硫酸处理制备高收率生物基多孔炭

合集下载

多孔碳材料的制备

多孔碳材料的制备

多孔碳材料的制备多孔碳材料是一类具有大量微孔和孔隙的碳材料,具有高表面积和低密度等优良特性,广泛应用于催化、吸附、电化学能量储存等领域。

下面将详细介绍多孔碳材料的制备方法。

一、孔模板法制备多孔碳材料孔模板法是一种常用的制备多孔碳材料的方法,其原理是利用模板作为孔道的模型,在模板表面或内部涂覆碳源物质,形成多孔碳材料。

模板材料可以是聚苯乙烯球、硅胶、纳米颗粒等,碳源物质可以是有机物、碳黑等。

制备过程中,通常需要经历涂覆、炭化、模板去除等步骤。

二、直接碳化法制备多孔碳材料直接碳化法是将碳源物质在一定温度下直接转化为碳材料,具有制备简单、成本低等优点。

在制备多孔碳材料时,常用的碳源物质有聚苯乙烯、聚丙烯腈等高分子材料。

制备过程中,常需要进行碳化、活化等处理,以便形成多孔结构。

三、可离析模板法制备多孔碳材料可离析模板法是一种制备大孔、中孔多孔碳材料的有力手段。

其基本思路是以复合高分子乳液作为模板,在高温下炭化,形成多孔碳材料。

在可离析模板法中,模板主要起模拟孔对多孔碳材料性质影响规律的作用。

优点是模板完全燃尽后留下无痕迹的孔道,孔径大小可精密控制。

四、气相沉积法制备多孔碳材料气相沉积法是利用气态前驱体在一定温度和压力下催化反应生成碳材料,具有反应速度快、制备成本低等优点。

在制备多孔碳材料时,常用的气态前驱体有乙烯等低分子烃类、甲醛、三聚氰胺等有机物,通过控制反应条件可调节制成多孔碳材料。

综上所述,多孔碳材料的制备方法非常多样,不同的方法适用于不同的材料和应用领域。

只有根据具体情况选择合适的制备方法,才能制备出高性能的多孔碳材料。

用作锂电池负极材料的多孔生物质碳的合成及表征

用作锂电池负极材料的多孔生物质碳的合成及表征

第49卷第6期2021年3月广州化工Guangzhou Chemical IndustryVol.49No.6Mar.2021用作锂电池负极材料的多孔生物质碳的合成及表征田月茹,张露,顾元香(青岛科技大学环境与安全工程学院,山东青岛266042)摘要:以藕片为碳源制备生物质多孔碳用作锂电池负极材料,在不同电流密度下的倍率性能测试中,0.1A/g电流密度下电池首次充放电容量最高可达500mAh/g,经过60圈循环后电流密度再次恢复到0.1A/g,生物质多孔碳放电比容量仍然高达500mAh/g0在电流密度0.5A/g下,比容量最高可达212mAh/g左右,经过700次循环比容量仍可维持200mAh/g,其放电容量保持率为99.4%,显示出材料良好的循环稳定性。

说明该碳材料不仅具有较高的循环稳定性还具有较好的倍率性能。

关键词:生物质多孔碳;锂电池;负极材料中图分类号:X24文献标志码:A文章编号:1001-9677(2021)06-0045-03 Synthesis of Porous Biomass Carbon as Anode Materialfor Lithium Ion Batterries*TIAN Yue-ru,ZHANG Lu,GU Yuan-xiang(College of Environmental and Safety Engineering,Qingdao University of Science and Technology,Shandong Qingdao266042,China)Abstract:Porous biomass carbon was prepared by using fresh buckwheat as a carbon source,and it was used as an anode material for lithium-ion batteries.The rate capability material was tested at different current densities.The first discharge can reach500mAh/g at the current density of0.1A/g.After60cycles,the discharge specific capacity was still as high as500mAh/g when the current density was restored to0.1Ah/g.At the current density of0.5A/g,specific capacity can maintain212mAh/g and retention rate of its discharge capacity was99.47%after700cycles,which showed the material good cycle stability and rate performance.Key words:porous biomass carbon;anode material;lithium ion batteries锂离子电池作为一种绿色能源,因其比容量大、寿命长、无记忆效应、工作电压高、环境友好等优点已经被广泛应用于各种便携式电子产品中,成为有热门的储能系统⑴幻。

多孔碳材料的制备

多孔碳材料的制备

多孔碳材料的制备多孔碳材料是一种具有高度孔隙结构的碳材料,具有广泛的应用前景。

它具有较大的比表面积和孔隙体积,不仅可以用于吸附材料、电容器电极材料、催化剂载体等领域,还可以应用于能源存储、环境污染处理、生物医学等领域。

多孔碳材料的制备方法多种多样,其中常见的方法包括模板法、溶胶-凝胶法、碳化法等。

下面将针对这些方法进行详细介绍。

第一种制备多孔碳材料的方法是模板法。

模板法是利用一种模板物质作为模板,在其周围构筑碳前体物质,经过炭化或焙烧后去除模板物质得到多孔碳材料。

常用的模板物质有聚苯乙烯微球、硅胶、氧化铁纳米颗粒等。

这种方法制备的多孔碳材料具有孔隙结构规整、孔径均一的特点。

第二种制备多孔碳材料的方法是溶胶-凝胶法。

溶胶-凝胶法是将适当溶剂中的碳前体物质溶胶通过凝胶反应生成凝胶体,再经过干燥和焙烧等处理得到多孔碳材料。

这种方法制备的多孔碳材料具有孔隙结构可调控、比表面积较大的特点。

第三种制备多孔碳材料的方法是碳化法。

碳化法是将含碳物质经过高温热解或炭化处理得到多孔碳材料。

常用的碳化物包括聚合物、天然有机物和无机化合物等。

这种方法制备的多孔碳材料具有孔隙结构可调控、热稳定性好的特点。

在实际制备多孔碳材料的过程中,还可以通过调控碳前体物质的种类、添加助剂以及控制炭化或焙烧条件等方法来改变多孔碳材料的孔隙结构和性能。

例如,可以通过选择不同的碳前体物质和不同的碳化温度来调控多孔碳材料的孔径和孔隙分布。

多孔碳材料的制备方法多样化,可以根据不同的需求选择合适的方法。

随着科学技术的不断进步,人们对多孔碳材料制备方法的研究也在不断深入,相信未来会有更多创新的制备方法出现,为多孔碳材料的应用提供更多可能性。

211171497_生物质基炭材料孔径调控及电化学性能研究进展

211171497_生物质基炭材料孔径调控及电化学性能研究进展

化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期生物质基炭材料孔径调控及电化学性能研究进展刘静1,林琳1,张健2,赵峰1(1 北华大学吉林省木质材料科学与工程重点实验室,吉林 吉林 132013;2 北华大学理学院,吉林 吉林 132013)摘要:生物质基炭材料具有来源广泛、表面官能团丰富和微观结构多样的优点,但具有孔径分布不合理的问题,从而限制了其在电化学储能领域的应用。

本文简述了微孔、介孔和大孔结构对电化学性能的影响机制,详细阐述了孔径调控方法:微孔为碱活化法、发泡活化法、CO 2/蒸汽活化法和冷冻处理法,介孔为酸活化法、模板法、熔融盐炭化法、催化活化法和纤维素酶解法,大孔为SiO 2-胶体模板法和软模板法。

并将以上调控方法的影响因素和优缺点进行了分析,总结了各种方法在电极材料中的应用效果。

分析表明,发泡活化法对微孔调控高效且环保,酸活化法和熔融盐炭化法对介孔率提高显著。

此外,本文将调控方法按照生物质材料来源(组分)的不同进行了分类,得出碱活化法和自模板法适用于动物基炭材料微孔和介孔调控,而纤维素酶解法为植物基炭材料的介孔调控提供了绿色环保的新思路。

最后,本文就生物质基炭材料孔径调控和绿色制备在电化学储能领域的应用提出了建议。

关键词:生物质;热解;电化学;电极材料;孔结构中图分类号:TQ127.11;TM912 文献标志码:A 文章编号:1000-6613(2023)04-1907-10Research progress in pore size regulation and electrochemicalperformance of biomass-based carbon materialsLIU Jing 1,LIN Lin 1,ZHANG Jian 2,ZHAO Feng 1(1 Key Laboratory of Wooden Materials Science and Engineering, Beihua University, Jilin 132013, Jilin, China;2College of Science, Beihua University, Jilin 132013, Jilin, China )Abstract: Biomass-based carbon materials have the advantages of wide source, abundant surface functional groups and diverse microstructures. However, it has the problem of unreasonable pore size distribution, limiting their applications in electrochemical energy storage. In this paper, the influence mechanism of microporous, mesoporous and macroporous structures on electrochemical performance was briefly described, and the pore size regulation methods were elaborated including alkali activation method, foaming activation method, CO 2/steam activation method and freezing treatment method for microporous, acid activation method, template method, molten salt carbonization method, catalytic activation method and cellulase hydrolysis method for mesoporous, and SiO 2-colloidal template method and soft template method for macroporous. Moreover, the influence factors, advantages and disadvantages of the above regulation methods were analyzed, and the application effects of various methods in electrode materials were summarized. The analysis showed that the foaming activation method was efficient and综述与专论DOI :10.16085/j.issn.1000-6613.2022-1056收稿日期:2022-06-06;修改稿日期:2022-07-18。

多孔炭材料简介

多孔炭材料简介

多孔炭材料简介由相互贯通或封闭的孔洞构成网络结构的多孔炭材料在具备炭材料性质(如化学稳定性高、导电性好、价格低廉等)优点的同时,还具有比表面积大、孔道结构可控、孔径可调等诸多特点。

因此,多孔炭材料可应用于分离净化、色谱分析、催化、光学器件、能量存储、生物分离薄膜及纳米反应器等领域。

由三维网络结构形成的大孔结构使多孔炭材料具有优异的吸附性能。

目前,随着多孔炭材料研究的深入和应用的加快,在制备多孔炭材料时,不仅需要控制介孔材料的介观结构、孔径及孔道排列,而且对其微米级的宏观形貌也有具体要求。

现已经成功合成了球、纤维、棒、单晶和体材料等多种形貌的介孔炭材料。

一、多孔炭材料类型多孔炭材料根据孔直径大小分为三类:微孔炭材料(Micropore,<2nm)介孔炭材料(Mesopore,2~50nm)和大孔炭材料Macropore,>50nm)。

其中微孔炭材料又分为极微孔(<0.7nm)和超微孔炭材料(0.7~2nm)。

根据多孔炭材料的结构特点,又将其分为无序多孔炭和有序多孔炭材料。

其中,无序多孔炭材料的孔道不是长程有序,孔道形状不规则,孔径大小分布范围宽。

无序微孔材料中很重要的一类是分子筛型微孔炭,具有均一的微孔结构,孔直径在几A之内。

图11为模板法制备的有序多孔炭及无序多孔炭的流程图5A为不连通孔道模板制备的无序多孔炭,B为相互连通空隙模板制备的有序多孔炭。

多孔炭的微孔材料适合于吸附小分子化合物,而介孔炭材料则适合吸附分子直径较大的染料、维生素及高分子化合物等。

二、制备多孔炭材料的原材料理论上,只要能得到炭都可用作合成多孔炭的原料。

因此,制备多孔炭材料的原料种类繁多,主要有生物质材料、合成高分子材料、废弃高分子材料、焦油与煤炭材料等四类。

1、生物质材料可用作炭材料前驱体的生物质材料,既可以是植物的枝、干、叶、果实与果壳,也可以是动物的骨头和粪便,也可以来源于海洋生物(如海藻)。

枝干类材料有木材、竹、树皮、玉米芯和茎;果壳类材料有稻麦壳、核桃、椰子壳、果核、栗子壳、棉子壳等;还有蔗糖、糖蜜、咖啡豆、甘蔗渣、甜菜渣、木质素等。

多孔碳材料的制备

多孔碳材料的制备

多孔碳材料的制备一、本文概述多孔碳材料是一种具有丰富孔隙结构和优异性能的新型碳素材料,因其在能源、环境、催化等多个领域中的广泛应用而备受关注。

本文旨在全面概述多孔碳材料的制备方法,包括物理法、化学法以及模板法等,并深入探讨各种制备方法的优缺点,以及多孔碳材料在不同领域的应用现状和发展前景。

通过本文的阐述,读者可以更加深入地了解多孔碳材料的制备技术和应用领域,为多孔碳材料的进一步研究和应用提供有价值的参考。

二、多孔碳材料的制备原理多孔碳材料的制备主要基于碳前驱体的热解或碳化过程,以及后续的活化处理。

制备原理主要涉及碳源的选择、热解或碳化过程、活化方法以及孔结构的调控等方面。

碳源的选择是多孔碳材料制备的关键。

常见的碳源包括天然生物质(如木材、椰子壳、动物骨骼等)、合成高分子(如酚醛树脂、聚丙烯腈等)以及碳纳米材料(如石墨烯、碳纳米管等)。

这些碳源在热解或碳化过程中,能够形成碳骨架,为多孔结构的形成提供基础。

热解或碳化过程是多孔碳材料制备的核心步骤。

在热解过程中,碳源中的有机物在缺氧或低氧环境下发生热分解,生成碳和水、二氧化碳等小分子。

碳化过程则是在更高温度下,进一步去除碳中的杂质,提高碳的纯度。

这两个过程都能够形成多孔结构,其中孔的大小和分布取决于碳源的种类、热解或碳化温度以及气氛等因素。

活化处理是多孔碳材料制备过程中的重要环节。

活化方法主要包括物理活化和化学活化。

物理活化通常使用二氧化碳或水蒸气作为活化剂,在高温下与碳发生反应,刻蚀碳表面,形成多孔结构。

化学活化则使用酸、碱或盐等化学试剂,与碳源在较低温度下发生反应,生成多孔碳材料。

活化处理能够有效地调控多孔碳材料的孔结构和比表面积,提高其吸附性能和电化学性能。

孔结构的调控是多孔碳材料制备过程中的关键技术。

通过调整碳源、热解或碳化条件、活化方法等因素,可以实现对多孔碳材料孔结构的有效调控。

例如,改变碳源的种类和粒径可以影响孔的大小和分布;调整热解或碳化温度可以改变孔的形貌和连通性;选择不同的活化剂和活化条件可以调控孔的数量和比表面积等。

纳米木质素基多孔碳电极材料的制备与性能优化

纳米木质素基多孔碳电极材料的制备与性能优化

纳米木质素基多孔碳电极材料的制备与性能优化纳米木质素基多孔碳电极材料的制备与性能优化近年来,电化学储能领域的快速发展已经推动了碳材料的研究。

纳米木质素基多孔碳材料作为一种新型的电极材料,因其丰富的孔结构、良好的导电性和储能性能优势,受到了广泛的关注。

本文将重点探讨纳米木质素基多孔碳材料的制备技术及其性能优化方法。

纳米木质素基多孔碳材料的制备通常分为三个步骤:预处理、碳化和活化。

首先,木质素作为原材料需要预处理,通过碱处理、酸洗和漂白等方法去除杂质和非木质素组分,进一步提高木质素含量。

接着,经过热处理将木质素转化为石墨状碳材料,这个过程称为碳化。

最后,通过物理或化学方法对碳化产物进行活化处理,形成具有多孔结构的纳米木质素基多孔碳材料。

在制备过程中,各个步骤的条件和参数会对最终产物的形貌和性能产生重要影响。

首先,在预处理阶段,适当的处理时间和温度可以有效去除木质素中的杂质和非木质素组分,提高木质素的纯度。

其次,在碳化过程中,合理的温度和时间可以实现木质素向石墨状碳材料的转化,并且控制微观结构和孔结构的形成。

最后,在活化处理过程中,选择合适的活化剂和方法可以进一步扩展材料表面积和增加孔隙体积。

多孔碳材料的性能优化主要包括表面积、孔径分布和导电性等方面。

表面积是衡量多孔碳材料储能性能的重要指标之一,增加表面积可以提高材料的储能容量。

为了增加表面积,可以通过控制碳化和活化过程中的条件,合理设计孔结构和形貌。

此外,孔径分布也对碳材料的储能性能产生重要影响。

较小的孔径可以提高电极材料的离子扩散速度,促进电化学反应的进行。

而较大的孔径可以增加电极材料的容纳量,提高储能容量。

因此,控制孔径分布是优化碳材料性能的关键。

此外,导电性也是影响碳材料性能的重要因素,良好的导电性可以实现更快的电子传输,提高电极材料的能量转换效率。

为了优化纳米木质素基多孔碳材料的性能,可以结合制备过程中的条件调节和后续的物理和化学方法进行改性。

生物质炭的制备及其在吸附中的应用

生物质炭的制备及其在吸附中的应用

综述 (363 ~ 374)生物质炭的制备及其在吸附中的应用丁娜娜1,梁锦华1,乌 兰1,张海霞2(1. 西北民族大学 化学化工学院,甘肃 兰州 730030;2. 兰州大学 化学化工学院,甘肃 兰州 730000)摘要:农药、重金属、染料、药物、个人护理品等是水体中常见的污染物,其中一些化合物具有毒性高、难分解、残留期长的特点,易随食物链积累,可危害到人类健康. 水中污染物的处理工艺有生物降解、化学氧化、膜过滤法、吸附和光催化降解等,其中吸附法操作简单、效率高、毒副产物少,是去除污染物广泛使用的方法. 生物质炭具有高比表面积、高孔隙率以及多种官能团,对多种污染物具有良好吸附作用,在吸附污染物的研究中发挥着重要作用. 详细介绍了生物质炭的制备方法、性质及其在污染物吸附中的应用.关键词:生物质炭;制备方法;吸附中图分类号:O647.32; O657 文献标志码:A 文章编号:1006-3757(2022)04-0363-12DOI :10.16495/j.1006-3757.2022.04.001Preparation of Biochars and Its Applications in AdsorptionDING Na-na 1, LIANG Jin-hua 1, WU Lan 1, ZHANG Hai-xia2(1. College of Chemistry and Chemical Engineering , Northwest Minzu University , Lanzhou 730030, China ;2. College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000, China )Abstract :Pesticides, heavy metals, dyes, pharmaceuticals and personal care products are common pollutants in water.Some compounds among them are characterized by highly toxic, difficult to decomposite and long residue period, which can easily to accumulate in the food chain and endanger the human health. The treatment technologies of pollutants in water include biodegradation, chemical oxidation, membrane filtration, adsorption and photocatalytic degradation, among which adsorption is the most widely used method to remove pollutants due to its simple operation, high efficiency and less toxic by-products. Biochar has a high specific surface area, high porosity and a variety of functional groups, and has a good adsorption effect on a variety of pollutants, which plays an important role in the study of adsorption of pollutants.The preparation methods, properties and applications of biochar in pollutant adsorption were introduced in detail.Key words :biochar ;preparation method ;adsorption人类生存离不开水,在生产生活依赖水资源的同时,也在不断地影响着水环境. 在过去的几十年里,由于全球人口的快速增长以及工农业蓬勃发展,大量废弃物和垃圾排放到水体,这些污染物的排放量远超过水体的自净能力,带来了严重的水体环境问题. 吸附是一种不产生毒副产品的技术,可以以较低的成本完成污染水的净化. 生物质炭材料制备简单,制备原料储备量大,可再生,具有高比表面积、高孔隙率以及多种官能团等特点,对多种污染物具有良好地吸附作用,在吸附污染物的研究中发挥着收稿日期:2022−11−03; 修订日期:2022−11−21.基金项目:国家自然科学基金项目(U21A202828) [National Natural Science Foundation of China (U21A202828)]作者简介:丁娜娜(1993−),女,在读研究生,主要从事吸附材料研究,E-mail :通信作者:乌兰(1974−),女,教授,主要从事高分子化学研究,第 28 卷第 4 期分析测试技术与仪器Volume 28 Number 42022年12月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Dec. 2022重要作用.1 生物质炭定义、制备方法及表征1. 1 生物质炭定义生物质炭是在有限的供氧和合理的温度条件下,在反应器中热解产生的生物质富碳产品[1]. 国际生物质炭协会倡议将其定义为“从生物质碳化中获得的固体材料”. 生物质来源较广,根据其来源可以分为原生生物质、次生生物质和处理生物质(如表1所列). 由于可以节约生产初级生物质的成本,废弃生物质比初级生物质更适合作为生物质炭原料. 在废弃生物质中,动物粪便、城市固体废物是更有利用价值的原料,因为它们最集中,降低了收集成本和废物处理成本. 原料类型影响生物炭吸附污染物的能力,木质生物炭由于原料木质素含量较高,含有较多的酚类基团,表面积也较大,吸附能力更强.表 1 生物质炭的来源分类Table 1 Source classification of biochar主要类型代表性生物质特性参考文献原生生物质秸秆/林木废弃物(包括果壳、稻壳等)高热值、结构有机质、养分不等[2]次生生物质动物粪便、市政污泥等低热值、养分富集、含水率高[3]处理生物质菌渣、药渣、蔗渣等热值、养分和水分均不等[4]1. 2 生物质炭制备方法制备生物质炭一般需要经历两步:碳化和活化.在一定温度和无氧条件(氮气、氩气等惰性气体氛围)下通过热分解对生物质进行碳化提高材料的碳含量,获得活性炭材料[5]. 在这个阶段,碳化温度、时间、升温速率都影响生物质炭材料的形貌、比表面积、孔隙率及产率等,其中温度影响最为显著. Ioannidou 等[6]研究认为,碳化过程中的温度高,导致初次分解和炭渣的二次分解同时进行,导致气体和液体的释放速率大,木炭产量下降. 但增加固定碳和灰分的数量,减少了挥发性物质的数量. 因此,高温提高了木炭的质量,但降低了产量. 采用低加热速率(10~ 15 ℃/min)可以获得高产量和低挥发性木炭,能提高聚合物组分的稳定性.活化过程可分为物理活化和化学活化. 活化工艺的目的是提高比表面积、扩大孔径、增加活性炭的孔隙率. 物理活化法是原料热解碳化后,在活化气体(如CO2、蒸汽、空气或其混合物)的存在下,于相对较高温度下进行可控气化过程. 物理活化法制备过程简单,对仪器损害较小,产生污染物较少. 化学活化法是指将碳化的材料(称为前驱体)与化学活化剂混合,然后对混合物进行热处理,再采用酸/碱和水清洗,除去浸渍剂及盐类,形成合理的活性炭的孔隙结构[7]. 化学活化剂可以对前驱体进行刻蚀,使前驱体产生丰富孔隙,所以活化剂又称为致孔剂,该方法制备的生物质炭具有较大比表面积和较多介孔结构.常用化学活化剂包括H3PO4、ZnCl2、K2CO3、NaOH、KOH、KCl、H2SO4等,常见活化温度范围为450~600 ℃(H3PO4)、400~900 ℃(ZnCl2)、700~1 000 ℃(K2CO3)、550~850 ℃(NaOH)和450 ~ 850 ℃(KOH)[8-12]. 不同的化学活化剂会产生不同的致孔效果. 在去除污染物质时,比起其它活化剂制备的活性炭,金属氢氧化物活化制备的活性炭具有更高的表面积,金属氢氧化物(KOH、NaOH)活化的吸附剂吸附量更高. 与ZnCl2相比,H3PO4对环境污染更少,使用比KOH更低的活化温度,在使用中具有较大优势. 相比于物理活化,化学活化法具有活性炭收率高、活化温度低、活化时间短、多孔结构发展良好等特点[13]. 但化学活化法去除残留杂质需要消耗大量的水/酸,工艺和设备要求复杂,活化剂具有腐蚀性,会衰减仪器设备的使用寿命.1. 3 生物质炭的结构表征表2列出了生物质炭常见表征方法. 透射电子显微镜(TEM)和扫描电子显微镜(SEM)可以用于表征生物质炭的形貌和孔径,X射线衍射(XRD)测定生物质炭的晶型,傅里叶变换红外光谱(FTIR)和拉曼光谱(RM)测定生物质炭中官能团的种类,X射线光电子能谱(XPS)表征生物质炭中的元素种类,热重分析(TG)表征生物质炭稳定性,氮气吸附(NA)仪用于测定生物质炭的比表面积和孔体积,Zeta电位(ZP)测定生物质炭表面电性. 表3列出了常见生物炭的表面积等信息,表4列举了生物炭表面常见364分析测试技术与仪器第 28 卷的官能团.1. 3. 1 比表面积和孔隙度比表面积(S BET)和孔隙率是影响生物质炭吸附性能的主要物理特性. 比表面积决定了吸附目标化合物的空间大小,而微孔、中孔和大孔的大小和分布则决定了活性炭的吸附性能. 随着热解温度的升高,衍生生物炭的比表面积和孔体积一般增加. Ren 等[43]发现,随着热解温度从400 ℃升高到800 ℃,比表面积从207.53 m2/g增加到271.77 m2/g,孔体积从0.58 cm3/g增加到0.71 cm3/g,而当热解温度进一步升高至1 000 ℃时,比表面积下降至132.62 m2/g,孔体积下降至0.66 cm3/g,这可能是孔坍塌的缘故. Jin等[44]指出600 ℃下生产的污泥生物质炭的表面积比550 ℃的表面积小. 550 ℃制备的生物质炭表面孔隙率更高,当温度升高到600 ℃时,污泥生物质炭表面微孔增多,但表面粗糙度下降. 除热解温度外,生物质炭原料的组成对其性质产生重要影响,例如,Li等[45]制备不同生物质来源的生物质炭,在300 ℃时,不完全碳化使大部分无定型碳留在B300上,原料中脂肪族和挥发性成分可能会阻塞孔隙结构,从而降低S BET和孔隙率. 600 ℃可以将无定形碳转化为更致密的芳香族碳,并去除脂肪族及挥发性成分,形成更多的孔隙. 同样在600 ℃下,鸡粪生物质炭的表面积比植物生物质炭(松木屑和玉米秸秆)小得多,植物生物质炭比固体废弃物(污泥和粪便)生物质炭有更大表面积和孔隙率.1. 3. 2 生物质炭的官能团由表4可知,生物质炭含有丰富的官能团,例如,C=C、-OH、-COOH等,这些官能团在吸附中起着重要作用. 热解温度和生物质炭原料是控制生物质炭表面官能团数量和种类的两个关键因素. 生物质炭中含氧官能团的丰度随温度的升高而降低,主要是由于碳化程度的提高,随着温度的升高,H/C、O/C和N/C的原子比降低,表明羟基、羧基和氨基的丰度降低[46]. 不同温度下生成的生物质炭官能团的FTIR光谱不同. 当热解温度从100 ℃升高到700 ℃时,木材和草类生物质炭的FTIR光谱发生了变化,木质纤维素材料的大部分含氧官能团损失[47]. Yuan等[48]发现对于来自油菜、玉米、大豆和花生秸秆的生物质炭,随着温度从300 ℃升高到700 ℃,-COOH和-OH基团对应的峰强度下降. Fan 等[49]提出了通过HNO3-H2SO4和NaOH-H2O2体系的化学氧化模拟了老化的麦草生物炭,通过增加含氧官能团改善了生物炭表面,提高了镉的吸附能力,表 2 用于表征生物炭的仪器技术Table 2 Instrumental techniques for characterizing biochar技术材料评述参考文献TEM废木材生物质炭具有不同表面形貌但具有相似Fe成分的Fe-C复合材料[14] SEM CoOx/丝瓜海绵生物炭丝瓜海绵经煅烧后具有不规则短纤维,纤维表面覆盖着起伏的褶皱,形成天然的微纳米结构,钴修饰后无明显变化,钴颗粒分布在催化剂表面[15]XRD螺旋藻基生物炭(SC)和Mn、N掺杂多孔碳(SA-Mn-NSC)SC和SA-Mn-NSC在24.5 °处出现相似的峰,即石墨的002面[16]IR棉纺织废弃物生物炭生物炭吸附前后的IR光谱,证实了由于羧酸基团的存在,阴离子型活性染料能较好附着在生物炭上[17]RM棉纺织废弃物生物炭利用D峰和G峰强度的比值来评价生物炭吸附染料前后缺陷(D峰)和石墨化排列(G峰)的程度. 吸附前的D/G谱带强度(I p/I c)为0.75,证实了结构紊乱,有利于吸附过程. 然而,染料分子被吸附后,强度比(I p/I c)进一步提高到0.84,表明染料和生物炭之间存在一定的相互作用[17]XPS污泥生物质炭验证了氮在生物炭中的掺杂情况,N含量显著增加,有利于催化能力的提高[18]TG非金属单杂原子(N, O, B)掺杂椰子壳生物炭显示了材料热稳定性[19] NA玉米苞片生物质炭生物质炭均具有相似的比表面积(较高)和孔隙分布结构[20] ZP Ni改性玉米秆生物质炭与无修饰材料相比,修饰Ni的材料表面电荷更负,含丰富羟基[21]第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用365表 3 生物炭固体的比表面积和孔体积Table 3 Specific surface area and pore volume of biochar solids生物质炭材料比表面积/(m2/g)微孔体积/(cm3/g)总孔体积/(cm3/g)参考文献混合污泥衍生生物炭110.71[22]700 ℃煅烧可可壳生物质炭掺杂尿素氮,700 ℃煅烧可可壳生物质炭掺杂尿素氮,700 ℃下,K2CO3活化可可壳生物质炭400 ℃煅烧可可壳生物质炭掺杂尿素氮,400 ℃煅烧可可壳生物质炭掺杂尿素氮,400 ℃下,K2CO3活化可可壳生物质炭26.1459.41328.454.006.788.450.0230.1380.0020.0030.0700.0911.8560.0120.0300.016[23]松木屑生物质炭SDC改性松木屑生物质炭SDC-K1(SDC/KOH=1/1活化)改性松木屑生物质炭SDC-K3(SDC/KOH=1/3活化)活性炭ACMnOx浸渍松木屑生物质炭MnO x/SDCMnOx浸渍改性松木屑生物质炭MnO x/SDC-K1MnOx浸渍改性松木屑生物质炭MnO x/SDC-K3MnOx 浸渍活性炭MnO x/AC1.60764.771 551.21 319.099.13676.101 248.041 130.590.2170.6070.5420.0030.1880.4520.5150.0030.2840.6140.5800.0160.2310.4780.562[24]稻壳生物质炭RH猪粪生物质炭PM污泥生物质炭SS玉米秸秆生物质炭CS 34.814.662.831.1[25]玉米芯颗粒生物炭37.8[26]树脂松果生物质炭27.99[27]油茶壳生物质炭BC OFG硫脲和FeCl3改性油茶壳生物质炭BC OFG@nano-FeS 70.38041.0670.317×10−30.364×10−3[28]海藻酸盐改性稻壳废弃物生物炭1200.653[29] 300 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-300500 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-500700 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-700900 ℃下,KMnO4和Fe(II)改性污泥生物质炭Fe/Mn-SBC-90012.1324.9058.50119.35[30]H2O活化柑橘废料生物质炭CO2活化柑橘废料生物质炭263.4~399.4166.1~212.4[31]550 ℃下热解制备的油菜籽残渣生物质炭RS-550 550 ℃下热解制备的白木生物质炭WW-550212274[32]500 ℃下热解制备的废药渣生物质炭WBC500 600 ℃下热解制备的废药渣生物质炭WBC600 700 ℃下热解制备的废药渣生物质炭WBC700 800 ℃下热解制备的废药渣生物质炭WBC80015.92139.28332.62412.95[33]500 ℃下热解制备的麦秸生物质炭W500 700 ℃下热解制备的麦秸生物质炭W700 500 ℃下热解制备的草生物质炭G500 700 ℃下热解制备的草生物质炭G70011.6347.825.5831.86[34]750 ℃下热解制备的微藻生物质炭MBC750W 750 ℃下热解制备的含Fe微藻生物质炭FBC750W 35.66201.15[35]366分析测试技术与仪器第 28 卷最大吸附能力提高了21.2%. 氧化引起的粗糙表面是增加镉吸附的另一个原因. 生物炭对污染物的吸附性能会随着表面官能团的含量变化而发生变化.1. 3. 3 生物质炭的零电荷点(pHpzc)生物质炭的pH pzc变化和电位变化可以通过调节热解温度来实现. Yuan等[48]提出生物质炭的负电荷随着热解温度的升高而降低,因此低温热解产生的生物质炭表面负电荷比高温热解产生的生物质炭多. Chen等[50]在500~900 ℃温度下对城市污泥进行热解. 随着热解温度的升高,生物固体生物质炭的pH pzc从8.58增加到10.17. 通过研究生物质炭、分析物在不同pH条件的电位以及生物质炭与分析物的pH pzc,分析哪种条件下制备的生物质炭在较宽pH范围内与分析物之间存在较大静电吸引力,选择较合适的生物质炭进行吸附,以此来指导吸附试验,进行吸附条件的优化.1. 3. 4 生物质炭的矿物成分研究生物质炭矿物成分对提高一些污染物吸附能力具有一定作用. 生物质炭中的矿物成分包括钾(K)、钙(Ca)、镁(Mg)等,可以与重金属交换.表 4 生物炭的FTIR分析Table 4 FTIR analysis of biochars生物质原料最终产品频率/(cm−1)官能团的分配参考文献竹子竹子生物炭 3 4371 5871 5141 4161 184~1026806~465-OH (醇类和酚类)C=O(共轭酮和醌)C=C拉伸环振动聚合物中的CH2C-O拉伸振动C-H[36]凤眼莲氨基功能化生物炭/海藻酸盐分离珠3 4062 9361 6101 418933、810OH的拉伸和N-H的重叠拉伸烷基C-H拉伸COO−的反对称振动COO−的对称振动Cr(III)-NH2配位键[37]纺织印染污泥、城市污水污泥、糠醛渣和木屑固体废弃物生物质炭 3 4302 9001 000-OHCH3C-C、S=O、C-O、Si-O[38]花生壳花生壳生物质炭 3 4001 5881 434-OHC=CC-O[39]废纸磁性CoFe2O4/多孔碳 3 4301 6281 371、1 438、1 578、1 623717、759557-OHC=C伸缩振动-COO-对称和不对称伸缩振动峰芳香族化合物的C-H弯曲振动峰Fe-O[40]浒苔粉浒苔生物炭 1 000~9007901 700~1 500、690Si-O-Si的反对称伸缩振动Si-O-Si的对称伸缩振动C-N、C=N[41]污泥污泥生物质炭 3 4202 923、2851 6501 5801 459、1 040548、470-OHC-H弯曲振动C=O拉伸C=C振动C-H和C-O拉伸振动Fe-O拉伸键[42]第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用367Chen等[50]制备的污泥生物质炭对Cd2+的吸附明显高于活性炭,其主要吸附机制是表面沉淀和离子交换. 释放的Ca2+浓度随着初始Cd2+浓度的增加而增加,表明Cd2+的一种吸附机制可能是阳离子交换,Ca2+从矿物基质中释放以及位点被Cd2+取代. Li等[51]在不同矿物质含量的生物炭上吸附磺胺甲恶唑,研究结果表明,生物炭中的含钙矿物质可能通过静电相互作用提供额外的吸附位点. Zhao等[52]通过XRD、XPS和SEM技术鉴定并定量了生物炭中的无机矿物,大约75%的生物炭矿物属于与碳骨架相连的(Si和Al),这些矿物质对双酚A和磺胺甲恶唑吸附产生影响,去除矿物质会降低双酚A吸附,但会增加磺胺甲恶唑的吸附. 热解温度和原料决定生物质炭中矿物成分的含量,随温度的升高,K、Ca、Mg和P在生物质炭样品中富集.2 生物质炭在吸附领域的应用常见再生水的方法如表5所列. 由表5可见,可以通过多种途径实现再生水,在去除土壤和水中的有机和无机污染物时,吸附具有操作简单、低成本、无毒的特点. 粉末活性炭、多壁(单壁)碳纳米管、颗粒活性炭、(氧化)石墨烯、沸石、活性氧化铝均被用来吸附污染物. 此外,树脂、粘土、壳聚糖珠、(介孔)二氧化硅、环糊精和(树枝状)聚合物可从复杂样品中吸附农药残余物.表 5 常见再生水方法Table 5 Common methods of water regeneration方法优点缺点参考文献电化学降解节能,操作时间地点可控有毒降解中间体[53]光催化降解节能有毒降解中间体[53]生物修复降解温和时间长,培养条件苛刻,有毒降解中间体及生物污染物[53-54]絮凝操作简单絮凝剂成本高,产生大量污泥堆积物[55]膜过滤操作简单膜易污染,寿命短,小流量过滤,昂贵[55]吸附操作简单,不产生有毒副产品,成本低[56]生物质炭能够吸附和截留重金属(Pb2+、Cr3+、Cd2+、Ni2+、Cu2+等)和有机化合物(农药、多环芳烃、染料、抗生素),减小污染物的流动性,从而降低污染物在环境中转移的风险,常被用于环境修复. Zhang等[57]研究了不同加热条件下制备的污泥生物质炭对Pb(II)和Cr(VI)的吸附,结果表明,在400 ℃热解2 h的生物炭获得了最大的表面积,具有丰富的有机官能团,具有高的Pb(II) (pH 5.0)和Cr(VI) (pH 2.0)吸附能力. Zhang等[58]以猪粪为原料制备生物质炭,研究了西维因和阿特拉津在原生物质炭和脱焦生物质炭上的吸附和催化水解,发现除疏水作用外,孔隙填充和特异性相互作用对农药的吸附也有很大作用. 生物炭是一种有机灰分和无机灰分的复合物,灰分可以通过特定的相互作用与农药结合,但由于有机基团的吸附位点被灰分掩盖,其对农药的特异性相互作用被抵消. Wu等[59]使用高有机碳含量湖泊沉积物制备的生物质炭吸附水中的菲、磺胺甲恶唑、双酚A、氧氟沙星和诺氟沙星,发现双酚A、氧氟沙星和诺氟沙星的吸附似乎不受材料表面积的控制,疏水效应决定了菲和磺胺甲恶唑的吸附,而氢键可能对含有羟基(对双酚A)或羧基(对氧氟沙星和诺氟沙星)的化合物的吸附起重要作用. Vithanage等[60]用黄瓜合成生物质炭,并在不同pH条件下将其用于去除土壤中的磺胺甲基嘧啶(SMZ),研究结果表明,在pH值为3时,SMZ 的高保留率可能是由于π-π电子供体-受体相互作用和静电离子交换所致,而在pH值为5和7时,阳离子交换是主要作用机制.吸附条件影响吸附效果,下面具体讨论影响吸附的因素,为吸附条件优化提供参考.2. 1 吸附条件优化2. 1. 1 水体的pH水体的pH极大地影响了生物质炭吸附剂表面电荷和化学物质的形态. Zeta电位可以反映生物质炭表面电荷情况,官能团的质子化和去质子化可以在固体颗粒表面产生净电荷,在固体颗粒附近的溶368分析测试技术与仪器第 28 卷液相中形成电双层,影响物质的传输与吸附. Xu等[61]测定花生和油菜秸秆焦炭的Zeta电位随溶液pH 的变化. pH值在3.0~8.0范围内均为负值,说明生物质炭颗粒表面带负电荷. 随着pH的增加,生物质炭的zeta电位呈负向变化,说明负电荷量随pH的增加而增加. 生物质炭的pH pzc是指其表面净电荷为零的溶液pH值,当溶液pH值高于pH pzc时,生物质炭带负电荷,结合金属阳离子,如Cd2+,Pb2+和Hg2+. 当溶液pH值低于pHpzc时,生物质炭带正电荷,结合阴离子,如HAsO42−和HCrO4−,因此吸附质极性相反的表面电荷决定生物质炭在特定需求中的适用性. Huang等[62]制备了三种生物质炭,其pHpzc分别为2.15、2.34、2.23. 当pH值低于pH pzc时,生物质炭带正电荷,由于静电排斥,不利于Cd2+的吸附,解释了pH为2.0时吸附量低的原因. 随着pH值升高,材料上能与金属阳离子结合的负电荷基团增加,导致吸附容量显著增加,达到最大吸附量.在pH值为1~5的水溶液中,铅主要以Pb2+的形式存在,当pH值高于6.3时,会形成氧化铅 [Pb(OH)2],所以可以将吸附pH范围设置为2.0 ~ 6.0. Lee等[63]通过调节生物质炭的pH pzc改善了生物质炭的吸附性能.2. 1. 2 吸附剂用量Zhang等[64]指出随着生物质炭/氧化铁复合材料用量从0 g/L增加到5 g/L,材料的去除率增加了50%,这是由于活性位点的增加,使亚甲基蓝(MB)更容易迁移到吸附位点. 随着材料用量的增加,单位质量材料的MB吸附量下降,这种下降趋势是由于在吸附过程中吸附位点过饱和. 当投加量为2 g/L 以上时,去除率的提高不显著,这可能是由于材料的团聚,减少了可用表面积,并阻塞了一些吸附位点. 另一方面,MB的吸附性能随着投加量的增加而下降,这可能与单位吸附剂中MB分子数量的相对减少有关,也可能与吸附剂聚集引起的活性吸附位点的减少有关. 很多文献[65]都表明上述试验现象的存在,去除率和单位吸附量均处于相对较高值时的吸附剂用量为最佳用量,保证去除率相对较高的同时,保证吸附剂最大利用率.2. 1. 3 污染物的浓度较高的污染物初始浓度提供了更大的驱动力,克服传质阻力,增加污染物与吸附剂之间的碰撞概率. Alsewaileh等[66]以红枣生物质炭为吸附剂,对水溶液中有溴化钾进行吸附,随着初始浓度的增加,溴化钾吸附量增加. Novais等[67]制备了一种混合生物质炭,对水溶液中含磷污染物进行吸附,当污染物初始浓度较低时,吸附位点不能被完全占据,固液两相的浓度差随着溶液初始浓度的增加而增大,提高了材料与污染物碰撞的概率. 当污染物浓度进一步增加时,由于吸附剂上的吸附位点被占据,吸附达到动态平衡,吸附量不再受浓度影响. Yavuz 等[68]研究了金属离子(Cu2+和Cr3+,初始浓度为1.0×10−4、2.0×10−4、4.0×10−4、6.0×10−4、8.0×10−4mol/L)对吸附效果的影响,在较高的初始金属浓度下,吸附效果表现不佳,因为吸附的金属离子相互排斥,阻碍了进一步吸附.2. 1. 4 吸附时间吸附时间优化是工艺参数优化中必不可少的一部分,通过时间优化可以节约时间成本,达到效益最大化. Lee等[63]制备了棕榈油污泥生物质炭吸附Pb2+,随着吸附时间的增加,单位吸附量也随之增加,但吸附速率均逐渐减慢. 90 min后,生物质炭活性位点开始饱和,延长吸附时间没有显著的影响. Yan等[65]研究了吸附时间对吸附的影响,随着吸附时间的延长,吸附量增加,并在一定时间后达到平衡. 这是因为在吸附初始阶段,材料上存在较多的吸附位点,吸附量上升,但随着吸附量越来越多,暴露的吸附位点越来越少,最终吸附量不再变化.2. 1. 5 离子强度废水中往往含有多种离子,研究离子强度对吸附性能的影响是有必要的. Yan等[69]提出由于PO43−和CO32−的共存,H2AsO3−的吸附明显受到抑制.这一结果可以归因于PO43−和CO32−也属于氧阴离子,它们在吸附过程中会“抢夺”生物质炭的吸附位点. Ahmed等[70]提出随着NaNO3溶液加入量增加,磁性生物质炭对U(VI)的吸附量更高,这可能是由于Na+的电荷密度低,离子尺寸大,导致Na+离子与周围的水分子而不是生物质炭发生强烈的相互作用. 在Reguyal等[71]的研究中,离子强度的增加导致磁性生物质炭对磺胺甲恶唑的吸附量更高,也是由于“盐析”效应,高浓度的离子通过改变水的结构和/或通过与溶质的直接离子偶极子相互作用影响溶质的吸附行为.2. 1. 6 吸附温度温度影响吸附速率与吸附平衡常数. 首先,温第 4 期丁娜娜,等:生物质炭的制备及其在吸附中的应用369度的升高降低溶液的粘度,提高吸附质分子在吸附剂外边界层的扩散速率,从而有利于吸附的发生.其次,温度的变化会影响生物吸附剂的平衡吸附能力. 对于放热反应,升高温度会降低吸附量. 对于吸热反应,升高温度会升高吸附量. Egbosiuba等[72]制备了两种生物质炭,研究了温度对生物质炭吸附MB的影响,在25~50 ℃范围内对不同初始质量浓度(50、100、150、200 mg/L)的MB进行了吸附研究. 发现在MB质量浓度为50、100 mg/L时,温度影响较低,但在质量浓度为150、200 mg/L时,温度影响有所增加. 两种材料对MB的吸附性质为吸热,随着温度的升高,MB吸附量的增加可能与以下几点有关:(1)温度升高使MB迁移率增加,溶液粘度降低,从而使其能够渗透到吸附剂的孔隙中. (2)MB 与材料表面官能团的化学相互作用增强. (3)与MB 溶解度相关的化学势变化.生物质炭可用于污染物直接吸附,也在污染物检测方面发挥了重要作用. 为了准确灵敏的完成测试任务,很多样品在分析前要进行富集和与分离.目前样品前处理技术包括固相萃取、固相微萃取(SPME)、液相微萃取等. 其中固相萃取和微萃取均需要一定的吸附剂或涂层,而生物质炭可以单独充当吸附剂或涂层,也可以与其它材料(金属有机框架、共价有机框架、分子印迹、量子点等)复合使用. QuEChERS方法(即快速、简单、廉价、有效、坚固和安全)将液相萃取与固相萃取相结合,成为样品前处理领域最绿色和可持续的方法[73]. Cao等[74]建立了超高效液相色谱-串联质谱(UPLC-MS/MS)用于测定6种杀菌剂残留量,在改进的QuEChERS样品处理方法中,目标化合物采用乙腈提取,生物炭、多壁碳纳米管(MWCNT)和石墨化炭黑(GCB)完成杂质吸附. Adenuga等[75]以椰壳生物质炭为固相微萃取吸附剂,采用改进的QuEChERS法作为样品制备技术,测定了哺乳期妇女母乳和尿液样品中邻苯二甲酸酯的含量. Li等[76]采用磁分散固相萃取和高效液相色谱/紫外相结合的方法,建立了一种快速、灵敏的红糖样品中三嗪类化合物的富集和提取方法. 该研究以低成本甘蔗渣为原料制备了一种磁性多孔生物炭(MPB),并成功从实际样品中提取富集痕量三嗪类化合物. Xie等[77]将低成本的废生物质牛骨炭化,得到氮氧共掺杂分级多孔生物炭(NHPBC). NHPBC具有比表面积高、杂原子充足等突出优势. 该文系统研究了NHPBC对各种有机污染物的富集性能,证明制备的NHPBC适用于对邻二甲苯及其羟基代谢物的高效富集. NHPBC包覆纤维的富集因子在2 384~6 949之间,是商用SPME纤维富集因子的11.1~92.5倍.2. 2 生物质炭回收生物质炭多数是粉末状,在吸附污染物之后需要通过离心、过滤、沉淀等方法进行固液分离来回收. 通过制备磁性生物质炭可以解决固液分离的困难[78-80]. 解决固液分离问题的另一个途径,便是赋予生物质炭能够便于分离的形态,以便将生物质炭轻松从处理过的水相中取出. 例如,Ma等[80]在木材内外表面原位生长ZIF-67,得到复合材料,并通过碳化合成了亲水磁性生物质炭,制备的生物质炭不仅具有磁性,又是块状结构,解决了粉末生物质炭难以回收的问题.3 结论生物质炭的制备原料一般来源于废弃物,废弃物再利用对实现减排具有重要意义. 生物质炭表面性质与原料具有明确相关性,造就了该类材料的多样性,大的比表面积使其成为极具竞争力的吸附剂.该类材料不仅在吸附分离领域占据重要位置,也在催化和电化学等其它领域占有一席之地.参考文献:Gautam R K, Goswami M, Mishra R K, Chaturvedi P,Awashthi M K, Singh R S, Giri B S, Pandey A.Biochar for remediation of agrochemicals and synthet-ic organic dyes from environmental samples: A re-view[J]. Chemosphere,2021,272 :129917.[ 1 ]Ma H F, Yang J J, Gao X, Liu Z B, Liu X X, Xu Z G.Removal of chromium (VI) from water by porous car-bon derived from corn straw: Influencing factors, re-generation and mechanism[J]. Journal of HazardousMaterials,2019,369 :550-560.[ 2 ]Shen X L, Zeng J F, Zhang D L, Wang F, Li Y J, Yi WM. Effect of pyrolysis temperature on characteristics,chemical speciation and environmental risk of Cr, Mn,Cu, and Zn in biochars derived from pig manure[J].Science of the Total Environment,2020,704 :135283.[ 3 ]Ogbonnaya U, Semple K. Impact of biochar on organ-ic contaminants in soil: a tool for mitigating risk?[J].Agronomy,2013,3 (2):349-375.[ 4 ]Sun K, Jiang J C. Preparation and characterization of [ 5 ]370分析测试技术与仪器第 28 卷。

一种生物质分级多孔碳材料的制备方法

一种生物质分级多孔碳材料的制备方法

一种生物质分级多孔碳材料的制备方法
一种生物质分级多孔碳材料的制备方法包括以下步骤:
1. 将生物质原料在隔氧的环境下进行高温热解反应,得到生物质多孔炭。

该制备方法无污染物生成,对实验仪器设备的要求较低,适合大批量生产。

但通过这种制备方法获得的多孔炭,比表面积较小,孔洞分布不均,所含灰分和杂质较多。

2. 将生物质原料经过热解碳化后,经过研磨、过筛,得到含碳固体粉末。

3. 将含碳固体粉末与溶剂混合后,在溶剂中超声砂磨耦合超细化处理得到超细碳粉体。

4. 超细碳粉体经过碱煮、水洗、干燥后获得高纯固体碳粉体。

5. 高纯固体碳粉体在保护气氛下加热活化,得到活化料。

6. 活化料经过水洗、酸煮、水洗、干燥,得到生物质多孔纳米材料。

通过这种方法制备的生物质分级多孔碳材料具有孔结构可调、高比表面积、高导电性和高化学稳定性等优点,可用于电化学能源存储和转化、传感器和吸附等领域。

此外,这种方法工艺简单、绿色、易于量产,可精确调控介孔/微孔结构,在发展生物质原料方面的适应性广,为农业废弃物的综合利用提供技术方案。

《2024年生物质炭的制备、功能改性及去除废水中有机污染物研究进展》范文

《2024年生物质炭的制备、功能改性及去除废水中有机污染物研究进展》范文

《生物质炭的制备、功能改性及去除废水中有机污染物研究进展》篇一摘要:生物质炭是一种新型环保材料,因其良好的吸附性、化学稳定性以及促进土壤有机物改善的特性而受到广泛关注。

本文综述了生物质炭的制备方法、功能改性技术及其在去除废水中有机污染物方面的研究进展,旨在为相关研究提供参考和指导。

一、引言随着工业化的快速发展,废水中的有机污染物已成为环境治理的难题。

生物质炭因其良好的吸附性能和环保特性,在废水处理中具有广阔的应用前景。

本文将重点介绍生物质炭的制备方法、功能改性技术及其在去除废水中有机污染物方面的研究进展。

二、生物质炭的制备生物质炭的制备主要采用热解法,即将生物质原料在无氧或限氧条件下进行热解,使生物质炭化。

制备过程中,原料的选择、热解温度、热解时间等因素都会影响生物质炭的性能。

常见的生物质原料包括农业废弃物、林业废弃物、城市固体废弃物等。

三、生物质炭的功能改性为了提高生物质炭的吸附性能和化学稳定性,研究者们开展了大量的功能改性研究。

改性方法主要包括物理改性、化学改性和生物改性。

1. 物理改性:通过物理手段,如球磨、研磨等,改变生物质炭的孔隙结构和比表面积,从而提高其吸附性能。

2. 化学改性:利用化学试剂对生物质炭进行表面改性,引入极性基团、亲水基团等,增强其与有机污染物的相互作用力。

3. 生物改性:通过微生物的作用,对生物质炭进行表面修饰,增加其与有机污染物的亲和力。

四、去除废水中有机污染物的研究进展生物质炭因其良好的吸附性能和环保特性,在去除废水中有机污染物方面具有显著效果。

研究表明,生物质炭能够有效地吸附废水中的有机物、重金属等污染物,降低废水的污染程度。

此外,通过功能改性后的生物质炭,其吸附性能得到进一步提高,能够更有效地去除废水中的有机污染物。

五、结论与展望生物质炭作为一种新型环保材料,在废水处理中具有广阔的应用前景。

通过热解法可以制备出性能优良的生物质炭,而功能改性技术则能进一步提高其吸附性能和化学稳定性。

生物质炭的制备、功能改性及去除废水中有机污染物研究进展

生物质炭的制备、功能改性及去除废水中有机污染物研究进展

生物质炭的制备、功能改性及去除废水中有机污染物研究进展生物质炭的制备、功能改性及去除废水中有机污染物研究进展一、引言随着人口的增加和工业化的进步,废水的排放和有机污染物的含量也呈现出快速增长的趋势。

有机污染物对人类健康和环境造成了严重的威胁,因此寻找高效、低成本的污染物去除技术是当务之急。

生物质炭作为一种新兴的材料,其制备方法、功能改性及在有机污染物去除方面的研究引起了广泛关注。

二、生物质炭的制备方法生物质炭是指通过热解生物质材料制备得到的炭材料,其主要来源包括农林废弃物、食品加工废弃物、城市固体废弃物等。

生物质炭的制备方法有物理法、化学法和生物质质炭的制备方法有物理法、化学法和生物法。

物理法包括干燥、碳化等步骤,化学法主要通过化学浸渍、热解等过程制备,生物法则是通过微生物的作用将生物质材料转化为生物质炭。

三、生物质炭的功能改性为了增强生物质炭的吸附性能和稳定性,研究人员对生物质炭进行了功能改性。

常见的改性方法包括活化、氧化、改性剂浸渍等。

活化是一种常用的改性方法,通过活化剂对生物质炭表面进行处理,可以增大生物质炭的孔隙结构,提高吸附容量。

氧化则是通过物理或化学方法引入一些含氧官能团,提高生物质炭对有机污染物的亲和力。

改性剂浸渍则是将一些具有特定功能的物质浸渍到生物质炭中,如金属氧化物、复合材料等。

四、生物质炭在废水处理中的应用生物质炭在废水处理中的应用主要体现在有机污染物去除方面。

生物质炭具有孔隙结构丰富、比表面积大的特点,使其具有良好的吸附性能。

研究表明,生物质炭对废水中的有机污染物具有高效、快速的去除能力。

生物质炭的孔隙结构和表面官能团可以与有机污染物发生吸附或化学反应,从而将其从废水中去除。

五、生物质炭在有机污染物去除中的机制生物质炭对有机污染物的去除机制包括吸附、化学反应和生物降解。

吸附是生物质炭与有机污染物之间的物理过程,主要依靠其孔隙结构和表面官能团吸附有机污染物。

化学反应则是生物质炭的表面官能团与有机污染物发生化学反应,形成新的化合物,从而将其去除。

一种从土壤中分离生物质炭的方法

一种从土壤中分离生物质炭的方法

一种从土壤中分离生物质炭的方法引言:生物质炭是一种重要的土壤改良剂和碳负载材料,具有良好的环境效益和经济效益。

然而,目前从土壤中分离生物质炭的方法相对复杂且效率低下。

因此,本文介绍一种高效、简便的从土壤中分离生物质炭的方法。

一、样品准备需要从目标土壤中采集样品。

为了保证分析结果的准确性,应从不同地点采集多个样品并混合均匀。

采集的土壤样品应当去除杂质,并在室温下晾干。

二、筛选分级将干燥的土壤样品通过筛网进行分级,以去除大颗粒物和杂质。

常用的筛网尺寸为2mm,可以根据实际情况进行选择。

三、化学处理将筛选后的土壤样品加入酸性试剂中进行化学处理,以去除有机质和无机盐等杂质。

常用的酸性试剂包括盐酸和硫酸,可以根据土壤类型和目标炭质的要求选择合适的试剂。

四、热处理经过化学处理后的土壤样品需要进行热处理。

将样品放入高温炉中,在氧气限制的条件下进行加热处理。

通常,热处理温度为400-600摄氏度,时间为1-2小时。

这个步骤可以有效地去除残留的有机质和杂质。

五、物理分离经过热处理后,土壤样品中的生物质炭已经得到富集。

接下来,利用物理分离的方法将生物质炭与其余的土壤颗粒分离。

常用的物理分离方法包括重力分离、磁力分离和筛选分离等。

根据土壤颗粒和生物质炭的密度差异和磁性差异,可以选择合适的方法进行分离。

六、纯化处理物理分离后的生物质炭可能还存在一些杂质,需要进行纯化处理。

常用的纯化方法包括水洗、酸洗和碱洗等。

这些方法可以去除残留的无机盐和有机质等杂质,提高生物质炭的纯度。

七、干燥和贮存经过纯化处理的生物质炭需要进行干燥和贮存。

将生物质炭放入干燥箱中,在适当的温度下进行干燥。

干燥后,将生物质炭存放在干燥、密封的容器中,以防止湿气和杂质的污染。

结论:通过上述方法,可以高效、简便地从土壤中分离生物质炭。

这种方法具有操作简单、效率高、成本低等优点,适用于生物质炭的制备和应用。

然而,在实际操作中,仍然需要根据具体情况进行优化和调整,以获得更好的分离效果。

多孔生物炭制备

多孔生物炭制备

多孔生物炭制备以多孔生物炭制备为标题,我们将探讨多孔生物炭的制备方法以及其在环境保护和农业领域的应用。

一、多孔生物炭的制备方法多孔生物炭是一种由生物质经过热解和炭化而制得的炭材料。

其制备方法主要包括以下几个步骤:1. 原料选择:多孔生物炭的制备原料可以是各种生物质,如木材、秸秆、植物残渣等。

选择适合的原料对于制备高质量的多孔生物炭至关重要。

2. 碳化热解:将生物质原料加热至高温,使其热解产生固体炭和气体产物。

在热解过程中,通过调节温度和保持适当的气氛,可以控制炭化过程中的物理和化学性质,从而获得所需的多孔结构。

3. 活化处理:在碳化热解后,可以通过活化处理进一步增加多孔结构。

活化处理可以使用化学方法或物理方法进行,如碱活化、酸活化、水蒸气活化等。

这些活化方法能够增加生物炭的比表面积和孔径分布,提高其吸附性能和催化活性。

4. 粉碎和筛分:经过碳化热解和活化处理后的多孔生物炭需要进行粉碎和筛分,以获得所需的颗粒尺寸和均匀性。

二、多孔生物炭的应用多孔生物炭具有很多优良的性质,因此在环境保护和农业领域有着广泛的应用。

1. 环境污染治理:多孔生物炭具有良好的吸附性能,能够吸附和去除水中的有机物、重金属和有害气体。

因此,它被广泛应用于废水处理、大气污染治理等领域。

同时,多孔生物炭还能够改善土壤的保水性和通透性,减少土壤中的有害物质含量,用于土壤修复和污染物的吸附。

2. 农业改良:多孔生物炭具有优良的保水性和吸附性能,可以改善土壤的肥力和水分保持能力。

同时,多孔生物炭中的孔隙结构有利于土壤微生物的生长和根系的伸展。

因此,多孔生物炭可用作土壤改良剂,提高农作物产量和土壤质量。

3. 能源利用:多孔生物炭是一种可再生能源,具有高热值和低排放的特点。

可以作为生物质能源的替代品,用于发电、供热等领域。

同时,多孔生物炭还可以用于制备电池材料和电容器材料,具有很大的应用潜力。

总结:多孔生物炭的制备方法包括原料选择、碳化热解、活化处理、粉碎和筛分等步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中图分类 号 : TQ4 4 1 2 . 文献标 识码 : A
PRODU CTI N F I H ELD O O H G YI ACTI VA TED CARBO N oM FR W AS TE OM AS BI S BY CI TREATM ENT ETH o D A D M
杜 寿 考
( 国石油 大学 ( 中 华东 ) 山东东 营 , 2 7 6) 5 O 1
摘要 : 以玉米 芯 、 麦秸 、 竹子 、 花秆 、 子 壳五 种农作 物废 弃物 为原料 , 用 硫 酸对原 料进 行预 处理 , 以水 棉 椰 利 并
蒸气为 活化 剂制备 高收 率 生物 基 多孔炭 。通 过 对炭化 收 率等 因素的考 察 , 出最优 酸 处理条 件 : 料 为 6 , 得 原 g
t e mo r vmerc a ay i ( h r g a i ti n l ss TGA ) a d t e FTI c u e ft e rw t ra , n h a l ra e y n h R r v s o h a ma e il a d t e s mp e te td b
Du S o — k o h u a
( ia Unv r iyo e r lu , h n o g Do g i g 2 7 6 , ia Ch n ie st fP to e m S a d n n yn 5 0 1 Ch n )
Ab t a t Ac i a e a b n wih h g il r r p r d f o fv i d f wa t i ma s s i c u i g s r c r m i e k n s o s e b o s e n l d n
硫 酸浓 度 为 2 , 酸 用量 为 9 mL, 溃 5 O 硫 0 浸 h时 的效果较 好 。 未经任 何 处理 时相 比 , 与 酸处理 后 , 原料 的炭 各 化收 率提 高 了 4 3 ~1 . , . 4 1 多孔 炭 的 B T 比表 面积 增 大 , 多孔炭 的微 孔 比例 则相 对减 少 。以纤维素 为 E 而 农作 物废 弃物 的模 型化 合 物 , 过 组成分析 、 通 热重 分析 和红外 谱 图分析 , 酸处理 机理进 行 了初 步探 讨 。 对 关键 词 : 农作物 废 弃物 ; 酸 处理 ; 硫 活化 ; 生物 基 多孔炭 ; 高收率
S AT. t o e d o p i n o i h a e wa s d t v l a e t e p r t u t r fo t i e o o s c r Nir g n a s r to n weg tb s s u e o e a u t h o e s r c u e o b an d p r u a . . b n Th x e i n a e u t h we h t t e y e d o h c i a e a b n p e a e y S o . e e p rme t lr s ls s o d t a h i l f t e a t t d c r o r p r d b AT s mu h v wa c h g e h n t a f s m p e wi o t a y t e t e t I a e n f u d t a h i h p i l t fa i i h r t a h t o a l t u n r a m n . t h s b e o n h t 5 s t e o t h ma i me o c d t e t n , h i l fc r o i a i n c n i c e s n t e r n e o . ~ 1 . , n h u f c r a o r a me t t e y e d o a b n z t a n r a e i h a g f 4 3 o 4 1 a d t e s ra e a e f p r u a b n c n lr eyi ce s yS o o s c r o a a g l r a e b AT. ta s a e s e h tt e r t fmir p r n p r u a b n n I l o c n b e n t a h a i o c o o e i o o s c r o o p e a e yS r p r d b AT e r a e y S d c e s s b AT n c mp rs n t h to o o sc r o t o ta y t e t e t i o a io o t a fp r u a b n wih u n r a m n .
i c e s h il fp r u a b n wa a n d b n l zn h o n r a e t e ye d o o o s c r o sg i e y a a y i g t e c mp sto ft e r w t ra ,h a ao o i n o h a ma e il t e d t f i
维普资讯
2 0 年 第 1期 0 8 13期 总第 3
CARB ON
炭 素
・3 ・ 5
文章 编号 :0 1 9 8 2 O ) 1 O 5 8 1 0 —8 4 ( O 8 O 一O 3 一O
硫 酸 处理 制备 高收 率 生物 基 多孔 炭
c r c b, e tsr w , a o c c n ts ela d c to ta b af rca i r a me t S T) B s d o o n o wh a ta b mb o,o o u h 1 n o t n sr w y s lu i cd te t n ( A . a e n t eyedc a g fc r o ia in,h p i l o dt n fS h il h n eo a b n z t o t eo tma n ii so AT r b an d Th e h ns o AT o c o we eo ti e . em c a im f S t
相关文档
最新文档