【化学】高中知识点规律大全(11)——《烃》

合集下载

烃高考知识点总结

烃高考知识点总结

烃高考知识点总结烃是有机化合物中最简单的一类,由碳和氢元素构成。

在高考化学考试中,烃是一个重要的知识点。

下面我们将对烃的相关知识进行总结,帮助你更好地理解和掌握这一内容。

一、基本概念烃是碳氢化合物,分为脂肪烃和环烷烃两大类。

脂肪烃由碳链构成,而环烷烃则是呈环状结构。

脂肪烃根据碳链上的双键和三键的数目,可分为烷烃、烯烃和炔烃三种类型。

烷烃中只有碳-碳单键,烯烃中有一个碳-碳双键,炔烃中有一个或多个碳-碳三键。

二、命名法和结构式烃的命名法主要采用IUPAC命名法。

根据碳链长度,脂肪烃可分为甲烷、乙烷、丙烷等。

烯烃和炔烃则根据双键和三键的位置进行命名。

在结构式中,直线代表碳链,分支和环状结构用括号表示。

三、物理性质脂肪烃是无色、无味的气体、液体或固体。

低碳烷烃为气体,中碳烷烃为液体,高碳烷烃为固体。

脂肪烃有较小的极性,不溶于水,易溶于非极性溶剂。

四、化学性质1. 碳氢键的活性:烷烃中碳氢键几乎没有反应性,而烯烃和炔烃中的碳氢键活性较高。

烯烃和炔烃常参与加成反应或发生聚合反应。

2. 燃烧反应:烃能与氧气发生燃烧反应,生成二氧化碳和水。

燃烧反应是烃的主要用途之一。

3. 卤素取代反应:烃可与卤素发生取代反应,生成相应的卤代烃。

这是烃进行化学反应的重要途径之一。

4. 加成反应:烯烃与卤素或水等发生加成反应,破坏双键,生成相应的产物。

5. 氧化反应:烯烃和炔烃可以参与氧化反应,生成醇和醛等产物。

五、应用领域烃是化学工业中的重要原料。

烷烃可用作溶剂、燃料和润滑油;烯烃是合成高分子材料的重要原料,用于制造塑料、合成橡胶和纤维等;炔烃可作为燃料和合成其他有机化合物。

总结:烃是有机化合物中最简单的一类,由碳和氢元素构成。

在高考化学考试中,我们需要掌握烃的基本概念、命名法和结构式,以及物理性质和化学性质。

同时,了解烃的应用领域对于理解其重要性也十分重要。

通过对烃的全面了解,我们能够更好地应对化学考试中与烃相关的问题。

希望本文所述能够帮助到你,祝你在高考中取得优异的成绩!。

高一化学烃知识点

高一化学烃知识点

高一化学烃知识点烃是有机化合物的一类,由碳和氢元素组成。

根据碳原子数目的不同,烃可以分为烷烃、烯烃和炔烃三大类。

下面将对这些烃的性质、命名和应用进行详细讨论。

一、烷烃烷烃是由碳原子通过单键连接而成的烃类化合物。

由于烷烃分子内部只存在碳-碳和碳-氢单键,因此烷烃分子是饱和的,不容易发生化学反应。

根据碳原子数的不同,烷烃可以分为甲烷、乙烷、丙烷等不同的烷烃。

甲烷(CH4)是最简单的烷烃,它是一种无色、无味的气体,在自然界中广泛存在,常见于沼气和天然气中。

乙烷(C2H6)是由两个碳原子和六个氢原子组成,具有较高的燃烧热值,因此常用于燃料。

丙烷(C3H8)是由三个碳原子和八个氢原子组成,具有类似乙烷的性质。

烷烃的命名采用国际命名法规则,即根据分子中碳原子数目,加上适当的前缀和后缀来表示。

例如,甲烷是最简单的烷烃,前缀“甲”表示它只含有一个碳原子。

乙烷含有两个碳原子,前缀“乙”表示。

类似地,丙烷含有三个碳原子,以此类推。

烷烃具有较低的活性,不容易发生化学反应。

但是,在适当的条件下,烷烃可以参与燃烧、烷基化、裂解等反应。

燃烧是指将烷烃与氧气反应,产生二氧化碳和水,释放出大量能量。

烷基化是指将烷烃与卤代烷反应,形成烷基卤化物。

裂解是指将烷烃加热到一定温度,使其断裂为较短的链烃和烯烃。

二、烯烃烯烃是由含有一个或多个碳-碳双键的烃类化合物。

由于双键的存在,烯烃分子具有较高的反应活性。

根据碳原子之间双键的位置和数目的不同,烯烃可以分为顺式烯烃和异式烯烃。

顺式烯烃的碳原子之间的双键处于同一侧,而异式烯烃的碳原子之间的双键处于不同侧。

例如,丙烯(C3H4)是一种最简单的烯烃,它的顺式结构和异式结构如下所示:顺式丙烯:H2C=CH-CH3异式丙烯:H2C=C-CH3和烷烃一样,烯烃的命名也采用国际命名法规则。

例如,丙烯是一种含有三个碳原子的烯烃,以此类推。

烯烃具有较高的反应活性,可以发生加成反应、环化反应、氢化反应等。

加成反应是指烯烃与一些其他物质之间发生共价键形成,例如与溴水反应生成溴代烷。

烃知识点总结

烃知识点总结

烃知识点总结烃是一类有机化合物,由碳和氢原子组成。

它们是石油和天然气的主要组成部分,也是化学工业中重要的原料。

本文将对烃的结构、性质以及应用领域进行总结。

一、烃的分类烃可以分为两大类:饱和烃和不饱和烃。

1. 饱和烃饱和烃是由碳和氢原子组成的链状结构,其碳原子之间以单键连接。

根据碳原子数的不同,饱和烃可以进一步分为以下几类:- 甲烷:最简单的饱和烃,由一个碳原子和四个氢原子组成;- 乙烷:由两个碳原子和六个氢原子组成;- 丙烷、丁烷、戊烷等以此类推。

2. 不饱和烃不饱和烃分为烯烃和炔烃两类。

- 烯烃:由碳原子间存在一个或多个双键连接而成,分子中可以存在一个或多个不饱和键;- 炔烃:由碳原子间存在一个或多个三键连接而成,分子中可以存在一个或多个不饱和键。

二、烃的性质1. 物理性质烃一般为无色、无味的气体或液体,具有较小的相对分子质量。

随着碳链的增加,其物理性质逐渐变化,如沸点、熔点增加。

2. 化学性质烃的化学性质主要包括燃烧性、卤素取代反应和加成反应等。

- 燃烧性:烃能与氧气发生剧烈反应,生成二氧化碳和水,并释放大量热能;- 卤素取代反应:烃中的氢原子可以被卤素(如氯、溴)取代,生成相应的卤化烃;- 加成反应:不饱和烃可以发生加成反应,如烯烃可以和氢气加成生成饱和烃。

三、烃的应用领域由于烃具有丰富的能量和多样的化学性质,因此在各个领域都有广泛的应用:1. 能源领域石油和天然气中的烃是世界上最主要的能源之一,被广泛用于燃料和燃料油的生产。

2. 化学工业烃作为重要的化学原料,广泛用于合成大量化学品,包括塑料、橡胶、合成纤维、涂料等。

3. 药品生产许多药物的合成过程中需要使用烃类化合物作为起始原料或中间体。

4. 农业领域化学农药和合成肥料的生产中也需要使用烃类化合物。

总之,烃作为一类重要的有机化合物,在能源、化工、医药和农业等领域具有重要的应用价值。

了解烃的分类、性质和应用,对于理解有机化学和相关领域的知识都具有重要意义。

烃章节的知识点总结

烃章节的知识点总结

烃章节的知识点总结
1. 脂肪烃
脂肪烃是由直链碳原子排列而成的烃类化合物,主要包括烷烃、烯烃和炔烃三类。

其中,烷烃是由碳原子形成直链结构,烯烃是含有双键的碳链结构,而炔烃是含有三键的碳链结构。

2. 环烃
环烃是由环状碳原子排列而成的烃类化合物,主要包括脂环烷、芳香烃和环烯烃三类。

脂环烷是由碳原子形成环状结构,芳香烃是含有芳香环结构,而环烯烃是含有环状双键的碳链结构。

3. 碳氢化合物的命名和结构
烃类化合物的命名遵循一定的规则,包括根据碳原子数目确定前缀、根据分支结构确定取代基的位置和数量、根据双键和三键的存在确定化合物的烷烃、烯烃、炔烃、脂环烷、芳香烃和环烯烃的性质。

4. 烃类化合物的物理性质
烃类化合物的物理性质包括熔点、沸点、密度、颜色和气味等。

其中,脂肪烃的熔点和沸点随着碳原子数目的增加而增加,而环烃由于分子结构的不同,熔点和沸点的变化规律各不相同。

5. 烃类化合物的化学性质
烃类化合物的化学性质包括燃烧、氧化、氢化、卤代反应和加成反应等。

其中,烃类化合物与氧气反应可以生成二氧化碳和水,与氢气反应可以生成饱和烃,而与卤素反应可以生成卤代烃。

6. 烃类化合物的应用
烃类化合物是重要的工业原料,广泛应用于燃料、润滑油、化工原料、合成橡胶和塑料等领域。

同时,烃类化合物也是生物有机物的重要组成部分,参与着生命的各种代谢过程。

总之,烃是由碳和氢原子组成的一类有机化合物,是石油和天然气的主要组成成分,也是重要的能源资源。

烃类化合物具有多种结构和性质,广泛应用于工业生产和生物代谢过程中。

对烃类化合物的研究和应用具有重要的科学意义和实际价值。

高二化学烃知识总结

高二化学烃知识总结

高二化学烃知识总结烃是碳氢化合物的简称,是把“碳”中的“火”和“氢”中的“ 巠”合写而成的。

下面是由店铺整理的高二化学烃知识总结,希望对大家有所帮助。

高二化学烃知识总结(一)高二化学烃知识总结(二)1)烃基:烃失去一个氢原子后所剩余的原子团。

(2)同系物:结构相似,分子组成上相差一个或若干个原子团的物质的互称。

如烷烃同系物,烯烃同系物,炔烃同系物,苯的同系物。

(3)同分异构体:具有相同分子式,但具有不同的结构式的化合物的互称。

有碳链异构、位置异构、种类异构等。

(4)烷烃的系统命名法:选定分子中最长的碳链为主链,按主链上碳原子数目称为“某烷”;以主链中最靠近支链的一端为起点,给主链碳原子编号;把支链作为取代基,按取代基位置、取代基数目、取代基名称、主链名称的顺序命名。

(5)几种有机化学的反应类型取代反应:有机物分子里的某些原子或原子团被其他原子或原子团所代替的反应。

加成反应:有机物分子里不饱和碳原子与其他原子或原子团直接结合生成新的化合物的反应。

聚合反应:由相对分子质量小的化合物分子结合成相对分子质量大的高分子的反应。

高二化学烃知识总结(三)(1)、烯烃的物理性质烯烃中含有碳碳双键,乙烯中六个原子在同一平面内,烯烃也属脂肪烃,其物理性质与烷烃相似。

(2)、烯烃的化学性质① 氧化反应双键能够被氧化剂氧化,因此烯烃能使高锰酸钾退色。

② 加成反应(卤代反应):有机物双键或三键两端的碳原子能与其他原子团直接结合生成新的化合物。

CH2=CH2 + Br2 → CH2BrCH2Br烯烃能使通入溴的四氯化碳溶液退色a、对于烯烃的不对称加成,遵循马氏规则马氏规则——当不对称烯烃与卤化氢发生加成反应时,通常H加到含H多的不饱和碳原子一侧。

b、二烯烃发生加成反应,低温时发生1,2-加成;高温时发生1,4-加成③ 加聚反应:以聚乙烯为例:nCH2= CH2 -[-CH2-CH2-]-n乙烯a 聚乙烯b注意:a 单体——用以形成高分子化合物的小分子物质b 链节——高分子化合物中不断重复的基本结构单元c 聚合度——链节的数目n叫做。

烃类知识点

烃类知识点

烃类知识点《烃》总结一、烃的分类及结构和性质要求掌握本章所涉及的化学方程式三、专题总结(一)烃类反应6种类型1、取代反应——一上一下,取而代之对象:饱和烃、苯和苯的同系物;卤素要求是纯净的卤素单质如:甲烷和氯气的取代反应(方程式、实验现象、产物的物性、取代的有关计算)苯和苯的同系物:卤化、硝化、磺化(方程式、实验设计、产物的物性、除杂)2、加成反应——断一拉二,只上不下对象:不饱和烃(烯烃、炔烃和苯及苯的同系物)烯与H2、X2、HX、H2O的加成。

炔与H2、X2、HX 的加成;苯与H2、Cl2的加成。

马氏加成。

掌握单烯烃的单一加聚和混合加聚,掌握由加聚产物反推单体。

4、氧化反应点燃:所有烃都可以燃烧。

充分燃烧意即O2适量或过量。

产物为CO2和H2O。

掌握所涉及的计算:差量法、极限法、平均值法、十字交叉法、守恒法被酸性KMnO4溶液氧化:烯、炔、苯的同系物5、还原反应——不饱和烃加氢6、分解反应甲烷分解成C和H2;烷烃的裂化(二)常见经验规律1、气态烃燃烧前后总物质的量的变化C x H y+(x+y/4)O2——XCO2 + y/2 H2O(气)当y=4时,反应前后气体总物质的量不变当y>4时,n前<n后当y<4时,n前>n后(只有C2H2)如:125℃,1L某气态烃在9L氧气中充分燃烧后的混合气体体积为10L,则该烃可能是:CH4、C2H4、C3H42、·质量相同的不同烃,燃烧耗氧量由y/x决定或H%决定,比值越大,耗氧量越大。

生成CO2、H2O的量分别由C%、H%决定。

因此最简式相同的有机物(各元素百分比相同),不管以任何比例混合,只要混合物总的质量一定,各元素的质量就相同,完全燃烧后生成的CO2和H2O及消耗O2的总量就一定。

·物质的量相同的不同烃,燃烧耗氧量由x+y/4决定,生成CO2、H2O的量分别由x、y决定。

如:C3H8、C3H6、C4H6、C7H8四种物质分析。

高一有机化学烃的知识点

高一有机化学烃的知识点

高一有机化学烃的知识点有机化学是化学中的一个重要分支,研究的是碳及其化合物。

烃是无氧化合物,由碳和氢组成。

作为有机化学的基础,烃具有重要的理论和应用价值。

在高一有机化学学习中,烃是重要的知识点之一。

下面将对高一有机化学烃的知识点进行概述。

一、烃的分类根据碳原子间的键的不同,烃可以分为以下两类:1. 脂肪烃:由单键构成的烃,包括烷烃和环烷烃两种。

- 烷烃:碳原子之间只有单键,分子式为CnH2n+2。

- 环烷烃:由碳原子构成的环状结构,分子式为CnH2n。

2. 烯烃:由双键构成的烃,包括烯烃和环烯烃两种。

- 烯烃:分子中有一个或多个碳原子之间有双键,分子式为CnH2n。

- 环烯烃:由碳原子构成的环状结构,分子中有一个或多个碳原子之间有双键,分子式为CnH2n-2。

二、烃的命名为了方便研究和交流,烃都有统一的命名方法。

下面介绍几种常见的烃的命名方法:1. 烷烃的命名:烷烃的命名方法是根据其含有的碳原子数进行命名。

以直链烷烃为例,根据碳原子数的不同,分别命名为甲烷、乙烷、丙烷、丁烷等。

2. 烯烃的命名:烯烃的命名需要标明双键所在的位置。

以1-丁烯为例,表示双键在碳链的第一个碳原子与第二个碳原子之间。

3. 炔烃的命名:炔烃的命名也需要标明三键所在的位置。

以1-戊炔为例,表示三键在碳链的第一个碳原子与第二个碳原子之间。

三、烃的性质1. 密度和沸点:随着碳链长度的增加,烃的密度和沸点逐渐增加。

这是因为长碳链的分子量较大,分子间的相互作用力也相应增加。

2. 饱和度和反应性:饱和烃不含双键或三键,相对稳定,反应性较低;而不饱和烃含有双键或三键,容易发生加成反应。

3. 燃烧性:烃在氧气供应充足的条件下能发生完全燃烧,产生二氧化碳和水,并释放大量的热能。

四、烃的应用烃在日常生活和工业生产中有广泛的应用。

以下是几个常见的应用领域:1. 燃料:烃作为化石燃料的主要成分之一,广泛应用于汽车、航空、发电等领域。

2. 塑料:烃是合成塑料的原料之一,在日常生活中被广泛使用。

高中烃知识点总结

高中烃知识点总结

高中烃知识点总结一、烃的分类1.按照碳原子数目的不同,烃可分为:甲烷(CH4)、乙烷(C2H6)、丙烷(C3H8)等是脂肪烃,它们是开链烷烃。

异构体:同一个分子式,但是结构式不同的化合物。

分支烷烃:在主链上某个碳上含有一级碳。

环烃:分子中含有环状结构。

脂环烷烃:含有不含极性元素的碳烃环且开链。

芳香烃:分子中含有芳香环。

二、烃的命名1.脂肪烃的命名方法以主链烷烃为基础进行命名;编号时取最小号码顺序;多取碳数少的链为主链;取最小的顺序号。

2.分支烷烃的命名方法识别分支取最小号;用前缀表示分支,后缀表示主链。

3.环烃的命名方法-脂环烷烃的命名方法将脂环烷烃看成开链脂肪烃的环状结构进行命名。

-芳香烃的命名方法取代基的编号尽可能小;当其命名的化合物分子含有两个以上取代基时,将其取代基大写字母顺序。

4.烯烃的命名方法含双键的烃称为烯烃。

结构式如果有两个碳碳的双键则为戊二烯;一个碳碳双键为丙烯。

三、烃的结构式1.结构式的概念用来表示有机化合物化学式的平面或立体图。

2.结构式的画法用来表示有机物的结构和成分的图,表示分子中元素间的相对位置关系。

3.烃的异构体异构体:同一个分子式,但是结构式不同的化合物。

例如,丙烷和异丙烷就是一个典型的例子。

4.判断分子结构分子内碳原子间的连接方式,其键级、碳原子的个数以及碳原子内连接H和取代基的个数。

四、烃的物理性质1.密度密度大小与烃的分子量、分子结构和相对分子质量等因素有关。

通常来说,分子量较大的烃比分子量较小的烃密度大。

2.沸点和熔点沸点和熔点的大小与烃的分子量、分子结构和分子间作用力有关。

分子量较大的烃沸点和熔点高,分子量较小的烃沸点和熔点低。

3.溶解性烃类化合物在非极性溶剂中溶解度较高,在极性溶剂中溶解度较低。

4.燃烧性烃类化合物是易燃的,可以与空气中的氧气发生燃烧反应,放出大量的热能和二氧化碳。

五、烃的化学性质1.烃的氧化反应烃与氧气在高温条件下发生氧化反应,产生二氧化碳和水。

高一化学必修二烃知识点

高一化学必修二烃知识点

高一化学必修二烃知识点烃是有机化合物的一类,由碳(C)和氢(H)两种元素组成。

烃根据碳原子间的连接方式和碳原子数目的不同,可以分为饱和烃和不饱和烃两大类。

饱和烃是由碳原子通过单键连接形成的。

最简单的饱和烃是甲烷(CH4),其中一个碳原子与四个氢原子通过共价键连接在一起。

饱和烃的分子结构稳定,不容易与其他物质发生反应,因此在常温下大多数饱和烃都是无色和无味的。

常见的饱和烃有烷烃、环烷烃和脂肪烃。

烷烃是由直链或支链的碳原子组成的饱和烃。

它们的通式为CnH2n+2,其中n代表碳原子数目。

举例来说,乙烷(C2H6)是两个碳原子和六个氢原子组成的烷烃。

烷烃在石油和天然气中存在,并且具有重要的工业和能源应用。

环烷烃是由碳原子形成环状结构的烷烃。

它们的通式为CnH2n,其中n代表碳原子数目。

环烷烃常见的例子是环己烷(C6H12),其中有六个碳原子形成环状结构。

环烷烃在化学实验室中常用作溶剂和清洗剂,具有较高的挥发性。

脂肪烃是由长链碳原子组成的饱和烃。

通常情况下,脂肪烃的碳原子数目大于三个。

脂肪烃在自然界中广泛存在,比如动物脂肪和植物油中的甘油酯。

脂肪烃具有多种用途,比如用作燃料、润滑剂和制造化妆品等。

不饱和烃是由碳原子间存在双键或三键连接的化合物。

不饱和烃的分子结构不稳定,容易与其他物质发生反应。

不饱和烃包括烯烃和炔烃两类。

烯烃是由碳原子间存在一个或多个双键连接的烃。

最简单的烯烃是乙烯(C2H4),其中两个碳原子通过一个双键连接在一起。

烯烃中的双键使得它们的分子结构不饱和,容易与其他物质发生加成反应。

烯烃在化学工业中有广泛应用,比如用作合成橡胶和塑料的原料。

炔烃是由碳原子间存在一个或多个三键连接的烃。

最简单的炔烃是乙炔(C2H2),其中两个碳原子通过一个三键连接在一起。

炔烃的分子结构也是不饱和的,容易与其他物质发生加成反应。

炔烃在化学实验和工业生产中常用作焊接和切割金属的气体燃料。

烃是生活中和工业生产中不可或缺的有机化合物,对我们的生活产生了巨大的影响。

烃所有知识点总结

烃所有知识点总结

烃所有知识点总结烃的分类:烃按结构分为脂肪烃和环烃两大类。

脂肪烃是由碳链构成,按碳链是否饱和分为烷烃、烯烃、炔烃三种。

环烃是由碳原子构成环形结构,根据环的数量和类型分为脂环烃和芳香烃两种。

烃的命名:烃的命名遵循一定的规则,首先根据碳原子数量确定前缀(甲、乙、丙、丁…),然后根据碳原子之间的连接关系确定中缀(-烷、-烯、-炔)以及后缀(-烷、-烯、-炔),最后根据取代基确定取代基的位置和性质。

烃的物理性质:1. 沸点和凝固点:烃的沸点和凝固点与其分子量、分子大小、分子结构等有关,一般来说,分子量越大的烃,其沸点和凝固点越高。

2. 密度:烃的密度与其分子结构、分子形状等有关,一般来说,较为致密的烃其密度较大。

3. 溶解性:烃在非极性溶剂中溶解度较高,在极性溶剂中溶解度较低。

4. 燃烧性:烃具有良好的燃烧性,燃烧时会放出大量的热能。

烃的化学性质:1. 烃的烷烃类具有较为稳定的化学性质,不易发生化学反应;烯烃和炔烃类则具有较为活泼的化学性质,易发生加成反应、氧化反应等。

2. 烃的氧化反应:烃与氧气反应会产生二氧化碳和水,是一种放热反应。

3. 烃的卤代反应:烃与卤素反应时会发生取代反应,生成相应的卤代烃。

4. 烃的重排反应:烃在适当的条件下可以发生碳碳键的重排,生成不同结构的同分异构体。

烃的制备方法:1. 烃的裂解:石油或天然气中的烃可以经过裂化反应,经过加热和催化剂的作用分解为不同碳原子数的烃。

2. 烃的醚化:通过醚化反应,烃可以与醇发生醚化反应,生成醚化合物。

3. 烃的加成反应:烯烃可以与氢气发生加成反应,生成烷烃。

烃在生活中的应用:1. 燃料:烃是能源的重要来源,作为燃料被广泛应用于交通、生产等领域。

2. 化工原料:烃是化工合成的重要原料,可以用于合成各种有机化合物。

3. 医药领域:烃类化合物在医药领域有重要应用,如抗生素、激素等。

在工业生产和生活应用中,烃是一种不可或缺的化合物,在能源、材料、医药等领域都发挥着重要的作用。

高中常见烃的知识点总结

高中常见烃的知识点总结

高中常见烃的知识点总结烃是一类化学物质,由碳和氢元素组成。

它们是碳氢化合物,被广泛应用于日常生活和工业生产中。

在高中化学课程中,学生常常学习有关烃的知识。

本文将总结高中常见烃的知识点,包括烷烃、烯烃和炔烃的定义、命名规则、性质以及应用。

一、烷烃1.定义:烷烃是由碳和氢组成,只含有单键的碳氢化合物。

烷烃分子中碳原子通过单键连接。

2.命名规则:烷烃的命名根据碳原子数目进行,例如,甲烷(CH4)是一种单个碳原子的烷烃,乙烷(C2H6)是两个碳原子的烷烃。

3.性质:烷烃是无色、无臭的气体、液体或固体。

它们的沸点和熔点随着碳原子数的增加而增加。

烷烃在常温下是不溶于水的,但可以溶于非极性溶剂。

4.应用:烷烃是燃料的主要组成部分,如天然气、汽油和柴油。

它们还用于制备塑料、橡胶等化学产品。

二、烯烃1.定义:烯烃是由碳和氢组成,其中碳原子之间存在一个或多个双键的碳氢化合物。

2.命名规则:烯烃的命名根据碳原子数和双键位置进行。

例如,乙烯(C2H4)是一个含有一个双键的烯烃,丙烯(C3H6)是一个含有一个双键的三碳烯烃。

3.性质:烯烃是无色、无臭的气体或液体。

它们通常比相同碳原子数的烷烃具有较低的沸点和较高的反应活性。

烯烃可以进行加成反应和聚合反应。

4.应用:烯烃常用于制备塑料、橡胶和溶剂。

乙烯是一种重要的工业原料,被广泛用于制造聚乙烯。

三、炔烃1.定义:炔烃是由碳和氢组成,其中碳原子之间存在一个或多个三键的碳氢化合物。

2.命名规则:炔烃的命名根据碳原子数和三键位置进行。

例如,乙炔(C2H2)是一个含有一个三键的炔烃,丙炔(C3H4)是一个含有一个三键的三碳炔烃。

3.性质:炔烃是无色、有刺激性气味的气体或液体。

它们通常比相同碳原子数的烷烃和烯烃具有较高的反应活性。

炔烃可以进行加成反应、聚合反应和氢化反应。

4.应用:乙炔是焊接和切割金属的重要燃料。

炔烃还可以用于制备有机合成化合物和橡胶。

总结:高中常见烃主要包括烷烃、烯烃和炔烃。

【化学】高中知识点规律大全(11)——《烃》

【化学】高中知识点规律大全(11)——《烃》

高中化学知识点规律大全——烃1.烃的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧----⎩⎨⎧-----稠环芳烃、联苯等芳香烃:苯的同系物、烃、环炔烃等脂环烃:环烷烃、环烯环烃烯烃、炔烃等不饱和链烃:烯烃、二饱和链烃:烷烃链烃(又称为脂肪烃)烃 2.基本概念[有机物] 含碳元素的化合物称为有机化合物,简称有机物.说明 有机物一定是含有碳元素的化合物(此外,还含有H 、O 、N 、S 、P 等),但含有碳元素的化合物却不一定是有机物,如CO 、CO 2、H 2CO 3、碳酸盐、CaC 2等少数物质,它们的组成和性质跟无机物很相近,一般把它们作为无机物.有机物种类繁多的原因是碳原子最外层有4个电子,不仅可与其他原子形成四个共价键,而且碳原子与碳原子之间也能以共价键(碳碳单键、碳碳双键、碳碳叁键)形成含碳原子数不同、分子结构不同的碳链或环状化合物.[烃] 又称为碳氢化合物,指仅由碳和氢两种元素组成的一大类化合物.根据结构的不同,烃可分为烷烃、烯烃、炔烃、芳香烃等.[结构式] 用一根短线代表一对共用电子对,并将分子中各原子用短线连接起来,以表示分子中各原子的连接次序和方式的式子.如甲烷的结构式为: 乙烯的结构式为:H -C -H H H H -C =C -H[结构简式] 将有机物分子的结构式中的“C —C ”键和“C —H ”键省略不写所得的一种简式.如丙烷的结构简式为CH 3CH 2CH 3,乙烯的结构简式 为CH 2=CH 2,苯的结构简式为 等. [烷烃] 又称为饱和链烃.指分子中碳原子与碳原子之间都以C —C 单键(即1个共用电子对)结合成链状,且碳原子剩余的价键全部跟氢原子相结合的一类烃.“烷”即饱和的意思.CH 4、CH 3CH 3、CH 3CH 2CH 3……等都属于烷烃.烷烃中最简单的是甲烷.[同系物] 结构相似,在分子组成上相差一个或若干个CH 2原子团的有机物,互称同系物. 说明 判断有机物互为同系物的两个要点;①必须结构相似,即必须是同一类物质.例如,碳原子数不同的所有的烷烃(或单烯烃、炔烃、苯的同系物)均互为同系物.由于同系物必须是同一类物质,则同系物一定具有相同的分子式通式,但分子式通式相同的有机物不一定是同系物.由于同系物的结构相似,因此它们的化学性质也相似.②在分子组成上相差一个或若干个CH 2原子团.由于同系物在分子组成上相差CH 2原子团的倍数,因此同系物的分子式不同.由同系物构成的一系列物质叫做同系列(类似数学上的数列),烷烃、烯烃、炔烃、苯的同系物等各自为一个同系列.在同系列中,分子式呈一定规律变化,可以用一个通式表示. [取代反应] 有机物分子里的原子或原子团被其他原子或原子团所代替的反应,叫做取代反应.根据有机物分子里的原子或原子团被不同的原子或原子团[如-X(卤原子)、-NO 2(硝基),-SO3H(磺酸基),等等]所代替,取代反应又分为卤代反应、硝化反应、磺化反应,等等.①卤代反应.如:CH4 + C12→CH3C1 + HCl(反应连续进行,可进一步生成CH2C12、CHCl3、CCl4)(一NO2叫硝基)②硝化反应.如:③磺化反应.如:(一SO3H叫磺酸基)[同分异构现象与同分异构体]化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象.具有同分异构现象的化合物互为同分异构体.说明同分异构体的特点:①分子式相同,相对分子质量相同,分子式的通式相同.但相对分子质量相同的化合物不一定是同分异构体,因为相对分子质量相同时分子式不一定相同.同分异构体的最简式相同,但最简式相同的化合物不一定是同分异构体,因为最简式相同时分子式不一定相同.②结构不同,即分子中原子的连接方式不同.同分异构体可以是同一类物质,也可以是不同类物质.当为同一类物质时,化学性质相似,而物理性质不同;当为不同类物质时,化学性质不同,物理性质也不同.[烃基] 烃分子失去一个或几个氢原子后剩余的部分.烃基的通式用“R-”表示.例如:-CH3(甲基)、-CH2CH3(乙基)、-CH=CH2(乙烯基)、-C6H5或f 今胃(苯基)等.烷基是烷烃分子失去一个氢原子后剩余的原子团,其通式为-CnH2n+1.烃基是含有未成对电子的原子团,例如,-CH3的电子式为1 mol-CH3中含有9 mol电子.[不饱和烃]分子里含有碳碳双键(C=C)或碳碳叁键(C≡C)的烃,双键碳原子或叁键碳原子所结合的氢原子数少于烷烃分子中的氢原子数,还可再结合其他的原子或原子团.不饱和烃包括烯烃、炔烃等.[加成反应]有机物分子里的双键或叁键两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应,叫做加成反应.说明加成反应是具有不饱和键的物质的特征反应.不饱和键上的两个碳原子称为不饱和碳原子,加成反应总是发生在两个不饱和碳原子上.加成反应能使有机分子中的不饱和碳原子变成饱和碳原子.烯烃、炔烃、苯及其同系物均可发生加成反应,例如:(1,2-二溴乙烷)(1,2-二溴乙烯)(1,1,2,2-四溴乙烷)[聚合反应]聚合反应又叫做加聚反应.是由相对分子质量小的化合物分子(即单体)互相结合成相对分子质量大的高分子(即高分子化合物)的反应.说明加聚反应是合成高分子化合物的重要反应之一.能发生加聚反应的物质一定要有不饱和键.加聚反应的原理是不饱和键打开后相互连接成很长的链.例如:(聚乙烯)(聚氯乙烯)[烯烃]分子中含有碳碳双键(C=C键)的一类不饱和烃.根据烃分子中所含碳碳双键数的不同,烯烃又可分为单烯烃(含一个C=C键)、二烯烃(含两个C=C键)等.烯烃中最简单的是乙烯.[炔烃]分子中含有碳碳叁键(C≡C键)的一类不饱和烃.炔烃中最简单的是乙炔.[芳香烃]分子中含有一个或多个苯环的碳氢化合物,叫做芳香烃,简称芳烃.苯是最简单、最基本的芳烃.[石油的分馏]是指用蒸发和冷凝的方法把石油分成不同沸点范围的蒸馏产物的过程.说明①石油的分馏是物理变化;②石油的分馏分为常压分馏和减压分馏两种.常压分馏是指在常压(1.0l×l05Pa)时进行的分馏,主要原料是原油,主要产品有溶剂油、汽油、煤油、柴油和重油.减压分馏是利用“压强越小,物质的沸点越低”的原理,使重油在低于常压下的沸点就可以沸腾,而对其进一步进行分馏.[石油的裂化和裂解]裂化是在一定条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程.在催化剂作用下的裂化,又叫做催化裂化.例如:C16H34 C8H18 + C8H16裂解是采用比裂化更高的温度,使石油分馏产品中的长链烃断裂成乙烯、丙烯等短链烃的加工过程.裂解是一种深度裂化,裂解气的主要产品是乙烯.[煤的干馏]又叫做煤的焦化.是将煤隔绝空气加强热使其分解的过程.说明①煤的干馏是化学变化;②煤干馏的主要产品有焦炭、煤焦油、焦炉气(主要成分为氢气、甲烷等)、粗氨水和粗苯.[煤的气化和液化](1)煤的气化.①概念:把煤中的有机物转化为可燃性气体的过程.②主要化学反应:C(s) + O2(g) CO2(g)⑧煤气的成分、热值和用途比较:煤气种类低热值气中热值气高热值气(合成天然气)生成条件碳在空气中燃烧碳在氧气中燃烧CO + 3H2 C H4 + H2O成分CO、H2、相当量的N2CO、H2、少量CH4主要是CH4特点和用途热值较低.用作冶金、机械工业的燃料气热值较高,可短距离输送.可用作居民使用的煤气,也可用作合成氨、甲醇的原料等热值很高,可远距离输送(2)煤的液化.①概念:把煤转化成液体燃料的过程.②煤的液化的途径:a.直接液化:把煤与适当的溶剂混合后,在高温、高压下(有时还使用催化剂),使煤与氢气作用生成液体燃料.b.间接液化:如图3—11—1所示.3.烷烃、烯烃的命名[烷烃的命名]①习惯命名法.当烷烃分子中所含碳原子数不多时,可用习惯命名法.其命名步骤要点如下:a.数出烷烃分子中碳原子的总数.碳原子总数在10以内的,从1~10依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸来表示.b.当烷烃分子中无支链时,用“正”表示,如:CH3CH2CH2CH3叫正丁烷;当烷烃分子中含“CHa--CH--”结构时,用②系统命名法.步骤:a.选主链.选择支链最多且含碳原子数最多的碳链作主链,并称“某烷”;b.定起点.选择离最简单的支链(即含碳原子数最少)最近的一端作为主链的起点,并使取代基的编号数之和最小;c.取代基,写在前,注位置,短线连;d.相同取代基要合并.不同取代基,不论其位次大小如何,简单在前,复杂在后.[烯烃的命名]在给烯烃命名时,要始终注意到C=C键所在的位置:①选择含有C=C在内的最长碳链作主链(注:此时主链上含碳原子数不一定最多);②从离C=C键最近的一端开始给主链碳原子编号;⑧在“某烯”字样前用较小的阿拉伯数字“1、2…”给烯烃编号.其余与烷烃的命名方法相同.例如:CH3--CHz--'<3--<3H2--K3H3,lCHc其名称为2—乙基—l—丁烯.4.同分异构体的有关知识[同分异构体的熔点、沸点高低的规律]①当为脂肪烃的同分异构体时,支链越多(少),沸点越低(高);②当为含两个侧链的苯的同系物时,侧链相隔越远(近),沸点越高(低).[同分异构体的种类]①有机物类别异构,???如烷烃与烯烃为两类不同的有机物;②碳链异构(苯环上有邻、间、对位三种异构);③官能团位置异构(在“烃的衍生物”中将学习到).[同分异构体的书写规律]①同分异构体的书写规律:要准确、完全地写出同分异构体,一般按以下顺序规律进行书写:类别异构+ 碳链异构一位置异构.②碳链异构(烷烃的同分异构体)的书写技巧:a.先写出不含支链的最长碳链;b.然后写出少1个碳原子的主链,将余下的1个碳原子作支链加在主链上,并依次变动支链位置;c.再写出少2个碳原子的主链,将余下的2个碳原子作为一个乙基或两个甲基加在主链上,并依次变动其位置(注意不要重复);d.以此类推,最后分别在每个碳原子上加上氢原子,使每个碳原子有4个共价键.说明a.从上所述可归纳为:从头摘、挂中间,往端移、不到边,先甲基、后乙基,先集中、后分散,变换位、不能同.b.在书写烯烃或炔烃的同分异构体时,只要在碳链异构的基础上依次变动碳碳双键或碳碳叁键位置即可.[烃的同分异构体种数的确定方法]①等效氢法.烃分子中同一种类的氢原子称为等效氢原子.有机分子中有几种不等效氢原子,其氢原子被一种原子或原子团取代后的一取代物就有几种同分异构体.等效氢原子的一般判断原则:a.位于同一碳原子上的H原子为等效H原子.如CH4中的4个H原子为等效H原子.b.位于同一C原子上的甲基上的H原子为等效H原子.如新戊烷(CH3)4C上的12个H原子为等效H原子.c.同一分子中处于对称位置或镜面对称位置上的H原子为等效H原子.对于含苯环结构的分子中等效H原子的种数的判断,应首先考虑苯环所在平面上是否有对称轴,若没有,则还应考虑是否有垂直于苯环平面的对称轴存在,然后根据对称轴来确定等效H原子的种数.②换元法.换元法是要找出隐含在题目中的等量关系,并将所求对象进行恰当地转换.例如,已知正丁烷的二氯代物有6种同分异构体,则其八氯代物的同分异构体有多少种?正丁烷C4H10。

高中化学烃类知识点总结

高中化学烃类知识点总结

高中化学烃类知识点总结1.烃的概念及通式(1)烷烃:分子中碳原子之间以单键结合成链状,碳原子剩余的价键全部跟氢原子结合的饱和烃,其通式为:CnH2n+2(n≥l)。

(2)烯烃:分子里含有碳碳双键的不饱和链烃,分子通式为:CnH2n(n≥2)。

(3)炔烃:分子里含有碳碳三键的一类脂肪烃,分子通式为:CnH2n-2(n≥2)。

2.烃的物理性质(1)状态:常温下含有1~4个碳原子的烃为气态烃,随碳原子数的增多,逐渐过渡到液态、固态。

(2)沸点:①随着碳原子数的增多,沸点逐渐升高。

②同分异构体之间,支链越多,沸点越低。

(3)相对密度:随着碳原子数的增多,相对密度逐渐增大,密度均比水的小。

(4)在水中的溶解性:均难溶于水。

3.烃的化学性质(1)均易燃烧,燃烧的化学反应通式为:(2)烷烃难被酸性KMnO4溶液等氧化剂氧化,在光照条件下易和卤素单质发生取代反应。

(3)烯烃和炔烃易被酸性KMnO4溶液等氧化剂氧化,易发生加成反应和加聚反应。

1.卤代烃对环境的污染(1)氟氯烃在平流层中会破坏臭氧层,是造成臭氧空洞的罪魁祸首。

(2)氟氯烃破坏臭氧层的原理①氟氯烃在平流层中受紫外线照射产生氯原子②氯原子可引发损耗臭氧的循环反应:③实际上氯原子起了催化作用2.检验卤代烃分子中卤素的方法(X表示卤素原子)(1)实验原理(2)实验步骤:①取少量卤代烃;②加入NaOH溶液;③加热煮沸;④冷却;⑤加入稀硝酸酸化;⑥加入硝酸银溶液;⑦根据沉淀(AgX)的颜色(白色、浅黄色、黄色)可确定卤族元素(氯、溴、碘)。

(3)实验说明:①加热煮沸是为了加快水解反应的速率,因为不同的卤代烃水解的难易程度不同。

②加入稀HNO3酸化的目的:中和过量的NaOH,防止NaOH与AgNO3反应生成的棕黑色Ag2O沉淀干扰对实验现象的观察;检验生成的沉淀是否溶于稀硝酸。

(4)量的关系:据R—X~NaX~AgX,1 mol一卤代烃可得到1 mol卤化银(除F外)沉淀,常利用此量的关系来定量测定卤代烃。

高中化学烃知识点总结

高中化学烃知识点总结

高中化学烃知识点总结一、烃的概念及分类烃是只由碳氢两种元素组成的有机化合物。

根据碳原子之间的连接方式,烃可以分为开链烃和脂环烃两大类。

开链烃的碳原子之间以开链结合,包括烷烃、烯烃和炔烃等;脂环烃则是环状结构的烃,如环烷烃、环烯烃等。

此外,还有一类特殊的烃,即芳香烃,其分子中含有苯环结构。

二、烃的通式及命名烷烃:分子中碳原子之间以单键结合成链状,碳原子剩余的价键全部跟氢原子结合的饱和烃。

其通式为CnH2n+2(n≥1)。

烷烃的命名遵循一定的规则,根据碳原子数和支链情况来确定。

烯烃:分子里含有碳碳双键的不饱和链烃。

其通式为CnH2n(n≥2)。

烯烃的命名需要考虑双键的位置和数量。

炔烃:分子里含有碳碳三键的一类脂肪烃。

其通式为CnH2n-2(n≥2)。

炔烃的命名同样要考虑三键的位置。

三、烃的物理和化学性质物理性质:烃一般为无色、无臭的液体或气体,难溶于水,易溶于有机溶剂。

随着碳原子数的增多,烃的沸点逐渐升高,相对密度也逐渐增大。

化学性质:烃的主要化学性质包括燃烧、取代反应、加成反应和聚合反应等。

例如,烷烃可以发生取代反应,烯烃和炔烃可以发生加成反应等。

四、烃的合成烃可以通过多种方法合成,如烷烃可以通过碳氢化合物的脱水、脱氢、脱卤等反应合成;烯烃可以通过烷烃的脱氢反应合成;炔烃可以通过烯烃的脱氢反应合成等。

此外,烃类还可以通过卤代反应等合成卤代烃等衍生物。

五、烃的应用烃及其衍生物在化工、医药、能源等领域有着广泛的应用。

例如,石油中的烃经过分馏、裂化、重整等工艺处理后可以得到汽油、柴油等燃料;烃类还是塑料、化肥等化工产品的重要原料;在医药领域,烃类药物如麻醉药物、抗癌药物等具有重要地位。

总之,高中化学烃的知识点涉及烃的概念、分类、物理和化学性质以及烃的合成和应用等方面。

通过掌握这些知识点,可以更好地理解烃的结构和性质,为后续的化学学习和应用打下基础。

烃类知识点归纳总结高中

烃类知识点归纳总结高中

烃类知识点归纳总结高中一、脂肪烃1.1 饱和脂肪烃饱和脂肪烃的分子式为CnH2n+2,是碳原子间是单键相连的烃类化合物。

常见的饱和脂肪烃包括甲烷、乙烷、丙烷等。

这些烃具有较高的稳定性和化学惰性。

1.2 不饱和脂肪烃不饱和脂肪烃的分子式为CnH2n,是碳原子间存在双键或三键结构的烃类化合物。

常见的不饱和脂肪烃包括乙烯、丙烯等。

这些烃具有较高的反应性和化学活性。

1.3 烃的物理性质烃的物理性质包括密度、沸点、熔点等。

不同种类的烃具有不同的物理性质,这些性质对于烃的生产和应用具有重要的意义。

1.4 烃的化学性质烃的化学性质包括燃烧、氧化、加成反应等。

这些化学性质决定了烃在化工生产中的应用。

二、芳香烃2.1 芳香烃的结构芳香烃的结构特点是由芳香环组成,其中的碳原子间存在特殊的共轭结构。

常见的芳香烃包括苯、甲苯、苯乙烯等。

2.2 芳香烃的物理性质芳香烃的物理性质包括密度、沸点、熔点等。

与脂肪烃不同,芳香烃具有特殊的物理性质,这些性质对于芳香烃的生产和应用具有重要的意义。

2.3 芳香烃的化学性质芳香烃的化学性质包括亲电取代反应、亲核取代反应、加成反应等。

芳香烃的化学性质与脂肪烃有所不同,但同样决定了芳香烃在化工生产中的应用。

三、烃在生产中的应用3.1 烃的燃料应用烃是重要的燃料,可以用于生产汽油、柴油、天然气等。

这些燃料在交通运输、工业生产等领域具有广泛的应用。

3.2 烃的化工原料应用烃是化工生产中重要的原料,可以用于生产乙烯、丙烯、丙烷等化工产品。

这些化工产品在日常生活、医药、农药等方面都有重要的应用。

3.3 烃的医药应用烃可以用于生产各种医药原料,如麻醉剂、抗生素、激素等。

这些医药原料在医疗保健领域具有重要的应用价值。

3.4 烃的农药应用烃可以用于生产各种农药原料,如杀虫剂、杀菌剂等。

这些农药原料在农业生产中起到了重要的作用。

综上所述,烃是一类重要的有机化合物,在生产和应用中具有广泛的应用价值。

对于高中生物和化学学习者而言,掌握烃的相关知识点,有助于理解有机化合物的特性和应用,提高化学素养,促进科学素养的发展。

高中化学烃及其衍生物知识点

高中化学烃及其衍生物知识点

高中化学烃及其衍生物知识点详解一、烃的概念与分类1. 概念:烃是只含有碳和氢两种元素的有机物。

2. 分类:饱和烃(烷烃):分子中所有的碳原子都形成四个单键,如甲烷(CH₄)、乙烷(C₂H₆)等。

不饱和烃:分子中含有碳碳双键或碳碳三键的烃。

烯烃:分子中含有一个或多个碳碳双键的烃,如乙烯(C₂H₄)、丙烯(C₃H₆)等。

炔烃:分子中含有一个或多个碳碳三键的烃,如乙炔(C₂H₂)、丙炔(C₃H₄)等。

二、烃的物理性质状态:随着碳原子数的增加,烷烃由气态逐渐过渡到液态、固态。

熔沸点:随着碳原子数的增加,熔沸点逐渐升高。

溶解度:烃类都不溶于水,但易溶于有机溶剂。

三、烃的化学性质1. 取代反应:烷烃在光照条件下与卤素单质发生取代反应,生成卤代烃和卤化氢。

例如:CH₄ + Cl₂ →CH₃Cl + HCl2. 加成反应:烯烃和炔烃能与卤素单质、氢气等发生加成反应。

例如:CH₂=CH₂ + Br₂ →CH₂BrCH₂BrCH₂=CH₂ + H₂ →CH₃CH₃3. 氧化反应:烷烃在燃烧时发生氧化反应,生成二氧化碳和水。

烯烃和炔烃也能被高锰酸钾等氧化剂氧化。

例如:2CH₃CH₂CH₂CH₃ + 13O₂ →8CO₂ + 10H₂OCH₂=CH₂ + KMnO₄ →CO₂ + H₂O四、烃的衍生物烃分子中的氢原子被其他原子或原子团所取代而生成的一系列化合物称为烃的衍生物。

常见的烃的衍生物包括卤代烃、醇、酚、醛、酮、羧酸、酯等。

1. 卤代烃:烃分子中的氢原子被卤素原子取代而形成的化合物。

例如:氯乙烷(CH₃CH₂Cl)、溴苯(C₆H₅Br)等。

2. 醇:烃分子中的一个或多个氢原子被羟基(-OH)取代而形成的化合物。

例如:乙醇(C₂H₅OH)、丙三醇(C₃H₈O₃)等。

3. 酚:苯环上的氢原子被羟基取代而形成的化合物。

例如:苯酚(C₆H₅OH)。

4. 醛:烃基与醛基(-CHO)相连而形成的化合物。

例如:甲醛(HCHO)、乙醛(CH₃CHO)等。

高二必修一化学知识烃

高二必修一化学知识烃

2019年高二必修一化学知识烃高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了2019年高二必修一化学知识,希望对大家有帮助。


①有机物
a、概念:含碳的化合物,除CO、CO2、碳酸盐等无机物外
b、结构特点:ⅰ、碳原子最外层有4个电子,一定形成四根共价键
ⅱ、碳原子可以和碳原子结合形成碳链,还可以和其他原子结合
ⅲ、碳碳之间可以形成单键,还可以形成双键、三键
ⅳ、碳碳可以形成链状,也可以形成环状
c、一般性质:ⅰ、绝大部分有机物都可以燃烧(除了CCl4不仅布燃烧,还可以用来灭火)
ⅱ、绝大部分有机物都不溶于水(乙醇、乙酸、葡萄糖等可以) ②烃:仅含碳、氢两种元素的化合物(甲烷、乙烯、苯的性质见表)
③烷烃:
a、定义:碳碳之间以单键结合,其余的价键全部与氢结合所形成的链状烃称之为烷烃。

因为碳的所有价键都已经充分利用,所以又称之为饱和烃
b、通式:CnH2n+2,如甲烷(CH4),乙烷(C2H6),丁烷(C4H10)
c、物理性质:随着碳原子数目增加,状态由气态(1-4)变为液态(5-16)再变为固态(17及以上)
查字典化学网小编为大家整理了2019年高二必修一化学知识,希望对大家有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中化学知识点规律大全——烃1.烃的分类⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧----⎩⎨⎧-----稠环芳烃、联苯等芳香烃:苯的同系物、烃、环炔烃等脂环烃:环烷烃、环烯环烃烯烃、炔烃等不饱和链烃:烯烃、二饱和链烃:烷烃链烃(又称为脂肪烃)烃 2.基本概念[有机物] 含碳元素的化合物称为有机化合物,简称有机物.说明 有机物一定是含有碳元素的化合物(此外,还含有H 、O 、N 、S 、P 等),但含有碳元素的化合物却不一定是有机物,如CO 、CO 2、H 2CO 3、碳酸盐、CaC 2等少数物质,它们的组成和性质跟无机物很相近,一般把它们作为无机物.有机物种类繁多的原因是碳原子最外层有4个电子,不仅可与其他原子形成四个共价键,而且碳原子与碳原子之间也能以共价键(碳碳单键、碳碳双键、碳碳叁键)形成含碳原子数不同、分子结构不同的碳链或环状化合物.[烃] 又称为碳氢化合物,指仅由碳和氢两种元素组成的一大类化合物.根据结构的不同,烃可分为烷烃、烯烃、炔烃、芳香烃等.[结构式] 用一根短线代表一对共用电子对,并将分子中各原子用短线连接起来,以表示分子中各原子的连接次序和方式的式子.如甲烷的结构式为: 乙烯的结构式为:H -C -H H H H -C =C -H[结构简式] 将有机物分子的结构式中的“C —C ”键和“C —H ”键省略不写所得的一种简式.如丙烷的结构简式为CH 3CH 2CH 3,乙烯的结构简式 为CH 2=CH 2,苯的结构简式为 等. [烷烃] 又称为饱和链烃.指分子中碳原子与碳原子之间都以C —C 单键(即1个共用电子对)结合成链状,且碳原子剩余的价键全部跟氢原子相结合的一类烃.“烷”即饱和的意思.CH 4、CH 3CH 3、CH 3CH 2CH 3……等都属于烷烃.烷烃中最简单的是甲烷.[同系物] 结构相似,在分子组成上相差一个或若干个CH 2原子团的有机物,互称同系物. 说明 判断有机物互为同系物的两个要点;①必须结构相似,即必须是同一类物质.例如,碳原子数不同的所有的烷烃(或单烯烃、炔烃、苯的同系物)均互为同系物.由于同系物必须是同一类物质,则同系物一定具有相同的分子式通式,但分子式通式相同的有机物不一定是同系物.由于同系物的结构相似,因此它们的化学性质也相似.②在分子组成上相差一个或若干个CH 2原子团.由于同系物在分子组成上相差CH 2原子团的倍数,因此同系物的分子式不同.由同系物构成的一系列物质叫做同系列(类似数学上的数列),烷烃、烯烃、炔烃、苯的同系物等各自为一个同系列.在同系列中,分子式呈一定规律变化,可以用一个通式表示. [取代反应] 有机物分子里的原子或原子团被其他原子或原子团所代替的反应,叫做取代反应.根据有机物分子里的原子或原子团被不同的原子或原子团[如-X(卤原子)、-NO 2(硝基),-SO 3H(磺酸基),等等]所代替,取代反应又分为卤代反应、硝化反应、磺化反应,等等.①卤代反应.如:CH4 + C12→CH3C1 + HCl(反应连续进行,可进一步生成CH2C12、CHCl3、CCl4)(一NO2叫硝基)②硝化反应.如:③磺化反应.如:(一SO3H叫磺酸基)[同分异构现象与同分异构体]化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象.具有同分异构现象的化合物互为同分异构体.说明同分异构体的特点:①分子式相同,相对分子质量相同,分子式的通式相同.但相对分子质量相同的化合物不一定是同分异构体,因为相对分子质量相同时分子式不一定相同.同分异构体的最简式相同,但最简式相同的化合物不一定是同分异构体,因为最简式相同时分子式不一定相同.②结构不同,即分子中原子的连接方式不同.同分异构体可以是同一类物质,也可以是不同类物质.当为同一类物质时,化学性质相似,而物理性质不同;当为不同类物质时,化学性质不同,物理性质也不同.[烃基] 烃分子失去一个或几个氢原子后剩余的部分.烃基的通式用“R-”表示.例如:-CH3(甲基)、-CH2CH3(乙基)、-CH=CH2(乙烯基)、-C6H5或 f 今胃(苯基)等.烷基是烷烃分子失去一个氢原子后剩余的原子团,其通式为-CnH2n+1.烃基是含有未成对电子的原子团,例如,-CH3的电子式为1 mol-CH3中含有9 mol电子.[不饱和烃]分子里含有碳碳双键(C=C)或碳碳叁键(C≡C)的烃,双键碳原子或叁键碳原子所结合的氢原子数少于烷烃分子中的氢原子数,还可再结合其他的原子或原子团.不饱和烃包括烯烃、炔烃等.[加成反应]有机物分子里的双键或叁键两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应,叫做加成反应.说明加成反应是具有不饱和键的物质的特征反应.不饱和键上的两个碳原子称为不饱和碳原子,加成反应总是发生在两个不饱和碳原子上.加成反应能使有机分子中的不饱和碳原子变成饱和碳原子.烯烃、炔烃、苯及其同系物均可发生加成反应,例如:(1,2-二溴乙烷)(1,2-二溴乙烯)(1,1,2,2-四溴乙烷)[聚合反应]聚合反应又叫做加聚反应.是由相对分子质量小的化合物分子(即单体)互相结合成相对分子质量大的高分子(即高分子化合物)的反应.说明加聚反应是合成高分子化合物的重要反应之一.能发生加聚反应的物质一定要有不饱和键.加聚反应的原理是不饱和键打开后相互连接成很长的链.例如:(聚乙烯)(聚氯乙烯)[烯烃]分子中含有碳碳双键(C=C键)的一类不饱和烃.根据烃分子中所含碳碳双键数的不同,烯烃又可分为单烯烃(含一个C=C键)、二烯烃(含两个C=C键)等.烯烃中最简单的是乙烯.[炔烃]分子中含有碳碳叁键(C≡C键)的一类不饱和烃.炔烃中最简单的是乙炔.[芳香烃]分子中含有一个或多个苯环的碳氢化合物,叫做芳香烃,简称芳烃.苯是最简单、最基本的芳烃.[石油的分馏]是指用蒸发和冷凝的方法把石油分成不同沸点范围的蒸馏产物的过程.说明①石油的分馏是物理变化;②石油的分馏分为常压分馏和减压分馏两种.常压分馏是指在常压(1.0l×l05Pa)时进行的分馏,主要原料是原油,主要产品有溶剂油、汽油、煤油、柴油和重油.减压分馏是利用“压强越小,物质的沸点越低”的原理,使重油在低于常压下的沸点就可以沸腾,而对其进一步进行分馏.[石油的裂化和裂解]裂化是在一定条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程.在催化剂作用下的裂化,又叫做催化裂化.例如:C16H34 C8H18 + C8H16裂解是采用比裂化更高的温度,使石油分馏产品中的长链烃断裂成乙烯、丙烯等短链烃的加工过程.裂解是一种深度裂化,裂解气的主要产品是乙烯.[煤的干馏]又叫做煤的焦化.是将煤隔绝空气加强热使其分解的过程.说明①煤的干馏是化学变化;②煤干馏的主要产品有焦炭、煤焦油、焦炉气(主要成分为氢气、甲烷等)、粗氨水和粗苯.[煤的气化和液化](1)煤的气化.①概念:把煤中的有机物转化为可燃性气体的过程.②主要化学反应:C(s) + O2(g) CO2(g)(2)煤的液化.①概念:把煤转化成液体燃料的过程.②煤的液化的途径:a.直接液化:把煤与适当的溶剂混合后,在高温、高压下(有时还使用催化剂),使煤与氢气作用生成液体燃料.b.间接液化:如图3—11—1所示.3.烷烃、烯烃的命名[烷烃的命名]①习惯命名法.当烷烃分子中所含碳原子数不多时,可用习惯命名法.其命名步骤要点如下:a.数出烷烃分子中碳原子的总数.碳原子总数在10以内的,从1~10依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸来表示.b.当烷烃分子中无支链时,用“正”表示,如:CH3CH2CH2CH3叫正丁烷;当烷烃分子中含“CHa--CH--”结构时,用②系统命名法.步骤:a.选主链.选择支链最多且含碳原子数最多的碳链作主链,并称“某烷”;b.定起点.选择离最简单的支链(即含碳原子数最少)最近的一端作为主链的起点,并使取代基的编号数之和最小;c.取代基,写在前,注位置,短线连;d.相同取代基要合并.不同取代基,不论其位次大小如何,简单在前,复杂在后.[烯烃的命名]在给烯烃命名时,要始终注意到C=C键所在的位置:①选择含有C=C在内的最长碳链作主链(注:此时主链上含碳原子数不一定最多);②从离C=C键最近的一端开始给主链碳原子编号;⑧在“某烯”字样前用较小的阿拉伯数字“1、2…”给烯烃编号.其余与烷烃的命名方法相同.例如:CH3--CHz--'<3--<3H2--K3H3,lCHc其名称为2—乙基—l—丁烯.4.同分异构体的有关知识[同分异构体的熔点、沸点高低的规律]①当为脂肪烃的同分异构体时,支链越多(少),沸点越低(高);②当为含两个侧链的苯的同系物时,侧链相隔越远(近),沸点越高(低).[同分异构体的种类]①有机物类别异构,???如烷烃与烯烃为两类不同的有机物;②碳链异构(苯环上有邻、间、对位三种异构);③官能团位置异构(在“烃的衍生物”中将学习到).[同分异构体的书写规律]①同分异构体的书写规律:要准确、完全地写出同分异构体,一般按以下顺序规律进行书写:类别异构+ 碳链异构一位置异构.②碳链异构(烷烃的同分异构体)的书写技巧:a.先写出不含支链的最长碳链;b.然后写出少1个碳原子的主链,将余下的1个碳原子作支链加在主链上,并依次变动支链位置;c.再写出少2个碳原子的主链,将余下的2个碳原子作为一个乙基或两个甲基加在主链上,并依次变动其位置(注意不要重复);d.以此类推,最后分别在每个碳原子上加上氢原子,使每个碳原子有4个共价键.说明a.从上所述可归纳为:从头摘、挂中间,往端移、不到边,先甲基、后乙基,先集中、后分散,变换位、不能同.b.在书写烯烃或炔烃的同分异构体时,只要在碳链异构的基础上依次变动碳碳双键或碳碳叁键位置即可.[烃的同分异构体种数的确定方法]①等效氢法.烃分子中同一种类的氢原子称为等效氢原子.有机分子中有几种不等效氢原子,其氢原子被一种原子或原子团取代后的一取代物就有几种同分异构体.等效氢原子的一般判断原则:a.位于同一碳原子上的H原子为等效H原子.如CH4中的4个H原子为等效H原子.b.位于同一C原子上的甲基上的H原子为等效H原子.如新戊烷(CH3)4C上的12个H原子为等效H原子.c.同一分子中处于对称位置或镜面对称位置上的H原子为等效H原子.对于含苯环结构的分子中等效H原子的种数的判断,应首先考虑苯环所在平面上是否有对称轴,若没有,则还应考虑是否有垂直于苯环平面的对称轴存在,然后根据对称轴来确定等效H原子的种数.②换元法.换元法是要找出隐含在题目中的等量关系,并将所求对象进行恰当地转换.例如,已知正丁烷的二氯代物有6种同分异构体,则其八氯代物的同分异构体有多少种?正丁烷C4H10。

相关文档
最新文档