样本进行统计,结果如下:T(分钟) 25 30 35 40频数(次)20 30 40 10(Ⅰ)求T的分布列与数学期望ET;(Ⅱ)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.20.(12分)(2015•陕西)已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.21.(12分)(2015•陕西)设f n(x)是等比数列1,x,x2,…,x n的各项和,其中x>0,n∈N,n≥2.(Ⅰ)证明:函数F n(x)=f n(x)﹣2在(,1)内有且仅有一个零点(记为x n),且x n=+x;(Ⅱ)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n(x),比较f n(x)和g n(x)的大小,并加以证明.四、选修题,请在22、23、24中任选一题作答,如果多做则按第一题计分.选修4-1:几何证明选讲22.(10分)(2015•陕西)如图,AB切⊙O于点B,直线AO交⊙O于D,E两点,BC⊥DE,垂足为C.(Ⅰ)证明:∠CBD=∠DBA;(Ⅱ)若AD=3DC,BC=,求⊙O的直径.五、选修4-4:坐标系与参数方程23.(2015•陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.六、选修4-5:不等式选讲24.(2015•陕西)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}(Ⅰ)求实数a,b的值;(Ⅱ)求+的最大值.2015年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题,共12小题,每小题5分,共60分1.(5分)考点: 并集及其运算.专题:集合.分析:求解一元二次方程化简M,求解对数不等式化简N,然后利用并集运算得答案.解答:解:由M={x|x2=x}={0,1},N={x|lgx≤0}=(0,1],得M∪N={0,1}∪(0,1]=[0,1].故选:A.点评:本题考查了并集及其运算,考查了对数不等式的解法,是基础题.2.(5分)考点:收集数据的方法.专题:计算题;概率与统计.分析:利用百分比,可得该校女教师的人数.解答:解:初中部女教师的人数为110×70%=77;高中部女教师的人数为40×150%=60,∴该校女教师的人数为77+60=137,故选:C.点评:本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.3.(5分)考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题: 三角函数的图像与性质.分析:由题意和最小值易得k的值,进而可得最大值.解答:解:由题意可得当sin(x+φ)取最小值﹣1时,函数取最小值y min=﹣3+k=2,解得k=5,∴y=3sin(x+φ)+5,∴当当sin(x+φ)取最大值1时,函数取最大值y max=3+5=8,故选:C.点评:本题考查三角函数的图象和性质,涉及三角函数的最值,属基础题.4.(5分)考点:二项式定理的应用.专题: 二项式定理.分析:由题意可得==15,解关于n的方程可得.解答:解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.点评:本题考查二项式定理,属基础题.5.(5分)考点:由三视图求面积、体积.专题: 计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆柱体的一部分,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是圆柱体的一半,∴该几何体的表面积为S几何体=π•12+π×1×2+2×2=3π+4.故选:D.点评:本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.6.(5分)考点: 必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由cos2α=cos2α﹣sin2α,即可判断出.解答:解:由cos2α=cos2α﹣sin2α,∴“sinα=cosα"是“cos2α=0"的充分不必要条件.故选:A.点评:本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.7.(5分)考点: 平面向量数量积的运算.专题: 平面向量及应用.分析:由向量数量积的运算和性质逐个选项验证可得.解答:解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B点评:本题考查平面向量的数量积,属基础题.8.(5分)考点:程序框图.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的x的值,当x=﹣2时不满足条件x≥0,计算并输出y的值为10.解答:解:模拟执行程序框图,可得x=2006,x=2004满足条件x≥0,x=2002满足条件x≥0,x=2000…满足条件x≥0,x=0满足条件x≥0,x=﹣2不满足条件x≥0,y=10输出y的值为10.故选:C.点评:本题主要考查了循环结构的程序框图,属于基础题.9.(5分)考点: 不等关系与不等式.专题: 不等式的解法及应用.分析:由题意可得p=(lna+lnb),q=ln()≥ln()=p,r=(lna+lnb),可得大小关系.解答:解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B点评:本题考查不等式与不等关系,涉及基本不等式和对数的运算,属基础题.10.(5分)考点:简单线性规划的应用.专题:不等式的解法及应用.分析:设每天生产甲乙两种产品分别为x,y顿,利润为z元,然后根据题目条件建立约束条件,得到目标函数,画出约束条件所表示的区域,然后利用平移法求出z的最大值.解答:解:设每天生产甲乙两种产品分别为x,y顿,利润为z元,则,目标函数为z=3x+4y.作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.由z=3x+4y得y=﹣x+,平移直线y=﹣x+由图象可知当直线y=﹣x+经过点B时,直线y=﹣x+的截距最大,此时z最大,解方程组,解得,即B的坐标为x=2,y=3,∴z max=3x+4y=6+12=18.即每天生产甲乙两种产品分别为2,3顿,能够产生最大的利润,最大的利润是18万元, 故选:D.点评:本题主要考查线性规划的应用,建立约束条件和目标函数,利用数形结合是解决本题的关键.11.(5分)考点:几何概型.专题:概率与统计.分析:由题意易得所求概率为弓形的面积与圆的面积之比,分别求面积可得.解答:解:∵复数z=(x﹣1)+yi(x,y∈R)且|z|≤1,∴|z|=≤1,即(x﹣1)2+y2≤1,∴点(x,y)在(1,0)为圆心1为半径的圆及其内部,而y≥x表示直线y=x左上方的部分,(图中阴影弓形)∴所求概率为弓形的面积与圆的面积之比,∴所求概率P==故选:D.点评:本题考查几何概型,涉及复数以及圆的知识,属基础题.12.(5分)考点: 二次函数的性质.专题:创新题型;函数的性质及应用;导数的综合应用.分析:可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.解答:解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈∅,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.点评:本题考查二次函数的极值、零点等概念,主要考查解方程的能力和判断分析的能力,属于中档题.二、填空题,共4小题,每小题5分,共20分13.(5分)考点:等差数列.专题:等差数列与等比数列.分析:由题意可得首项的方程,解方程可得.解答:解:设该等差数列的首项为a,由题意和等差数列的性质可得2015+a=1010×2解得a=5故答案为:5点评:本题考查等差数列的基本性质,涉及中位数,属基础题.14.(5分)考点: 抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出x2﹣y2=1的左焦点,得到抛物线y2=2px的准线,依据p的意义求出它的值.解答:解:双曲线x2﹣y2=1的左焦点为(﹣,0),故抛物线y2=2px的准线为x=﹣, ∴=,∴p=2,故答案为:2.点评:本题考查抛物线和双曲线的简单性质,以及抛物线方程y2=2px中p的意义.15.(5分)考点: 利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:利用y=e x在某点处的切屑斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标.解答:解:∵f’(x)=e x,∴f’(0)=e0=1.∵y=e x在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y’=﹣,设点P(x0,y0)∴∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)点评:本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.16.(5分)考点: 直线与圆锥曲线的关系.专题:创新题型;圆锥曲线的定义、性质与方程.分析:建立直角坐标系,求出抛物线方程,然后利用定积分求出泥沙沉积的横截面面积,求出梯形面积,即可推出结果.解答:解:如图:建立平面直角坐标系,设抛物线方程为:y=ax2,因为抛物线经过(5,2),可得a=,所以抛物线方程:y=,横截面为等腰梯形的水渠,泥沙沉积的横截面的面积为:2×=2()=,等腰梯形的面积为:=16,当前最大流量的横截面的面积16﹣,原始的最大流量与当前最大流量的比值为:=1。

2015年天津市高考数学试卷(文科)答案与解析

2015年天津市高考数学试卷(文科)答案与解析

2015年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:每题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2015•天津)已知全集U={1,2,3,4,5,6},集合A={2,3,5},集合B={1,3,4,6},则集合A∩∁U B=()A.{3} B.{2,5} C.{1,4,6} D.{2,3,5}考点:交、并、补集的混合运算.专题: 集合.分析:求出集合B的补集,然后求解交集即可.解答:解:全集U={1,2,3,4,5,6},集合B={1,3,4,6},∁U B={2,5},又集合A={2,3,5},则集合A∩∁U B={2,5}.故选:B.点评:本题考查集合的交、并、补的混合运算,基本知识的考查.2.(5分)(2015•天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()A.7B.8C.9D.14考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=3x+y得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z经过点A时,直线y=﹣3x+z的截距最大,此时z最大.由,解得,即A(2,3),代入目标函数z=3x+y得z=3×2+3=9.即目标函数z=3x+y的最大值为9.故选:C.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.(5分)(2015•天津)阅读如图所示的程序框图,运行相应的程序,则输出i的值为()A.2B.3C.4D.5考点:循环结构.专题: 图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的i,S的值,当S=0时满足条件S≤1,退出循环,输出i的值为4.解答:解:模拟执行程序框图,可得S=10,i=0i=1,S=9不满足条件S≤1,i=2,S=7不满足条件S≤1,i=3,S=4不满足条件S≤1,i=4,S=0满足条件S≤1,退出循环,输出i的值为4.故选:C.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的i,S的值是解题的关键,属于基础题.4.(5分)(2015•天津)设x∈R,则“1<x<2”是“|x﹣2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:求解:|x﹣2|<1,得出“1<x<2”,根据充分必要条件的定义判断即可.解答:解:∵|x﹣2|<1,∴1<x<3,∵“1<x<2"∴根据充分必要条件的定义可得出:“1<x<2”是“|x﹣2|<1”的充分不必要条件.故选:A点评:本题考查了简单的不等式的求解,充分必要条件的定义,属于容易题.5.(5分)(2015•天津)已知双曲线﹣=1(a>0,b>0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x﹣2)2+y2=3相切,则双曲线的方程为()A.﹣=1 B.﹣=1C.﹣y2=1D.x2﹣=1考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由题意可得双曲线的渐近线方程,根据圆心到切线的距离等于半径得,求出a,b的关系,结合焦点为F(2,0),求出a,b的值,即可得到双曲线的方程.解答:解:双曲线的渐近线方程为bx±ay=0,∵双曲线的渐近线与圆(x﹣2)2+y2=3相切,∴,∴b=a,∵焦点为F(2,0),∴a2+b2=4,∴a=1,b=,∴双曲线的方程为x2﹣=1.故选:D.点评:本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出a,b的值,是解题的关键.6.(5分)(2015•天津)如图,在圆O中,M、N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为()A.B.3C.D.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:由相交弦定理求出AM,再利用相交弦定理求NE即可.解答:解:由相交弦定理可得CM•MD=AM•MB,∴2×4=AM•2AM,∴AM=2,∴MN=NB=2,又CN•NE=AN•NB,∴3×NE=4×2,∴NE=.故选:A.点评:本题考查相交弦定理,考查学生的计算能力,比较基础.7.(5分)(2015•天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0。

2015湖南卷高考数学试题及答案或解析下载_2015高考真题抢先版

2015湖南卷高考数学试题及答案或解析下载_2015高考真题抢先版

开始输入2015年高考将于6月6、7日举行,我们将在第一时间收录真题,现在就请先用这套权威预测解解渴吧市2015届高三四月调研考试数学(文史类)本试卷包括选择题、填空题和解答题三部分,共5页.时量120分钟,满分150分.一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知i 为虚数单位,复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2. 已知集合 A. B.C. D.3. 命题“若,则”的否命题是A .若,则B .若,则C .若,则D .若,则4. 已知焦点在轴上的椭圆的离心率为,它的长轴长等于圆的半径,则椭圆的标准方程是A . B.C. D.5. 当时,执行如右图所示的程序框图, 输出的值为A. 30B.14C. 8D.6 6. 设,则的大小关系是 A .B .C .D .7. 某几何体的三视图如图所示,则该几何体的体积是 A .B .C . D.8. 不等式组围成的区域为,能够把区域的周长和面积同时分为相等两部分的曲线为 A .B .a2aa正视图 左视图俯视图C.D.9. 已知函数,若恒成立,则的取值围是A. B. C. D.10. 如图,在△中,分别是的中点,若(),且点落在四边形(含边界),则的取值围是A.B.C. D.二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上。

11. 在某市2015年“创建省文明卫生城市”知识竞赛中,考评组从中抽取份试卷进行分析,其分数的频率分布直方图如右图所示,则分数在区间上的人数大约有人.12. 如图所示,矩形长为3,宽为2,在矩形随机撒200颗黄豆,数得落在椭圆的黄豆数为160颗,依据此实验数据可以估计出椭圆的面积约为.(第10题图)分数(分)组距40 50 60 70 80频率O0.0313. 在极坐标系中,点A(2,)与曲线上的点的最短距离为.14. 将函数的图象向右平移个单位长度后得到函数的图象,若的图象的对称轴重合,则的值为.15. 点在直线上,记,若使取得最小值的点有无数个,则实数的取值是.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)等差数列满足:,,其中为数列前n项和.(Ⅰ)求数列通项公式;(Ⅱ)若,且,,成等比数列,求的值.17.(本小题满分12分)某城市持续性的雾霾天气严重威胁着人们的身体健康,汽车的尾气排放是造成雾霾天气的重要因素之一,为此该城市实施了机动车尾号限行政策。

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

2015年高考理科数学全国卷(新课标I卷)含答案(解析版)

4 1 AB AC 3 3
4 1 AB AC 3 3
1 1 1 4 试题分析:由题知 AD AC CD AC BC AC ( AC AB) = AB AC ,故选 A. 3 3 3 3
考点:平面向量运算
(8) 函数 f ( x) = cos( x ) 的部分图像如图所示,则 f ( x) 的单调递减区间为 (A)( ),k (b)( ),k
考点:函数的奇偶性
(14)一个圆经过椭圆
x2 y 2 1 的三个顶点,且圆心在 x 轴上,则该圆的标准方程为 16 4

3 25 【答案】 ( x )2 y 2 2 4
【解析】
3 试题分析:设圆心为( a ,0) ,则半径为 4 | a | ,则 (4 | a |) 2 | a | 2 2 2 ,解得 a ,故圆的 2 3 25 方程为 ( x )2 y 2 .学科网 2 4
【解析】 试题分析: (Ⅰ)先用数列第 n 项与前 n 项和的关系求出数列{ an }的递推公式,可以判断数列{ an }是等差
数列,利用等差数列的通项公式即可写出数列{ an }的通项公式; (Ⅱ)根据(Ⅰ)数列{ bn }的通项公式, 再用拆项消去法求其前 n 项和. 学科网
试题解析: (Ⅰ)当 n 1 时, a12 2a1 4S1 3 4a1 +3 ,因为 an 0 ,所以 a1 =3,
考点:数列前 n 项和与第 n 项的关系;等差数列定义与通项公式;拆项消去法
(18)如图, ,四边形 ABCD 为菱形,∠ABC=120°,E,F 是平面 ABCD 同一侧的两点,BE⊥平 面 ABCD,DF⊥平面 ABCD,BE=2DF,AE⊥EC。 (1)证明:平面 AEC⊥平面 AFC (2)求直线 AE 与直线 CF 所成角的余弦值

2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)

2015年普通高等学校招生全国统一考试数学试题及答案(全word可编辑版,全解全析)

2015年普通高等学校招生全国统一考试课标全国Ⅰ理科数学注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015课标全国Ⅰ,理1)设复数z满足1+z=i,则|z|=()A.1B.2C.3D.2答案:A解析:∵1+z=i,∴z=i−1=(i−1)(−i+1)=i,∴|z|=1.2.(2015课标全国Ⅰ,理2)sin 20°cos 10°-cos 160°sin 10°=()A.-32B.32C.-12D.12答案:D解析:sin20°cos10°-cos160°sin10°=sin20°cos10°+cos20°sin10°=sin(10°+20°)=sin30°=12.3.(2015课标全国Ⅰ,理3)设命题p:∃n∈N,n2>2n,则p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n答案:C解析:∵p:∃n∈N,n2>2n,∴p:∀n∈N,n2≤2n.故选C.4.(2015课标全国Ⅰ,理4)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案:A解析:由条件知该同学通过测试,即3次投篮投中2次或投中3次.故P=C320.62(1-0.6)+C330.63=0.648.5.(2015课标全国Ⅰ,理5)已知M(x0,y0)是双曲线C:x 22-y2=1上的一点,F1,F2是C的两个焦点.若MF1·MF2<0,则y0的取值范围是()A. −3,3B. −3,3C. −22,22D. −23,23答案:A解析:由条件知F1(-3,0),F2(3,0),∴MF1=(-3-x0,-y0),MF2=(3-x0,-y0),∴MF1·MF2=x02+y02-3<0.①又∵x022−y02=1,∴x02=2y02+2.代入①得y02<13,∴-3<y0<3. 6.(2015课标全国Ⅰ,理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A .14斛 B .22斛 C .36斛 D .66斛 答案:B解析:设底面圆半径为R ,米堆高为h.∵米堆底部弧长为8尺,∴14·2πR=8,∴R=16π.∴体积V=1×1·πR 2h=1×π× 16 2×5.∵π≈3,∴V ≈3209(尺3). ∴堆放的米约为3209×1.62≈22(斛).7.(2015课标全国Ⅰ,理7)设D 为△ABC 所在平面内一点,BC =3CD ,则( )A .AD =-1AB +4AC B .AD =1AB −4AC C .AD =43AB +13AC D .AD=43AB −13AC 答案:A解析:如图:∵AD =AB +BD,BC =3CD , ∴AD =AB +43BC =AB +43(AC −AB )=-13AB +43AC. 8.(2015课标全国Ⅰ,理8)函数f (x )=cos(ωx+φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A . kπ−1,kπ+3 ,k ∈Z B . 2kπ−1,2kπ+3 ,k ∈Z C . k −14,k +34 ,k ∈Z D . 2k −1,2k +3 ,k ∈Z 答案:D解析:不妨设ω>0,由函数图像可知,其周期为T=2× 54−14=2,所以2πω=2,解得ω=π. 所以f (x )=cos(πx+φ).由图像可知,当x=12 14+54=34时,f (x )取得最小值,即f 3 =cos3π+φ =-1,解得3π4+φ=2k π+π(k ∈Z ),解得φ=2k π+π4(k ∈Z ).令k=0,得φ=π,所以f (x )=cos πx +π.令2k π≤πx+π≤2k π+π(k ∈Z ),解得2k-14≤x ≤2k+34(k ∈Z ).所以函数f (x )=cos πx +π4的单调递减区间为 2k−14,2k +34(k ∈Z ).结合选项知应选D .9.(2015课标全国Ⅰ,理9)执行下面的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .8答案:C解析:∵S=1,n=0,m=1,t=0.01,∴S=S-m=12,m=m 2=14,n=n+1=1,S>0.01,∴S=14,m=18,n=2,S>0.01,∴S=1,m=1,n=3,S>0.01,∴S=1,m=1,n=4,S>0.01,∴S=132,m=164,n=5,S>0.01,∴S=1,m=1,n=6,S>0.01,∴S=1,m=1,n=7,S<0.01,∴n=7.10.(2015课标全国Ⅰ,理10)(x 2+x+y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案:C解析:由于(x 2+x+y )5=[(x 2+x )+y ]5,其展开式的通项为T r+1=C 5r (x 2+x )5-r y r (r=0,1,2,…,5),因此只有当r=2,即T 3=C 52(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i+1=C 3i (x 2)3-i ·x i =C 3i x 6-i(i=0,1,2,3),令6-i=5,得i=1,则(x 2+x )3的展开式中x 5项的系数是C 31=3,故(x 2+x+y )5的展开式中,x 5y 2的系数是C 52·3=10×3=30. 11.(2015课标全国Ⅰ,理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=( ) A .1 B .2 C .4 D .8 答案:B解析:由条件知,该几何体是由一个圆柱被过圆柱底面圆直径的平面所截剩下的半个圆柱及一个半球拼接而成,其表面积是一个矩形面积、两个半圆面积、圆柱侧面积的一半、球表面积的一半相加所得,所以表面积为S 表=2r×2r+2×12πr 2+πr×2r+12×4πr 2=5πr 2+4r 2=16+20π,解得r=2.12.(2015课标全国Ⅰ,理12)设函数f (x )=e x (2x-1)-ax+a ,其中a<1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A. −32e ,1B. −32e,34C.32e ,34D.32e,1答案:D解析:设g(x)=e x(2x-1),h(x)=a(x-1),则不等式f(x)<0即为g(x)<h(x).因为g'(x)=e x(2x-1)+2e x=e x(2x+1),当x<-12时,g'(x)<0,函数g(x)单调递减;当x>-12时,g'(x)>0,函数g(x)单调递增.所以g(x)的最小值为g −1.而函数h(x)=a(x-1)表示经过点P(1,0),斜率为a的直线.如图,分别作出函数g(x)=e x(2x-1)与h(x)=a(x-1)的大致图像.显然,当a≤0时,满足不等式g(x)<h(x)的整数有无数多个.函数g(x)=e x(2x-1)的图像与y轴的交点为A(0,-1),与x轴的交点为D1,0.取点C −1,−3e.由图可知,不等式g(x)<h(x)只有一个整数解时,须满足k PC≤a<k PA.而k PC=0−−3e=3,k PA=0−(−1)=1,所以32e ≤a<1.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2015课标全国Ⅰ,理13)若函数f(x)=x ln(x+ a+x2)为偶函数,则a=.答案:1解析:∵f(x)是偶函数,∴f(-1)=f(1).又f(-1)=-ln(-1+a+1)=ln a+1+1a,f(1)=ln(1+a+1),因此ln(a+1+1)-ln a=ln(a+1+1),于是ln a=0,∴a=1.14.(2015课标全国Ⅰ,理14)一个圆经过椭圆x 2+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.答案: x−32+y2=25解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以(a−0)2+(0−2)2=4-a,解得a=32,故圆心为32,0,此时半径r=4-32=52,因此该圆的标准方程是 x−322+y2=254.15.(2015课标全国Ⅰ,理15)若x,y满足约束条件x−1≥0,x−y≤0,x+y−4≤0,则yx的最大值为.答案:3解析:画出约束条件对应的平面区域(如图),点A为(1,3),要使y最大,则y−0最大,即过点(x,y),(0,0)两点的直线斜率最大,由图形知当该直线过点A时,yx max =3−01−0=3.16.(2015课标全国Ⅰ,理16)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是 . 答案:( 6− 2, 6+ 2) 解析:如图.作CE ∥AD 交AB 于E ,则∠CEB=75°,∠ECB=30°. 在△CBE 中,由正弦定理得,EB= − 延长CD 交BA 的延长线于F ,则∠F=30°. 在△BCF 中,由正弦定理得,BF= 6+ 2, 所以AB 的取值范围为( 6− 2, 6+ 2).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)(2015课标全国Ⅰ,理17)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3. (1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由a n 2+2a n =4S n +3,可知a n +12+2a n+1=4S n+1+3.可得a n +12−a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n +12−a n 2=(a n+1+a n )(a n+1-a n ). 由于a n >0,可得a n+1-a n =2.又a 12+2a 1=4a 1+3,解得a 1=-1(舍去),a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1. 6分(2)由a n =2n+1可知b n =1n n +1=1=11−1.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12 13−15 + 15−17 +⋯+12n +1−12n +3=n . 12分18.(本小题满分12分)(2015课标全国Ⅰ,理18)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE=2DF ,AE ⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值. 解:(1)连结BD ,设BD ∩AC=G ,连结EG ,FG ,EF.在菱形ABCD 中,不妨设GB=1. 由∠ABC=120°,可得AG=GC=由BE ⊥平面ABCD ,AB=BC ,可知AE=EC. 又AE ⊥EC ,所以EG= 3,且EG ⊥AC. 在Rt △EBG 中,可得BE= 2,故DF= 2. 在Rt △FDG 中,可得FG= 62.在直角梯形BDFE 中,由BD=2,BE= 2,DF= 22,可得EF=3 22. 从而EG 2+FG 2=EF 2,所以EG ⊥FG. 又AC ∩FG=G ,可得EG ⊥平面AFC.因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC. 6分(2)如图,以G 为坐标原点,分别以GB ,GC 的方向为x 轴、y 轴正方向,|GB |为单位长,建立空间直角坐标系G-xyz.由(1)可得A (0,- E (1,0, F −1,0,2,C (0, 3,0),所以AE =(1, 3, 2),CF= −1,− 3, 2 . 10分故cos <AE ,CF >=AE ·CF|AE ||CF|=- 33. 所以直线AE 与直线CF 所成角的余弦值为 3.12分19.(本小题满分12分)(2015课标全国Ⅰ,理19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i = x i ,w =18∑i =18w i. (1)根据散点图判断,y=a+bx 与y=c+d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z=0.2y-x.根据(2)的结果回答下列问题: ①年宣传费x=49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v=α+βu 的斜率和截距的最小二乘估计分别为β^=∑i =1n(u i −u )(v i −v )∑i =1n(u i −u )2,α^=v −β^u .解:(1)由散点图可以判断,y=c+d x 适宜作为年销售量y 关于年宣传费x 的回归方程类型.2分(2)令w= x ,先建立y 关于w 的线性回归方程.由于d ^=∑i =18(w i −w )(y i −y )∑i =18(w i −w )2=108.81.6=68, c ^=y −d ^w =563-68×6.8=100.6,所以y 关于w 的线性回归方程为y ^=100.6+68w ,因此y 关于x 的回归方程为y ^=100.6+68 x . 6分(3)①由(2)知,当x=49时,年销售量y 的预报值y ^=100.6+68 49=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32. 9分②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68 x )-x=-x+13.6 x +20.12.所以当 x =13.6=6.8,即x=46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.12分20.(本小题满分12分)(2015课标全国Ⅰ,理20)在直角坐标系xOy 中,曲线C :y=x 24与直线l :y=kx+a (a>0)交于M ,N两点.(1)当k=0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 解:(1)由题设可得M (2 a ,a ),N (-2 a ,a ),或M (-2 a ,a ),N (2 a ,a ).又y'=x 2,故y=x 24在x=2 a 处的导数值为 a ,C 在点(2 a ,a )处的切线方程为y-a= a (x-2 a ),即 a x-y-a=0. y=x 2在x=-2 a 处的导数值为- a ,C 在点(-2 a ,a )处的切线方程为y-a=- a (x+2 a ),即 a x+y+a=0. 故所求切线方程为 a x-y-a=0和 a x+y+a=0. 5分(2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y=kx+a 代入C 的方程得x 2-4kx-4a=0. 故x 1+x 2=4k ,x 1x 2=-4a.从而k 1+k 2=y 1−b x 1+y 2−bx 2=2kx 1x 2+(a−b )(x 1+x 2)x 1x 2=k (a +b )a.当b=-a 时,有k 1+k 2=0,则直线PM 的倾角与直线PN 的倾角互补,故∠OPM=∠OPN ,所以点P (0,-a )符合题意. 12分21.(本小题满分12分)(2015课标全国Ⅰ,理21)已知函数f (x )=x 3+ax+1,g (x )=-ln x.(1)当a 为何值时,x 轴为曲线y=f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x>0),讨论h (x )零点的个数. 解:(1)设曲线y=f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f'(x 0)=0,即 x 03+ax 0+1=0,3x 02+a =0.解得x 0=1,a=-3.因此,当a=-34时,x 轴为曲线y=f (x )的切线. 5分(2)当x ∈(1,+∞)时,g (x )=-ln x<0,从而h (x )=min{f (x ),g (x )}≤g (x )<0,故h (x )在(1,+∞)无零点. 当x=1时,若a ≥-54,则f (1)=a+54≥0,h (1)=min{f (1),g (1)}=g (1)=0,故x=1是h (x )的零点;若a<-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0,故x=1不是h (x )的零点.当x ∈(0,1)时,g (x )=-ln x>0.所以只需考虑f (x )在(0,1)的零点个数.(ⅰ)若a ≤-3或a ≥0,则f'(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=14,f (1)=a+54,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点.(ⅱ)若-3<a<0,则f (x )在 0, −3单调递减,在 −3,1 单调递增,故在(0,1)中,当x= −3时,f (x )取得最小值,最小值为f −a =2a −a +1. ①若f −a >0,即-3<a<0,f (x )在(0,1)无零点; ②若f −a =0,即a=-3,则f (x )在(0,1)有唯一零点;③若f −3 <0,即-3<a<-34,由于f (0)=14,f (1)=a+54,所以当-54<a<-34时,f (x )在(0,1)有两个零点;当-3<a ≤-54时,f (x )在(0,1)有一个零点.10分综上,当a>-3或a<-5时,h (x )有一个零点;当a=-3或a=-5时,h (x )有两个零点;当-5<a<-3时,h (x )有三个零点. 12分请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10分)(2015课标全国Ⅰ,理22)选修4—1:几何证明选讲如图,AB是☉O的直径,AC是☉O的切线,BC交☉O于点E.(1)若D为AC的中点,证明:DE是☉O的切线;(2)若OA=3CE,求∠ACB的大小.解:(1)连结AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠ACB+∠ABC=90°,所以∠DEC+∠OEB=90°,故∠OED=90°,DE是☉O的切线.5分(2)设CE=1,AE=x,由已知得AB=2,BE=2.由射影定理可得,AE2=CE·BE,所以x2=12−x2,即x4+x2-12=0.可得x=3,所以∠ACB=60°.10分23.(本小题满分10分)(2015课标全国Ⅰ,理23)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcosθ,y=ρsinθ,所以C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.5分(2)将θ=π4代入ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN|= 2.由于C2的半径为1,所以△C2MN的面积为1.10分24.(本小题满分10分)(2015课标全国Ⅰ,理24)选修4—5:不等式选讲已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图像与x轴围成的三角形面积大于6,求a的取值范围.解:(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得2<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为 x2<x<2.5分(2)由题设可得,f(x)=x−1−2a,x<−1,3x+1−2a,−1≤x≤a,−x+1+2a,x>a.所以函数f(x)的图像与x轴围成的三角形的三个顶点分别为A2a−13,0,B(2a+1,0),C(a,a+1),△ABC的面积为2(a+1)2.由题设得23(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).10分。

2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试理科数学(山东卷)(含答案全解析)

2015年普通高等学校招生全国统一考试山东理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015山东,理1)已知集合A={x|x2-4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)答案:C解析:A={x|x2-4x+3<0}={x|1<x<3},B={x|2<x<4},结合数轴,知A∩B={x|2<x<3}.2.(2015山东,理2)若复数z满足z=i,其中i为虚数单位,则z=()A.1-iB.1+iC.-1-iD.-1+i答案:A解析:∵z1−i=i,∴z=i(1-i)=i-i2=1+i.∴z=1-i.3.(2015山东,理3)要得到函数y=sin4x−π的图象,只需将函数y=sin 4x的图象()A.向左平移π个单位B.向右平移π个单位C.向左平移π个单位D.向右平移π3个单位答案:B解析:∵y=sin4x−π3=sin4 x−π12,∴只需将函数y=sin 4x的图象向右平移π12个单位即可.4.(2015山东,理4)已知菱形ABCD的边长为a,∠ABC=60°,则BD·CD=()A.-32a2 B.-34a2 C.34a2 D.32a2答案:D解析:如图设BA=a,BC=b.则BD·CD=(BA+BC)·BA=(a+b)·a=a2+a·b=a2+a·a·cos 60°=a2+1a2=3a2.5.(2015山东,理5)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)答案:A解析:当x≤1时,不等式可化为(1-x)-(5-x)<2,即-4<2,满足题意;当1<x<5时,不等式可化为(x-1)-(5-x)<2,即2x-6<2,解得1<x<4; 当x≥5时,不等式可化为(x-1)-(x-5)<2,即4<2,不成立.故原不等式的解集为(-∞,4).6.(2015山东,理6)已知x,y满足约束条件x−y≥0,x+y≤2,y≥0.若z=ax+y的最大值为4,则a=()A.3B.2C.-2D.-3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z=ax+y,即y=-ax+z.设直线l0:ax+y=0.当-a≥1,即a≤-1时,l0过O(0,0)时,z取得最大值,z max=0+0=0,不合题意;当0≤-a<1,即-1<a≤0时,l0过B(1,1)时,z取得最大值,z max=a+1=4,∴a=3(舍去);当-1<-a<0时,即0<a<1时,l0过B(1,1)时,z取得最大值,z max=2a+1=4,∴a=3(舍去);当-a≤-1,即a≥1时,l0过A(2,0)时,z取得最大值,z max=2a+0=4,∴a=2.综上,a=2符合题意.7.(2015山东,理7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V圆柱=π×12×2=2π,V圆锥=13×π×12×1=π3.∴V几何体=V圆柱-V圆锥=2π-π=5π.8.(2015山东,理8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)A.4.56%B.13.59%C.27.18%D.31.74%答案:B解析:由正态分布N(0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)=95.44%−68.26%2=13.59%.9.(2015山东,理9)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为()A.-53或-35B.-32或-23C.-5或-4D.-4或-3答案:D解析:如图,作出点P(-2,-3)关于y轴的对称点P0(2,-3).由题意知反射光线与圆相切,其反向延长线过点P0.故设反射光线为y=k(x-2)-3,即kx-y-2k-3=0.∴圆心到直线的距离d=1+k=1,解得k=-4或k=-3.10.(2015山东,理10)设函数f (x )= 3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A. 23,1 B.[0,1]C. 2,+∞ D.[1,+∞)答案:C解析:当a=2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A,B .当a=2时,f 2 =3×2-1=1,f f 2 =f (1)=21=2. 显然f f 2 =2f 23 .故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.(2015山东,理11)观察下列各式: C 10=40; C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1= . 答案:4n-1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n-1,第n 行每项的下标均为2n-1.等号右侧指数规律为0,1,2,…,n-1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n-1. 12.(2015山东,理12)若“∀x ∈ 0,π4,tan x ≤m ”是真命题,则实数m 的最小值为 . 答案:1解析:由题意知m ≥(tan x )max .∵x ∈ 0,π,∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.(2015山东,理13)执行下边的程序框图,输出的T 的值为 .答案:11解析:初始n=1,T=1.又 10x n d x=1n +1x n+1|01=1n +1, ∵n=1<3,∴T=1+1=3,n=1+1=2; ∵n=2<3,∴T=32+12+1=116,n=2+1=3; ∵n=3,不满足“n<3”,执行“否”,∴输出T=11.14.(2015山东,理14)已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[-1,0],则a+b= . 答案:-3解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴ a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴ a −1+b =0,a 0+b =−1,∴ a =12,b =−2. 综上,a+b=1+(-2)=-3.15.(2015山东,理15)平面直角坐标系xOy 中,双曲线C 1:x 2a 2−y 2b2=1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B.若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .答案:3解析:双曲线的渐近线为y=±ba x.由y =ba x ,x 2=2py ,得A 2bp a ,2b 2p a 2.由 y =−b a x ,x 2=2py ,得B −2bp a ,2b 2p a2 .∵F 0,p为△OAB 的垂心,∴k AF ·k OB =-1.即2b 2p a 2−p 22bpa−0· −b a =-1,解得b 2a2=54,∴c 2a 2=94,即可得e=32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)(2015山东,理16)设f (x )=sin x cos x-cos 2 x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若f A 2=0,a=1,求△ABC 面积的最大值.解:(1)由题意知f (x )=sin2x −1+cos 2x +π2 =sin2x −1−sin2x =sin 2x-1.由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π,k ∈Z ; 由π+2k π≤2x ≤3π+2k π,k ∈Z ,可得π+k π≤x ≤3π+k π,k ∈Z .所以f (x )的单调递增区间是 −π+kπ,π+kπ (k ∈Z );单调递减区间是 π+kπ,3π+kπ (k ∈Z ).(2)由f A 2 =sin A-12=0,得sin A=12,由题意知A 为锐角,所以cos A= 32.由余弦定理a 2=b 2+c 2-2bc cos A , 可得1+ 3bc=b 2+c 2≥2bc ,即bc ≤2+ 3,且当b=c 时等号成立. 因此12bc sin A ≤2+ 34. 所以△ABC 面积的最大值为2+ 3. 17.(本小题满分12分)(2015山东,理17)如图,在三棱台DEF-ABC 中,AB=2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF=DE ,∠BAC=45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形.可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=1AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC.又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点,所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(2,0,0),C(0,2,0),D(0,0,1).可得H2,2,0,F(0,2,1),故GH=2,2,0,GF=(0,.设n=(x,y,z)是平面FGH的一个法向量,则由n·GH=0,n·GF=0,可得x+y=0,2y+z=0.可得平面FGH的一个法向量n=(1,-1,2).因为GB是平面ACFD的一个法向量,GB=(2,0,0),所以cos<GB,n>=GB·n|GB|·|n|=222=12.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.解法二:作HM⊥AC于点M,作MN⊥GF于点N,连接NH.由FC⊥平面ABC,得HM⊥FC,又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH即为所求的角.在△BGC中,MH∥BG,MH=1BG=2,由△GNM ∽△GCF ,可得MN FC=GMGF,从而MN= 66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH=HM = 3,所以∠MNH=60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)(2015山东,理18)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3, 当n>1时,2S n-1=3n-1+3,此时2a n =2S n -2S n-1=3n -3n-1=2×3n-1,即a n =3n-1,所以a n = 3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31-n log 33n-1=(n-1)·31-n . 所以T 1=b 1=1;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n-1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n-1)×32-n ),两式相减,得2T n =2+(30+3-1+3-2+…+32-n )-(n-1)×31-n =2+1−31−n 1−3−1-(n-1)×31-n =13−6n +3n, 所以T n =13−6n +3n.经检验,n=1时也适合. 综上可得T n =1312−6n +34×3n. 19.(本小题满分12分)(2015山东,理19)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,-1,1,因此P (X=0)=C 83C 93=23,P (X=-1)=C 42C 93=114,P (X=1)=1-114−23=1142. 所以X 的分布列为则EX=0×23+(-1)×114+1×1142=421. 20.(本小题满分13分)(2015山东,理20)平面直角坐标系xOy 中,已知椭圆C :x 22+y 2b2=1(a>b>0)的离心率为3,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程; (2)设椭圆E :x 24a 2+y 24b2=1,P为椭圆C 上任意一点.过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E于点Q.①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解:(1)由题意知2a=4,则a=2.又c =3,a 2-c 2=b 2,可得b=1,所以椭圆C 的方程为x 2+y 2=1.(2)由(1)知椭圆E 的方程为x 2+y 2=1. ①设P (x 0,y 0),|OQ |=λ,由题意知Q (-λx 0,-λy 0).因为x 02+y 02=1,又(−λx 0)2+(−λy 0)2=1, 即λ24 x 024+y 02 =1,所以λ=2,即|OQ ||OP |=2. ②设A (x 1,y 1),B (x 2,y 2),将y=kx+m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx+4m 2-16=0, 由Δ>0,可得m 2<4+16k 2. ①则有x 1+x 2=-8km 1+4k2,x 1x 2=4m 2−161+4k2.所以|x 1-x 2|=4 16k 2+4−m 21+4k2.因为直线y=kx+m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S=12|m||x 1-x 2|=2 16k 2+4−m 2|m |1+4k2=2 (16k 2+4−m 2)m 21+4k2=2 4−m 1+4k2m 1+4k2.设m 21+4k2=t.将y=kx+m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx+4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S=2 (4−t )t =22+4t . 故S ≤2 ,当且仅当t=1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6 3.21.(本小题满分14分)(2015山东,理21)设函数f (x )=ln(x+1)+a (x 2-x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围. 解:(1)由题意知函数f (x )的定义域为(-1,+∞),f'(x )=1+a (2x-1)=2ax 2+ax−a +1. 令g (x )=2ax 2+ax-a+1,x ∈(-1,+∞).当a=0时,g (x )=1,此时f'(x )>0,函数f (x )在(-1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2-8a (1-a )=a (9a-8).①当0<a ≤8时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(-1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax-a+1=0的两根为x 1,x 2(x 1<x 2), 因为x 1+x 2=-1,所以x 1<-1,x 2>-1. 由g (-1)=1>0,可得-1<x 1<-1.所以当x ∈(-1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (-1)=1>0,可得x 1<-1.当x ∈(-1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤8时,函数f (x )无极值点; 当a>89时,函数f (x )有两个极值点. (2)由(1)知,①当0≤a ≤8时,函数f (x )在(0,+∞)上单调递增, 因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当8<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x-ln(x+1). 因为x ∈(0,+∞)时,h'(x )=1-1=x>0, 所以h (x )在(0,+∞)上单调递增. 因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x+1)<x.可得f (x )<x+a (x 2-x )=ax 2+(1-a )x , 当x>1-1a时,ax 2+(1-a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。

2015年江苏高考数学真题及答案(精校版)

2015年江苏高考数学真题及答案(精校版)

2015年江苏高考数学真题及答案(精校版)2绝密★启用前2015年普通高等学校招生全国统一考试(江苏卷)数学I参考公式: 圆柱的体积公式:shV=圆柱,其中s 为圆柱的表面积,h 为高. 圆锥的体积公式:sh V 31=圆锥,其中s 为圆锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置.......注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,包含填空题(第1题—第14题)、解答题(第15题 - 第20题).本卷满分160分,考试时间为120分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3. 请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字3上.. 1. 已知集合{}3,2,1=A ,{}5,4,2=B ,则集合BA Y 中元素的个数为 ▲ .2. 已知一组数据4, 6, 5, 8, 7, 6,则这组数据的平均数为 ▲ .3. 设复数z 满足iz 432+=(i 是虚数单位),则z 的模为 ▲ .4. 根据如图所示的伪代码,可知输出的结果S 为 ▲ .5. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球. 从中一次随机摸出2只球,则这2只球颜色不同的概率为 ▲ . 6. 已知向量a =)1,2(,b=)2,1(-, 若ma +nb =)8,9(-(R n m ∈,), nm -的值为 ▲ .7. 不等式422<-xx 的解集为 ▲ .1←S1←IWhile48. 已知2tan -=α,71)tan(=+βα,则βtan 的值为▲ .9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个. 若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 ▲ . 10. 在平面直角坐标系x O y 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为 ▲ . 11. 设数列{}na 满足11=a,且11+=-+n a an n (*N n ∈), 则数列⎭⎬⎫⎩⎨⎧na1前10项的和为 ▲ .12. 在平面直角坐标系x O y 中,P 为双曲线122=-y x 右支上的一个动点,若点P 到直线51=+-y x 的距离大于c 恒成立,则实数c 的最大值为 ▲ . 13. 已知函数x x f ln )(=,⎪⎩⎪⎨⎧>--≤<=,1,24,10,0)(2x x x x g ,则方程1)()(=+x g x f 实根的个数为 ▲ .14. 设向量a k=(6cos 6sin ,6cos πππk k k +),(12,,2,1,0Λ=k ),则∑=+⋅111)(k k ka a的值为▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分14分) 在ABC ∆中,已知ο60,3,2===A AC AB .(1)求BC 的长; (2)求C 2sin 的值.616.(本题满分14分)如图,在直三棱柱111C B A ABC -中,已知BC AC⊥, 1CC BC =,设1AB 的中点为D ,E BCC B =11I . 求证:(1)C C AA DE 11//平面;(2)11AB BC ⊥.17.(本小题满分14分)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建 一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边 界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角ABCDEA BC7坐标系xOy ,假设曲线C 符合函数2a y xb =+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t .①请写出公路l 长度的函数解析式()f t ,并写出其定义域;②当t 为何值时,公路l 的长度最短?求出最短长度.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b+=>>2,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;8(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.19.(本小题满分16分) 已知函数),()(23R b a b ax xx f ∈++=.(1)试讨论)(x f 的单调性;BAO x ylP C9(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a的取值范围恰好是),23()23,1()3,(+∞--∞Y Y ,求c 的值.20.(本小题满分16分)设1234,,,a a a a 是各项为正数且公差为d (0)d ≠的等差数列(1)证明:31242,2,2,2a a a a 依次成等比数列;(2)是否存在1,a d ,使得2341234,,,a aa a 依次成等比10数列,并说明理由;(3)是否存在1,a d 及正整数,n k ,使得kn k n k n n a a a a 342321,,,+++依次成等比数列,并说明理由.★ 启用前绝密2015年普通高等学校招生全国统一考试(江苏卷) 数学II21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题......,并在相应的答题区域内作答............,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A.(选修4—1:几何证明选讲)如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆ 注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1. 本试卷只有解答题,供理工方向考生使用.本试卷第21题有A 、B 、C 、D 4个小题供选做,每位考生在4个选做题中选答2题.若考生选做了3题或4题,则按选做题中的前2题计分.第22、23题为必答题.每小题10分,共40分.考试时间30分钟.考试结束后,请将答题卡交回. 2. 答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试B .(选修4—2:矩阵与变换)已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.C .(选修4—4:坐标系与参数方程)已知圆C 的极坐标方程为222sin()404πρρθ+--=,求圆C 的半径. AB C ED O (第21D.(选修4—5:不等式选讲)解不等式|23|3x x ++≥【必做题】第22、23题,每小题10分,计20分.请把答案写在答题....卡.的指定区域内....... 22.(本小题满分10分)如图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯 形,2ABC BAD π∠=∠=,2,1PA AD AB BC ==== (1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成角最小时,求线段BQ 的长23.(本小题满分10分) 已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Yn ∈=Λ,{,),(a b b a b a S n 整除或整除= }n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.PAB C D Q。

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷答案与解析

2015年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B 中元素的个数为 5 .考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答: 解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B 中元素的个数为5;故答案为:5点评: 题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为 6 .考点: 众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6. 故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z 满足z 2=3+4i (i 是虚数单位),则z 的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7 .考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答: 解:模拟执行程序,可得S=1,I=1满足条件I <8,S=3,I=4满足条件I <8,S=5,I=7满足条件I <8,S=7,I=10不满足条件I <8,退出循环,输出S 的值为7. 故答案为:7.点评: 本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为 .考点:古典概型及其概率计算公式. 专题:概率与统计.分析: 根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解解:根据题意,记白球为A ,红球为B ,黄球为答: C 1、C 2,则一次取出2只球,基本事件为AB 、AC 1、AC 2、BC 1、BC 2、C 1C 2共6种,其中2只球的颜色不同的是AB 、AC 1、AC 2、BC 1、BC 2共5种;所以所求的概率是P=.故答案为:.点评: 本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m +n =(9,﹣8)(m ,n ∈R ),则m ﹣n 的值为 ﹣3 .考点:平面向量的基本定理及其意义. 专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答: 解:向量=(2,1),=(1,﹣2),若m +n =(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评: 本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2) .考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用. 分析: 利用指数函数的单调性转化为x 2﹣x <2,求解即可.解答: 解;∵2<4,∴x 2﹣x <2,即x 2﹣x ﹣2<0,解得:﹣1<x <2故答案为:(﹣1,2)点评: 本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan (α+β)=,则tanβ的值为 3 .考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答: 解:tanα=﹣2,tan (α+β)=,可知tan (α+β)==,即=, 解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积. 专题:计算题;空间位置关系与距离.分析: 由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r ,求出体积,由前后体积相等列式求得r .解答: 解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r , 则新圆锥和圆柱的体积和为:. ∴,解得:.故答案为:.点评: 本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 (x ﹣1)2+y 2=2 .考点:圆的标准方程;圆的切线方程. 专题:计算题;直线与圆.分析: 求出圆心到直线的距离d 的最大值,即可求出所求圆的标准方程.解答: 解:圆心到直线的距离d==≤, ∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x ﹣1)2+y 2=2.故答案为:(x ﹣1)2+y 2=2.点评: 本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为.考数列的求和;数列递推式.点:专题:等差数列与等比数列.分析: 数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),利用“累加求和”可得a n =.再利用“裂项求和”即可得出. 解答: 解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),∴当n≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=+n+…+2+1=. 当n=1时,上式也成立, ∴a n =. ∴=2. ∴数列{}的前n 项的和S n ===. ∴数列{}的前10项的和为.故答案为:.点评: 本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n 项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y+1=0的距离大于c 恒成立,则实数c 的最大值为 .考点:双曲线的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程. 分析: 双曲线x 2﹣y 2=1的渐近线方程为x±y=0,c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离. 解答: 解:由题意,双曲线x 2﹣y 2=1的渐近线方程为x±y=0,因为点P 到直线x ﹣y+1=0的距离大于c 恒成立, 所以c 的最大值为直线x ﹣y+1=0与直线x ﹣y=0的距离,即. 故答案为:.点评: 本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f (x )=|lnx|,g (x )=,则方程|f (x )+g (x )|=1实根的个数为 4 .考点:根的存在性及根的个数判断. 专题:综合题;函数的性质及应用. 分析: :由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1,分别作出函数的图象,即可得出结论. 解答: 解:由|f (x )+g (x )|=1可得g (x )=﹣f (x )±1.g (x )与h (x )=﹣f (x )+1的图象如图所示,图象有两个交点;g (x )与φ(x )=﹣f (x )﹣1的图象如图所示,图象有两个交点;所以方程|f (x )+g (x )|=1实根的个数为4. 故答案为:4.点评:本题考查求方程|f (x )+g (x )|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos ,sin +cos )(k=0,1,2,…,12),则(a k •a k+1)的值为.考点:数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分利用向量数量积运算性质、两角和差的正弦公式、析: 积化和差公式、三角函数的周期性即可得出. 解答: 解:=+=++++=++ =++,∴(a k •a k+1)=+++++++…+++++++…+=+0+0 =.故答案为:9.点评: 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC 中,已知AB=2,AC=3,A=60°. (1)求BC 的长; (2)求sin2C 的值.考点: 余弦定理的应用;二倍角的正弦.专题:解三角形. 分析: (1)直接利用余弦定理求解即可.(2)利用正弦定理求出C 的正弦函数值,然后利用二倍角公式求解即可.解答: 解:(1)由余弦定理可得:BC 2=AB 2+AC 2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===, ∵AB<BC ,∴C 为锐角, 则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC ﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC 1⊥AC;最后证明BC 1⊥平面B 1AC ,即可证出BC 1⊥AB 1.解答: 证明:(1)根据题意,得;E 为B 1C 的中点,D 为AB 1的中点,所以DE∥AC;又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE∥平面AA 1C 1C ;(2)因为棱柱ABC ﹣A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 因为AC ⊂平面ABC , 所以AC⊥CC 1; 又因为AC⊥BC, CC 1⊂平面BCC 1B 1, BC ⊂平面BCC 1B 1, BC∩CC 1=C ,所以AC⊥平面BCC 1B 1; 又因为BC 1⊂平面平面BCC 1B 1, 所以BC 1⊥AC;因为BC=CC 1,所以矩形BCC 1B 1是正方形, 所以BC 1⊥平面B 1AC ; 又因为AB 1⊂平面B 1AC , 所以BC 1⊥AB 1.点本题考查了直线与直线,直线与平面以及平面与评:平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用. 专题:综合题;导数的综合应用. 分析: (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a ,b 的值;(2)①求出切线l 的方程,可得A ,B 的坐标,即可写出公路l 长度的函数解析式f (t ),并写出其定义域; ②设g (t )=,利用导数,确定单调性,即可求出当t 为何值时,公路l 的长度最短,并求出最短长度.解答: 解:(1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P (t ,),∴y′=﹣,∴切线l 的方程为y ﹣=﹣(x ﹣t )设在点P 处的切线l 交x ,y 轴分别于A ,B 点,则A (,0),B (0,), ∴f (t )==,t ∈[5,20];②设g (t )=,则g′(t )=2t ﹣=0,解得t=10,t ∈(5,10)时,g′(t )<0,g (t )是减函数;t ∈(10,20)时,g′(t )>0,g (t )是增函数,从而t=10时,函数g (t )有极小值也是最小值,∴g(t )min =300, ∴f(t )min =15,答:t=10时,公路l 的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy 中,已知椭圆+=1(a >b >0)的离心率为,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC=2AB ,求直线AB 的方程.考点: 直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程. 分析: (1)运用离心率公式和准线方程,可得a ,c 的方程,解得a ,c ,再由a ,b ,c 的关系,可得b ,进而得到椭圆方程;(2)讨论直线AB 的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答: 解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y 2=1;(2)当AB⊥x 轴,AB=,CP=3,不合题意; 当AB 与x 轴不垂直,设直线AB :y=k (x ﹣1),A (x 1,y 1),B (x 2,y 2),将AB 方程代入椭圆方程可得(1+2k 2)x 2﹣4k 2x+2(k 2﹣1)=0, 则x 1+x 2=,x 1x 2=,则C (,),且|AB|=•=, 若k=0,则AB 的垂直平分线为y 轴,与左准线平行,不合题意; 则k≠0,故PC :y+=﹣(x ﹣),P (﹣2,), 从而|PC|=, 由|PC|=2|AB|,可得=,解得k=±1,此时AB 的方程为y=x ﹣1或y=﹣x+1.点本题考查椭圆的方程和性质,主要考查椭圆的离评: 心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f (x )=x 3+ax 2+b (a ,b ∈R ).(1)试讨论f (x )的单调性;(2)若b=c ﹣a (实数c 是与a 无关的常数),当函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c 的值.考点: 利用导数研究函数的单调性;函数零点的判定定理.专题: 综合题;导数的综合应用.分析: (1)求导数,分类讨论,利用导数的正负,即可得出f (x )的单调性;(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (﹣)=+b ,则函数f (x )有三个不同的零点等价于f (0)f (﹣)=b (+b )<0,进一步转化为a >0时,﹣a+c >0或a <0时,﹣a+c <0.设g (a )=﹣a+c ,利用条件即可求c 的值.解答: 解:(1)∵f(x )=x 3+ax 2+b , ∴f′(x )=3x 2+2ax ,令f′(x )=0,可得x=0或﹣.a=0时,f′(x )>0,∴f(x )在(﹣∞,+∞)上单调递增;a >0时,x ∈(﹣∞,﹣)∪(0,+∞)时,f′(x )>0,x ∈(﹣,0)时,f′(x )<0,∴函数f (x )在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a <0时,x ∈(﹣∞,0)∪(﹣,+∞)时,f′(x )>0,x ∈(0,﹣)时,f′(x )<0,∴函数f (x )在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f (x )的两个极值为f (0)=b ,f (﹣)=+b ,则函数f (x )有三个不同的零点等价于f (0)f (﹣)=b (+b )<0,∵b=c﹣a ,∴a>0时,﹣a+c >0或a <0时,﹣a+c<0.设g (a )=﹣a+c ,∵函数f (x )有三个不同的零点时,a 的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞), ∴在(﹣∞,﹣3)上,g (a )<0且在(1,)∪(,+∞)上g (a )>0均恒成立,∴g(﹣3)=c ﹣1≤0,且g ()=c ﹣1≥0,∴c=1,此时f (x )=x 3+ax 2+1﹣a=(x+1)[x 2+(a ﹣1)x+1﹣a],∵函数有三个零点,∴x 2+(a ﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a ﹣1)2﹣4(1﹣a )>0,且(﹣1)2﹣(a ﹣1)+1﹣a≠0,解得a ∈(﹣∞,﹣3)∪(1,)∪(,+∞), 综上c=1.点评: 本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a 1,a 2,a 3.a 4是各项为正数且公差为d (d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列?并说明理由.考点: 等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析: (1)根据等比数列和等差数列的定义即可证明; (2)利用反证法,假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列,得到a 1n (a 1+2d )n+2k =(a 1+2d )2(n+k ),且(a 1+d )n+k (a 1+3d )n+3k =(a 1+2d )2(n+2k ),利用等式以及对数的性质化简整理得到ln(1+3t )ln (1+2t )+3ln (1+2t )ln (1+t )=4ln (1+3t )ln (1+t ),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答: 解:(1)证明:∵==2d ,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a 1+d=a ,则a 1,a 2,a 3,a 4分别为a﹣d ,a ,a+d ,a+2d (a >d ,a >﹣2d ,d≠0) 假设存在a 1,d 使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a ﹣d )(a+d )3,且(a+d )6=a 2(a+2d )4,令t=,则1=(1﹣t )(1+t )3,且(1+t )6=(1+2t )4,(﹣<t <1,t≠0),化简得t 3+2t 2﹣2=0(*),且t 2=t+1,将t 2=t+1代入(*)式,t (t+1)+2(t+1)﹣2=t 2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)假设存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k (1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln (1+2t )+3(1+t )2ln (1+t ),则φ′(t )=6[(1+3t )ln (1+3t )﹣2(1+2t )ln (1+2t )+3(1+t )ln (1+t )],令φ1(t )=φ′(t ),则φ1′(t )=6[3ln (1+3t )﹣4ln (1+2t )+ln (1+t )],令φ2(t )=φ1′(t ),则φ2′(t )=>0,由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t )>0,知g (t ),φ(t ),φ1(t ),φ2(t )在(﹣,0)和(0,+∞)上均单调,故g (t )只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a 1,d 及正整数n ,k ,使得a 1n ,a 2n+k ,a 3n+2k ,a 4n+3k 依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x ,y ∈R ,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A 以及它的另一个特征值.考点:特征值与特征向量的计算. 专题:矩阵和变换. 分析: 利用A =﹣2,可得A=,通过令矩阵A 的特征多项式为0即得结论.解答:解:由已知,可得A =﹣2,即==, 则,即, ∴矩阵A=, 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ﹣1), ∴矩阵A 的另一个特征值为1.点评: 本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C 的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C 的半径.考点: 简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析: 先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答: 解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x 2+y 2﹣2x+2y ﹣4=0,化为标准方程为(x ﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析: 思路1(公式法):利用|f (x )|≥g(x )⇔f (x )≥g(x ),或f (x )≤﹣g (x );思路2(零点分段法):对x 的值分“x≥”“x <”进行讨论求解. 解答: 解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x , 得2x+3≥2﹣x ,或2x+3≥﹣(2﹣x ),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=. ①当x≥时,原不等式化为x+(2x+3)≥2,即x≥, 所以x≥; ②x<时,原不等式化为x ﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f (x )|≥g(x )⇔f (x )≥g(x ),或f (x )≤﹣g (x );|f(x )|≤g(x )⇔﹣g (x )≤f(x )≤g(x ).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P ﹣ABCD 中,已知PA⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.考点: 二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析: 以A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A ﹣xyz .(1)所求值即为平面PAB 的一个法向量与平面PCD 的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos 2<,>≤,结合函数y=cosx 在(0,)上的单调性,计算即得结论.解答: 解:以A 为坐标原点,以AB 、AD 、AP 所在直线分别为x 、y 、z 轴建系A ﹣xyz 如图,由题可知B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)∵AD⊥平面PAB ,∴=(0,2,0),是平面PAB 的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD 的法向量为=(x ,y ,z ),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点本题考查求二面角的三角函数值,考查用空间向评: 量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n ={1,2,3,…,n )(n ∈N *),设S n ={(a ,b )|a 整除b 或整除a ,a ∈X ,B ∈Y n },令f (n )表示集合S n 所含元素的个数.(1)写出f (6)的值;(2)当n≥6时,写出f (n )的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析: (1)f (6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f (6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f (k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f (k+1)=f (k )+2=k+2+++2=(k+1)+2++,结论成立. 综上所述,结论对满足n≥6的自然数n 均成立. 点评: 本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.。

智慧树知到《数学零距离》章节测试答案

智慧树知到《数学零距离》章节测试答案

第一章1、一个掉队的战士说:“我离大部队已经越来越近了。

”这里,战士与部队的距离是指该战士与大部队最远的人员的距离。

()A:对B:错答案: 错2、地面上从A点与B点的距离可能有多种公式。

()A:对B:错答案: 对3、绝对值是一种范数。

()A:对B:错答案: 对4、下图是一个街道图,假设单位街道的长度是1,则从A到B点的曼哈顿距离()。

A:B:C:D:答案:5、给定两向量X=(1,3.4,2)及Y=(2,5,3,6),则两向量以∞-范数诱导的距离为()。

A:B:C:D:答案:6、对于下图中的两个点A与B,基于范数给出两点的距离为()A:3A.pngB:3B.pngC:3C.pngD:上述三种都不正确答案:第二章1、在稳定性的定义中,关于δ的选取,下列说法哪个对()A: 对于任意ε>0,δ只与ε有关B: 对于任意ε>0,δ只与t0 有关C: 对于任意ε>0,δ必须与t0 有关D: 对于任意ε>0,δ可能与ε,t0有关答案: 对于任意ε>0,δ可能与ε,t0有关2、假设多米诺骨牌效应的能量传递模型为En=cEn-1(c>1),则当n→∞时,能量将( ) A:趋于无穷B:趋于cC:一定是有界的D:不能确定答案: 趋于无穷3、利用托里拆利原理,当物体仅受重力作用时,重心位置最低时其平衡是稳定的。

()A:对B:错答案: 对4、“高速公路通常要实行限速”是因为车速快容易让车里的人心里感觉害怕。

()A:对B:错答案: 错5、按照英国物理学家怀特海德制作的多米诺骨牌的方式,其创造的传递能量将趋于无穷,从而可以摧毁任何事物。

()A:对B:错答案: 错6、我们都知道“单腿站立不稳”,这里的“不稳定”指的是“人单腿一定站不住而摔倒”。

()A:对B:错答案: 错第三章1、最小二乘法以达到()的最小值为目标来求解矛盾方程组。

A:残差平方和B:残差的和C:残差的绝对值之和D:残差的最大值答案: 残差平方和2、约等式逻辑()A:不承认测量数据有偏差B:追求单一目标的达成C:相信测量数据D:承认测量数据有偏差答案: 承认测量数据有偏差3、想对客观事物了解的越仔细,就需要越多的测量数据()。

(word完整版)2015年高考天津文科数学试题及答案(word解析版),推荐文档

(word完整版)2015年高考天津文科数学试题及答案(word解析版),推荐文档

2015年普通高等学校招生全国统一考试(天津卷)数学(文科)参考公式:• 如果事件A ,B 互斥,那么()()()P A B P A P B =+U ; • 如果事件A ,B 相互独立,那么()()()P AB P A P B =;• 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;• 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.第Ⅰ卷(共40分)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2015年天津,文1】已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5A = ,集合{}1,3,4,6B =,则集合U A B =I ð( )(A ){}3 (B ){}2,5 (C ){}1,4,6 (D ){}2,3,5 【答案】B 【解析】{2,3,5}U B =ð,所以{2,5}U A B =I ð,故选B .【点评】本题考查集合的交、并、补的混合运算,基本知识的考查.(2)【2015年天津,文2】设变量,x y 满足约束条件2020280x x y x y -≤⎧⎪-≤⎨⎪+-≤⎩,则目标函数3z x y =+的最大值为( )(A )7 (B )8 (C )9 (D )14 【答案】C【解析】解法一:作出不等式组对应的平面区域如图(阴影部分),由3z x y =+得3y x z =-+, 平移直线3y x z =-+,由图像可知当直线3y x z =-+过点A 时,3y x z =-+的截距最大,此时z 最大.由20280x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩,即()2,3A ,代入目标函数3z x y =+得3239z =⨯+=,即目标函数的3z x y =+的最大值为9,故选C .解法二:()()5132289922z x y x x y =+=-++-+≤,当2,3x y ==时取得最大值9,故选C .【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.(3)【2015年天津,文3】阅读右边的程序框图,运行相应的程序,则输出i 的值为( )(A )2 (B )3 (C )4 (D )5 【答案】C【解析】由程序框图可知:2,8;3,S 5;4, 1.i S i i S ======,故选C .【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的i ,S 的值是解题的关键,属于基础题.(4)【2015年天津,文4】设x R Î,则“12x <<”是“|2|1x -<”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A【解析】2112113x x x -<⇔-<-<⇔<<,则“12x <<”是“|2|1x -<”的充分不必要条件,故选A .【点评】本题考查了简单的不等式的求解,充分必要条件的定义,属于容易题.(5)【2015年天津,文5】已知双曲线()222210,0x y a b a b-=>>的一个焦点为()2,0F ,且双曲线的渐近线与圆()2223x y -+=相切,则双曲线的方程为( )(A )221913x y -= (B )221139x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】由双曲线的渐近线0bx ay -=,与圆()2223x y -+=相切得:223a b =+,由222c a b =+=,由此可解得1,3a b ==,所以双曲线方程为2213y x -=,故选D .【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出,a b 的值,是解题的关键.(6)【2015年天津,文6】如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN ===,则线段NE 的长为( )(A )83(B )3 (C )103 (D )52 【答案】A【解析】由相交弦定理可知AM MB CM MD ⋅=⋅,CN NE AN NB ⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB ⋅=⋅,CN NE CM MD ∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A .【点评】本题考查相交弦定理,考查学生的计算能力,比较基础.(7)【2015年天津,文7】已知定义在R 上的函数()21x mf x -=-(m 为实数)为偶函数,记0.5(log 3)a f =,()2log 5b f =,()2c f m =,则,,a b c 的大小关系为( )(A )a b c << (B )a c b << (C )c a b << (D )c b a <<【答案】B【解析】因为函数()21x m f x -=-为偶函数,所以0m =,即()21xf x =-,所以 221log log 330.521(log 3)log 2121312,3a f f ⎛⎫===-=-=-= ⎪⎝⎭ ()2log 52log 5214b f ==-=,()02(0)210c f m f ===-=,所以c a b <<,故选B .【点评】本题考查了对数函数的性质,函数的奇偶性,单调性,计算能力,属于中档题.(8)【2015年天津,文8】已知函数()()22222x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()32g x f x =--,若函数()()y f x g x =-的零点个数是( )(A )2 (B )3 (C )4 (D )5 【答案】A【解析】解法一:当0x <时,()22f x x -=,此时方程()()21f x g x x x -=--+的小于0的零点为15x +=-,当02x ≤≤时,()222f x x x -=--=,()()22f x g x x x -=-+=无零点,当2x >时,()2224f x x x -=--=-,方程()()2222733f x x x x x -=-+-=--大于2零点有一个,故选A .解法二:Q ()()32g x f x =--,∴()()()()32y f x g x f x f x =-=-+-,由()()320f x f x -+-=,得:()()23f x f x +-=,设()()()2h x f x f x =+-,若0x ≤,则0x -≥,22x -≥,则()()()222h x f x f x x x =+-=++;若02x ≤≤,则20x -≤≤,022x ≤-≤,则()()()22222222h x f x f x x x x x =+-=-+--=-+-+=;若2x >,0x -<,20x -<,则()()()()22222258h x f x f x x x x x =+-=-+--=-+.E D OA BM N即()2220202582x x x h x x x xx x ⎧++≤⎪=<≤⎨⎪-+>⎩,故函数()()y f x g x =-的零点个数为2个,故选A .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.第II 卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分.(9)【2015年天津,文9】i 是虚数单位,计算12i2i-+的结果为 .【答案】i -【解析】()2i i 212i i 2i i 2i 2i 2i-+---===-+++. 【点评】本题考查复数的乘除运算,基本知识的考查. (10)【2015年天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m . 【答案】83π【解析】由三视图可知,该几何体是中间为一个底面半径为1,高为2的圆柱,两端是底面半径为1,高为1的圆锥,所以该几何体的体积22181221133V πππ=⨯⨯+⨯⨯⨯⨯=.【点评】本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目. (11)【2015年天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为 . 【答案】3【解析】因为()()1ln f x a x '=+ ,所以()13f a '==.【点评】本题考查了求导公式的运用;熟练掌握求导公式是关键. (12)【2015年天津,文12】已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ⋅取得最大值. 【答案】4【解析】()()()()22222222log log 211log log 2log 2log 164244a b a b ab +⎛⎫⋅≤=== ⎪⎝⎭,当2a b =时取等号,结合0a >,0b >,8ab =可得4, 2.a b ==【点评】本题主要考查基本不等式的应用,注意检查等号成立条件以及不等式的使用条件,属于中档题. (13)【2015年天津,文13】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠=o ,动点E 和F 分别在线段BC 和DC 上,且1,9BE BC DF DC λλ==u u u r u u u r u u u r u u u r,则AE AF ⋅u u u r u u u r 的最小值为 . 【答案】2918【解析】解法一:因为19DF DC λ=u u u r u u u r ,12DC AB =u u u r u u u r ,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==u u u r u u u r u u u r u u u r u u u r u u u r u u u r,AE AB BE AB BC λ=+=+u u u r u u u r u u u r u u u r u u u r ,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 19199421cos1201818λλλλλ++=⨯++⨯⨯⨯︒211721172929218921818λλλλ=++≥⋅+= 当且仅当2192λλ=即23λ=时AE AF ⋅u u u r u u u r 的最小值为2918. A D C E解法二:在等腰梯形ABCD 中,由AB DC P ,2AB =,1BC =,60ABC ∠=o ,得12AD BC ⋅=u u u r u u u r ,1AB AD ⋅=u u ur u u u r ,12DC AB =u u u r u u u r ,所以()()AE AF AB BE AD DF ⋅=+⋅+u u u r u u u r u u u r u u u r u u u r u u u r 21312AB BC AD AB ⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭u u ur u u u r u u u r u u u r221111129131218331818AB AD BC AD AB BC AB =⋅+⋅++⋅=++-=u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 【点评】本题考查了等腰梯形的性质以及向量的数量积公式的运用、基本不等式求最值;关键是正确表示所求,利用基本不等式求最小值.(14)【2015年天津,文14】已知函数()()sin cos 0,,f x x x x ωωω=+>∈R 若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为 .【解析】由()f x 在区间(),ωω-内单调递增,且()f x 的图像关于直线x ω=对称,可得π2ωω≤,且()222πsin cos sin 14f ωωωω⎛⎫=+=+= ⎪⎝⎭,所以2ππ42ωω+=⇒=. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,考查了正弦函数的图象和性质,正确确定k 的值是解题的关键,属于中档题.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2015年天津,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (Ⅰ)求应从这三个协会中分别抽取的运动员人数; (Ⅱ)将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.解:(Ⅰ)应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2; (Ⅱ)(i )从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共15种.(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A , {}25,A A ,{}26,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == 【点评】本题考查古典概型及其概率公式,涉及分层抽样,属基础题. (16)【2015年天津,文16】(本小题满分13分)ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆ 的面积为,2b c -=,1cos 4A =-.(Ⅰ)求a 和sin C 的值;(Ⅱ)求cos 26A π⎛⎫+ ⎪⎝⎭的值.解:(Ⅰ)ABC ∆中,由1cos 4A =-,得sin A =由1sin 2bc A =得24bc =,又由2b c -=,解得6,4b c ==由2222cos a b c bc A =+-,可得8a =.(Ⅱ))2cos 2cos 2cos sin 2sin 2cos 1sin cos 666A A A A A A πππ⎛⎫+=-=--= ⎪⎝⎭【点评】本题考查同角三角函数的基本关系式,二倍角公式,余弦定理的应用,考查计算能力.(17)【2015年天津,文17】(本小题满分13分)如图,已知1AA ⊥平面ABC ,11//BB AA ,3AB AC ==,BC =,17AA =,127BB =点E ,F 分别是BC ,1A C 的中点.(Ⅰ)求证://EF 平面11A B BA ; (Ⅱ)求证:平面1AEA ⊥平面1BCB ; (Ⅲ)求直线11A B 与平面1BCB 所成角的大小.解:(Ⅰ)证明:如图,连接1A B ,在△1A BC 中,因为E 和F 分别是BC ,1A C 的中点,所以1//EF BA ,又因为EF ⊄平面11A B BA ,所以//EF 平面11A B BA .(Ⅱ)因为AB AC =,E 为BC 中点,所以AE BC ⊥,因为1AA ⊥平面ABC ,11//BB AA ,所以1BB ⊥平面ABC ,从而1BB AE ⊥,又1BC BB B =I ,所以AE ⊥平面1BCB ,又因为AE ⊂平面1AEA , 所以平面1AEA ⊥平面1BCB .(Ⅲ)取1BB 中点M 和1B C 中点N ,连接1A M ,1A N ,因为N 和E 分别为1B C 和BC 中点,所以1//NE BB ,112NE BB =,故1//NE AA ,1NE AA =,所以1//A N AE ,1A N AE =.又因为AE ⊥平面1BCB ,所以12A N AE ==,因为1//BM AA ,1BM AA =,所以1//A M AB ,1A M AB =, 又由1AB BB ⊥,有11A M BB ⊥,在11Rt A MB ∆中,可得114A B =.在11Rt A NB ∆中,11111sin 2A N AB N A B ∠==,因此1130A B N ∠=︒,所以直线11A B 与平面1BCB 所成角为30︒.【点评】本题考查线面垂直与平行关系的证明,涉及直线与平面所成的角,属中档题. (18)【2015年天津,文18】(本小题满分13分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且112331,2a b b b a ==+=,5237a b -=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设*2221log ,nn n a b n N a -=∈,求数列n b {}的前n 项和.解:(Ⅰ)设{}n a 的公比为q ,{}n b 的公差为d ,由题意0q >,由已知,有24232310q d q d ⎧-=⎨-=⎩,消去d 得42280q q --=,解得2,2q d ==,所以{}n a 的通项公式为12,n n a n -*=∈N ,{}n b 的通项公式为21,n b n n *=-∈N .(Ⅱ)由(Ⅰ)有()1212n n c n -=-,设{}n c 的前n 项和为n S ,则()0121123252212n n S n -=⨯+⨯+⨯++-⨯L , ()1232123252212n n S n =⨯+⨯+⨯++-⨯L ,两式相减得()()2312222122323n n n n S n n -=++++--⨯=--⨯-L ,所以()2323n n S n =-+.【点评】本题主要考查等差数列、等比数列及其前n 项和,考查数列求和的基本方法和运算求解能力,是中档题.(19)【2015年天津,文19】(本小题满分14分)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为55.(Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BF 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与x 轴交于点M ,||=||PM MQ l . (i )求l 的值;(ii )若75||sin =9PM BQP Ð,求椭圆的方程.解:(Ⅰ)(),0F c -,由已知55c a =及222a b c =+,可得5,2a c b c ==,又因为()0,B b ,故直线BF 的斜率()020b bk c c-===--.(Ⅱ)设点()()(),,,,,P P Q Q M M P x y Q x y M x y ,(i )由(Ⅰ)可得椭圆方程为2222154x y c c +=,直线BF 的方程为22y x c =+,两方程联立消去y 得:2350x cx +=,解得53P c x =- .因为BQ BP ⊥,所以直线BQ ,方程为122y x c =-+,与椭圆方程联立消去y 得221400x cx -=,解得4021Q cx =.又因为PM MQ λ=,及0M x =得78M P P Q M Q x x x x x x λ-===-.(ii )由(i )得78PM MQ=,所以777815PM PM MQ ==++,即157PQ PM =,又因为||sin PM BQP Ð所以=||sin BP PQ BQP Ð=15||sin 7PM BQP ?.又因为4223P P y x c c =+=-,所以BP ==,1c =, 所以椭圆方程为22154x y +=.【点评】本题考查椭圆的标准方程与几何性质、直线的方程、两条直线垂直等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力以及用方程思想和化归思想解决问题的能力,属于中档题.(20)【2015年天津,文20】(本题满分14分)已知函数4()4,,f x x x x R =-?(Ⅰ)求()f x 的单调性;(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(Ⅲ)若关于x 的方程()=f x a (a 为实数)有两个正实根12x x ,,求证:132143ax x -<-+.解:(Ⅰ)由4()4f x x x =-,可得3()44f x x ¢=-,当()0f x '>,即1x <时,函数()f x 单调递增;当()0f x '<,即1x >时,函数()f x 单调递减.所以函数()f x 的单调递增区间是(),1-∞,单调递减区间是()1,+∞. (Ⅱ)设()0,0P x ,则1304x =,()012f x '=-,曲线()y f x =在点P 处的切线方程为()()00y f x x x '=-,()()()00g x f x x x '=-,令()()()F x f x g x =-,()()()()0F x f x f x x x '=--,则()()()0F x f x f x '''=-.由于3()44f x x =-在(),-∞+∞单调递减,故()F x '在(),-∞+∞单调递减,又因为()00F x '=,所以当 ()0,x x ∈-∞时,()0F x '>,所以当()0,x x ∈+∞时,()0F x '<,所以()F x 在()0,x -∞单调递增,在()0,x +∞ 单调递减,所以对任意的实数x ,()()00F x F x ≤=,对于任意的正实数x ,都有()()f x g x £.(Ⅲ)由(Ⅱ)知13()12(4)g x x =--,设方程()g x a =的根为2x ',可得132412ax '=-+.因为()g x 在(),-∞+∞单调递减.又由(Ⅱ)知()()()222g x f x a g x '≥==,所以22x x '≤.类似的,设曲线()y f x =在原点处的切线为()y h x =,可得()4h x x =,对于任意的(),x ∈-∞+∞,有()()40f x h x x -=-≤,即()()f x h x ≤.设方程()h x a =的根为1x ',可得14ax '=.因为()4h x x =在(),-∞+∞单调递增,()()()111h x a f x h x '==≤.因此11x x '≤,所以13212143ax x x x ''-≤-=-+. 【评析】本小题主要考查导数的运算、导数的几何意义、利用导数研究函数的性质等基础知识.考查函数思想、化归思想,考查综合分析问题和解决问题的能力,是压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档