高一数学 函数概念及其性质测试题1

合集下载

第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第三章 函数的概念与性质 单元检测卷(含解析)—2024-2025学年高一上学期数学必修第一册

第三章 函数的概念与性质(单元检测卷)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =-x 2+2x +3的定义域为( )A.[-3,1] B.[-1,3]C.(-∞,-3]∪[1,+∞)D.(-∞,-1]∪[3,+∞)2.已知函数y =f(x +1)定义域是[-2,3],则函数y =f(x -1)的定义域是( )A.[0,5] B.[-1,4]C.[-3,2]D.[-2,3]3.已知函数f(x)=Error!若f(-a)+f(a)≤0,则实数a 的取值范围是( )A.[-1,1] B.[-2,0]C.[0,2]D.[-2,2]4.设f(x)是定义域为R 的奇函数,且f(1+x)=f(-x).若f =13,则f =( )A.-53B.-13C.13D.535.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B.y =14x 2-1C .y =4x 2-16 D.y =-4x 2+166.拟定从甲地到乙地通话m min的话费(单位:元)符合f(m)={3.71,0<m ≤4,1.06×(0.5×[m]+2),m >4,其中[m]表示不超过m 的最大整数,从甲地到乙地通话5.2min 的话费是A.3.71元 B.4.24元C.4.77元D.7.95元7.若函数f(x)在R 上是减函数,则下列关系式一定成立的是( )A.f(a)>f(2a) B.f(a 2)<f(a)C.f(a 2+a)<f(a)D.f(a 2+1)<f(a 2)8.若函数f (x)是奇函数,且当x>0时,f (x)=x 3+x +1,则当x<0时,f (x)的解析式为( )A .f (x)=x 3+x -1B .f (x)=-x 3-x -11()3 5()3C .f (x)=x 3-x +1D .f (x)=-x 3-x +1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知f (2x -1)=4x 2,则下列结论正确的是( )A .f (3)=9 B.f (-3)=4C .f (x)=x 2D.f (x)=(x +1)210.函数f(x)的图象是折线段ABC ,如图所示,其中点A ,B ,C 的坐标分别为(-1,2),(1,0),(3,2),以下说法正确的是( )A.f(x)=Error!B.f(x -1)的定义域为[-1,3]C.f(x +1)为偶函数D.若f(x)在[m ,3]上单调递增,则m 的最小值为111.下列说法正确的是( )A.若幂函数的图象经过点,则该幂函数的解析式为y =x -3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y =x α(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=x ,则对于任意的x 1,x 2∈[0,+∞)有f(x 1)+f(x 2)2≤f 三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.设f(x)=11-x,则f(f(x))=__________13.已知二次函数f(x)=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.1(,2)845x-12x x ()2+15.(13分)已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.16.(14分)已知函数f(x)=Error!(1)求f(f(f(5)))的值;(2)画出函数的图象.17.(16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x-12x2,0≤x≤400,80 000,x>400,其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)18.(16分)已知函数f(x)=x21+x2+1,x∈R.1 () 2(1)判断并证明函数的奇偶性;(2)求f(x)+f 的值;(3)计算f(1)+f(2)+f(3)+f(4)+f +f +f .19.(18分)已知二次函数f(x)=x 2-2(a -1)x +4.(1)若a =2,求f(x)在[-2,3]上的最值;(2)若f(x)在区间(-∞,2]上单调单减,求实数a 的取值范围;(3)若x ∈[1,2],求函数f(x)的最小值.参考答案及解析:一、单选题1()x 1()21()31()41.B 解析:由题意,令-x 2+2x +3≥0,即x 2-2x -3≤0,解得-1≤x ≤3,所以函数的定义域为[-1,3].故选B .2.A 解析:由题意知-2≤x ≤3,所以-1≤x +1≤4,所以-1≤x -1≤4,得0≤x ≤5,即y =f(x -1)的定义域为[0,5].3.D 解析:依题意,可得Error!或Error!或Error!解得-2≤a ≤2.4.C 解析:由题意,f =f =f =-f =-f =-f =f =13.5.B 解析:把点(0,-1)代入四个选项可知,只有B 正确.故选B .6.C 解析:f(5.2)=1.06×(0.5×[5.2]+2)=1.06×(0.5×5+2)=4.77.7.D 解析:因为f(x)是R 上的减函数,且a 2+1>a 2,所以f(a 2+1)<f(a 2).故选D .8.A 解析:∵函数f (x)是奇函数,∴f (-x)=-f (x),当x<0时,-x>0,∵x>0时,f (x)=x 3+x +1,∴f (-x)=(-x)3-x +1=-x 3-x +1,∴-f (x)=-x 3-x +1,∴f (x)=x 3+x -1.即x<0时,f (x)=x 3+x -1.故选A .二、多选题9.BD 解析:令t =2x -1,则x =t +12,∴f (t)=4=(t +1)2.∴f (3)=16,f (-3)=4,f (x)=(x +1)2.故选BD .10.ACD 解析:由图可得当-1≤x <1时,图象过(1,0),(-1,2)两点,设f(x)=kx +b ,∴Error!解得Error!=-x +1,当1≤x ≤3时,根据图象过点(1,0),(3,2),同理可得f(x)=x -1,∴f(x)=Error!A 正确;由图可得f(x)的定义域为[-1,3],关于x =1对称,∴f(x -1)的定义域为[0,4],f(x +1)为偶函数,即B 错误,C 正确;当f(x)在[m ,3]上单调递增,则1≤m <3,故m 的最小值为1,D 正确.故选ACD .11.CD 解析:若幂函数的图象经过点,则该幂函数的解析式为y =,故A 错误;函数f(x)=是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),故C 正确;对任意的x 1,x 2∈[0,+∞),要证f(x 1)+f(x 2)2≤f ,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确.三、填空题5()32(1)3+2()3-2(31[1(3+-1()31()3-2t 1()2+1(,2)813x -45x -12x x ()2+12.答案:x -1x (x ≠0且x ≠1)解析:f(f(x))=11-11-x =11-x -11-x=x -1x .13.答案:-3或38解析:f(x)的对称轴为直线x =-1.当a >0时,f(x)max =f(2)=4,解得a =38;当a <0时,f(x)max =f(-1)=4,解得a =-3.综上所述,a =38或a =-3.14.答案:13,0解析:因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f(x)=13x 2+bx+b +1为二次函数,结合偶函数图象的特点,则-b2×73=0,易得b =0.四、解答题15.解:(1)由m 2-5m +7=1,得m =2或m =3.当m =2时,f(x)=x -3是奇函数,所以不满足题意,所以m =2舍去;当m =3时,f(x)=x -4,满足题意,所以f(x)=x -4.所以f ==16.(2)由f(x)=x -4为偶函数且f(2a +1)=f(a),得|2a +1|=|a|,即2a +1=a 或2a +1=-a ,解得a =-1或a =-13.16.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.1()241()217.解:(1)设月产量为x 台,则总成本为(20 000+100x)元,从而f(x)={-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f(x)=-12(x -300)2+25 000,所以当x =300时,f(x)max =25 000.当x >400时,f(x)=60 000-100x 单调递减,f(x)<60 000-100×400=20 000<25 000.所以当x =300时 ,f(x)max =25 000,即每月生产300台仪器时利润最大,最大利润为25 000元.18.解:(1)f(x)是偶函数,理由如下.f(x)的定义域为R ,关于y 轴对称.因为f(-x)=(-x)21+(-x)2+1=x 21+x 2+1=f(x),所以f(x)=x 21+x 2+1是偶函数.(2)因为f(x)=x 21+x 2+1,所以f =+1=1x 2+1+1,所以f(x)+f =3.(3)由(2)可知f(x)+f =3,又因为f(1)=32,所以f(1)+f(2)+f(3)+f(4)+ff +f +f =f(1)+=32+3×3=21219.解:(1)当a =2时,f(x)=x 2-2x +4,x ∈[-2,3],因为f(x)的对称轴为x =1,所以f(x)在[-2,1]上单调递减,在[1,3]上单调递增,所以当x =1时,f(x)取得最小值为f(1)=1-2+4=3,当x =-2时,f(x)取得最大值为f(-2)=22+4+4=12.1()x 221()x 11()x +1(x 1()x 1()21()31()4111[f (2)f ()][f (3)f ()][f (4)f ()]234+++++(2)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,f(x)在区间(-∞,2]单调递减,则a -1≥2,解得a≥3.所以实数a 的取值范围为[3,+∞).(3)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,当a -1≤1,则a≤2,此时f(x)在[1,2]上单调递增,所以f(x)min =f(1)=1-2(a -1)+4=7-2a .当1<a -1<2,则2<a <3,此时f(x)在[1,a -1]上单调递减,在[a -1,2]上单调递增,所以f(x)min =f(a -1)=(a -1)2-2(a -1)2+4=-a 2+2a +3.当a -1≥2,则a ≥3,此时f(x)在[1,2]上单调递减,所以f(x)min =f(2)=22-4(a -1)+4=12-4a .综上,f(x)min ={7-2a ,a ≤2,-a 2+2a +3,2<a <3,12-4a ,a ≥3.。

函数概念与性质(综合测试卷)(原卷版)附答案.docx

函数概念与性质(综合测试卷)(原卷版)附答案.docx

《函数概念与性质》综合测试卷一、单选题1.(2019·浙江南湖 嘉兴一中高一月考)下列四组函数中,()f x 与()g x 表示同一函数是( )A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =2.(2020·浙江高一课时练习)已知2()f x x x =+,则(1)f x -等于( )A .21x x -+B .2x x -C .221x x --D .22x x -3.(2020·浙江高一课时练习)函数y x=的定义域为A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-⋃4.(2020·全国高一课时练习)下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当x 1<x 2时,都有()()12f x f x >的是( ) A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+5.(2020·,则函数235y x x =+-的值域为( )A .(,)-∞+∞B .[0,)+∞C .[7,)-+∞D .[5,)-+∞6.(2020·全国高一课时练习)函数(21)y m x b =-+在R 上是减函数.则( )A .12m >B . 12m <C .12m >-D .12m <-7.(2020·全国高一课时练习)若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围为( )A .11,83⎡⎫⎪⎢⎣⎭B .10,3⎛⎫ ⎪⎝⎭C .1,8⎡⎫+∞⎪⎢⎣⎭D .11,,83⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭8.(2019·浙江高一期中)已知函数222,0()1,0x x f x xx x ⎧++<⎪=⎨⎪--≥⎩,则()f x 的最大值是( )A .2+B .2-C .1-D .19.(2020·荆州市北门中学高一期末)已知奇函数()f x 的定义域为R ,若()2f x +为偶函数,且()11f -=-,则()()20172016f f +=( ) A .2-B .1-C .0D .110.(2019·山西高一月考)已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1二、多选题11.(2019·山东莒县 高一期中)已知函数2()23(0)f x ax ax a =-->,则( )A .()()33f f ->B .()()23f f -<C .()()42f f =-D .()()43f f >12.(2020·浙江高一单元测试)函数2()xf x x a=+的图像可能是( ) A . B .C .D .13.(2019·山东莒县 高一期中)下列命题为真命题的是( ) A .函数1y x =-既是偶函数又在区间[)1,+∞上是增函数B .函数()f x =的最小值为2C .“2x =”是“2x -=的充要条件D .1,1x R x x∃∈<+ 14.(2019·山东黄岛 高一期中)已知定义在R 上函数()f x 的图象是连续不断的,且满足以下条件:①R x ∀∈,()()f x f x -=;②12,(0,)x x ∀∈+∞,当12x x ≠时,都有()()21210f x f x x x ->-;③(1)0f -=.则下列选项成立的是( ) A .(3)(4)>-f fB .若(1)(2)-<f m f ,则(,3)∈-∞mC .若()0f x x>,(1,0)(1,)x ∈-+∞ D .x R ∀∈,∃∈M R ,使得()f x M ≥三、填空题15.(2020·全国高一课时练习)已知函数f (x )=24,03,0x x x x ->⎧⎨--<⎩则f (f (-4))=________.16.(2020·全国高一课时练习)函数()f x 在R 上是减函数,且()()||1f x f >,则x 的取值范围是________.17.(2020·全国高一课时练习)若f (x )M ,g (x )N ,令全集为R ,则()RM N =________.四、双空题18.(2019·浙江湖州 高一期中)若定义域为[]210,3a a -的函数()25231f x x bx a =+-+是偶函数,则a =______,b =______.19.(2020·安达市第七中学高一月考)已知函数2(),()2f x x g x x =-=-,设函数()y M x =,当()()f xg x >时,()()M x f x =;当()()g x f x ≥时,()()M x g x =,则()M x =________ ;函数()y M x =的最小值是________.20.(2020·山西高一期末)已知函数22,0(),,0x ax x f x x x x ⎧-≥=⎨--<⎩是奇函数,且在(1)2m m +,上单调递减,则实数a =______;实数m 的取值范围用区间表示为______.21.(2018·浙江余姚中学高一月考)已知()f x 是定义在R 上的偶函数,若()f x 在[0,)+∞上是增函数,则满足(1)(1)f m f -<的实数m 的取值范围为________;若当0x ≥时,2()4f x x x =+,则当0x <时,()f x 的解析式是________. 五、解答题22.(2020·全国高一课时练习)如图是定义在区间[5-,5]上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?23.(2020·全国高一课时练习)已知f (x )=11xx-+ (x ≠-1).求: (1)f (0)及12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值;(2)f (1-x )及f (f (x )).24.(2020·全国高一课时练习)某市“招手即停”大众汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数关系式,并画出函数的图像.25.(2020·浙江高一课时练习)若函数()f x 的定义域为[0,1],求()()()(0)g x f x m f x m m =++->的定义域.26.(2020·浙江高一课时练习)已知函数22()x x a f x x++=在[1,)+∞上单调递增,若对任意[1,)x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.27.(2020·浙江高一课时练习)定义在(0,)+∞上的函数()f x ,满足()()()(,0)f mn f m f n m n =+>,且当1x >时,()0f x >.(1)求(1)f 的值.(2)求证:()()m f f m f n n ⎛⎫=-⎪⎝⎭. (3)求证:()f x 在(0,)+∞上是增函数.(4)若(2)1f =,解不等式(2)(2)2f x f x +->.(5)比较2m n f +⎛⎫⎪⎝⎭与()()2f m f n +的大小.《函数概念与性质》综合测试卷一、单选题1.(2019·浙江南湖 嘉兴一中高一月考)下列四组函数中,()f x 与()g x 表示同一函数是( )A .()1f x x =-,()211x g x x -=+B .()1f x x =+,()1,11,1x x g x x x +≥⎧=⎨--<-⎩C .()1f x =,()()01g x x =+D .()f x =()2g x =【参考答案】B 【解析】两个函数如果是同一函数,则两个函数的定义域和对应法则应相同,A 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数,所以A 错误;B 选项中,1,1()11,1x x f x x x x +≥-⎧=+=⎨--<-⎩,与()g x 定义域相同,都是R ,对应法则也相同,所以二者是同一函数,所以B 正确;C 选项中,()f x 定义域为R ,()g x 的定义域为(,1)(1,)-∞-⋃-+∞,所以二者不是同一函数, 所以C 错误;D 选项中,()f x 定义域为R ,()g x 的定义域为[0,)+∞,所以二者不是同一函数,所以D 错误. 故选:B2.(2020·浙江高一课时练习)已知2()f x x x =+,则(1)f x -等于( )A .21x x -+B .2x x -C .221x x --D .22x x -【参考答案】B 【解析】因为2()f x x x =+,所以22(1)(1)(1)f x x x x x -=-+-=-. 故选:B3.(2020·浙江高一课时练习)函数y =A .[4,1]-B .[4,0)-C .(0,1]D .[4,0)(0,1]-⋃【参考答案】D 【解析】由2340x x --+≥可得{}/41x x -≤≤,又因为分母0x ≠,所以原函数的定义域为[4,0)(0,1]-⋃. 4.(2020·全国高一课时练习)下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当x 1<x 2时,都有()()12f x f x >的是( )A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+【参考答案】B 【解析】由12x x <时,()()12f x f x >,所以函数()f x 在()0,∞+上为减函数的函数.A 选项,2y x 在()0,∞+上为增函数,不符合题意.B 选项,1y x=在()0,∞+上为减函数,符合题意.C 选项,y x =在()0,∞+上为增函数,不符合题意.D 选项,()21f x x =+在()0,∞+上为增函数,不符合题意.故选B.5.(2020·,则函数235y x x =+-的值域为( )A .(,)-∞+∞B .[0,)+∞C .[7,)-+∞D .[5,)-+∞【参考答案】D 【解析】∵0x ,且函数235y x x =+-的对称轴为302x =-< ∴2355x x +-- 故选:D6.(2020·全国高一课时练习)函数(21)y m x b =-+在R 上是减函数.则( ) A .12m >B .12m < C .12m >-D .12m <-【参考答案】B 【解析】根据题意,函数(21)y m x b =-+在R 上是减函数,则有210m -<, 解可得12m <, 故选B .7.(2020·全国高一课时练习)若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围为( )A .11,83⎡⎫⎪⎢⎣⎭B .10,3⎛⎫ ⎪⎝⎭C .1,8⎡⎫+∞⎪⎢⎣⎭D .11,,83⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭【参考答案】A 【解析】因为函数()f x 是定义在R 上的减函数,所以310314a a a a a-<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<. 故选:A.8.(2019·浙江高一期中)已知函数222,0()1,0x x f x xx x ⎧++<⎪=⎨⎪--≥⎩,则()f x 的最大值是() A .2+ B .2-C .1- D .1【参考答案】B 【解析】(1)当0x <时,2()2=++f x x x,任取120x x <<,则1212121212222()()22()1⎛⎫⎛⎫⎛⎫-=++-++=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f x f x x x x x x x x x ,当12<<x x ,12122()10⎛⎫--< ⎪⎝⎭x x x x ,即12()()f x f x <,函数()f x 单调递增;当120<<<x x 时,12122()10⎛⎫-->⎪⎝⎭x x x x ,即12()()f x f x >,函数()f x 单调递减;所以max ()(2f x f ==-(2)当0x ≥时,2()1f x x =--单调递减,所以max ()(0)1f x f ==-;而21->-,所以max ()2f x =- 故选:B9.(2020·荆州市北门中学高一期末)已知奇函数()f x 的定义域为R ,若()2f x +为偶函数,且()11f -=-,则()()20172016f f +=( ) A .2- B .1-C .0D .1【参考答案】D 【解析】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,(0)0f ∴=,且(2)(2)(2)f x f x f x -+=+=--,则(4)()f x f x +=-,则(8)(4)()f x f x f x +=-+=, 则函数()f x 的周期是8,且函数关于2x =对称,则(2017)(25281)f f f =⨯+=(1)(1)(1)1f =--=--=,(2016)(2528)(0)0f f f =⨯==,则(2017)(2016)011f f +=+=, 故选:D .10.(2019·山西高一月考)已知定义在R 上的函数()f x 满足()()f x f x =-,且在(0,)+∞上是增函数,不等式()()21f ax f +≤-对于[]1,2x ∈恒成立,则a 的取值范围是A .3,12⎡⎤--⎢⎥⎣⎦B .11,2⎡⎤--⎢⎥⎣⎦C .1,02⎡⎤-⎢⎥⎣⎦D .[]0,1【参考答案】A 【解析】()()f x f x =- ()f x ∴为定义在R 上的偶函数,图象关于y 轴对称又()f x 在()0,∞+上是增函数 ()f x ∴在(),0-∞上是减函数()()21f ax f +≤- 21ax ∴+≤,即121ax -≤+≤121ax -≤+≤对于[]1,2x ∈恒成立 31a x x∴-≤≤-在[]1,2上恒成立 312a ∴-≤≤-,即a 的取值范围为:3,12⎡⎤--⎢⎥⎣⎦本题正确选项:A 二、多选题11.(2019·山东莒县 高一期中)已知函数2()23(0)f x ax ax a =-->,则( )A .()()33f f ->B .()()23f f -<C .()()42f f =-D .()()43f f >【参考答案】ACD2()23(0)f x ax ax a =-->对称轴为1x =,且在[1,)+∞是增函数,()()3(5)3f f f -=>,选项A 正确; ()()2(4)3f f f -=>,选项B 错误;()()42f f =-,选项C 正确; ()()43f f >,选项D 正确.故选:ACD.12.(2020·浙江高一单元测试)函数2()xf x x a=+的图像可能是( ) A . B .C .D .【参考答案】ABC由题可知,函数2()xf x x a=+, 若0a =,则21()x f x x x==,选项C 可能; 若0a >,则函数定义域为R ,且(0)0f =,选项B 可能;若0a <,则x ≠选项A 可能, 故不可能是选项D, 故选:ABC.13.(2019·山东莒县 高一期中)下列命题为真命题的是( ) A .函数1y x =-既是偶函数又在区间[)1,+∞上是增函数B .函数()f x =的最小值为2C .“2x =”是“2x -=的充要条件D .1,1x R x x∃∈<+ 【参考答案】CD 【解析】1y x =-当1x =时,0y =,当1x =-时,2y =,所以1y x =-不是偶函数,选项A 错误;令1[3,),()t g t t t=+∞=+根据对勾函数的单调性可得,()g t 在[3,)+∞是增函数,()g t 的最小值为103, 即()f x 的最小值为103,选项B 错误;20,20,2x x x -=≥-≥∴=,选项C 正确;当1x =时,11x x<+成立,选项D 正确. 故选:CD.14.(2019·山东黄岛 高一期中)已知定义在R 上函数()f x 的图象是连续不断的,且满足以下条件:①R x ∀∈,()()f x f x -=;②12,(0,)x x ∀∈+∞,当12x x ≠时,都有()()21210f x f x x x ->-;③(1)0f -=.则下列选项成立的是( ) A .(3)(4)>-f f B .若(1)(2)-<f m f ,则(,3)∈-∞m C .若()0f x x>,(1,0)(1,)x ∈-+∞ D .x R ∀∈,∃∈M R ,使得()f x M ≥【参考答案】CD 【解析】由条件①得()f x 是偶函数,条件②得()f x 在(0,)+∞上单调递增 所以(3)(4)(4)f f f <=-,故A 错若(1)(2)-<f m f ,则12m -<,得13m -<<,故B 错若()0f x x >则0()0x f x >⎧⎨>⎩或0()0x f x <⎧⎨<⎩,因为(1)(1)0f f -== 所以1x >或01x <<,故C 正确因为定义在R 上函数()f x 的图象是连续不断的,且在(0,)+∞上单调递增所以min ()(0)f x f =,所以对x R ∀∈,只需(0)M f ≤即可,故D 正确 故选:CD 【点睛】1.偶函数的图象关于y 轴对称,比较函数值的大小即比较自变量到y 轴的远近2. 12,(,)x x a b ∀∈,当12x x ≠时,都有()()21210f x f x x x ->⇔-()f x 在(,)a b 上单调递增;12,(,)x x a b ∀∈,当12x x ≠时,都有()()21210f x f x x x -<⇔-()f x 在(,)a b 上单调递减.三、填空题15.(2020·全国高一课时练习)已知函数f (x )=24,03,0x x x x ->⎧⎨--<⎩则f (f (-4))=________.【参考答案】-2 【解析】由题得(4)(4)31f -=---=, 所以f (f (-4))=(1)242f =-=-. 故参考答案为:-216.(2020·全国高一课时练习)函数()f x 在R 上是减函数,且()()||1f x f >,则x 的取值范围是________. 【参考答案】(-1,1) 【解析】函数()f x 在R 上是减函数,且()()||1f x f >, ||1x ∴<,解得11x -<<, 故参考答案为:(1,1)-17.(2020·全国高一课时练习)若f (x )M ,g (x )N ,令全集为R ,则()RM N =________.【参考答案】{x |x <2} 【解析】由题意{}100M xx x x ⎧⎫=≥=>⎨⎬⎩⎭,{}{}202N x x x x =-≥=≥, 所以{}{}{}022M N x x x x x x ⋂=>⋂≥=≥,所以(){}2RM N x x ⋂=<.故参考答案为:{}2x x <.四、双空题18.(2019·浙江湖州 高一期中)若定义域为[]210,3a a -的函数()25231f x x bx a =+-+是偶函数,则a =______,b =______. 【参考答案】2 0 【解析】偶函数()f x 的定义域为[]210,3a a -,则21030a a -+=,解得2a =,所以()2525f x x bx =+-,满足()f x 的对称轴关于y 轴对称,所以对称轴05bx =-=,解得0b =. 故参考答案为:2;019.(2020·安达市第七中学高一月考)已知函数2(),()2f x x g x x =-=-,设函数()y M x =,当()()f xg x >时,()()M x f x =;当()()g x f x ≥时,()()M x g x =,则()M x =________ ;函数()y M x =的最小值是________.【参考答案】(][)()22,,21,,2,1x x x x ⎧-∈-∞-⋃+∞⎪⎨-∈-⎪⎩1- 【解析】解不等式()()f x g x >,即22x x ->-,解得21x -<<,即21x -<<时,()M x x =-,解不等式()()f x g x ≤,即22x x -≤-,解得2x -≤或1x ≥,即2x -≤或1x ≥时,2()2M x x =-,即()M x =(][)()22,,21,,2,1x x x x ⎧-∈-∞-⋃+∞⎪⎨-∈-⎪⎩当2x -≤或1x ≥时,min ()(1)1M x M ==-,当21x -<<时,min ()(1)1M x M >=-,即函数()y M x =的最小值是1-,故参考答案为(1).(][)()22,,21,,2,1x x x x ⎧-∈-∞-⋃+∞⎪⎨-∈-⎪⎩,(2).1-. 20.(2020·山西高一期末)已知函数22,0(),,0x ax x f x x x x ⎧-≥=⎨--<⎩是奇函数,且在(1)2m m +,上单调递减,则实数a =______;实数m 的取值范围用区间表示为______.【参考答案】1 1[,0]2- 【解析】因为函数22,0(),0x ax x f x x x x ⎧-≥=⎨--<⎩是奇函数,所以(1)(1)0f f +-=,即1(1)10a -+-+=,解得:1a =;因此22,0(),,0x x x f x x x x ⎧-≥=⎨--<⎩根据二次函数的性质,可得,当0x >时,函数2()f x x x =-在区间10,2⎛⎫ ⎪⎝⎭上单调递减,在区间1,2⎛⎫+∞ ⎪⎝⎭上单调递增;又因为(0)0f =,所以由奇函数的性质可得:函数()f x 在区间11,22⎛⎫-⎪⎝⎭上单调递减; 因为函数()f x 在(1)2m m +,上单调递减, 所以只需:111),222(m m ⎛⎫+⊆- ⎪⎝⎭, ,即121122m m ⎧≥-⎪⎪⎨⎪+≤⎪⎩,解得102m -≤≤. 故参考答案为:1;1[,0]2-.21.(2018·浙江余姚中学高一月考)已知()f x 是定义在R 上的偶函数,若()f x 在[0,)+∞上是增函数,则满足(1)(1)f m f -<的实数m 的取值范围为________;若当0x ≥时,2()4f x x x =+,则当0x <时,()f x 的解析式是________.【参考答案】02m << 2()4f x x x =- 【解析】∵()f x 是定义在R 上的偶函数,若()f x 在[0,)+∞上是增函数, ∴不等式(1)(1)f m f -<等价为()()|1|1f m f -<,即|1||1|1m m -=-<得111m -<-<,得02m <<, 若0x <,则0x ->,则当0x -≥时,()()24f x x x f x -=-=,则当0x <时,()24f x x x =-,故参考答案为:(1)02m <<,(2)2()4f x x x =- 五、解答题22.(2020·全国高一课时练习)如图是定义在区间[5-,5]上的函数()y f x =,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【参考答案】参考答案见解析 【解析】从函数图象上看,当52x --时,图象呈下降趋势,所以[]5,2--为函数的单调减区间,函数在此区间单调递减;从函数图象上看,当21x -时,图象呈上升趋势,所以[]2,1-为函数的单调增区间,函数在此区间单调递增; 从函数图象上看,当13x 时,图象呈下降趋势,所以[]1,3为函数的单调减区间,函数在此区间单调递减;从函数图象上看,当35x 时,图象呈上升趋势,所以[]3,5为函数的单调增区间,函数在此区间单调递增.23.(2020·全国高一课时练习)已知f (x )=11xx-+ (x ≠-1).求: (1)f (0)及12f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值;(2)f (1-x )及f (f (x )).【参考答案】(1)()01f =,1122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(2)()()1,22xf x x x -=≠-,()()(),1f f x x x =≠-. 【解析】 (1)因为()()111xf x x x-=≠-+, 所以()100110f -==+,1111212312f -⎛⎫== ⎪⎝⎭+, 所以111113123213f ff -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+; (2)因为()()111xf x x x-=≠-+, 所以()()()()111,2112x xf x x x x---==≠+--, ()()()111,1111xx f f x x x x x--+==≠--++.24.(2020·全国高一课时练习)某市“招手即停”大众汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数关系式,并画出函数的图像.【参考答案】2,053,510()4,10155,1520x x f x x x <≤⎧⎪<≤⎪=⎨<≤⎪⎪<≤⎩,图像见解析。

高一上学期数学第三章函数的概念与性质单元测试人教版(2019)必修第一册(word版,含答案)

高一上学期数学第三章函数的概念与性质单元测试人教版(2019)必修第一册(word版,含答案)

湖南武冈二中2021-2022学年高一上学期数学第三章函数的概念与性质单元测试人教版(2019)必修第一册考试范围:第三章函数的概念与性质;考试时间:100分钟;命题人:邓 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共40分)1.(本题4分)已知()f x 是一次函数,()()()()22315,2011f f f f -=--=,则()f x =( ) A .32x +B .32x -C .23x +D .23x -2.(本题4分)函数221y x x =++,[]2,2x ∈-,则( ) A .函数有最小值0,最大值9 B .函数有最小值2,最大值5 C .函数有最小值2,最大值9D .函数有最小值0,最大值53.(本题4分)下列各组函数()f x 与()g x 的图象相同的是( ) A .()()2,f x x g x ==B .()()()22,1f x x g x x ==+C .()()01,f x g x x ==D .()(),0,,0x x f x x g x x x ≥⎧==⎨-<⎩4.(本题4分)已知函数()M f x 的定义域为实数集R ,满足()1,=0,M x Mf x x M ∈⎧⎨∉⎩(M 是R的非空子集),在R 上有两个非空真子集A ,B ,且A B =∅,则()()()()11A B A B f x F x f x f x +=++的值域为( )A .20,3⎛⎤ ⎥⎝⎦B .{}1C .12,,123⎧⎫⎨⎬⎩⎭D .1,13⎡⎤⎢⎥⎣⎦5.(本题4分)已知函数()y f x =的定义域为[)1,2-,则函数(2)y f x =+的定义域为( ) A .[]3,0-B .(3,0)-C .[)3,0-D .(]3,0-6.(本题4分)若()232a =,233b =,231c ⎛⎫= ⎪,231()d =,则a ,b ,c ,a 的大小关系是( ) A .a b c d >>>B .b a d c >>>C .b a c d >>>D .a b d c >>>7.(本题4分)已知()()22327m f x m m x-=--是幂函数,且在()0,∞+上单调递增,则满足()11f a ->的实数a 的范国为( ) A .(),0-∞B .()2,+∞C .()0,2D .()(),02,-∞+∞8.(本题4分)已知()f x 是定义域为(,)-∞+∞的奇函数,满足()()11f x f x -=+.若(1)1f =,则(1)(2)(3)(4)(2020)(2021)f f f f f f ++++++=( )A .0B .1C .2D .20219.(本题4分)若函数2()2(1)2f x x a x =+-+,在(],5-∞上是减函数,则a 的取值范围是( ) A .(],5-∞-B .[)5,+∞C .[)4,+∞D .(],4-∞-10.(本题4分)若不等式243x px x p +>+-,当04p ≤≤时恒成立,则x 的取值范围是( ) A .[]1,3- B .(],1-∞- C .[)3,+∞ D .()(),13,-∞-+∞第II 卷(非选择题)二、填空题(共40分)11.(本题4分)已知函数()223f x x ax =-+在区间[]28,是单调递增函数,则实数a 的取值范围是______.12.(本题4分)已知函数2(1)22f x x x -=++,则(2)f =___________.13.(本题4分)已知二次函数()f x 满足(0)2f =,()(1)21f x f x x --=+,则函数2(1)f x +的最小值为__________.14.(本题4分)已知函数21()2x f x x ⎧+=⎨-⎩(0)(0)x x ≤>,若()5f a =则a =___________.15.(本题4分)定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 019)=___.16.(本题4分)已知函数()12,1x x f x -⎧≥=⎨,则满足不等式(1)((2))f a f f +≥的实数a 的取值范围为______.17.(本题4分)函数2()21x xf x ax =+-是偶函数,则实数a =__________. 18.(本题4分)已知函数()22f x x +=,则()f x =______.19.(本题4分)已知函数()f x 是定义在R 上的奇函数,满足(1)(1)f x f x -=+,若(1)2020f =,则(2019)(2020)f f +=___________.20.(本题4分)已知函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有(()2)1f f x x +=,则(2)f -=_________.三、解答题(共70分)21.(本题8分)已知幂函数223()m m f x x --=(m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数. (1)求函数()f x ; (2)讨论()()bF x xf x =的奇偶性. 22.(本题10分)已知函数f (x )=2x 2+1. (1)用定义证明f (x )是偶函数; (2)用定义证明f (x )在(-∞,0]上是减函数.23.(本题12分)设函数()(0x x f x ka a a -=->且1)a ≠是定义域为R 的奇函数; (1)若()10f >,判断()f x 的单调性并求不等式(2)(4)0f x f x ++->的解集; (2)若()312f =,且22()4()x xg x a a f x -=+-,求()g x 在[1,)+∞上的最小值. 24.(本题12分)已知函数2()|1||1|f x x m x a =-+++有最小值(2)4f =-, (1)作出函数()y f x =的图象, (2)写出函数(12)f x -的递增区间.25.(本题12分)已知函数f (x )=()()1,01,1?x x x x ⎧<≤⎪⎨⎪>⎩(1)画出函数f (x )的图像; (2)求函数f (x )的值域;(3)求函数f (x )的单调递增区间,单调递减区间. 26.(本题16分)已知函数11,1()11,01x xf x x x⎧-⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值; (2)是否存在实数a 、b (a b <),使得函数()y f x =的定义域、值域都是[,]a b .若存在,则求出a 、b 的值;若不存在,请说明理由;(3)若存在实数a 、b (a b <)使得函数()y f x =的定义域为[,]a b 时,值域为[,]ma mb (0m ≠),求m 的取值范围.参考答案1.B 【分析】设函数()(0)f x kx b k =+≠,根据题意列出方程组,求得,k b 的值,即可求解. 【详解】由题意,设函数()(0)f x kx b k =+≠,因为()()()()22315,2011f f f f -=--=,可得51k b k b -=⎧⎨+=⎩,解得3,2k b ==-,所以()32f x x =-. 故选:B. 2.A 【分析】求出二次函数的对称轴,判断在区间[]22-,上的单调性,进而可得最值. 【详解】()22211y x x x =++=+对称轴为1x =-,开口向上,所以221y x x =++在[]2,1--上单调递减,在[]1,2-上单调递增,所以当1x =-时,min 1210y =-+=,当2x =时,2max 22219y =+⨯+=,所以函数有最小值0,最大值9, 故选:A. 3.D 【分析】分别看每个选项中两个函数的定义域和解析式是否相同即得. 【详解】对于A ,()f x 的定义域是R ,()g x 的定义域是[)0+,∞,故不满足; 对于B ,()f x 与()g x 的解析式不同,故不满足;对于C ,()f x 的定义域是R ,()g x 的定义域是{}0x x ≠,故不满足;对于D ,()()f x g x =,满足 故选:D 4.B 【分析】讨论x 的取值,根据函数的新定义求出()F x 即可求解. 【详解】 当()Rx A B ∈⋃时,()0A B f x ⋃=,()0A f x =,()0B f x =,()1F x ∴=同理得:当x B ∈时,()1F x =; 当x A ∈时,()1F x =;故()()R 1,1,1,x A F x x B x A B ⎧∈⎪=∈⎨⎪∈⋃⎩,即值域为{1}.故选:B 5.C 【分析】根据函数()y f x =的定义域为[)1,2-,则[)21,2x +∈-,从而可得出答案. 【详解】解:因为函数()y f x =的定义域为[)1,2-, 所以122x -≤+<,解得-<3≤0x , 所以函数函数(2)y f x =+的定义域为[)3,0-. 故选:C. 6.C 【分析】根据幂函数的概念,利用幂函数的性质即可求解. 【详解】203> ∴幂函数23y x =在()0,∞+上单调递增,又1132023>>>>, 22223333113223⎛⎫⎛⎫∴>>> ⎪ ⎪⎝⎭⎝⎭,b acd ∴>>>故选:C. 7.D 【分析】由幂函数的定义求得m 的可能取值,再由单调性确定m 的值,得函数解析式,结合奇偶性求解. 【详解】由题意2271m m --=,解得4m =或2m =-, 又()f x 在()0,∞+上单调递增,所以203m ->,2m >, 所以4m =,23()f x x =,易知()f x 是偶函数, 所以由()11f a ->得11a ->,解得0a <或2a >. 故选:D. 8.B 【分析】先由奇函数的定义得到()00f =且()()f x f x -=-,再结合()()11f x f x -=+得到函数()f x 的周期性,进而利用()00f =,()11f =化简求解.【详解】因为()f x 是定义域为()∞∞-+,的奇函数, 所以()00f =且()()f x f x -=-, 又因为函数()f x 满足()()11f x f x -=+, 所以()()()111f x f x f x +=-=--, 令1x t +=,则()()2f t f t =--, 即()()2f x f x =--,则()()()24f x f x f x =--=-, 所以函数()f x 是以4为周期的周期函数, 因为()00f =,()11f =,所以()()420f f =-=,()()311f f =-=-, 则()()()()()()123420202021f f f f f f ++++⋯++ ()()()()()50012342021f f f f f ⎡⎤=++++⎣⎦()050041f =+⨯+ ()11f ==.故选:B. 9.D 【分析】根据二次函数的开口方向以及对称轴确定出a 满足的不等式,由此求解出a 的取值范围. 【详解】因为()f x 的对称轴为1x a =-且开口向上,且在(],5-∞上是减函数, 所以15a -≥,所以4a ≤-, 故选:D. 10.D 【分析】由已知可得()2min [143]0x p x x -+-+>,结合一次函数的性质求x 的范围.【详解】不等式243x px x p +>+-可化为()21430x p x x -+-+>, 由已知可得()21430min x p x x ⎡⎤-+-+>⎣⎦令()()2143x p x f x p +--+=,可得()()()220430441430f x x f x x x ⎧=-+>⎪⎨=-+-+>⎪⎩∈ 1x <-或3x >, 故选D. 11.2a ≤ 【分析】求出二次函数的对称轴,即可得()f x 的单增区间,即可求解. 【详解】函数()223f x x ax =-+的对称轴是x a =,开口向上,若函数()223f x x ax =-+在区间[]28,是单调递增函数,则2a ≤, 故答案为:2a ≤. 12.17 【分析】先令12x -=,得3x =,再把3x =代入函数中可求得答案 【详解】解:令12x -=,得3x =, 所以2(2)323217f =+⨯+=, 故答案为:17 13.5. 【分析】根据()f x 为二次函数可设2()(0)f x ax bx c a =++≠,由(0)2f =可得2c =,再根据()(1)21f x f x x --=+,比较对应项系数即可求出,a b ,再根据二次函数的性质即可得到函数2(1)f x +的最小值. 【详解】()f x 为二次函数,∴可设2()(0)f x ax bx c a =++≠,∴(0)2f c ==,因为()(1)21f x f x x --=+∴22(1)(1)21ax bx c a x b x c x ++-----=+,即221ax a b x -+=+,∴221a b a =⎧⎨-=⎩,解得12a b =⎧⎨=⎩,∴2()22f x x x =++,令21t x =+,则1t ≥,函数2(1)f x +即为()f t =2222(1)1t t t ++=++.()f t 的图象开口向上,图象的对称轴为直线1t =-,()f t ∴在[)1,+∞上单调递增,∴min ()(1)5f t f ==,即2(1)f x +的最小值为5. 故答案为:5. 14.2-. 【分析】根据分段函数的定义分类讨论求解. 【详解】若0a >,则()25f a a =-=,502a =-<,不合题意,舍去.若0a ≤,则2()15f a a =+=,2a =-(正的舍去). 故答案为:2-. 15.338 【分析】首先判断函数的周期,并计算一个周期内的函数值的和,即可求解. 【详解】由f (x +6)=f (x )可知,函数f (x )的周期为6,∈f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,∈在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,∈f (1)+f (2)+…+f (2 019)=f (1)+f (2)+f (3)+336×1=1+2+(-1)+336=338. 故答案为:33816.1(,][1,)2-∞-⋃+∞.【分析】根据函数的解析式,求得(2)2f =,把不等式(1)((2))f a f f +≥转化为(1)2f a +≥,得出等价不等式组,即可求解. 【详解】由题意,函数()12,132,1x x f x x x -⎧≥=⎨-<⎩,可得()()()22,22,f f f ==,所以由不等式(1)((2))f a f f +≥,可得(1)2f a +≥,则1122a a +≥⎧⎨≥⎩或1132(1)2a a +<⎧⎨-+≥⎩,解得1a ≥或12a ≤-,即实数a 的取值范围为1(,][1,)2-∞-⋃+∞.故答案为:1(,][1,)2-∞-⋃+∞.17.1 【分析】由已知奇偶性可得()()f x f x -=,结合已知解析式可求出22a =,即可求出a . 【详解】 因为2()(0)21xxf x ax x =+≠-,且()f x 是偶函数,则()()f x f x -=, 2222222,,20212121212121xx x x x x x x x ax ax a a a --⨯--=+--=++-=------,即22a =,所以实数1a =. 故答案为: 1. 18.244x x -+ 【分析】采用换元法即可求出函数解析式. 【详解】令2x t +=,则2x t =-,所以()()22244t t f t t =--+=,因此()244f x x x =-+,故答案为:244x x -+. 19.2020- 【分析】由题设可得(4)()f x f x +=,即()f x 的周期为4,利用周期性、奇偶性求(2019)(2020)f f +的值即可. 【详解】由题设,知:()(2)()f x f x f x -=+=-,∈(4)(2)()f x f x f x +=-+=,即()f x 的周期为4,∈()f x 是定义在R 上的奇函数,即(0)0f =,又(1)2020f =,∈(2019)(2020)(50541)(5054)(1)(0)(0)(1)2020f f f f f f f f +=⨯-+⨯=-+=-=-. 故答案为:2020- 20.3 【分析】根据题意,分析可得()2f x x +为常数,设()2f x x t +=,解可得t 的值,即可得函数的解析式,将2x =-代入计算可得答案. 【详解】根据题意,函数()f x 在定义域R 上单调,且(0,)x ∈+∞时均有()()21f f x x +=, 则()2f x x +为常数,设()2f x x t +=,则()2f x x t =-+, 则有()21f t t t =-+=,解可得1t =-,则()21f x x =--, 故()2413f -=-=, 故答案为:3.21.(1)4()f x x -=;(2)答案见解析. 【分析】(1)由()f x 是偶函数,且在(0,+∞)上是单调减函数,可得m 的值;(2)求出()F x -,分0a ≠且0b ≠,0a ≠且0b =,0a =且0b ≠和0a =且0b =四种情况,分别得出函数的奇偶性. 【详解】(1)∈()f x 是偶函数,∈223m m --应为偶数.又∈()f x 在(0,+∞)上是单调减函数,∈223m m --<0,-1<m <3.又m ∈Z ,∈m =0,1,2.当m =0或2时,223m m --=-3不是偶数,舍去;当m =1时,223m m --=-4;∈m =1,即4()f x x -=.(2)32()a F x bx x =-,∈32()aF x bx x-=+ ∈当0a ≠且0b ≠时,函数()F x 为非奇非偶函数; ∈当0a ≠且0b =时,函数()F x 为偶函数; ∈当0a =且0b ≠时,函数()F x 为奇函数;∈当0a =且0b =时,函数()F x 既是奇函数,又是偶函数. 22.(1)证明见解析;(2)证明见解析. 【分析】(1)先求得函数f (x )的定义域为R ,再对于任意的x ∈R ,都有 f (-x )=f (x ),由此可得证; (2)任取x 1,x 2∈(-∞,0],且x 1 < x 2,作差 f (x 1)-f (x 2)=2(x 1-x 2)(x 1+x 2),判断差的符号,可得证. 【详解】解:(1)函数f (x )的定义域为R ,对于任意的x ∈R ,都有 f (-x )=2(-x )2+1=2x 2+1=f (x ), ∈f (x )是偶函数.(2)任取x 1,x 2∈(-∞,0],且x 1 < x 2,则有f (x 1)-f (x 2)=(2x 12+1)-(2x 22+1)=2(x 12-x 22)=2(x 1-x 2)(x 1+x 2), ∈x 1,x 2∈(-∞,0],∈x 1+x 2 < 0, ∈x 1 < x 2,∈x 1-x 2 < 0, ∈f (x 1)-f (x 2) > 0,∈f (x 1) > f (x 2),∈f (x )在(-∞,0]上是减函数. 23.(1)增函数,(1,)+∞;(2)2-. 【分析】(1)由(0)0f =,求得1k =,得到()x x f x a a -=-,根据()10f >,求得1a >,即可求得函数()x x f x a a -=-是增函数,把不等式转化为(2)(4)f x f x +>-,结合函数的单调性,即可求解;(2)由(1)和()312f =,求得2a =,得到()2(22)4(22)2x x x xg x -----+=,令22x x t -=-,得到()2342,2g t t t t =-+≥,结合二次函数的性质,即可求解.【详解】(1)因为函数()(0x xf x ka a a -=->且1)a ≠是定义域为R 的奇函数,可得(0)0f =,从而得10k -=,即1k =当1k =时,函数()x xf x a a -=-,满足()()()x x x xf x a a a a f x ---=-=--=-,所以1k =,由()10f >,可得10a a->且0a >,解得1a >,所以()x x f x a a -=-是增函数, 又由(2)(4)0f x f x ++->,可得(2)(4)(4)f x f x f x +>--=-, 所以24x x +>-,解得1x >,即不等式的解集是(1,)+∞. (2)由(1)知,()x x f x a a -=-, 因为()312f =,即132a a -=,解得2a =, 故()222(22)2(22)4(22)224x x x x x xx x g x -----=---+-+=,令22x x t -=-,则在[1,)+∞上是增函数,故113222t -≥+=, 即()2342,2g t t t t =-+≥, 此时函数()g t 的对称轴为322t =>,且开口向上, 所以当2t =,函数()g t 取得最小值,最小值为()2224222g =-⨯+=-,即函数()g x 的最小值为2-.24.(1)答案见解析;(2)1[2-,1],3[2,)+∞. 【分析】(1)由函数最小值(2)4f =-,可求出函数2()|1|4|1|5f x x x =--++,即得; (2)利用图象可得函数()f x 的单调性,利用复合函数的单调性即得. 【详解】(1)当1x >时,2()1f x x mx a m =+++-又函数2()|1||1|f x x m x a =-+++有最小值f (2)4=-, 故22m-=,即4m =- 则2()45f x x x a =-+-则(2)4854f a =-+-=-,故5a = 则2()|1|4|1|5f x x x =--++ 则22248,1()42,114,1x x x f x x x x x x x ⎧++<-⎪=--+-⎨⎪->⎩其函数的图象如图:(2)由(1)我们可得函数()y f x =在区间(-∞,2]-,[1-,2]上单调递减, 在区间[2-,1]-,[1,)+∞上单调递增, 又函数(12)f x -的内函数为减函数,()y f x =在区间(-∞,2]-,[1-,2]上单调递减,故令12(x -∈-∞,2]-或12[1x -∈-,2],得1[2x ∈-,1]或3[2x ∈,)+∞,故函数(12)f x -的递增区间为1[2-,1],3[2,)+∞.25.(1)图象见详解 (2)[1,)+∞ (3)单调递增区间为(1,)+∞,单调递减区间为(0,1]【分析】(1)分段画出函数图象即可;(2)结合反比例函数和一次函数的性质分段求出y 的取值范围,再取并集即可; (3)结合反比例函数和一次函数的单调性,即得解 【详解】(1)由题意,画出分段函数图象如下图:(2)当01x <≤,11[1,)y y x=≥∴∈+∞; 当1x >,1(1,)y x y =>∴∈+∞ 综上,函数f (x )的值域为[1,)+∞(3)根据反比例函数的单调性,可知函数f (x )在(0,1]单调递减; 由一次函数的单调性,可知f (x )在(1,)+∞单调递增; 故函数f (x )的单调递增区间为(1,)+∞,单调递减区间为(0,1]. 26.(1)2;(2)不存在,理由见解析;(3)104m <<. 【分析】(1)结合函数单调性化简()()f a f b =,由此可求11a b+,(2)根据函数单调性,求函数()y f x =在[,]a b 上的值域,由此可确定实数a 、b 的值是否存在,(3)讨论实数a 、b 的取值,求函数()y f x =在[,]a b 上的值域,由此求m 的值. 【详解】解:(1)∈11,1()11,01x xf x x x ⎧-⎪⎪=⎨⎪-<<⎪⎩,∈()f x 在(0,1)上为减函数,在(1,)+∞上为增函数,由0a b <<且()()f a f b =,可得01a b <<<且1111a b-=-,故112a b +=.(2)不存在满足条件的实数a 、b .若存在满足条件的实数a 、b ,则0a b <<.∈当a ,(0,1)b ∈时,1()1f x x=-在(0,1)上为减函数 故()()f a b f b a =⎧⎨=⎩,即1111b aa b⎧-=⎪⎪⎨⎪-=⎪⎩,解得a b =,故此时不存在符合条件的实数a 、b .∈当a ,[1,)b ∈+∞时,1(1)f x x=-在[1,)+∞上是增函数.故()()f a b f b a =⎧⎨=⎩,即1111a abb⎧-=⎪⎪⎨⎪-=⎪⎩,此时,a 、b 是方程210x x -+=的根.此方程无实根,故此时不存在符合条件的实数a 、b . ∈当(0,1)∈a ,[1,)b ∈+∞时,由于1[,]a b ∈,而(1)0[,]f a b =∉,故此时不存在符合条件的实数a 、b . 综上可知,不存在符合条件的实数a 、b .(3)若存在实数a 、b (a b <),使得函数()y f x =的定义域为[,]a b 时,值域为[,]ma mb ,且0a >,0m >.∈当a ,(0,1)b ∈时,由于()f x 在(0,1)上是减函数,故1111mb ama b⎧-=⎪⎪⎨⎪-=⎪⎩.此时得11a bm ab ab--==,得a b =与条件矛盾,所以a 、b 不存在 ∈当(0,1)∈a ,[1,)b ∈+∞时,易知0在值域内,值域不可能是[,]ma mb ,所以a 、b 不存在. ∈故只有a ,[1,)b ∈+∞.∈()f x 在[1,)+∞上是增函数,∈()()f a ma f b mb =⎧⎨=⎩,即1111ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩,a 、b 是方程210mx x -+=的两个根.即关于x 的方程210mx x -+=有两个大于1的实根. 设这两个根为1x 、2x ,则121x x m +=,121x x m⋅=. ∈∈>0,1-4m >0,∈12120(1)(1)0(1)(1)0x x x x ∆>⎧⎪-+->⎨⎪-->⎩,即140120m m ->⎧⎪⎨->⎪⎩,解得104m <<.故m 的取值范围是104m <<.。

高一数学必修一第三章函数的概念与性质单元测试卷(1)

高一数学必修一第三章函数的概念与性质单元测试卷(1)

2019-2020 7-年必修第•册第三章函数的概念与性质注It 事項,1. 答題询・先将白己的姓准考证号轨写在试題卷和答軀卡上.并 将准考证号条形码粘贴在答Ifi 卡上的損定位BL2. 选样題的作答:毎小Ifi 选出答窠后•用2B 把答题卡上对f-zJKII 的答案标号涂黑・写在试腿卷.苹横纸和答硒卡上的非答题区域沟无效.3. 非选择腿的作答:用签字笔直接答在告腿卡上对应的诈胚区域内・ 写在试題卷.◎毎紙和答腿卡上的非答軀区域均无效.4. 韦试结束后.请称本试軀卷和答腿卡•并上交.两个函《(的对应法则不相同・・・・不ft∣∏j •个曲散.对于B ・Vy = (√7χ的定义域[0、+x )・ y≈∖x ∖的定义域为R ・・・・樽个函数不处冋•个负敘• 对于C ・7y = -的定文城为R H Λ≠O ・)U.{的定义域为Rfl-v≠O.X对应法则相同・・・・两个rttt ⅛冋•个附散・——一.堆择JB 本大忌共12个小每小題5分.共60分.在每小題给出的四个选 M 中.只有一刁是符合題目要求的)1.下列备对换散中•图盘完全相同的足<A- y=χ与)'=壮何「 C. y =-与〉=XOX rn%] CB. y = (√Γ∕⅛>∙=∣χ∣ D.【鮮析】对于A ・・・・y = X 的定义域为R ・ y=(3√T∣)1rft 定文域为R ・x+1 = X=Z I对干D ・>=:二的定文域Z 如厂:严5≡Z定义域不相冋…•・不是冋∙φ⅛ft.T —5 " O勺【弊析】要使噱式' •解得x>-且Λ≠2・ [Λ-2≠0 2 做幣数的定义域为[∣.2 ∣U(2,+x)・3. iT ⅛tt∕(A)的定义域为[T,4]∙则函散/(2ΛT)的定义域为《>【TTtJA【林桁】V /(X)的定义域为[-L4]・・・・/(2.\—1)満足一1<2Λ-1<4.解⅛O<Λ<- 4.甬数〉• = =的处(XA.[>B.C ・[∣,2^∪(2,+∞)【答案】BD. (-x.2)∪(2,+∞)2.甬数〉U的定义域册(B. [-7,习C.,∙∙∕(2x -l)的定义域为【解析】= i-⅛⅛H⅛ia・ llll⅛B・ C・X⅛Λ = 1时..r-κ 0・Ay=-L-1< O •图線在X轴的下方.故选A.2 X5・cl⅛∕(Λ∙)½R匕的卩!函数・且^ix>O时J (X) = A(I-X) •則当.YO时. Λ-υ= <>A. -V(X-I)B. .v(x-l)C. -.V(Λ+1)D. .v(x+l)【答案】C【弊析】・・・/(刀址R上的偶函散・・•・/(-Q =/CO・S A < O・-Λ >0・ WJ/(-V)= -XI+x) = f(x)・・•・Λ <0时.J∖x)的解析式⅛∕(.v) = -v(l+.v)・6. ⅛tt∕ω=Γ +6' ve^2l 則/(.0 的4iλffi和姐小tfl分别为() [.V+7,Λ∈[-1,1)A. 10. 6B. 10. 8C. S ・ 6D. 10. 7 【答案】A【解析】由题意得・⅛l<x≤2时.7≤∕(x)≤10:⅛-l≤x<l时.6<∕(.v)<S・所以的域大値为10.曲小仪为6・Y•— r γV Ao.■ '•-为奇函散•则实救α的值为()-r+ατ, x<0A. 2B. -2C. 1D. -1 【答知B 【解析I=/CV)为命甬数・・•・/(-E = ・/(“)・~↑x<0时.—.v>O ・:、f(x) = -/(-.V)= -<.v2 + 2x) = -V:-2.Y ・又.r<0 时./(X) = -X= + ax ・Λ a≈-2 ・S.若/(e・&C0均兄定义在R上的旳散・W i f(X)和都肚何隨数啜的()A.充分而不必妾条件B.吒要Ifti不充分条件C.充要条件D. BI不充分也不必妾条件【答知A【解析】W∕ω fπ^(Λ)βι⅛偶甫敘.WJA-V) =/(x)^(-Λ)= ^r(X)./(-.υ∙^(-A)=^(X)./(.V)・即.充分性或立:-I /(Λ)= X^(Λ)=2x时.AT(A)-Z(X)足偶曲散.但ft/W和g(x)祁不定PI用数.必耍性不成立・・・・“几。

第三章 函数的概念与性质【过关测试】(解析版)-2021-2022学年高一数学单元复习过过过

第三章 函数的概念与性质【过关测试】(解析版)-2021-2022学年高一数学单元复习过过过

第三章函数的概念与性质过关测试(时间: 120分钟分值: 150分)一、选择题:共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ln(x+1)+x2,则不等式f(2x−1)<9+ln4的解集为()A.(0,2)B.(−∞,2)C.(−2,2)D.(−1,2)【答案】B【解析】因为f(x)是R上的奇函数,且在[0,+∞)上为增函数,所以f(x)是R上的增函数,由f(2x−1)<9+ln4,得f(2x−1)<f(3),得2x−1<3,即x<2.故选:B.2.定义在R上的函数f(x)是偶函数,且f(x)=f(2−x),若f(x)在区间[1,2]上是减函数,则函数f(x)().A.在区间[0,1]上是增函数,在区间[−2,−1]是减函数B.在区间[0,1]上是增函数,在区间[−2,−1]是增函数C.在区间[0,1]上是减函数,在区间[−2,−1]是减函数D.在区间[0,1]上是减函数,在区间[−2,−1]是增函数【答案】B【解析】∵f(x)=f(2−x),∴f(x)关于直线x=1对称,∵f(x)在区间[1,2]上是减函数,∴f(x)在区间[0,1]上是增函数,又∵f(x)是偶函数,∴f(x)=f(−x),∴f(2−x)=f(−x),∴f(x)是周期为2的函数,∴f(x)在区间[−2,−1]也是增函数.故选:B3.若函数f (x )=√x +1+1x−3的定义域是( )A .[−1,3)B .[−1,+∞)C .[−1,3)∪(3,+∞)D .(3,+∞)【答案】C 【解析】解:要使函数有意义,则需满足不等式{x +1≥0x −3≠0, 解得:x ≥−1且x ≠3,故选:C .4.已知函数y ={x 2+1,x ≤0−2x,x >0,则使函数值为5的x 的值是( )A .−2或2B .2或−52C .−2D .2或−2或−52【答案】C 【解析】若x 2+1=5, 则x 2=4, 又因为x ≤0, 所以x =−2; 若−2x =5, 则x =−52, 而x >0, 不符合题意,舍. 所以x =−2. 故选:C.5.下列各组函数中为同一函数的是( ) A .f(x)=√(x −1)2,g(x)=x −1 B .f(x)=x −1,g(t)=t −1C .f(x)=√x 2−1,g(x)=√x +1⋅√x −1D .f(x)=x ,g(x)=x 2x【答案】B 【解析】选项A, f(x)=√(x −1)2=|x −1|的定义域是R , g(x)=x −1的定义域是R , 两个函数对应关系不相同, 所以不是同一个函数, 选项A 错误;选项B, f(x)=x −1的定义域是R , g(t)=t −1的定义域是R , 两个函数对应关系也相同, 所以是同一个函数, 选项B 正确;选项C, f(x)=√x 2−1的定义域是(−∞,−1]⋃[1,+∞), g(x)=√x +1⋅√x −1的定义域是[1,+∞), 定义域不同, 不是同一个函数, 选项C 错误;选项D, f(x)=x 的定义域是R , g(x)=x 2x的定义域是{x|x ≠0}, 定义域不同, 不是同一个函数, 选项D 错误. 故选:B.6.函数y =f(x)的定义域为(0,+∞),且对于定义域内的任意x,y 都有f(xy)=f(x)+f(y),且f(2)=1,则f (√22)的值为( ).A .1B .12C .−2D .−12【答案】D 【解析】f(2)=f(√2×√2)=f(√2)+f(√2)=2f(√2)=1, ∴f(√2)=12,又f(1)=2f(1), ∴f(1)=0,∴f(1)=f (√2×√22)=f(√2)+f (√22),∴0=f(√2)+f (√22), ∴f (√22)=−12.故选:D7.若函数y =(m 2−3m +3)x m 2+2m−4为幂函数,且在(0,+∞)单调递减,则实数m 的值为( )A .0B .1或2C .1D .2【答案】C 【解析】由于函数y =(m 2−3m +3)x m2+2m−4为幂函数,所以m 2−3m +3=1,解得m =1或m =2, m =1时,y =x −1=1x ,在(0,+∞)上递减,符合题意. m =2时,y =x 4,在(0,+∞)上递增,不符合题意. 故选:C8.设函数f(x)=(x +1)(x +a )在区间(1−b,2)上为偶函数,则2a +b 的值为( ) A .-1 B .1 C .2 D .3【答案】B【解析】因为函数f(x)=(x +1)(x +a )在区间(1−b,2)上为偶函数, 所以1−b =−2,解得b =3.又f(x)=x 2+(a +1)x +a 为偶函数,所以f(−12)=f(12),即14−a+12+a =14+a+12+a ,解得:a =-1.所以2a +b =1. 故选:B二、选择题:本题共4小题,每小题5分,共20分。

新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(有答案解析)(1)

新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(有答案解析)(1)

一、选择题1.已知()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,则(1)(2)f g +=( )A .5B .6C .8D .102.已知()2xf x x =+,[](),M a b a b =<,(){}4,N yy f x x M ==∈∣,则使得MN 的实数对(),a b 有( )A .0个B .1个C .2个D .3个3.已知,A B 是平面内两个定点,平面内满足PA PB a ⋅=(a 为大于0的常数)的点P 的轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当,A B 坐标分别为(1,0)-,(1,0),且1a =时,卡西尼卵形线大致为( )A .B .C .D .4.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-5.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( ) A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦C .[32,)+∞D .(0,32]6.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞7.已知定义在R 上的函数()f x ,满足()()()3f m n f m f n +=+-,且0x >时,()3f x <,则下列说法不正确的是( )A .()()6f x f x +-=B .()y f x =在R 上单调递减C .若()10f =,()()22190f x x f x ++--->的解集()1,0-D .若()69f =-,则123164f ⎛⎫= ⎪⎝⎭8.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .39.下列函数中,是奇函数且在()0,∞+上单调递增的是( ) A .y x =B .2log y x =C .1y x x=+D .5y x =10.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间D .一定有单调区间11.函数()21x f x x-=的图象大致为( )A .B .C .D .12.设函数()()1xf x x R x=-∈+,区间[,]M a b =,集合{(),}N y y f x x M ==∈,则使M N 成立的实数对(,)a b 有( )A .0个B .1个C .2个D .无数个13.已知22()log (1)24f x x x x =--+,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .1515,22⎛ ⎝⎭C .1515,01,22⎛⎫⎛+ ⎪⎪⎝⎭⎝⎭D .(1,0)(1,2)-14.函数24()|3|3x f x x -=+-是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数15.若()21f x ax x a =+++在()2,-+∞上是单调递增函数,则a 的取值范围是( ) A .1(,]4-∞B .1(0,]4C .1[0,]4D .1[,)4+∞二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.设2,0()1,0x x f x x -⎧≤=⎨>⎩,则满足()()1 2f x f x +<的实数x 的取值范围是__________.18.定义在[0,)+∞上的函数()y f x =满足:(1)(2)0f =;(2)当02x <<时,()0f x ≠;(3)任意的,0x y >总有()(())()f x y f x f y f y +=⋅⋅成立.则1(3)2f f ⎛⎫+= ⎪⎝⎭__________.19.定义在()1,1-上的函数()3sin f x x x =--,如果()()2110f a f a -+->,则实数a 的取值范围为______.20.已知函数()()()2421log 1a x ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ .21.函数()22(1)221x xx f x x -++-=+,在区间[]2019,2019-上的最大值为M ,最小值为m .则M m +=_____.22.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.23.函数()22f x x x =-,[]2,2x ∈-的最大值为________.24.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:①()f x 是以2为周期的函数;②()0f 是函数的最大值;③()f x 在[]2,3上是减函数;④()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)25.已知函数()()()()22sin 1R f x x x x x a a =--++∈在区间[]1,3-上的最大值与最小值的和为18,则实数a 的值为______.26.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若对于任意0x >都有()()3f x f x x '<,且()44f =,则不等式()31016f x x -<的解集为________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,得到32()()231f x g x x x x -+-=-+-+,求出()f x 和()g x ,再求(1)(2)f g +【详解】因为32()()231f x g x x x x +=+++,所以32()()231f x g x x x x -+-=-+-+.又()f x 是奇函数,()g x 是偶函数,所以32()()231f x g x x x x -+=-+-+,则32()23,()1f x x x g x x =+=+,故(1)(2)5510f g +=+=.故选:D 【点睛】 函数奇偶性的应用:(1)一般用()()f x f x =-或()()f x f x =-;(2)有时为了计算简便,我们可以对x 取特殊值: (1)(1)f f =-或(1)(1)f f =-.2.D解析:D 【分析】 先判断函数()2xf x x =+是奇函数,且在R 上单调递增;根据题中条件,得到()()44f a a f b b a b ⎧=⎪=⎨⎪<⎩,求解,即可得出结果. 【详解】 因为()2xf x x =+的定义域为R ,显然定义域关于原点对称, 又()()22x xf x f x x x --==-=--++, 所以()f x 是奇函数, 当0x ≥时,()21222x x f x x x x ===-+++显然单调递增;所以当0x <时,()2xf x x =-+也单调递增;又()00f =,所以函数()2xf x x =+是连续函数; 因此()2xf x x =+在R上单调递增; 当[],x M a b ∈=时,()()()44,4y f x f a f b =∈⎡⎤⎣⎦,因为(){}4,N yy f x x M ==∈∣, 所以为使M N ,必有()()44f a af b b a b ⎧=⎪=⎨⎪<⎩,即4242aa ab b b a b⎧=⎪+⎪⎪=⎨+⎪⎪<⎪⎩,解得22a b =-⎧⎨=⎩或20a b =-⎧⎨=⎩或2a b =⎧⎨=⎩, 即使得M N 的实数对(),a b 有()2,2-,()2,0-,()0,2,共3对.故选:D. 【点睛】 关键点点睛:求解本题的关键在于先根据函数解析式,判断函数()f x 是奇函数,且在R 上单调递增,得出[],x M a b ∈=时,()4y f x =的值域,列出方程,即可求解.3.A解析:A 【分析】设(,)P x y1=,代0x =排除C 、D ,通过奇偶性排除B. 【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.4.A解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.5.C解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥, 所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.6.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8), 所以1128na -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =, 由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.7.D解析:D 【分析】构造函数()()3g x f x =-,验证函数()g x 的奇偶性可判断A 选项的正误;判断函数()g x 的单调性可判断B 选项的正误;利用函数()g x 的单调性解不等式()()22190f x x f x ++--->,可判断C 选项的正误;计算出()24g =-,求出116g ⎛⎫⎪⎝⎭的值,可求得116f ⎛⎫⎪⎝⎭的值,可判断D 选项的正误. 【详解】构造函数()()3g x f x =-,由()()()3f m n f m f n +=+-可得()()()g m n g m g n +=+. 对于A 选项,取0m n ==,可得()()020g g =,()00∴=g ,取n m =-,则()()()00g g m g m =+-=,()()g m g m ∴-=-,则函数()g x 为奇函数,所以,()()()()60g x g x f x f x +-=+--=,可得()()6f x f x +-=,A 选项正确; 对于B 选项,由已知条件可知,当0x >时,()()30g x f x =-<.任取1x 、2x R ∈且12x x >,所以,()()()()()1212120g x x g x g x g x g x -=+-=-<,()()12g x g x ∴<,所以,函数()()3g x f x =-为R 上的减函数,所以,函数()f x 为R 上的减函数,B 选项正确; 对于C 选项,()10f =,可得()()1133g f =-=-,由()()22190f x x f x ++--->,可得()()22130g x x g x ++--->,即()()()21311g xx g g +->=-=-,211x x ∴+-<-,可得20x x +<,解得10x -<<.C 选项正确; 对于D 选项,()()()()()663124232g f g g g =-=-=+=,()24g ∴=-,()()112214324216g g g g ⎛⎫⎛⎫=====- ⎪ ⎪⎝⎭⎝⎭,111316168fg ⎛⎫⎛⎫∴-==- ⎪ ⎪⎝⎭⎝⎭, 因此,123168f ⎛⎫= ⎪⎝⎭,D 选项错误. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.8.B解析:B【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()211724,12117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x > 当0x <时,()224g x x x x =--+≤-,得117x --≤即当117x --≤时,()()f x g x >,当1170x --<<时,()()f x g x <所以()()211724,1117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B9.D解析:D 【分析】对四个选项一一一判断:A 、B 不是奇函数,C 是奇函数,但在()0,∞+上不单调. 【详解】 对于A :y =()0,∞+上单调递增,但是非奇非偶,故A 错误;对于B :2log y x =为偶函数,故B 错误; 对于C :1y x x=+在(0,1)单减,在(1,+∞)单增,故C 错误; 对于D :5y x =既是奇函数也在()0,∞+上单调递增,符合题意. 故选:D 【点睛】四个选项互不相关的选择题,需要对各个选项一一验证.10.A解析:A 【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+ ⎪⎝⎭的例子,据此分析选项可得答案. 【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭, 则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A. 【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键.11.D解析:D分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.12.A解析:A 【分析】 由已知中函数()()1||xf x x R x =-∈+,我们可以判断出函数的奇偶性及单调性,再由区间[M a =,]()b a b <,集合{|()N y y f x ==,}x M ∈,我们可以构造满足条件的关于a ,b 的方程组,解方程组,即可得到答案.【详解】x R ∈,()()1xf x f x x-==-+,()f x ∴为奇函数, 0x 时,1()111x f x x x -==-++,0x <时,1()111x f x x x-==--- ()f x ∴在R 上单调递减函数在区间[a ,]b 上的值域也为[a ,]b ,则()(),f a b f b a ==, 即1a b a -=+,1ba b-=+,解得0a =,0b = a b <,使M N 成立的实数对(,)a b 有0对 故选:A本题考查的知识点是集合相等,函数奇偶性与单调性的综合应用,其中根据函数的性质,构造出满足条件的关于a ,b 的方程组,是解答本题的关键.13.C解析:C 【分析】首先判断函数的单调性和定义域,再解抽象不等式. 【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >,并且在区间()1,+∞上,函数单调递增,且()22f =, 所以()()()2212012f x x f x x f -+-<⇔-+<,即221112x x x x ⎧-+>⎨-+<⎩,解得:1x <<0x <<.故选:C 【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.14.A解析:A 【分析】首先求出函数的定义域,然后利用奇偶性定义判断即可. 【详解】解:因为()f x =所以240330x x ⎧-≥⎪⎨+-≠⎪⎩解得22x -≤≤且0x ≠,故函数的定义域为[)(]2,00,2-,定义域关于原点对称,所以()f x =,[)(]2,00,2x ∈-,又()()f x f x -===-所以函数为奇函数; 故选:A 【点睛】本题考查函数的奇偶性的判断,判断函数的奇偶性按照两步:①求函数的定义域,判断定义域是否关于原点对称;②计算()f x -判断与()f x 之间的关系;15.C解析:C 【分析】先考虑a 是否为零,然后再分一次函数和二次函数分别考虑. 【详解】当0a =时,则()1f x x =+,显然在()2,-+∞上递增;当0a ≠时,则()21f x ax x a =+++是二次函数,因为()f x 在()2,-+∞上递增,则对称轴122x a =-≤-且0a >,解得:10,4a ⎛⎤∈ ⎥⎝⎦;综上:a 的取值范围是1[0,]4,故选C. 【点睛】本题考查根据单调区间求解参数范围问题,难度一般.对于形如()2f x ax bx c =++的函数,一定要明确:并不一定是二次函数,可能会出现0a =的情况,所以要分类讨论.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】画出图像结合图像判断题出函数的单调性即可求解【详解】作出函数的图像如图满足解得故答案为:【点睛】方法点睛:该不等式的求解利用的是函数的单调性用数形结合法解决更为直观 解析:(),0-∞【分析】画出2,0()1,0x x f x x -⎧≤=⎨>⎩图像,结合图像判断题出函数的单调性,即可求解(1)(2)f x f x +<.【详解】作出函数2,0()1,0x x f x x -⎧≤=⎨>⎩的图像如图,满足(1)(2)f x f x +<2021x x x <⎧∴⎨<+⎩,解得0x <. 故答案为:(),0-∞. 【点睛】方法点睛:该不等式的求解利用的是函数的单调性,用数形结合法解决更为直观.18.【分析】先令求得再令可得结合已知条件可得从而可得答案【详解】解:令则由得因为所以令则因为当时;所以所以所以所以故答案为:【点睛】关键点点睛:此题考查抽象函数求值问题解题的关键是结合已知条件正确赋值令解析:43【分析】先令1,2x y ==,求得(3)0f =,再令31,22x y ==,可得311(())()(2)222f f f f ⋅=,结合已知条件可得1()2f ,从而可得答案 【详解】解:令1,2x y ==,则由()(())()f x y f x f y f y +=⋅⋅得((2))(2)(12)f f f f ⋅=+, 因为(2)0f =,所以(3)0f =,令31,22x y ==,则311(())()(2)222f f f f ⋅=, 因为(2)0f =,当02x <<时,()0f x ≠;所以31(())0(2)22f f f ==, 所以31()222f =,所以14()23f =, 所以14(3)23f f ⎛⎫+= ⎪⎝⎭故答案为:43【点睛】关键点点睛:此题考查抽象函数求值问题,解题的关键是结合已知条件正确赋值,令31,22x y ==,则311(())()(2)222f f f f ⋅=,由(2)0f =,当02x <<时,()0f x ≠,可得31()222f =,从而得14()23f = 19.【分析】先得出函数是奇函数且是减函数从而得到结合函数的定义域从而求出的范围【详解】解:是奇函数又是减函数若则则解得:或由解得:综上:故答案为:【点睛】本题考查了函数的奇偶性函数的单调性的应用属于中档题解析:(【分析】先得出函数是奇函数且是减函数,从而得到211a a -<-,结合函数的定义域,从而求出a 的范围. 【详解】 解:()3sin (3sin )()f x x x x x f x -=-=-+=-,是奇函数,又()3cos 0f x x '=-+<,是减函数, 若2(1)(1)0f a f a -+->, 则2((1))1f a f a -->,则211a a -<-,解得:1a >或2a <-,由2111111a a -<-<⎧⎨-<-<⎩,解得:0a <<,综上:1a <<故答案为:(. 【点睛】本题考查了函数的奇偶性,函数的单调性的应用,属于中档题.20.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a; 综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.21.【分析】可将原函数化为可设可判断为奇函数再根据奇函数与最值性质进行求解即可【详解】因为设所以;则是奇函数所以在区间上的最大值为即在区间上的最小值为即∵是奇函数∴则故答案为:2【点睛】本题主要考查奇函解析:2【分析】可将原函数化为()2222+11x x x f x x -+-=+,可设()22221x xx g x x -+-=+,可判断()g x 为奇函数,再根据奇函数与最值性质进行求解即可. 【详解】因为()222(1)22222=+111x x x xx x f x x x --++-+-=++ 设()[]()22222019,20191x xx g x x x -+-=∈-+,, 所以()()()()2222222211x xx x x x g x g x x x ---+-+--==-=-+-+ ;则()g x 是奇函数,所以()f x 在区间[]2019,2019-上的最大值为M ,即()1max M g x =+,()f x 在区间[]2019,2019-上的最小值为m ,即()min 1m g x =+,∵()g x 是奇函数,∴()()max min 0g x g x +=, 则()()22max min M m g x g x +=++= . 故答案为:2. 【点睛】本题主要考查奇函数的性质,利用奇函数最值性质进行转化是解决本题的关键.属于中档题.22.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞.【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.23.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8 【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值. 【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+. 故答案为:8 【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题.24.③④【分析】根据函数的周期性及对称性判断各个选项即可得解;【详解】解:所以函数是以4为周期的函数故①错误;偶函数在上是减函数在上是增函数在上最小值为是以4为周期的函数是函数的最小值故②错误;在上是减解析:③④ 【分析】根据函数的周期性及对称性判断各个选项即可得解; 【详解】 解:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=,所以函数()f x 是以4为周期的函数,故①错误;偶函数()f x 在[2-,0]上是减函数,()f x ∴在[0,2]上是增函数,∴在[2-,2]上,最小值为(0)f ,()f x 是以4为周期的函数,(0)f ∴是函数的最小值,故②错误;()f x 在[2-,0]上是减函数,()f x ∴在[2,4]上是减函数,故③正确; (2)()(2)f x f x f x -+=--=+,()f x ∴的图象关于直线2x =对称,即④正确.故答案为:③④. 【点睛】本题考查函数的周期性,偶函数在对称区间上单调性相反这一结论,考查学生分析解决问题的能力,属于中档题.25.8【分析】利用换元法令则所以原函数变为令则函数为奇函数且推出进而求出的值【详解】令则所以原函数变为令则函数为奇函数且所以所以因为为奇函数所以所以所以故答案为:8【点睛】此题考查函数的奇偶性的应用考查解析:8 【分析】利用换元法令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++,令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++,推出()()max min 0g t g t +=,()()max min 2218g t g t a +=+=,进而求出a 的值【详解】令1t x =-,则[]2,2t ∈-,所以原函数变为()21sin 1y t t t a =-+++,令()()21sin g t t t t =-+,[]2,2t ∈-,则函数g t 为奇函数且()1y g t a =++,所以()()max max 1f x g t a =++,()()min min 1f x g t a =++, 所以()()()()max min max min 22f x f x g t g t a +=+++. 因为g t 为奇函数,所以()()max min 0g t g t +=,所以()()max min 2218g t g t a +=+=,所以8a =.故答案为:8 【点睛】此题考查函数的奇偶性的应用,考查换元法的应用,属于基础题26.【分析】设函数利用导数结合可得在上单调递减将化为可解得结果【详解】即为设函数则所以在上单调递减又因为所以不等式可化为即所以故解集为故答案为:【点睛】本题考查了构造函数利用导数判断单调性考查了利用函数 解析:()4,+∞【分析】 设函数()()3f xg x x=,利用导数结合()()3f x f x x '<可得()g x 在()0,∞+上单调递减,将()31016f x x -<化为()()4g x g <可解得结果. 【详解】()()3f x f x x '<即为()()30xf x f x '-<,设函数()()3f x g x x=, 则()()()()()3264330f x x f x x xf x f x g x x x''⋅-⋅-'==<,所以()g x 在()0,∞+上单调递减,又因为()44f =,所以()()3414416f g ==,不等式()31016f x x -<可化为()3116f x x <,即()()4g x g <,所以4x >,故解集为()4,+∞. 故答案为:()4,+∞.【点睛】本题考查了构造函数,利用导数判断单调性,考查了利用函数的单调性解不等式,属于中档题.。

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试题(含答案解析)(2)

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试题(含答案解析)(2)

一、选择题1.已知函数()y f x =的部分图象如图所示,则函数()y f x =的解析式可能为( )A .()()()sin 222x xf x x -=⋅+ B .()()()sin 222x xf x x -=⋅- C .()()()cos 222xxf x x -=⋅+ D .()()()cos 222xxf x x -=⋅-2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<4.设函数21,2()7,2x x f x x x ⎧-≤⎪=⎨-+>⎪⎩,若互不相等的实数a ,b ,c 满足()()()f a f b f c ==,则222a b c ++的取值范围是( ) A .()8,9B .()65,129C .()64,128D .()66,1305.已知函数()x xf x e e -=-,则不等式()()2210f x f x +--<成立的一个充分不必要条件为( ) A .()2,1-B .()0,1C .1,12⎛⎫-⎪⎝⎭D .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭6.函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .7.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤8.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-19.已知“函数()y f x =的图像关于点(),P a b 成中心对称图形”的充要条件为“函数()y f x a b =+-是奇函数”,现有函数:①1224x y x -=-;②1(2)|2|2y x x x =--+;③()321y x x =+--;④2332x x y x -+=-,则其中有相同对称中心的一组是( )A .①和③B .①和④C .②和③D .②和④10.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭11.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞12.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±13.已知函数()22x f x =-,则函数()y f x =的图象可能是( )A .B .C .D .14.若函数()f x 满足()()a f x b a b ≤≤<,定义b a -的最小值为()f x 的值域跨度,则是下列函数中值域跨度不为2的是( ) A .2()23f x x x =-++B .||()2x f x -= C .24()4x f x x =+D .()|1|||f x x x =+-15.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( ) A .116-B .116C .14D .12二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.已知定义在R 上的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,则使不等式(1)0f x x+≤成立的x 的取值范围是_________. 18.已知定义域为N 的函数()y f x =满足()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()5f =___________.19.已知函数()()()2421log 1ax ax x f x x x ⎧-+<⎪=⎨≥⎪⎩,在区间(),-∞+∞上是减函数,则a 的取值范围为______ .20.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.21.已知11()x x f x e e x --=-+,则不等式()(63)2f x f x +-≤的解集是________.22.如果函数f (x )=(2)1,1,1x a x x a x -+<⎧⎨≥⎩满足对任意12x x ≠,都有()()1212f x f x x x -->0成立,那么实数a 的取值范围是________.23.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()f x f x x--<0的解集为________.24.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当[1,0)x ∈-时1()2xf x ⎛⎫= ⎪⎝⎭则()2log 8f =_________.25.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 26.设函数()f x x x b =+,给出四个命题:①()y f x =是偶函数;②()f x 是实数集R 上的增函数;③0b =,函数()f x 的图像关于原点对称;④函数()f x 有两个零点. 上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据奇偶性排除AD ,根据图象过原点排除C ,从而可得答案. 【详解】由图可知函数图象关于y 轴对称,且图象过原点, 对于A , ()()()()()()sin 222sin 222xx x x f x x x f x ---=-⋅+=-⋅+=-,()y f x =是奇函数,图象关于原点对称,不合题意,排除A ;对于C ,()()000cos02220f =⋅+=≠,不合题意,排除C ;对于D ,()()()()()()cos 222cos 222xxxxf x x x f x ---=-⋅-=-⋅-=-,()y f x =是奇函数,图象关于原点对称,不合题意,排除D ; 故选:B. 【点睛】方法点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.A解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 4.D解析:D 【分析】画出函数()f x 的图象,不妨令a b c <<,则222a b +=.结合图象可得67c <<,从而可得结果. 【详解】画出函数()f x 的图象如图所示.不妨令a b c <<,则1221a b -=-,则222a b +=. 结合图象可得67c <<,故67222c <<. ∴66222130a b c <++<. 故选:D . 【点睛】数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有: 确定方程根的个数; 求参数的取值范围; 求不等式的解集; 研究函数性质.5.B解析:B 【分析】根据解析式可判断出()f x 是定义在R 的增函数且是奇函数,不等式可化为()()221f x f x <+,即得221x x <+,解出即可判断.【详解】可得()f x 的定义域为R ,x y e =和x y e -=-都是增函数,()f x ∴是定义在R 的增函数,()()x x f x e e f x --=-=-,()f x ∴是奇函数,则不等式()()2210f xf x +--<化为()()()2211f x f x f x <---=+,221x x ∴<+,解得112x -<<,则不等式成立的充分不必要条件应是1,12⎛⎫- ⎪⎝⎭的真子集, 只有B 选项满足. 故选:B. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,解题的关键是判断出()f x 是增函数且是奇函数,从而将不等式化为()()221f xf x <+求解.6.A解析:A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x x x x x xx x x x x xf x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x ----===++,故(x ∈时,00,0,202x x x x x ->+>-+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.7.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果.【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈, 又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.8.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()xf x f x --=-=-,∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.9.D解析:D 【分析】根据定义依次判断即可求出. 【详解】 对于①,()12312422x y x x -==----,则()()3212y f x x=+--=-是奇函数,故函数关于()2,1-对称;对于②,()1212y f x x x x =+-=+是奇函数,故函数关于()2,1对称; 对于③,()321y f x x x =--=-是奇函数,故函数关于()2,1-对称;对于④,22334421121222x x x x x y x x x x -+-++-+===-++---,则()121y f x x x=+-=+是奇函数,故函数关于()2,1对称. 故有相同对称中心的一组是②和④. 故选:D. 【点睛】关键点睛:本题考查函数对称性的判断,解题的关键是能根据解析式化简整理,正确利用对称的定义进行判断,能根据解析式整理出奇函数特征.10.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=,可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .11.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.12.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.13.B解析:B 【分析】先将函数化成分段函数的形式,再根据函数在不同范围上的性质可得正确的选项. 【详解】()22,12222,1x xxx f x x ⎧-≥=-=⎨-<⎩易知函数()y f x =的图象的分段点是1x =,且过点()1,0,()0,1,又()0f x ≥,故选:B . 【点睛】本题考查函数图象的识别,此类问题一般根据函数的奇偶性、单调性、函数在特殊点处的函数的符号等来判别,本题属于基础题.14.B解析:B 【分析】根据函数解析式,利用根式非负性、绝对值的区间讨论、分式的性质求值域,即可判断正确选项. 【详解】A 选项:22023(1)44x x x ≤-++=--+≤,所以0()2f x ≤≤,值域跨度为2;B 选项:||0x -≤,所以0()1f x <≤,值域跨度不为2;C 选项:当0x =时()0f x =;当0x >时,244()144x f x x x x ==≤=++;当0x <时,244()144()()x f x x x x ==-≥=-+-+-;故1()1f x -≤≤,值域跨度为2;D 选项:1,0()21,101,1x f x x x x ≥⎧⎪=+-≤<⎨⎪-<-⎩,故1()1f x -≤≤,值域跨度为2;故选:B 【点睛】本题考查了根据解析式求值域,注意根式、指数函数、对勾函数、绝对值的性质应用,属于基础题.15.D解析:D 【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数, ∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-,∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D 【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x>变形后,利用()g x 的单调性可解得结果. 【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-,所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >, 当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<,综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键.17.【分析】先由定义域为R 的偶函数在区间内单调递减且画出的草图结合图象对进行等价转化解不等式即可【详解】由题意可知在区间内为增函数函数的图象可看作是由的图象向左平移1个单位长度得到的作出和的大致图象如图 解析:[)()2,00,-⋃+∞【分析】先由定义域为R 的偶函数()f x 在区间[)0,+∞内单调递减,且()10f -=,画出()f x 的草图,结合图象对(1)0f x x+≤进行等价转化,解不等式即可. 【详解】由题意可知()f x 在区间(),0-∞内为增函数,函数()1y f x =+的图象可看作是由()y f x =的图象向左平移1个单位长度得到的,作出()y f x =和()1y f x =+的大致图象,如图所示.不等式(1)0f x x+≤可化为: ()010x f x <⎧⎨+≥⎩,当0x <时()10f x +≥,观察图象,得20x -≤<; ()010x f x >⎧⎨+≤⎩,当0x >时()10f x +≤,观察图象,得0x >; 所以不等式的解集为[)()2,00,-⋃+∞ 故答案为:[)()2,00,-⋃+∞. 【点睛】常见解不等式的类型:(1)解一元二次不等式用图象法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.18.9【分析】判断自变量的范围根据分段函数的解析式逐步求解即可解答过程要注意避免出现计算错误【详解】由题知故答案为:9【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对解析:9 【分析】判断自变量的范围,根据分段函数的解析式,逐步求解即可,解答过程要注意避免出现计算错误. 【详解】由题知,()()()2,105,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,()()()()()()()510,555101028f f f f f f f <∴=+==-=,()()()()()()(85)13811321128190,1f f f f f f f +<∴===-==-=,故答案为:9. 【点睛】方法点睛:对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 当出现(())f f a 的形式时,应从内到外依次求值.19.【分析】根据题意讨论时是二次函数在对称轴对称轴左侧单调递减时是对数函数在时单调递减;再利用端点处的函数值即可得出满足条件的的取值范围【详解】解:由函数在区间上是减函数当时二次函数的对称轴为在对称轴左解析:1324a ≤≤ 【分析】根据题意,讨论1x <时,()f x 是二次函数,在对称轴对称轴左侧单调递减,1x 时,()f x 是对数函数,在01a <<时单调递减;再利用端点处的函数值即可得出满足条件的a 的取值范围. 【详解】解:由函数242(1)()(1)a x ax x f x log x x ⎧-+<=⎨⎩在区间(,)-∞+∞上是减函数,当1x <时,2()42f x x ax =-+,二次函数的对称轴为2x a =, 在对称轴左侧单调递减,21a ∴,解得12a; 当1x 时,()log a f x x =,在01a <<时单调递减; 又2142log 1a a -+, 即34a;综上,a 的取值范围是1324a . 故答案为:1324a . 【点睛】本题考查了分段函数的单调性问题,也考查了分类讨论思想的应用问题,属于中档题.20.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集. 【详解】当1x <时,()f x x =单调递增,且()1f x <; 当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增. 于是()()26f xf x ->-等价于26xx ->-,则260x x --<,()()320x x -+<,解得23x -<<. 故答案为:()2,3-. 【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.21.【分析】先构造函数得到关于对称且单调递增再结合对称性与单调性将不等式转化为即可求解【详解】构造函数那么是单调递增函数且向左移动一个单位得到的定义域为且所以为奇函数图象关于原点对称所以图象关于对称不等 解析:[2,)+∞【分析】先构造函数111()()1(1)x x g x f x e x e --=-=-+-,得到()g x 关于(1,0)对称,且单调递增,再结合对称性与单调性将不等式()(63)2f x f x +- 转化为34x x -即可求解. 【详解】构造函数111()()1(1)x x g x f x e x e --=-=-+-,那么()g x 是单调递增函数,且向左移动一个单位得到1()(1)xxh x g x e x e =+=-+,()h x 的定义域为R ,且1()()x x h x e x h x e-=--=-, 所以()h x 为奇函数,图象关于原点对称,所以()g x 图象关于(1,0)对称. 不等式()(63)2f x f x +- 等价于()1(63)10f x f x -+--, 等价于()(63)0()[2(63)](34)g x g x g x g x g x +-∴--=-,结合()g x 单调递增可知342x x x -∴, 所以不等式()(63)2f x f x +- 的解集是[2,)+∞. 故答案为:[2,)+∞. 【点睛】本题主要考查函数的奇偶性和单调性的应用,考查函数的对称性的应用,意在考查学生对这些知识的理解掌握水平.22.【分析】先由条件判断出在R 上是增函数所以需要满足和单调递增并且在处对应的值大于等于对应的值解出不等式组即可【详解】对任意都有>0所以在R 上是增函数所以解得故实数a 的取值范围是故答案为:【点睛】本题考解析:3,22⎡⎫⎪⎢⎣⎭【分析】先由条件判断出()y f x =在R 上是增函数,所以需要满足(2)1y a x =-+和xy a = 单调递增,并且在1x =处xy a =对应的值大于等于(2)1y a x =-+对应的值,解出不等式组即可. 【详解】对任意12x x ≠,都有()()1212f x f x x x -->0,所以()y f x =在R 上是增函数,所以201(2)11a a a a->⎧⎪>⎨⎪-⨯+≤⎩,解得322a ≤<,故实数a 的取值范围是3,22⎡⎫⎪⎢⎣⎭. 故答案为:3,22⎡⎫⎪⎢⎣⎭. 【点睛】本题考查含有参数的分段函数根据单调性求参数范围问题,需要满足各部分单调并且在分段处的函数值大小要确定,属于中档题.23.(-10)∪(01)【分析】首先根据奇函数f(x)在(0+∞)上为增函数且f(1)=0得到f(-1)=0且在(-∞0)上也是增函数从而将不等式转化为或进而求得结果【详解】因为f(x)为奇函数且在(0解析:(-1,0)∪(0,1) 【分析】首先根据奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,得到f (-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩,进而求得结果.【详解】因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0, 所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数. 因为()()f x f x x --=2·()f x x<0, 即0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩解得x ∈(-1,0)∪(0,1). 故答案为:(-1,0)∪(0,1). 【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.24.2【分析】利用确定函数的周期再结合偶函数性质求值【详解】用x+1代换x 得即f(x+2)=f(x)f(x)为周期函数T=2又是偶函数所以故答案为:2【点睛】本题考查由函数的周期性和奇偶性求函数值属于中解析:2 【分析】 利用()()1f x f x +=-确定函数的周期,再结合偶函数性质求值.【详解】用x +1代换x ,得[]()()(1)+1(+1)f x f x f x f x +=-=--=⎡⎤⎣⎦,即f (x +2)=f (x ),f (x )为周期函数,T =2,又 2log 83=, ()f x 是偶函数,所以()()()()121log 831122f f f f -⎛⎫===-== ⎪⎝⎭,故答案为:2. 【点睛】本题考查由函数的周期性和奇偶性求函数值,属于中档题.函数()f x 若满足()()f x a f x +=-,1()()f x a f x +=等时,则此函数为周期函数,且2a 是它的一个周期.25.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.26.②③【解析】①错∵∴不是偶函数②∵由图象知在上单调递增正确③时关于原点对称正确④若时只有一个零点错误综上正确命题为②③解析:②③ 【解析】①错,∵()f x x x b =+,()()f x x x b f x -=-+≠,∴()y f x =不是偶函数.②∵22(0)()(0)x b x f x x b x ⎧+>=⎨-+≤⎩, 由图象知()f x 在R 上单调递增,正确.③0b =时,22(0)()(0)x x f x x x ⎧>=⎨-≤⎩, ()f x 关于原点对称,正确. ④若0b =时,()f x 只有一个零点,错误. 综上,正确命题为②③.。

新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(答案解析)(2)

新人教版高中数学必修第一册第三单元《函数概念与性质》测试题(答案解析)(2)

一、选择题1.已知函数()f x 为定义在R 上的奇函数,当0x ≤时,()(1)ln f x x -=+,则()1f =( ) A .ln 2-B .ln 2C .0D .12.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<5.设函数()f x 是定义R 在上的偶函数,且对任意的x ∈R 恒有(1)(1)f x f x +=-,已知当[0,1]x ∈时,1()2x f x -=,若32a f ⎛=⎫ ⎪⎝⎭,()30.5b f -=,()60.7c f =,则,,a b c的大小关系是( ) A .a b c >> B .a c b >> C .b a c >>D .c b a >>6.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断7.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2xg x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤8.若函数()f x 同时满足:①定义域内存在实数x ,使得()()0f x f x ⋅-<;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.下列函数中是“DM 函数”的为( )A .()3f x x =B .()sin f x x =C .()1x f x e-=D .()ln f x x =9.已知定义在R 上的奇函数()f x 满足:当[]0,1x ∈时,()31x f x =-,则()1f -=( ) A .2B .1C .-2D .-110.定义在R 上的奇函数()f x 满足当0x <时,3(4)f x x =+,则(1),(2),()f f f π的大小关系是( ) A .(1)(2)()f f f π<< B .(1)()(2)f f f π<< C .()(1)(2)f f f π<<D .()(2)(1)f f f π<<11.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭12.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}{},x x m =即.在此基础上给出下列关于函数的四个命题:①11()22f -=;②(3.4)0.4f =-;③11()()44f f -<;④()y f x =的定义域是R ,值域是11,22⎡⎤-⎢⎥⎣⎦;则其中真命题的序号是 ( ) A .①②B .①③C .②④D .③④第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案13.已知22()log (1)24f x x x x =--+,若()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .⎝⎭C .115,01,22⎛⎫⎛+ ⎪ ⎪ ⎝⎭⎝⎭D .(1,0)(1,2)-14.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <15.函数1()lg f x x=+ ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞二、填空题16.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______. 17.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________.18.设函数()()333f x x x x R =-+∈.已知0a >,且()()()()2f x f a x b x a -=--,b R ∈,则ab =______.19.已知函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩给出下列三个结论:①()f x 是偶函数; ②()f x 有且仅有3个零点; ③()f x 的值域是[]1,1-. 其中,正确结论的序号是______.20.研究函数())f x a b c =<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).21.已知()f x 是定义域为R 的奇函数,满足()()3f x f x =+,若()21f =-,则()2020f =______.22.已知函数()f x =ln 2x x +,则()232f x -<的解集为_____.23.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________ 24.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.25.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若对于任意0x >都有()()3f x f x x '<,且()44f =,则不等式()31016f x x -<的解集为________. 26.设函数()f x x x b =+,给出四个命题:①()y f x =是偶函数;②()f x 是实数集R 上的增函数;③0b =,函数()f x 的图像关于原点对称;④函数()f x 有两个零点. 上述命题中,正确命题的序号是__________.(把所有正确命题的序号都填上)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由函数的奇偶性可得()()11f f =--,进而计算即可得解. 【详解】函数()f x 是定义在R 上的奇函数, 当0x ≤时,()(1)ln f x x -=+∴()()11ln[(1)1]ln 2f f =--=---+=-.故选:A. 【点睛】思路点睛:该题考查函数奇偶性的应用,解题思路如下: (1)根据奇函数的定义,可知(1)(1)=--f f ; (2)根据题中所给的函数解析式,求得函数值; (3)最后得出结果.2.A【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数, 在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.B【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 5.B解析:B 【分析】由(1)(1)f x f x +=-可得函数的周期为2,再利用周期和偶函数的性质将32a f ⎛=⎫⎪⎝⎭,()30.5b f -=,转化使自变量在区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小 【详解】解:因为(1)(1)f x f x +=-,所以(2)()f x f x +=, 所以函数()f x 的周期为2,因为函数()f x 是定义R 在上的偶函数,所以331122222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()30.5(8)(0)b f f f -===,因为62100.70.72<<<,()f x 在[0,1]上单调递增, 所以61(0)(0.7)()2f f f <<, 所以b c a <<, 故选:B 【点睛】关键点点睛:此题考查函数周期性,单调性和奇偶性的应用,解题的关键是利用函数的周期将自变量转化到区间[0,1]上,然后利用()f x 在[0,1]上单调递增,比较大小,属于中档题6.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.7.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果.【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈, 又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.8.A解析:A 【分析】根据题意函数定义域关于原点对称且函数值有正有负,且为定义域内的单调递增函数,通过此两点判定即可. 【详解】解:由定义域内存在实数x 有()()0f x f x ⋅-<,可得函数定义域关于原点对称且函数值有正有负,排除D 、C.由②得“DM 函数”为单调递增函数,排除B. 故选:A 【考点】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.9.C解析:C 【分析】由()f x 为奇函数,结合已知区间的解析式即可求10x -≤≤时()f x 的解析式,进而求()1f -即可.【详解】∵()f x 在R 上是奇函数, ∴令10x -≤≤,则[0,1]x -∈, 由题意,有()31()x f x f x --=-=-, ∴1()13x f x =-,故()111123f --=-=-, 故选:C 【点睛】关键点点睛:利用函数奇偶性,求对称区间上的函数解析式,然后代入求值.10.A解析:A 【分析】根据函数奇偶性先将0x >时的解析式求解出来,然后根据0x >时函数的单调性比较出(1),(2),()f f f π的大小关系.【详解】当0x >时,0x -<,所以()43f x x -=-+,又因为()f x 为奇函数,所以()()43f x f x x -=-=-+,所以()43f x x =-, 显然0x >时,()43f x x =-是递增函数,所以()()()12f f f π<<,故选:A. 【点睛】思路点睛:已知函数奇偶性,求解函数在对称区间上的函数解析式的步骤: (1)先设出对称区间上x 的取值范围,然后分析x -的范围; (2)根据条件计算出()f x -的解析式;(3)根据函数奇偶性得到()(),f x f x -的关系,从而()f x 在对称区间上的解析式可求.11.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩,由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=, 可得11()(2)(4)24f x f x f x =+=+ 当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .12.B解析:B 【解析】111()(1)222f -=---= ;111()(0)444f -=--=-,111()(0)444f =-=,所以11()()44f f -<; (3.4) 3.430.4f =-=;()y f x = 的定义域是R ,值域是11(,]22- ,所以选B.点睛:解决新定义问题,关键是明确定义含义,正确运用定义进行运算.对于抽象的概念,可先列举一些具体的数值进行理解与归纳.本题易错点在区间端点是否可取上,难点在于整数的确定.13.C解析:C【分析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >, 并且在区间()1,+∞上,函数单调递增,且()22f =,所以()()()2212012f x x f x x f -+-<⇔-+<, 即221112x x x x ⎧-+>⎨-+<⎩,解得:151x +<<或1502x -<<. 故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域. 14.D解析:D【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解.【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02a x =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a <,解得2a <,即02a <<.综上,2a <.故选:D.【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.15.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C .【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意:(1)对数要求真数大于0;(2)分式要求分母不等于0;(3)偶次根式要求被开方式大于等于0.二、填空题16.【分析】先分析得到函数在上单调递减周期再得到当时即得解【详解】因为对当时所以在上单调递减而由偶函数得当时;又可得周期因为所以当时;于是的解集为故答案为:【点睛】方法点睛:对于函数的问题的研究一般从函 解析:(2019,2021)【分析】先分析得到函数()f x 在[0,2]上单调递减,周期4T =,再得到当(1,1)x ∈-时,()0f x >,即得解.【详解】因为对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-, 所以()f x 在[0,2]上单调递减,而()10f =,由偶函数得当(1,1)x ∈-时,()0f x >;又()()()4f x f x f x +=-=可得周期4T=,因为[2019,2023]x ∈,所以当(2019,2021)x ∈时,()0f x >;于是()0f x >的解集为(2019,2021).故答案为:(2019,2021)【点睛】方法点睛:对于函数的问题的研究,一般从函数的单调性、奇偶性和周期性入手,再研究求解. 17.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3-【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩, 根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-.故答案为:(3,0)(1,3)-18.【分析】先将进行因式分解再与比较利用对应系数相等可得关于的方程即可得的值即可求解【详解】因为所以因为所以对任意的恒成立所以不恒为所以展开整理可得:所以解得:或(舍)所以故答案为:【点睛】关键点点睛: 解析:2-【分析】先将()()f x f a -进行因式分解再与()()2x b x a --比较,利用对应系数相等可得关于,a b 的方程,即可得,a b 的值,即可求解.【详解】因为()()333f x x x x R =-+∈, 所以()()()()333333333f x f a x x a a x a x a -=-+----=-+, ()()()()222233x ax a x ax x a x a x a a ⎡⎤---==+-++-⎣+⎦, 因为()()()()2f x f a x b x a -=--, 所以()()()2223x ax a x b x x a a ⎡⎤-=⎣-⎦++--,对任意的x 恒成立, 所以x a -不恒为0,所以()()223x ax a x b x a ++-=-- 展开整理可得:()23ax a a b x ab +-=-++,所以()23a a b a ab ⎧=-+⎨-=⎩ 解得:12a b =⎧⎨=-⎩或12a b =-⎧⎨=⎩(舍), 所以()122ab =⨯-=-,故答案为:2-.【点睛】关键点点睛:本题解题的关键是将()()f x f a -进行因式分解,由x a -不恒为0,得出()()223x ax a x b x a ++-=--利用待定系数法可求,a b 的值.19.②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③【详解】函数①由于所以是非奇非偶函数所以①不正确;②可得所以函数有且仅有3个零点;所以②正确;③函数的值域是正确;正确结论的解析:②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.【详解】函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩, ①由于()()1,sin 0f f πππ-=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x π=-,0x =,x π=,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,()f x 的值域是[]1,1-,正确; 正确结论的序号是:②③.故答案为:②③.【点睛】本小题主要考查函数的奇偶性、零点、值域.20.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④.【详解】解:函数())f x a b c =<<<, 由于220a x -≥,整理得a x a -≤≤.则:()||||f x x b x c b c==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值a b c+,在x a =±处取得最小值0,故④正确. 故答案为:①④.【点睛】本题考查函数性质的应用,属于基础题. 21.1【分析】首先根据题中所给的条件判断出函数的最小正周期结合奇函数的定义求得结果【详解】因为所以函数是以3为周期的周期函数且是定义域为的奇函数所以故答案为:1【点睛】该题考查的是有关函数的问题涉及到的 解析:1【分析】首先根据题中所给的条件,判断出函数的最小正周期,结合奇函数的定义,求得结果.【详解】因为()()3f x f x =+,所以函数()f x 是以3为周期的周期函数,且是定义域为R 的奇函数,所以(2020)(67432)(2)(2)1f f f f =⨯-=-=-=,故答案为:1.【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与周期性的综合应用,属于简单题目.22.【分析】可判断出函数在上单调递增将不等式化为可得出解出即可【详解】因为单增单增所以函数在区间上单增而==等价于所以即解得或即的解集为故答案为:【点睛】解函数不等式:首先根据函数的性质把不等式转化为的解析:(()2,3,2- 【分析】可判断出函数()f x 在()0,∞+上单调递增, 将不等式化为()()231f x f -<,可得出2031x <-<,解出即可.【详解】因为ln y x =单增,2x y =单增,所以函数()f x 在区间()0,∞+上单增.而()1f =1ln12+=()22,32f x -<等价于()()231f x f -<, 所以2031x <-<,即234x <<,解得2x -<<2x <<.即()232f x -<的解集为(()2,3,2-. 故答案为:(()2,3,2-. 【点睛】解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内 23.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】可令1()2g x =,得出x 的值,再代入可得答案. 【详解】解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.24.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R 上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x <2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).25.【分析】设函数利用导数结合可得在上单调递减将化为可解得结果【详解】即为设函数则所以在上单调递减又因为所以不等式可化为即所以故解集为故答案为:【点睛】本题考查了构造函数利用导数判断单调性考查了利用函数 解析:()4,+∞【分析】设函数()()3f x g x x =,利用导数结合()()3f x f x x '<可得()g x 在()0,∞+上单调递减,将()31016f x x -<化为()()4g x g <可解得结果. 【详解】 ()()3f x f x x '<即为()()30xf x f x '-<,设函数()()3f x g x x=, 则()()()()()3264330f x x f x x xf x f x g x x x''⋅-⋅-'==<,所以()g x 在()0,∞+上单调递减,又因为()44f =,所以()()3414416f g ==,不等式()31016f x x -<可化为()3116f x x <,即()()4g x g <,所以4x >,故解集为()4,+∞. 故答案为:()4,+∞.【点睛】本题考查了构造函数,利用导数判断单调性,考查了利用函数的单调性解不等式,属于中档题.26.②③【解析】①错∵∴不是偶函数②∵由图象知在上单调递增正确③时关于原点对称正确④若时只有一个零点错误综上正确命题为②③ 解析:②③【解析】①错,∵()f x x x b =+,()()f x x x b f x -=-+≠,∴()y f x =不是偶函数.②∵22(0)()(0)x b x f x x b x ⎧+>=⎨-+≤⎩, 由图象知()f x 在R 上单调递增,正确.③0b =时,22(0)()(0)x x f x x x ⎧>=⎨-≤⎩, ()f x 关于原点对称,正确.④若0b =时,()f x 只有一个零点,错误.综上,正确命题为②③.。

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(有答案解析)(1)

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试卷(有答案解析)(1)

一、选择题1.已知函数()y f x =的部分图象如图所示,则函数()y f x =的解析式可能为( )A .()()()sin 222x xf x x -=⋅+ B .()()()sin 222x xf x x -=⋅- C .()()()cos 222xxf x x -=⋅+ D .()()()cos 222xxf x x -=⋅-2.已知()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,则(1)(2)f g +=( )A .5B .6C .8D .103.已知,A B 是平面内两个定点,平面内满足PA PB a ⋅=(a 为大于0的常数)的点P 的轨迹称为卡西尼卵形线,它是以发现土星卫星的天文学家乔凡尼·卡西尼的名字命名.当,A B 坐标分别为(1,0)-,(1,0),且1a =时,卡西尼卵形线大致为( )A .B.C.D.4.函数2()1sin12xf x x⎛⎫=-⎪+⎝⎭的图象大致形状为().A.B.C.D.5.已知函数(1)f x +是偶函数,当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立,设1,(2),(3)2a f b f c f ⎛⎫=-== ⎪⎝⎭,则,,a b c 的大小关系为( ) A .b a c <<B .c b a <<C .b c a <<D .a b c <<6.已知函数()()2265m m m f x x-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,若a ,b R ∈,且0a b +>,则()()f a f b +的值( )A .恒大于0B .恒小于0C .等于0D .无法判断7.已知幂函数2242()(1)mm f x m x -+=-在(0,)+∞上单调递增,函数()2x g x t =-,任意1[1,6)x ∈时,总存在2[1,6)x ∈使得()()12f x g x =,则t 的取值范围是( )A .128t <<B .128t ≤≤C .28t >或1t <D .28t ≥或1t ≤8.函数1x y -=的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞9.若定义在R 的奇函数()f x 在(],0-∞单调递减,则不等式()()20f x f x +-≥的解集为( ) A .(],2-∞ B .(],1-∞C .[)1,+∞D .[)2,+∞10.函数()ln x xxf x e e-=-的大致图象是( ) A . B .C .D .11.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞12.若01m n <<<且1mn =,则2m n +的取值范围是( ) A .[22,)+∞ B .[3,)+∞C .(22,)+∞D .(3,)+∞13.函数3e e x xxy -=+(其中e 是自然对数的底数)的图象大致为( ) A . B .C .D .14.函数1()2lg f x x x=+-的定义域为( ) A .(0,2] B .(0,2) C .(0,1)(1,2]⋃D .(,2]-∞15.函数2222(1)ln 2(1)x y x x +=-⋅+的部分图象是( )A .B .C .D .二、填空题16.已知函数()y f x =,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),且当[)0,1x ∈时,()2xf x =,则()2021f =___________.17.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.18.已知函数12()log f x x a =+,g (x )=x 2-2x ,若11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f(x 1)=g (x 2),则实数a 的取值范围是________.19.函数()22(1)221x xx f x x -++-=+,在区间[]2019,2019-上的最大值为M ,最小值为m .则M m +=_____.20.幂函数()()2231mm f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数,则a m +=____.21.设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式()()f x f x x--<0的解集为________.22.函数()f x 是定义在R 上的偶函数,且()21f =-,对任意的x ∈R 都有()()2f x f x =--,则()2020f =_________.23.已知()()()22112,0x g x x f g x x x -=-=≠⎡⎤⎣⎦,则12f ⎛⎫= ⎪⎝⎭_________ 24.已知函数()1lg11xf x x-=++,若()4f m =,则()f m -=______. 25.已知()f x 是奇函数,且当0x <时,2()32f x x x =++,若当[1x ∈,3]时,()n f x m 恒成立,则m n -的最小值为___.26.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为__________.【参考答案】***试卷处理标记,请不要删除1.B 解析:B 【分析】根据奇偶性排除AD ,根据图象过原点排除C ,从而可得答案. 【详解】由图可知函数图象关于y 轴对称,且图象过原点, 对于A , ()()()()()()sin 222sin 222xx x x f x x x f x ---=-⋅+=-⋅+=-,()y f x =是奇函数,图象关于原点对称,不合题意,排除A ;对于C ,()()000cos02220f =⋅+=≠,不合题意,排除C ;对于D ,()()()()()()cos 222cos 222xxxxf x x x f x ---=-⋅-=-⋅-=-,()y f x =是奇函数,图象关于原点对称,不合题意,排除D ; 故选:B. 【点睛】方法点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.2.D解析:D 【分析】先由()f x 是R 上的奇函数,()g x 是R 上的偶函数,且32()()231f x g x x x x +=+++,得到32()()231f x g x x x x -+-=-+-+,求出()f x 和()g x ,再求(1)(2)f g +【详解】因为32()()231f x g x x x x +=+++,所以32()()231f x g x x x x -+-=-+-+.又()f x 是奇函数,()g x 是偶函数,所以32()()231f x g x x x x -+=-+-+,则32()23,()1f x x x g x x =+=+,故(1)(2)5510f g +=+=.故选:D 【点睛】 函数奇偶性的应用:(1)一般用()()f x f x =-或()()f x f x =-;(2)有时为了计算简便,我们可以对x 取特殊值: (1)(1)f f =-或(1)(1)f f =-.3.A【分析】设(,)P x y1=,代0x =排除C 、D ,通过奇偶性排除B. 【详解】 解:设(,)P x y因为PA PB a ⋅=,,A B 坐标分别为(1,0)-,(1,0),且1a =1=当0x =时,上式等式成立,即点(0,0)满足PA PB a ⋅=,故排除C 、D.当x -代替x1== 即图形关于y 轴对称,排除B. 故选:A. 【点睛】应用函数奇偶性可解决的四类问题及解题方法(1)求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式:先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于()f x 的方程(组),从而得到()f x 的解析式;(3)求函数解析式中参数的值:利用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值; (4)画函数图象和判断单调性:利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.4.B解析:B 【分析】首先判断函数的奇偶性,再判断0πx <<时,函数值的正负,判断得选项. 【详解】因为2()1sin 12x f x x ⎛⎫=- ⎪+⎝⎭,所以12()sin 12xxf x x -=⋅+, ()()()2221sin 1sin 1212x x xf x x x -⎛⎫⨯⎛⎫-=--=-- ⎪ ⎪++⎝⎭⎝⎭()()21221sin 12x x x ⎛⎫+- ⎪=-- ⎪+⎝⎭221sin 1sin 1212xx x x ⎛⎫⎛⎫=--=- ⎪ ⎪++⎝⎭⎝⎭()f x =,所以函数是偶函数,关于y 轴对称,排除C ,D , 令()0f x =,则21012x-=+或sin 0x =,解得()x k k Z π=∈,而0πx <<时,120x -<,120x +>,sin 0x >,此时()0f x <.故排除A.故选:B . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.5.A解析:A 【分析】由题知函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,故15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭,所以b a c <<.【详解】解:因为当121x x <<时,()()()21210f x f x x x ⎡⎤-->⎣⎦恒成立, 所以函数()f x 在区间()1,+∞上单调递增,由于函数(1)f x +是偶函数,故函数(1)f x +图象关于y 轴对称, 所以函数()f x 图象关于直线1x =对称,所以1522a f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,由于5232<<,函数()f x 在区间()1,+∞上单调递增, 所以15(2)(3)22b f a f f c f ⎛⎫⎛⎫=<=-=<= ⎪ ⎪⎝⎭⎝⎭. 故选:A. 【点睛】本题解题的关键在于根据题意得函数()f x 图象关于直线1x =对称,在区间()1,+∞上单调递增,再结合函数对称性与单调性比较大小即可,考查化归转化思想与数学运算求解能力,是中档题.6.A解析:A 【分析】利用幂函数的定义求出m ,利用函数的单调性和奇偶性即可求解. 【详解】∵函数()()2265m m m f x x-=--是幂函数,∴25=1m m --,解得:m = -2或m =3. ∵对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-,∴函数()f x 为增函数, ∴260m ->, ∴m =3(m = -2舍去) ∴()3=f x x 为增函数.对任意a ,b R ∈,且0a b +>, 则- a b >,∴()()()f a f b f b >-=- ∴()()0f a f b +>. 故选:A 【点睛】(1)由幂函数的定义求参数的值要严格按照解析式,x 前的系数为1; (2)函数的单调性和奇偶性是函数常用性质,通常一起应用.7.B解析:B 【分析】先根据幂函数定义解得m ,再根据单调性进行取舍,根据任意存在性将问题转化为对应函数值域包含问题,最后根据函数单调性确定对应函数值域,根据值域包含关系列不等式解得结果. 【详解】由题意22(1)1420m m m ⎧-=⎨-+>⎩,则0m =,即()2f x x =,当[)11,6x ∈时, ()[)11,36f x ∈,又当[)21,6x ∈时, ()[)22,64g x t t ∈--,∴216436t t -≤⎧⎨-≥⎩,解得128t ≤≤,故选:B . 【点睛】对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即1212,,()()()x x f x g x y f x ∀∃=⇒=的值域包含于()y g x =的值域; 1212,,()()()x x f x g x y f x ∃∃=⇒=的值域与()y g x =的值域交集非空.8.C解析:C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =, 当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C 【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.9.B解析:B 【分析】由奇函数性质结合已知单调性得出函数在R 上的单调性,再由奇函数把不等式化为(2)()f x f x -≥-,然后由单调性可解得不等式.【详解】∵()f x 是奇函数,在(,0]-∞上递减,则()f x 在[0,)+∞上递减, ∴()f x 在R 上是减函数,又由()f x 是奇函数,则不等式()()20f x f x +-≥可化为(2)()f x f x -≥-, ∴2x x -≤-,1x ≤. 故选:B . 【点睛】方法点睛:本题考查函数的奇偶性与单调性.这类问题常常有两种类型:(1)()f x 为奇函数,确定函数在定义域内单调,不等式为12()()0f x f x +>转化为12()()f x f x >-,然后由单调性去掉函数符号“f ”,再求解;(2)()f x 是偶函数,()f x 在[0,)+∞上单调,不等式为12()()f x f x >,首先转化为12()()f x f x >,然后由单调性化简. 10.C【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可.【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x xx x f x f x e e e e ----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A.故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.11.C解析:C【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10t t ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10t t ++-<,所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++, 所以90t >,所以'()0g t >,所以()g t 在3[,)4+∞单调递增,所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<,【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)t g t t =++,利用函数的单调性解不等式.12.D解析:D【分析】 先利用已知条件构造函数()2(),01f m m m m +<<=,再求其值域即得结果. 【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.13.A解析:A【分析】由函数的奇偶性排除B ;由0x >的函数值,排除C ;由当x →+∞时的函数值,确定答案.【详解】由题得函数的定义域为R , 因为3()()x x x f x f x e e---==-+,所以函数是奇函数,所以排除B ; 当0x >时,()0f x >,所以排除C ; 当x →+∞时,()0f x →,所以选A .故选:A【点睛】方法点睛:根据函数的解析式找图象,一般先找图象的差异,再用解析式验证得解. 14.C解析:C【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解.【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃故选:C .【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意:(1)对数要求真数大于0;(2)分式要求分母不等于0;(3)偶次根式要求被开方式大于等于0.15.C解析:C【详解】函数()()22221ln 21x y x x +=-⋅+是偶函数,排除AD;且222222(1)2,02(1)x x x x ++≥+∴≤+ 当01,0,10.x y x y <<>==时当时, 排除B,选C.点睛:这个题目考查的是由函数的解析式画函数的图象;一般这种题目是排除法来做的;先找函数的定义域,值域,看是否和解析式相符;再看函数的对称性,奇偶性,看两者是否相符;还有可以判断函数的极限值.二、填空题16.【分析】推导出函数是周期为的周期函数可得出再由可求得结果【详解】当时则对任意都有(为非零实数)则由可得所以函数是周期为的周期函数因此故答案为:【点睛】方法点睛:函数的三个性质:单调性奇偶性和周期性在 解析:a【分析】推导出函数()f x 是周期为2的周期函数,可得出()()20211f f =,再由()01f =可求得结果.【详解】当[)0,1x ∈时,()2x f x =,则()0021f ==, 对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),则()()10f f a ⋅=,()1f a ∴=,由()()1f x f x a ⋅+=可得()()21f x f x a +⋅+=,()()2f x f x ∴+=,所以,函数()f x 是周期为2的周期函数,因此,()()20211f f a ==.故答案为:a .【点睛】方法点睛:函数的三个性质:单调性、奇偶性和周期性,在高考中一般不会单独命题,而是常将它们综合在一起考查,其中单调性与奇偶性结合、周期性与抽象函数相结合,并结合奇偶性求函数值,多以选择题、填空题的形式呈现,且主要有以下几种命题角度; (1)函数的单调性与奇偶性相结合,注意函数的单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性相结合,此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解;(3)周期性、奇偶性与单调性相结合,解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.17.【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是关于原点解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式.【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB ,不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<,所以,10()1,01x x f x x -<<⎧=⎨<<⎩, 故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.18.01【分析】当时当时由使得f (x1)=g (x2)等价于解不等式即可得解【详解】当时当时由使得f (x1)=g (x2)则可得:解得故答案为:【点睛】本题考查了求函数值域考查了恒成立和存在性问题以及转化思解析:[0,1]【分析】 当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-, 由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),等价于[][]1,21,3a a -++⊆-,解不等式即可得解.【详解】 当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-, 由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2), 则[][]1,21,3a a -++⊆-,可得:1123a a -≤-+⎧⎨+≤⎩, 解得01a ≤≤,故答案为:01a ≤≤.【点睛】本题考查了求函数值域,考查了恒成立和存在性问题以及转化思想,有一定的计算量,属于中档题.19.【分析】可将原函数化为可设可判断为奇函数再根据奇函数与最值性质进行求解即可【详解】因为设所以;则是奇函数所以在区间上的最大值为即在区间上的最小值为即∵是奇函数∴则故答案为:2【点睛】本题主要考查奇函 解析:2【分析】可将原函数化为()2222+11x x x f x x -+-=+,可设()22221x xx g x x -+-=+,可判断()g x 为奇函数,再根据奇函数与最值性质进行求解即可.【详解】因为()222(1)22222=+111x x x xx x f x x x --++-+-=++ 设()[]()22222019,20191x xx g x x x -+-=∈-+,, 所以()()()()2222222211x xx x x x g x g x x x ---+-+--==-=-+-+ ; 则()g x 是奇函数,所以()f x 在区间[]2019,2019-上的最大值为M ,即()1max M g x =+,()f x 在区间[]2019,2019-上的最小值为m ,即()min 1m g x =+,∵()g x 是奇函数,∴()()max min 0g x g x +=, 则()()22max min M m g x g x +=++= .故答案为:2.【点睛】本题主要考查奇函数的性质,利用奇函数最值性质进行转化是解决本题的关键.属于中档题.20.3【分析】由幂函数为偶函数且在(0+∞)上是单调递减函数可得m2-2m-3<0且m2-2m-3为偶数m ∈Z 且解出即可【详解】∵幂函数为偶函数且在上是减函数∴且为偶数且解得12且只有时满足为偶数∴故答解析:3【分析】由幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在(0,+∞)上是单调递减函数,可得m 2-2m -3<0,且m 2-2m -3为偶数,m ∈Z ,且1=1a -.解出即可.【详解】∵幂函数()()2231m m f x a x --=-(),a m N ∈为偶函数,且在()0,∞+上是减函数, ∴2230m m --<,且223m m --为偶数,m N ∈,且1=1a -.解得13m -<<,0m =,1,2,且=2a ,只有1m =时满足223=4m m ---为偶数.∴1m =.3a m +=【点睛】本题考查幂函数的性质,根据幂函数性质求参数值,可根据幂函数性质列不等式和等式,求解即可,属于基础题.21.(-10)∪(01)【分析】首先根据奇函数f(x)在(0+∞)上为增函数且f(1)=0得到f(-1)=0且在(-∞0)上也是增函数从而将不等式转化为或进而求得结果【详解】因为f(x)为奇函数且在(0解析:(-1,0)∪(0,1)【分析】首先根据奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,得到f (-1)=0,且在(-∞,0)上也是增函数,从而将不等式转化为0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩,进而求得结果. 【详解】因为f (x )为奇函数,且在(0,+∞)上是增函数,f (1)=0,所以f (-1)=-f (1)=0,且在(-∞,0)上也是增函数. 因为()()f x f x x --=2·()f x x<0, 即0()0x f x >⎧⎨<⎩或0()0x f x <⎧⎨>⎩解得x ∈(-1,0)∪(0,1).故答案为:(-1,0)∪(0,1).【点睛】该题考查的是有关函数的问题,涉及到的知识点有函数奇偶性与单调性的应用,属于简单题目.22.1【分析】根据题意由函数的奇偶性分析可得进而可得即函数是周期为4的周期函数据此可得(4)(2)即可得答案【详解】根据题意函数是定义在上的偶函数对任意的都有则即函数是周期为4的周期函数故答案为:1【点 解析:1【分析】根据题意,由函数的奇偶性分析可得()(2)f x f x =--,进而可得()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,据此可得(2020)(44504)f f f =+⨯=(4)f =-(2),即可得答案.【详解】根据题意,函数()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()(2)f x f x =--,则()(2)f x f x =--,∴()(2)(4)f x f x f x =--=-,即函数()f x 是周期为4的周期函数,(2020)(44504)(4)(2)1f f f f =+⨯==-=,【点睛】本题考查抽象函数的求值,涉及函数的奇偶性、周期性的性质以及应用,注意分析函数的周期.23.【分析】可令得出的值再代入可得答案【详解】解:令得解得故答案为【点睛】本题主要考查已知函数解析式求函数值的问题解析:15【分析】 可令1()2g x =,得出x 的值,再代入可得答案. 【详解】 解:令1()2g x =,得1122x -=,解得14x =. 221511()11164()[()]151124()416f fg -∴====. 故答案为15.【点睛】本题主要考查已知函数解析式求函数值的问题.24.【分析】首先构造新的函数然后运用函数的奇偶性的定义判断函数的奇偶性用整体思想求解出【详解】令则又为上的奇函数又故答案为:【点睛】本题考查函数的奇偶性构造方法构造新的函数整体思想求出答案属于中档题 解析:2-【分析】首先构造新的函数,然后运用函数的奇偶性的定义判断函数的奇偶性,用整体思想求解出()()12f m g m -=-+=-.【详解】 令1()lg 1x g x x-=+ (11)x -<<,则()()1f x g x =+, 又11()lglg ()11x x g x g x x x+--==-=--+,()g x ∴为(1,1)-上 的奇函数, 又()4f m =,()()13g m f m ∴=-=,()()3g m g m ∴-=-=-,()()12f m g m ∴-=-+=-.故答案为:2-.【点睛】本题考查函数的奇偶性,构造方法构造新的函数,整体思想求出答案 ,属于中档题. 25.【分析】先利用二次函数的性质得到函数在区间上的最值然后根据是奇函数得到时的最值然后根据恒成立求解【详解】当时当时函数在上是减函数在上是增函数所以在上的最小值为最大值为所以当时又是奇函数当时即因为当时 解析:94【分析】先利用二次函数2()32f x x x =++的性质,得到函数在区间[3-,1]-上的最值,然后根据()f x 是奇函数,得到[1x ∈,3]时的最值,然后根据()n f x m 恒成立求解.【详解】当0x <时,2()32f x x x =++, ∴当[3x ∈-,1]-时,函数在[3-,3]2-上是减函数,在3[2-,1]-上是增函数, 所以()f x 在[3-,1]-上的最小值为23331()()322224f ⎛⎫-=-+⨯-+=- ⎪⎝⎭, 最大值为2(3)(3)3322f -=--⨯+=,所以当[3x ∈-,1]-时,1()24f x -又()y f x =是奇函数,∴当13x ,时1()()[,2]4f x f x -=-∈- 即12()4f x - 因为当[1x ∈,3]时,()n f x m 恒成立 所以区间[2-,1][4n ⊆,]m ,所以19(2)44m n---= 故答案为:94【点睛】 本题主要考查函数的奇偶性、二次函数在闭区间上的最值和函数恒成立问题,还考查了运算求解的能力,属于中档题. 26.【解析】当时由即则即当时由得解得则当时不等式的解为则由为偶函数当时不等式的解为即不等式的解为或则由或解得:或即不等式的解集为点睛:本题是一道关于分段函数的应用的题目考查了不等式的求解以及函数的图象问 解析:4712{|}3443x x x ≤≤≤≤或 【解析】当102x ⎡⎤∈⎢⎥⎣⎦,时,由()1 2f x =,即1 2cos x π= 则 3x ππ=,即1 3x = 当12x >时,由()1 2f x =,得121?2x -=,解得3 4x = 则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤ 则由()f x 为偶函数 ∴当0x <时,不等式()12f x ≤的解为3143x -≤≤- 即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤- 则由13134x ≤-≤或31143x -≤-≤- 解得:4734x ≤≤或1243x ≤≤ 即不等式()112f x -≤的解集为4712{|}3443x x x ≤≤≤≤或 点睛:本题是一道关于分段函数的应用的题目,考查了不等式的求解以及函数的图象问题.先求出当0x ≥时,不等式()12f x ≤的解,然后利用函数的奇偶性求出整个定义域()12f x ≤的解,即可得到结论.。

人教版高中数学必修第一册第三单元《函数概念与性质》检测题(包含答案解析)

人教版高中数学必修第一册第三单元《函数概念与性质》检测题(包含答案解析)

一、选择题1.已知函数()1f x +是偶函数,当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫=-⎪⎝⎭,()2b f =,()3c f =,则a 、b 、c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c <<2.已知0.31()2a =,12log 0.3b =,0.30.3c =,则a b c ,,的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<3.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1)B .(1,2)C .(,1)-∞D .(1,)+∞4.已知奇函数()f x 在区间[]2,3上单调递增,则()f x 在区间[]3,2--上( ) A .单调递增,且最大值为()2f - B .单调递增,且最大值为()3f - C .单调递减,且最大值为()2f -D .单调递减,且最大值为()3f -5.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:()cosh x f x c a c a =+=2xxa ae e a -++⋅(e 为自然对数的底数).当0c ,1a =时,记(1)p f =-,12m f ⎛⎫= ⎪⎝⎭,(2)n f =,则p ,m ,n 的大小关系为( ).A .p m n <<B .n m p <<C .m p n <<D .m n p <<6.已知32()2f x x ax ax =++,对任意两个不等实数12,[1,)x x ∈+∞,都有()()2112120x f x x f x x x ->-,则a 的取值范围( )A .2a ≥-B .2a ≤-C .4a ≥-D .4a ≤-7.定义在R 上的函数()f x 满足(2)2()f x f x +=,且当(]2,4x ∈时,224,23,()2,34,x x x f x x x x ⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对(]12,0x ∀∈-,2[2,1]x ∃∈-,使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-⋃+∞ ⎪⎪⎢⎝⎭⎣⎭B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦ C .(0,8]D .11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭8.已知定义在R 上的连续奇函数()f x 的导函数为()f x ',当0x >时,()()0f x f x x'+>,则使得()()()2213310xf x x f x +-->成立的x 的取值范围是( )A .()1,+∞B .()11,1,5⎛⎫-+∞ ⎪⎝⎭C .1,15⎛⎫⎪⎝⎭D .(),1-∞9.已知函数()2121f x ax x ax =+++-(a R ∈)的最小值为0,则a =( ) A .12B .1-C .±1D .12±10.已知函数()3()log 91xf x x =++,则使得()2311log 10f x x -+-<成立的x 的取值范围是( )A .⎛ ⎝⎭B .(,0)(1,)-∞⋃+∞C .(0,1)D .(,1)-∞11.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .2a <-或2a > B .2a > C .22a -<< D .2a <12.已知定义在R 上的函数()f x 满足()(2)f x f x =-,()()0f x f x +-=,且在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,则(2020.5)f =( ) A .116-B .116C .14D .1213.函数1()lg f x x=+ )A .(0,2]B .(0,2)C .(0,1)(1,2]⋃D .(,2]-∞14.设函数()()212131log 1313x xe e xf x x --=++++,则做得()()31f x f x ≤-成立的x 的取值范围是( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .11,,42⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ D .11,42⎡⎤⎢⎥⎣⎦15.已知()22,02,0x x f x x x x ⎧-≥=⎨+<⎩,则不等式()()3f f x ≤的解集为( )A .](,3-∞-B .)3,⎡-+∞⎣C.(-∞D.)+∞二、填空题16.已知定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数,如果(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,则实数a 的取值范围是________17.设2,0()1,0x x f x x -⎧≤=⎨>⎩,则满足()()1 2f x f x +<的实数x 的取值范围是__________.18.已知等差数列{}n a 满足:20a >,40a <,数列的前n 项和为n S ,则42S S 的取值范围是__________.19.研究函数())f x a b c =<<<,得到如下命题:①此函数图象关于y 轴对称;②此函数存在反函数;③此函数在()0,a 上为增函数;④此函数有最大值ab c+和最小值0; 你认为其中正确的是_______(写出所有正确的编号).20.已知函数12()log f x x a =+,g (x )=x 2-2x ,若11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f(x 1)=g (x 2),则实数a 的取值范围是________.21.若函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上是单调增函数.如果实数t 满足1(ln )ln 2(1)f t f f t ⎛⎫+< ⎪⎝⎭时,那么t 的取值范围是__________.22.设函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,则1232019A A A A ⋂⋂⋂⋂=__________.23.已知甲、乙两地相距150 km ,某人开汽车以60 km/h 的速度从甲地到达乙地,在乙地停留一小时后再以50 km/h 的速度返回甲地,把汽车距甲地的距离s 表示为时间t 的函数,则此函数的表达式为__________.24.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 25.定义在R 上的偶函数()f x 满足()()2f x f x +=-,且在[]2,0-上是减函数,下面是关于()f x 的判断:(1)()0f 是函数的最大值;(2)()f x 的图像关于点()1,0P 对称;(3)()f x 在[]2,3上是减函数;(4)()f x 的图像关于直线2x =对称.其中正确的命题的序号是____________(注:把你认为正确的命题的序号都填上)26.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】推导出函数()f x 为()1,+∞上的增函数,且有()()11f x f x +=-,可得出52a f ⎛⎫= ⎪⎝⎭,进而可得出a 、b 、c 的大小关系. 【详解】当121x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦,则()()21f x f x >, 所以,函数()f x 为()1,+∞上的增函数, 由于函数()1f x +是偶函数,可得()()11f x f x +=-,1335112222a f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴=-=-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,53212>>>,因此,b a c <<. 故选:A. 【点睛】 思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.2.B解析:B 【分析】由指数函数的性质可得112a <<,由对数函数的性质可得1b >,由幂函数的性质可得0.30.310.32⎛⎫< ⎪⎝⎭,从而可得结果.【详解】∵0.31()2a =,12log 0.3b = 0.30.3c =∴10.3111112222a ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 11221log 0.3log 12b =>=, 0.30.310.32c ⎛⎫=< ⎪⎝⎭,∴c a b << 故选:B 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.3.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8),所以1128n a -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =,由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.解析:A 【分析】利用函数单调性的定义结合奇函数的基本性质可判断函数()f x 在区间[]3,2--上的单调性,进而可得出函数()f x 在区间[]3,2--上的最值. 【详解】任取1x 、[]23,2x ∈--且12x x <,即1232x x -≤<≤-,所以,2123x x ≤-<-≤, 因为函数()f x 在区间[]2,3上单调递增,则()()21f x f x -<-, 因为函数()f x 为奇函数,则()()21f x f x -<-,()()12f x f x ∴<, 因此,函数()f x 在区间[]3,2--上为增函数,最大值为()2f -,最小值为()3f -.故选:A. 【点睛】方法点睛:利用定义证明函数单调性的方法:(1)取值:设1x 、2x 是所给区间上的任意两个值,且12x x <;(2)作差变形:即作差()()12f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差()()12f x f x -的符号; (4)下结论:判断,根据定义得出结论. 即取值→作差→变形→定号→下结论.5.C解析:C 【分析】先利用导数证明函数()f x 在区间0,上单调递增,再结合单调性比较大小即可.【详解】由题意知,()2x x e e f x -+=,21()22x x x xe e ef x e--+-'== 当0x >时,()0f x '>,即函数()f x 在区间0,上单调递增1(1)(1)2e ef f -+-==10122<<<,1(1)(2)2ff f ⎛⎫∴<< ⎪⎝⎭,即m p n << 故选:C 【点睛】关键点睛:解决本题的关键是利用导数证明函数()f x 的单调性,再结合单调性比较大小.解析:C 【分析】首先变形条件,得到函数()()f xg x x=在[)1,+∞单调递增,利用二次函数的单调性,求a 的取值范围.【详解】[)12,1,x x ∈+∞,不等式两边同时除以12x x ()()()()12211212121200f x f x x f x x f x x x x x x x --∴>⇔>--, 即函数()()f x g x x=在[)1,+∞单调递增,()22g x x ax a =++, 函数的对称轴是4a x =-,则14a-≤,解得:4a ≥-.故选:C 【点睛】关键点点睛:本题的关键是原式等价为()()121212f x f x x x x x ->-,从而通过构造函数,确定函数的单调性,转化为二次函数的单调性解决问题.7.D解析:D 【分析】问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集,先求出()f x 在(]2,4上的值域,再根据(2)2()f x f x +=求出()f x 在(]2,0-的值域;分类讨论求出()g x 的值域,根据子集关系即可求出a 的范围. 【详解】由题知问题等价于函数()f x 在(]2,0-上的值域是函数()g x 在[2,1]-上的值域的子集.当(]2,4x ∈时,2(2)4,23()2,34x x f x x x x ⎧--+≤≤⎪=⎨+<≤⎪⎩, 由二次函数及对勾函数的图象及性质,得此时9()3,2f x ⎡⎤∈⎢⎥⎣⎦,由(2)2()f x f x +=,可得11()(2)(4)24f x f x f x =+=+当(]2,0x ∈-时,(]42,4x +∈.则()f x 在(]2,0-的值域为39,48⎡⎤⎢⎥⎣⎦.当0a >时,()[21,1]g x a a ∈-++,则有3214918a a ⎧-+≤⎪⎪⎨⎪+≥⎪⎩,解得18a ≥,当0a =时,()1g x =,不符合题意;当0a <时,()[1,21]g x a a ∈+-+,则有3149218a a ⎧+≤⎪⎪⎨⎪-+≥⎪⎩,解得14a -.综上所述,可得a 的取值范围为11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故选:D . 【点睛】本题考查双变元利用值域求参数的问题,属于中档题.结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .8.C解析:C 【分析】根据0x >时()()0f x f x x'+>可得:()()0xf x f x '+>;令()()g x xf x =可得函数在()0,∞+上单调递增;利用奇偶性的定义可证得()g x 为偶函数,则()g x 在(),0-∞上单调递减;将已知不等式变为()()231g x g x >-,根据单调性可得自变量的大小关系,解不等式求得结果. 【详解】当0x >时,()()0f x f x x'+> ()()0xf x f x '∴+>令()()g x xf x =,则()g x 在()0,∞+上单调递增()f x 为奇函数 ()()()()g x xf x xf x g x ∴-=--== ()g x ∴为偶函数则()g x 在(),0-∞上单调递减()()()2213310xf x x f x ∴+-->等价于()()231g x g x >-可得:231x x >-,解得:115x << 本题正确选项:C 【点睛】本题考查函数奇偶性和单调性的综合应用问题,关键是能够构造函数,根据导函数的符号确定所构造函数的单调性,并且根据奇偶性的定义得到所构造函数的奇偶性,从而将函数值的大小关系转变为自变量之间的比较.9.C解析:C 【分析】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,计算可得()()()()()()()2,2,g x g x h x f x h x g x h x ⎧≥⎪=⎨<⎪⎩,再结合图像即可求出答案. 【详解】设()()()()2121g x h x ax g x h x x ax ⎧+=+⎪⎨-=+-⎪⎩,则()()221g x x axh x x ⎧=+⎪⎨=-⎪⎩, 则()()()()()()()()()()()2,2,g x g x h x f x g x h x g x h x h x g x h x ⎧≥⎪=++-=⎨<⎪⎩,由于函数()f x 的最小值为0,作出函数()(),g x h x 的大致图像,结合图像,210x -=,得1x =±, 所以1a =±. 故选:C 【点睛】本题主要考查了分段函数的图像与性质,考查转化思想,考查数形结合思想,属于中档题.10.C解析:C 【分析】令21t x x =-+,则3()1log 10f t -<,从而33log (91)1log 10tt ++-<,即可得到133log (91)log (91)1t t ++<++,然后构造函数3()log (91)t g t t =++,利用导数判断其单调性,进而可得23114x x ≤-+<,解不等式可得答案 【详解】令21t x x =-+,则221331()244t x x x =-+=-+≥, 3()1log 10f t -<,所以33log (91)1log 10tt ++-<, 所以133log (91)log (91)1t t ++<++,令3()log (91)tg t t =++,则9ln 929'()11(91)ln 391t tt t g t ⨯=+=+++,所以90t >,所以'()0g t >, 所以()g t 在3[,)4+∞单调递增, 所以由()(1)g t g <,得314t ≤<, 所以23114x x ≤-+<,解得01x <<, 故选:C 【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得133log (91)log (91)1t t ++<++,再构造函数3()log (91)tg t t =++,利用函数的单调性解不等式.11.D解析:D 【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解. 【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02ax =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02ax =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a<,解得2a <,即02a <<.综上,2a <. 故选:D. 【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是12.D解析:D 【分析】由已知条件可知()f x 为奇函数且周期为4,利用函数的周期,结合其区间解析式即可求(2020.5)f 的值.【详解】由()()0f x f x +-=知:()()f x f x -=-,即()f x 为奇函数, ∵()(2)f x f x =-,有(2)()()f x f x f x +=-=-, ∴(4)(2)()f x f x f x +=-+=,故()f x 为周期为4的函数,在[0,1]上有1()4xf x ⎛⎫= ⎪⎝⎭,所以121111(2020.5)(4505)()()2242f f f =⨯+===, 故选:D 【点睛】本题考查了函数的性质,根据函数的奇偶性、周期性以及区间解析式求函数值,属于基础题.13.C解析:C 【分析】对数的真数大于零,分母不为零,偶次根式要求被开方式大于等于零,依据以上三点,列不等式求解. 【详解】欲使函数有意义,则0lg 020x x x >⎧⎪≠⎨⎪-≥⎩,即012x x x >⎧⎪≠⎨⎪≤⎩解得()(]0,11,2x ∈⋃ 故选:C . 【点睛】方法点睛:该题考查的是有关求函数定义域的问题,在求解的过程中,注意: (1)对数要求真数大于0; (2)分式要求分母不等于0; (3)偶次根式要求被开方式大于等于0.14.D解析:D 【分析】先判断()f x 是偶函数且在0,上递减,原不等式转化为31x x ≥-,再解绝对值不【详解】()()()211221133111log 13log 131313x x xxe e e e xxf x x x ---⎛⎫=+++=+++ ⎪++⎝⎭,()121311log 1,,313x xe e xy x y y -⎛⎫=+== ⎪+⎝⎭在0,上都递减所以()f x 在0,上递减,又因为()()()()121311log 1313x xe e xf x x f x ----⎛⎫-=+-++= ⎪+⎝⎭,且()f x 的定义域为R ,定义域关于原点对称, 所以()f x 是偶函数, 所以()()()()313131f x f x f x f x x x ≤-⇔≤-⇔≥-,可得113142x x x x -≤-≤⇒≤≤,x 的取值范围是11,42⎡⎤⎢⎥⎣⎦, 故选:D. 【点睛】将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.15.C解析:C 【分析】先解()3f t ≤,再由t 的范围求x 的范围. 【详解】0t ≥时,2()03f t t =-≤<满足题意,0t <时,2()23f t t t =+≤,31t -≤≤,∴30t -≤<综上满足()3f t ≤的t 的范围是3t ≥-,下面解不等式()3f x ≥-,0x ≥时,2()3f x x =-≥-,解得x ≤∴0x ≤≤, 0x <时,2()23f x x x =+≥-,2(1)20x ++≥,恒成立,∴0x <,综上x ≤故选:C 【点睛】思路点睛:本题考查解函数不等式,由于是分段函数,因此需要分类讨论,而原不等式是复合函数形式,因此解题时可把里层()f x 作为一个未知数t (相当于换元),求得()3f t ≥-的解,再由t 的范围求出()f x t =中t 的范围.分类讨论必须牢记,否则易出错.二、填空题16.【分析】根据偶函数在对称区间上单调性相反结合已知可得在R 上是增函数进而可将对于任意恒成立转化为对任意都成立进而可得最后结合函数的单调性可得实数a 的取值范围【详解】因为定义在R 上的偶函数在上是严格增函解析:31,22⎡⎤-⎢⎥⎣⎦【分析】根据偶函数在对称区间上单调性相反结合已知可得()y f x =在R 上是增函数,进而可将(1)(2)f ax f +≤对于任意[]1,2x ∈恒成立,转化为12ax +≤对任意[]1,2x ∈都成立,进而可得31a x x-≤≤,最后结合函数的单调性可得实数a 的取值范围 【详解】因为定义在R 上的偶函数()y f x =在[)0,+∞上是严格增函数, 因为(1)(2)f ax f +≤对任意[]1,2x ∈都成立,所以12ax +≤对任意[]1,2x ∈都成立, 即212ax -≤+≤对任意[]1,2x ∈都成立,变形可得31a x x-≤≤, 由函数3y x=-在[]1,2为增函数,1y x =在[]1,2上为减函数,故31max min a x x ⎛⎫⎛⎫-≤≤ ⎪⎪⎝⎭⎝⎭,所以31,22a ⎡⎤∈-⎢⎥⎣⎦.故答案为:31,22⎡⎤-⎢⎥⎣⎦. 【点睛】关键点睛:本题的解题关键是由函数为偶函数得出12ax +≤,进而结合单调性求出a 的取值范围.17.【分析】画出图像结合图像判断题出函数的单调性即可求解【详解】作出函数的图像如图满足解得故答案为:【点睛】方法点睛:该不等式的求解利用的是函数的单调性用数形结合法解决更为直观 解析:(),0-∞【分析】画出2,0()1,0x x f x x -⎧≤=⎨>⎩图像,结合图像判断题出函数的单调性,即可求解(1)(2)f x f x +<.【详解】作出函数2,0()1,0x x f x x -⎧≤=⎨>⎩的图像如图,满足(1)(2)f x f x +<2021x x x <⎧∴⎨<+⎩,解得0x <. 故答案为:(),0-∞. 【点睛】方法点睛:该不等式的求解利用的是函数的单调性,用数形结合法解决更为直观.18.【分析】根据题意可得到把转化为关于的函数即可求出范围【详解】由题意可得:据此可得:则令结合等差数列前n 项和公式有:令则据此可知函数在上单调递减即的取值范围是故答案为:【点睛】关键点点睛:本题根据等差解析:6(2,)5-【分析】根据题意可得到131a d -<<-,把42S S 转化为关于()13,1at d=∈--的函数,即可求出范围.【详解】由题意可得:121410,0030a d a a d a a d ><⎧⎪=+>⎨⎪=+<⎩,据此可得:13d a d -<<-,则131ad -<<-,令()13,1a t d=∈--,结合等差数列前n 项和公式有: 111142434464622122122a dS a d t S a d t a d ⨯+++===⨯+++,令()()463121t f t t t +=-<<-+, 则()2(21)4422121t f t t t ++==+++,据此可知函数()f t 在()3,1--上单调递减,()1242f -=-=-,()4632615f -=+=-+, 即42S S 的取值范围是62,5⎛⎫- ⎪⎝⎭. 故答案为:6(2,)5- 【点睛】关键点点睛:本题根据等差数列的条件,求出首项与公差的关系,看作一个整体t ,将问题转化为关于t 的函数,利用函数的单调性求解,体现了转化思想,考查了运算能力,属于中档题.19.①④【分析】直接利用函数的定义域和函数的奇偶性判断①②进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④【详解】解:函数由于整理得则:由于函数为偶函数函数的图象关于y 轴对解析:①④ 【分析】直接利用函数的定义域和函数的奇偶性判断①②,进一步利用函数的单调性和函数的对称轴的应用求出函数的最值和单调区间从而判定③④. 【详解】解:函数()(0)||||f x a b c x b x c =<<<++-,由于220a x -≥,整理得a x a -≤≤.则:()||||f x x b x c b c==++-+. 由于函数为偶函数,函数的图象关于y 轴对称,所以函数不存在反函数,存在反函数的函数的前提该函数具有单调性.故①正确②错误.因为22y a x =-在()0,a 上为减函数,所以()f x 在()0,a 上为减函数,故故③错误;可知()f x 在[],0a -单调递增,()0,a 单调递减,且为偶函数,则()f x 在0x =出取得最大值ab c+,在x a =±处取得最小值0,故④正确. 故答案为:①④. 【点睛】本题考查函数性质的应用,属于基础题.20.01【分析】当时当时由使得f (x1)=g (x2)等价于解不等式即可得解【详解】当时当时由使得f (x1)=g (x2)则可得:解得故答案为:【点睛】本题考查了求函数值域考查了恒成立和存在性问题以及转化思解析:[0,1] 【分析】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+,当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),等价于[][]1,21,3a a -++⊆-,解不等式即可得解. 【详解】当11[,2]4x ∈时,[]1()1+,2f x a a ∈-+, 当2[1,2]x ∈-时,[]2()1,3g x ∈-,由11[,2]4x ∀∈,2[1,2]x ∃∈-,使得f (x 1)=g (x 2),则[][]1,21,3a a -++⊆-,可得:1123a a -≤-+⎧⎨+≤⎩,解得01a ≤≤,故答案为:01a ≤≤. 【点睛】本题考查了求函数值域,考查了恒成立和存在性问题以及转化思想,有一定的计算量,属于中档题.21.【解析】试题分析:因为函数是定义在上的偶函数所以由考点:奇偶性与单调性的综合应用解析:1.t e e<<【解析】试题分析:因为函数()f x 是定义在R 上的偶函数,所以(ln1)(ln )(ln )(ln ),f t f t f t f t =-==由(ln )(ln1)2(1)2(ln )2(1)(ln )(1)ln 11ln 11.f t f tf f t f f t f t t et e +<⇒<⇒<⇒<⇒-<<⇒<<考点:奇偶性与单调性的综合应用22.【分析】求出二次函数的对称轴判断函数的最小值与最大值然后求解值域的交集即可【详解】函数的对称轴为开口向上所以函数的最小值为函数()的值域依次是它们的最小值都是函数值域中的最大值为:当即时此时所以值域解析:2220190,1010⎡⎤⎢⎥⎣⎦【分析】求出二次函数的对称轴,判断函数的最小值与最大值,然后求解值域的交集即可. 【详解】函数()221k f x x x =-+的对称轴为1x =,开口向上,所以函数的最小值为()10f =,函数2()21k f x x x =-+(120191,,1,2,3,,2019k x k k k +⎡⎤∈-=⎢⎥⎣⎦)的值域依次是1232019,,,,A A A A ,它们的最小值都是0,函数值域中的最大值为:当12019111k k k +⎛⎫--=-⎪⎝⎭,即1010k =时,此时111010x =-, 所以,值域中的最大值中的最小值为22112019111101010101010f ⎛⎫⎛⎫⎛⎫-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,212320192010220190,1010A A A A A ⎡⎤==⎢⎥⎣⎦. 故答案为:2220190,1010⎡⎤⎢⎥⎣⎦. 【点睛】本题考查二次函数的性质,函数的最值,考查分析问题解决问题的能力,涉及集合的交集计算,属于基础题.23.【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间即可得到本题函数的定义域将其分为三段再结合各个时间段上该人的运动状态可得汽车离甲地的距离距离(千米)与时间(小时)的函数表达式【详解】根解析:60,0 2.5,150,2.5 3.5,32550,3.5 6.5t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【分析】算出该人从甲地到乙地所用时间和从乙地返回到甲地所用时间,即可得到本题函数的定义域,将其分为三段,再结合各个时间段上该人的运动状态,可得汽车离甲地的距离距离s (千米)与时间t (小时)的函数表达式. 【详解】根据题意此人运动的过程分为三个时段, 当0 2.5t ≤≤时,60s t =;当2.5 3.5t <<时,150s =;当3.5 6.5t ≤≤时,()15050 3.532550t t t =--=-.综上所述,60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩故答案为60,0 2.5,150,2.5 3.5,32550,3.5 6.5.t t s t t t ≤≤⎧⎪=<<⎨⎪-≤≤⎩【点睛】本题考查分段函数应用题,求函数表达式,着重考查基本初等函数的应用和分段函数的理解等知识,属于基础题.24.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题. 【详解】解:由题意可设()xf x e x t -+=,则()xf x e x t =-+,∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()ttf t e t t e e =-+==,∴1t =,∴()1xf x e x =-+,∴()1xf x e '=-,由()()f x f x ax '+≥得11x x e x e ax -++-≥,∴21x e a x≤-对()0,x ∈+∞恒成立,令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x-=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增, ∴()()121g x g e ≥=-, ∴21a e ≤-,故答案为:(],21e -∞-. 【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.25.(2)(3)(4)【分析】(1)利用定义在R 上的偶函数在上是减函数即可判断;(2)根据偶函数的定义和条件即可判断;(3)利用函数的周期为4在-20上是减函数即可判断;(4)利用可得的图象关于直线对称解析:(2)(3)(4) 【分析】(1)利用定义在R 上的偶函数()f x 在[]2,0-上是减函数,即可判断; (2)根据偶函数的定义和条件()()2f x f x +=-,即可判断; (3)利用函数的周期为4,()f x 在[-2,0]上是减函数,即可判断;(4)利用()()()22f x f x f x -+=--=+,可得()f x 的图象关于直线2x =对称,即可判断. 【详解】(1)∵定义在R 上的偶函数()f x 在[]2,0-上是减函数, 故()()20f f ->,()0f 不可能是函数的最大值,故错; (2)由定义在R 上的偶函数()f x 得()()f x f x -=, 又()()2f x f x +=-,故()()20f x f x ++-=,即图象关于()10,对称,故正确; (3)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 故()f x 为周期函数,且4为它的一个周期,由在[20]-,上是减函数,可得()f x 在[2]4,上是减函数,故正确; (4)由于()()2f x f x +=-,则()()()42f x f x f x +=-+=, 又()()f x f x -=,故()()4f x f x +=-, 即图象关于直线2x =对称,故正确. 故答案为:(2)(3)(4). 【点睛】本题主要考查了抽象函数的函数的奇偶性、周期性和对称性,考查了转化思想,属于中档题.26.(-22)【详解】∵函数f(x)是定义在R 上的偶函数且在(-∞0)上是增函数又f(2)=0∴f(x)在(0+∞)上是增函数且f(-2)=f(2)=0∴当-2<x <2时f(x)<0即f(x)<0的解为解析:(-2,2)【详解】∵函数f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,又f(2)=0,∴f(x)在(0,+∞)上是增函数,且f(-2)=f(2)=0,∴当-2<x<2时,f(x)<0,即f(x)<0的解为(-2,2),即不等式的解集为(-2,2),故填(-2,2).。

高一数学函数的概念练习题

高一数学函数的概念练习题

高一数学函数的概念练习题题型一函数的定义【例1】判断以下是否是函数:⑴245y x=-;⑵y x=±;⑶y=;⑷229x y+=.【例2】函数()y f x=的图象与直线1x=的公共点数目是()A.1B.0C.0或1D.1或2【例3】如图所示,能表示“y是x的函数”的是.①【例4】如下图(1)(2)(3)(4)四个图象各表示两个变量,x y的对应关系,其中表示y是x的函数关系的有.(4).(3).(1).(2).典例分析【例5】{|02},{|03}M x x N y y=≤≤=≤≤给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A、0个B、1个C、2个D、3个【例6】以下给出的对应是不是从集合A到集合B的映射?如果是映射,是不是一一映射.⑴集合{|A P P=是数轴上的点},集合RB=,对应关系f:数轴上的点与它所代表的实数对应;⑵集合{|A P P=是平面直角坐标系中的点},集合{(,)|,}B x y x y=∈∈R R,对应关系f:平面直角坐标系中的点与它的坐标对应;⑶集合{|A x x=是三角形},集合{|B x x=是圆},对应关系f:每一个三角形都对应它的内切圆;⑷集合{|A x x=是华星中学的班级},集合{|B x x=是华星中学的学生},对应关系f:每一个班级都对应班里的学生.【例7】下列对应中有几个是映射?【例8】已知12{,}A a a=,12{,}B b b=,则从A到B的不同映射共有()A.4个B.3个C.2个D.1个【例9】设:f A B→是集合A到B的映射,下列说法正确的是()A、A中每一个元素在B中必有象B、B中每一个元素在A中必有原象C、B中每一个元素在A中的原象是唯一的D、B是A中所在元素的象的集合【例10】⑴若集合{1,0,1}A=-,{2,1,0,1,2}B=--,f:A→B表示A到B的一个映射,且满足对任意x A∈都有()x f x+为偶数,则这样的映射有_______ 个.⑵设:f A B →是从集合A 到B 的映射,{}(,),A B x y x y ==∈∈R R ,:(,)(,)f x y kx y b →+,若B 中元素(6,2)在映射f 下的原象是(3,1),则k ,b 的值分别为________.【例11】已知集合{}04A x x =≤≤,{}02B y y =≤≤,下列从A 到B 的对应f 不是映射的是( )A .1:2f x y x →=B .1:3f x y x →=C .2:3f x y x →=D .21:8f x y x →=【例12】集合A ={3,4},B ={5,6,7},那么可建立从A 到B 的映射个数是__________,从B 到A的映射个数是__________.【例13】已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,5【例14】(09年山东梁山)设f 、g 都是由A 到A 的映射,其对应法则如下表(从上到下):映射f 的对应法则是表1则与)]1([g f 相同的是( )A .)]1([f g ;B .)]2([f g ;C .)]3([f g ;D .)]4([f g【例15】(07年北京)已知函数()f x ,()g x 分别由下表给出则[(1)]f g 的值为;满足[()][()]f g x g f x >的x 的值是【例16】(06陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )A .7,6,1,4;B .4,6,1,7;C .6,4,1,7;D .1,6,4,7【例17】已知{5,6,7,8,9}M N ==,规定M 到N 的一个映射为()f x =15x +⎧⎨⎩99x x ≠=, ⑴如果[()]6f f a =,求a ; ⑵如果{[()]}6f f f b =,求b ; ⑶如果10{...()}6f f f c =14243次,求c .题型二 函数的定义域【例18】求下列函数的定义域(1)1()2f x x =-;(2)()f x =(3)1()2f x x-.【例19】求下列函数的定义域: (1)121y x =+-;(2)y =.【例20】函数y 的自变量x 的取值范围是( ) A .0x > B .1x > C .0x ≠ D .0x ≥且1x ≠【例21】函数224x y x -=-的定义域 .【例22】函数0y=___________.【例23】求函数()f x =的定义域.【例24】(2008年全国I卷文理)函数y = )A .{|0}x x ≥B .{|1}x x ≥C .{|1}{0}x x ≥UD .{|01}x x ≤≤【例25】求下列函数的定义域⑴y =⑵y ⑶11111y x x=---.【例26】若(2)y f x =+的定义域是(1,3],求()y f x =的定义域.【例27】已知函数(1)y f x =+定义域是[2,3]-,则(21)y f x =-的定义域是( )A .5[0]2, B .[14]-, C .[55]-, D .[37]-,【例28】(1)已知已知函数f (x )的定义域是R ,则实数a 的取值范围是( )A .a >13B .-12<a ≤0C .-12<a <0D .a ≤13【例29】(1)求下列函数的定义域:0()f x =(2)已知函数()f x 的定义域是(,)a b ,求函数()(31)(31)F x f x f x =-++的定义域.【例30】(1)函数()f x 的定义域为(0,1),求函数2()f x 的定义域;(2)已知函数(21)f x +的定义域为(0,1),求()f x 的定义域; (3)已知函数(1)f x +的定义域为[2,3]-,求2(22)f x -的定义域.【例31】求下述函数的定义域:(1)0()(32)f x x =-; (2)22()lg()lg().f x x ka x a =-+-【例32】已知函数()f x 定义域为(0,2),求下列函数的定义域:(1) 2()23f x +;(2)2y =。

高中数学 第三章 函数的概念与性质检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试

高中数学 第三章 函数的概念与性质检测试题(含解析)新人教A版必修第一册-新人教A版高一第一册数学试

第三章检测试题时间:120分钟分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.设集合A={x|-4<x<3},B={x|x≤2},则A∩B=(B)A.(-4,3) B.(-4,2]C.(-∞,2] D.(-∞,3)解析:∵集合A={x|-4<x<3},B={x|x≤2},∴A∩B={x|-4<x≤2},用区间表示为(-4,2],故选B.2.函数f(x)=|x-1|的图象是(B)解析:代入特殊点,∵f(1)=0,∴排除A,C;又f(-1)=2,∴排除D.3.函数y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,若f(a)≤f(2),则实数a 的取值X围是(D)A.a≤2 B.a≥-2C.-2≤a≤2 D.a≤-2或a≥2解析:∵y=f(x)是R上的偶函数,且在(-∞,0]上是增函数,∴y=f(x)在[0,+∞)上是减函数,由f(a)≤f(2),得f(|a|)≤f(2).∴|a|≥2,得a≤-2,或a≥2.4.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(B)A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D .f (x )=3x +2或f (x )=-3x -4解析:令3x +2=t ,则3x =t -2,故f (t )=3(t -2)+8=3t +2. 5.已知函数y =f (2x )+2x 是偶函数,且f (2)=1,则f (-2)=( A ) A .5 B .4 C .3D .2解析:设g (x )=y =f (2x )+2x ,∵函数y =f (2x )+2x 是偶函数,∴g (-x )=f (-2x )-2x =g (x )=f (2x )+2x ,即f (-2x )=f (2x )+4x ,当x =1时,f (-2)=f (2)+4=1+4=5,故选A.6.已知函数f (x )的定义域为(0,+∞),且在(0,+∞)上单调递增,则不等式f (x )>f (2x -3)的解集是( D )A .(-∞,3)B .(3,+∞)C .(0,3) D.⎝⎛⎭⎫32 ,3 解析:本题考查函数的单调性.因为函数f (x )在(0,+∞)上单调递增,所以f (x )>f (2x -3)⇔x >2x -3>0,解得32<x <3,故选D.7.甲、乙两种商品在过去一段时间内的价格走势如图所示.假设某人持有资金120万元,他可以在t 1至t 4的任意时刻买卖这两种商品,且买卖能够立即成交(其他费用忽略不计).如果他在t 4时刻卖出所有商品,那么他将获得的最大利润是( C )A .40万元B .60万元C .120万元D .140万元解析:要想获取最大利润,则甲的价格为6元时,全部买入,可以买120÷6=20万份,价格为8元时,全部卖出,此过程获利20×2=40万元;乙的价格为4元时,全部买入,可以买(120+40)÷4=40万份,价格为6元时,全部卖出,此过程获利40×2=80万元,∴共获利40+80=120万元,故选C.8.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是( C )A .这个函数仅有一个单调增区间B .这个函数有两个单调减区间C .这个函数在其定义域内有最大值是7D .这个函数在其定义域内有最小值是-7解析:结合偶函数图象关于y 轴对称可知,这个函数在[-7,7]上有三个单调递增区间,三个单调递减区间,且定义域内有最大值7,无法判断最小值是多少.9.函数f (x )=x 2-2ax +a +2在[0,a ]上的最大值为3,最小值为2,则a 的值为( C ) A .0 B .1或2 C .1D .2解析:二次函数y =x 2-2ax +a +2的图象开口向上,且对称轴为x =a ,所以该函数在[0,a ]上为减函数,因此有a +2=3且a 2-2a 2+a +2=2,得a =1.10.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,则( A )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析:∵f (x )是偶函数,∴f (-2)=f (2).又∵任意的x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 2)-f (x 1)x 2-x 1<0,∴f (x )在[0,+∞)上是减函数.又∵1<2<3,∴f (1)>f (2)=f (-2)>f (3),故选A. 11.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( C ) A .1 B .2 C .3D .4解析:f (x )为R 上的奇函数,则f (0)=0,①正确;其图象关于原点对称,且在对称区间上具有相同的单调性,最值相反且互为相反数,所以②正确,③不正确;对于④,x <0时,-x >0,f (-x )=(-x )2-2(-x )=x 2+2x ,又f (-x )=-f (x ),所以f (x )=-x 2-2x ,故④正确.12.已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值X 围是( B )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2)∪[23,+∞)D .(0,2]∪[3,+∞)解析:根据题意,知y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝⎛⎭⎫1m ,+∞上为增函数,函数y =x +m 为增函数.分两种情况讨论:①当0<m ≤1时,有1m ≥1,在区间[0,1]上,y =(mx -1)2为减函数,且其值域为[(m -1)2,1],函数y =x +m 为增函数,其值域为[m,1+m ],此时两个函数的图象有1个交点,符合题意;②当m >1时,有1m <1,y =(mx -1)2在区间⎝⎛⎭⎫0,1m 上为减函数,⎝ ⎛⎭⎪⎪⎫1m 1上为增函数.函数y =x +m 为增函数,在x ∈[0,1]上,其值域为[m,1+m ],若两个函数的图象有1个交点,则有(m -1)2≥1+m ,解得m ≤0或m ≥3.又m 为正数,故m ≥3.综上所述,m 的取值X 围是(0,1]∪[3,+∞),故选B.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.设函数f (x )=⎩⎪⎨⎪⎧x 2+2,x ≥2,2x ,x <2,已知f (x 0)=8,则x 0= 6.解析:∵当x ≥2时,f (x )≥f (2)=6, 当x <2时,f (x )<f (2)=4, ∴x 20+2=8(x 0≥2),解得x 0= 6.14.若函数f (x )=x(x +1)(2x -a )为奇函数,则a =2.解析:由题意知x ≠-1且x ≠a2.因为函数f (x )为奇函数,所以其定义域应关于原点对称,故x ≠1,即a2=1,a =2.15.设奇函数f (x )在(0,+∞)上为增函数且f (1)=0,则不等式f (x )-f (-x )x <0的解集为(-1,0)∪(0,1).解析:因为f (x )为奇函数,所以不等式f (x )-f (-x )x <0化为f (x )x<0,即xf (x )<0,f (x )的大致图象如图所示.所以xf (x )<0的解集为(-1,0)∪(0,1).16.已知f (x )=⎩⎪⎨⎪⎧x 2-2x +a ,x >1,(3-2a )x -1,x ≤1是R 上的单调递增函数,则实数a 的取值X 围为⎣⎡⎭⎫1,32.解析:f (x )=⎩⎪⎨⎪⎧(x -1)2+a -1,x >1,(3-2a )x -1,x ≤1,显然函数f (x )在(1,+∞)上单调递增.故由已知可得⎩⎪⎨⎪⎧3-2a >0,a -1≥(3-2a )×1-1,解得1≤a <32.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0为奇函数.(1)求f (-1)以及实数m 的值;(2)在给出的直角坐标系中画出函数y =f (x )的图象并写出f (x )的单调区间.解:(1)由已知得f (1)=1, 又f (x )为奇函数, 所以f (-1)=-f (1)=-1.又由函数表达式可知f (-1)=1-m ,所以1-m =-1,所以m =2. (2)y =f (x )的图象如图所示.y =f (x )的单调递增区间为[-1,1].y =f (x )的单调递减区间为(-∞,-1)和(1,+∞). 18.(12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,某某数a 的取值X 围;(3)在区间[-1,1]上,y =f (x )的图象恒在y =2x +2m +1的图象上方,试确定实数m 的取值X 围.解:(1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1, 由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.(3)由已知,即2x 2-4x +3>2x +2m +1, 化简得x 2-3x +1-m >0,设g (x )=x 2-3x +1-m ,则只要g (x )min >0,∵x ∈[-1,1],∴g (x )min =g (1)=-1-m >0,得m <-1.19.(12分)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2xx -1.求:(1)f (x )的解析式;(2)f (x )在[2,6]上的最大值和最小值.解:(1)因为函数f (x )是定义在R 上的奇函数, 则当x >0时,-x <0,f (x )=-f (-x )=--2x -x -1=-2xx +1,所以f (x )的解析式为f (x )=⎩⎪⎨⎪⎧2xx -1,x ≤0,-2xx +1,x >0.(2)任取2≤x 1≤x 2≤6,则f (x 1)-f (x 2)=-2x 1x 1+1-⎝ ⎛⎭⎪⎫-2x 2x 2+1=2x 2x 2+1-2x 1x 1+1=2(x 2-x 1)(x 2+1)(x 1+1), 由2≤x 1<x 2≤6可得2(x 2-x 1)(x 2+1)(x 1+1)>0,即f (x 1)>f (x 2),所以f (x )在[2,6]上单调递减. 故当x =2时,f (x )取得最大值-43;当x =6时,f (x )取得最小值-127.20.(12分)已知函数f (x )=x 2-|x 2-ax -2|,a 为实数. (1)当a =1时,求函数f (x )在[0,3]上的最小值和最大值;(2)若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,某某数a 的取值X 围. 解:(1)当a =1时,f (x )=⎩⎪⎨⎪⎧x +2,x <-1或x >2,2x 2-x -2,-1≤x ≤2,结合图象可知f (x )在⎣⎡⎦⎤0,14上单调递减,在⎣⎡⎦⎤14 ,3上单调递增, f (x )在[0,3]上的最小值为f ⎝⎛⎭⎫14=-178, f (x )在[0,3]上的最大值为f (3)=5. (2)令x 2-ax -2=0,∵Δ=a 2+8>0, 必有两根x 1=a -a 2+82,x 2=a +a 2+82, ∴f (x )=⎩⎪⎨⎪⎧ax +2,x <x 1或x >x 2,2x 2-ax -2,x 1≤x ≤x 2,若函数f (x )在(-∞,-1)和(2,+∞)上单调递增,则⎩⎪⎨⎪⎧a >0,a -a 2+82≥-1a 4≤2,即可,解得1≤a ≤8.21.(12分)我国是水资源比较贫乏的国家之一,各地采用价格调控等手段以达到节约用水的目的.某市用水收费标准是:水费=基本费+超额费+定额损耗费,且有如下三条规定:①若每月用水量不超过最低限量m 立方米时,只付基本费9元和每户每月定额损耗费a 元;②若每月用水量超过m 立方米时,除了付基本费和定额损耗费时,超过部分每立方米付n 元的超额费;③每户每月的定额损耗费a 不超过5元.(1)求每户每月水费y (元)与月用水量x (立方米)的函数关系式; (2)该市一家庭今年第一季度每月的用水量和支付的费用如下表所示:的值. 解:(1)依题意,得y =⎩⎪⎨⎪⎧9+a0<x ≤m , ①9+n (x -m )+a ,x >m . ②其中0<a ≤5.(2)∵0<a ≤5,∴9<9+a ≤14.由于该家庭今年一、二月份的水费均大于14元,故用水量4立方米,5立方米都大于最低限量m 立方米.将⎩⎪⎨⎪⎧ x =4,y =17和⎩⎪⎨⎪⎧x =5,y =23分别代入②, 得⎩⎪⎨⎪⎧17=9+n (4-m )+a , ③23=9+n (5-m )+a . ④ ③-④,得n =6.代入17=9+n (4-m )+a ,得a =6m -16.又三月份用水量为2.5立方米,若m <2.5,将⎩⎪⎨⎪⎧x =2.5,y =11代入②,得a =6m -13, 这与a =6m -16矛盾.∴m ≥2.5,即该家庭三月份用水量2.5立方米没有超过最低限量. 将⎩⎪⎨⎪⎧ x =2.5,y =11代入①,得11=9+a , 由⎩⎪⎨⎪⎧ a =6m -16,11=9+a ,解得⎩⎪⎨⎪⎧ a =2,m =3.∴该家庭今年一、二月份用水量超过最低限量,三月份用水量没有超过最低限量,且m =3,n =6,a =2.22.(12分)已知f (x )是定义在R 上的奇函数,且f (x )=x +m x 2+nx +1. (1)求m ,n 的值;(2)用定义证明f (x )在(-1,1)上为增函数;(3)若f (x )≤a 3对x ∈⎣⎡⎦⎤-13,13恒成立,求a 的取值X 围. 解:(1)因为奇函数f (x )的定义域为R ,所以f (0)=0.故有f (0)=0+m 02+n ×0+1=0, 解得m =0.所以f (x )=x x 2+nx +1. 由f (-1)=-f (1).即-1(-1)2+n ×(-1)+1=-112+n ×1+1, 解得n =0.所以m =n =0.(2)证明:由(1)知f (x )=x x 2+1,任取-1<x 1<x 2<1. 则f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1 =x 1(x 22+1)-x 2(x 21+1)(x 21+1)(x 22+1)=x 1x 22-x 2x 21+(x 1-x 2)(x 21+1)(x 22+1) =(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1). 因为-1<x 1<1,-1<x 2<1, 所以-1<x 1x 2<1.故1-x 1x 2>0,又因为x 1<x 2, 所以x 1-x 2<0,故f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以函数f (x )在(-1,1)上为增函数.(3)由(2)知f (x )在(-1,1)上为增函数,所以函数f (x )在⎣⎡⎦⎤-13,13上为增函数, 故最大值为f ⎝⎛⎭⎫13=310.由题意可得a 3≥310,解得a ≥910. 故a 的取值X 围为⎣⎡⎭⎫910,+∞.。

高一数学必修一函数概念表示及函数性质练习题(含答案)

高一数学必修一函数概念表示及函数性质练习题(含答案)

1.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )&6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________. 10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)!()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是 ____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数222f xmx m mx 为偶函数,求实数m 的值= .17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________./18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= . 19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)…22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数;(3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.¥@23.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.、(24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数 (2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集~25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.《26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;¥(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.—】参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则221212||(1)[()4]AB k x x x x =++- 25(8)2b +=,O点到直线AB 的距离||5b d =,∴225(8)1||||8()2245b b b b S f b ++==⋅⋅=. ∵()()f b f b -=,∴()f b 为偶函数.当0x >时,28()4b b f b ⋅+=,易知()f b 单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用. 7.A 【解析】 试题分析:因为2121()(()())0x x f x f x -->,所以函数()f x 在),0(+∞上单调增. 由(21)f x -<1()3f 得:.3221,31120<<<-<x x考点:利用函数单调性解不等式 8.C 【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x 2-x -2>0, 解得x<-1或x>2.令x ≥g(x),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f(x)=当x <-1或x >2时,函数f(x)>f(-1)=2; 当-1≤x ≤2时,函数≤f(x )≤f(-1),即≤f(x )≤0.故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。

人教A版(2019)高中数学必修第一册第三章函数概念与性质单元检测试卷

人教A版(2019)高中数学必修第一册第三章函数概念与性质单元检测试卷

《第三章 函数的概念与性质》检测试卷一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 4.函数y =4xx 2+1的图象大致为( )5.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .126.(2020·菏泽高一检测)下列函数中,既是定义在R 上的偶函数,又在区间(-∞,0)上单调递增的是( ) A .y =-x 2+1 B .y =x 2+1 C .y =x +1D .y =-x 37.(2021·合肥高一检测)设奇函数f (x )在[-3,3]上是减函数,且f (3)=-3,若不等式f (x )<2t +1对所有的x ∈[-3,3]都成立,则t 的取值范围是( ) A.[-1,1]B .(1,+∞)C .(-∞,1)D .(-∞,1)∪(1,+∞)8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x 元/枝)在x ∈[5,15]时,每天售出该鲜花枝数p (x )=500x -4,若想每天获得的利润最多,则销售价格应定为____元.( ) A .9 B .11 C .13 D .15二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)210.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)11.关于函数f (x )=xx -1,下列结论正确的是( ) A .f (x )的图象过原点 B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______.14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 15.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.16.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2. (1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性; (2)若f (x )是偶函数,求f (x )的解析式.22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=xx -1. (1)求函数f (x )的解析式; (2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ).答案解析一、单选题(每小题5分,共40分)1.设A ={x |0≤x ≤2},B ={y |1≤y ≤2},能表示集合A 到集合B 的函数关系的是( )分析选D.A 不是函数(一个x 对应两个y ),排除;B 中y ∈[0,2],不是集合A 到集合B 的函数关系,排除;C 不是函数(x =1时对应两个函数值),排除;D 符合要求. 2.函数f (x )=1+x +1x的定义域是( )A.[-1,+∞) B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R分析选C.要使函数有意义,需满足⎩⎪⎨⎪⎧1+x ≥0,x ≠0, 即x ≥-1且x ≠0.3.若函数f (x )满足f (x )=x +3x +2,则f (x )在[1,+∞)上的值域为( ) A .(-∞,1] B .⎝ ⎛⎦⎥⎤0,43 C .⎝ ⎛⎦⎥⎤-∞,43D .⎝ ⎛⎦⎥⎤1,43 分析选D.f (x )=x +3x +2 =1+1x +2, 因为y =1x +2在[1,+∞)上单调递减, 所以y =1x +2 ∈⎝ ⎛⎦⎥⎤0,13 . 所以1+1x +2 ∈⎝ ⎛⎦⎥⎤1,43 , 所以f (x )在[1,+∞)上的值域为⎝ ⎛⎦⎥⎤1,43 . 4.函数y =4xx 2+1的图象大致为( )分析选A.函数y=4xx2+1的定义域为实数集R,关于原点对称,函数y=f(x)=4xx2+1,则f(-x)=-4xx2+1=-f(x),则函数y=f(x)为奇函数,故排除C,D,当x>0时,y=f(x)>0,故排除B.5.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于( )A.-1 B.1 C.6 D.12分析选C.由题意知当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x3-2,又因为f(x)=x-2,f(x)=x3-2在定义域上都为增函数,所以f(x)的最大值为f(2)=23-2=6. 6.(2020·菏泽高一检测)下列函数中,既是定义在R上的偶函数,又在区间(-∞,0)上单调递增的是( ) A.y=-x2+1 B.y=x2+1C.y=x+1 D.y=-x3分析选A.A,f(-x)=-(-x)2+1=-x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是增函数,满足条件;B,f(-x)=(-x)2+1=x2+1=f(x),则f(x)是偶函数,函数在(-∞,0)上是减函数,不满足条件;C,f(-x)=-x+1≠x+1=f(x),则f(x)不是偶函数,不满足条件;D.f(-x)=-(-x)3=x3=-f(x),则f(x)是奇函数,函数在(-∞,0)上是减函数,不满足条件.7.(2021·合肥高一检测)设奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则t的取值范围是( )A.[-1,1] B.(1,+∞)C.(-∞,1) D.(-∞,1)∪(1,+∞)分析选B.因为奇函数f(x)在[-3,3]上是减函数,且f(3)=-3,所以f(x)max=f(-3)=3,若不等式f(x)<2t+1对所有的x∈[-3,3]都成立,则3<2t+1,解得t>1.8.某品种鲜花进货价5元/枝,据市场调查,当销售价格(x元/枝)在x∈[5,15]时,每天售出该鲜花枝数p(x)=500x-4,若想每天获得的利润最多,则销售价格应定为____元.( )A .9B .11C .13D .15 分析选D.设每天的利润为y 元, 则y =(x -5)·500x -4 =500⎝ ⎛⎭⎪⎫1-1x -4 ,5≤x ≤15,显然此函数是增函数,故当x =15时,y 取得最大值.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分) 9.已知f (2x -1)=4x 2,则下列结论正确的是( ) A .f (3)=9 B .f (-3)=4 C .f (x )=x 2D .f (x )=(x +1)2分析选BD.令t =2x -1,则x =t +12.f (t )=4⎝ ⎛⎭⎪⎫t +12 2=(t +1)2,故f (x )=(x +1)2,故选项C 错误,选项D 正确;f (3)=16,f (-3)=4,故选项A 错误,选项B 正确. 10.设奇函数f (x )在(0,+∞)上单调递增,且f (3)=0,则下列选项中属于不等式f (x )-f (-x )2>0的解集的是( ) A .(-∞,-3) B .(-3,0) C .(0,3)D .(3,+∞)分析选BD.因为f (x )为奇函数且f (3)=0, 所以f (-3)=-f (3)=0,因为f (x )在(0,+∞)上单调递增,故f (x )在(-∞,0)上单调递增,所以f (x )-f (-x )2=f (x )>0,当x >0时,x >3;当x <0时,-3<x <0, 故不等式的解集为(-3,0)∪(3,+∞). 11.关于函数f (x )=xx -1,下列结论正确的是( )A .f (x )的图象过原点B .f (x )是奇函数C .f (x )在区间(1,+∞)上单调递减D .f (x )是定义域上的增函数 分析选AC.函数f (x )=xx -1=x -1+1x -1 =1+1x -1,f (0)=0,A 正确; 图象关于(1,1)点对称,B 错误;在(-∞,1),(1,+∞)上是减函数,整个定义域上不是减函数,故C 正确,D 错误.12.已知狄利克雷函数f (x )=⎩⎪⎨⎪⎧1,x 是有理数0,x 是无理数 ,则下列结论正确的是( )A .f (x )的值域为[0,1]B .f (x )定义域为RC .f (x +1)=f (x )D .f (x )是奇函数分析选BC.根据分段函数的定义域为每段函数的并集可知,函数的定义域为全体有理数与无理数的并集即R ,故函数的定义域为R ,故B 正确;值域为{1,0},故A 错误; 当x 为有理数时,x +1也为有理数, 则f (x +1)=f (x )=1,当x 为无理数时,x +1也为无理数,则f (x +1)=f (x )=0,从而有f (x +1)=f (x ),故C 正确;当x 为有理数时,f (x )=1,f (-x )=1,不满足f (-x )=-f (x ),故D 错误. 三、填空题(每小题5分,共20分)13.幂函数f (x )=x n的图象过点(2,8)且f (a -1)<1,则a 的取值范围是______. 分析因为幂函数f (x )=x n的图象过点(2,8), 所以2n =8,所以n =3,所以幂函数f (x )=x 3,因为f (a -1)<1,所以(a -1)3<1,所以a -1<1,所以a <2. 答案:(-∞,2)14.对于每个实数x ,设f (x )取y =2x -1,y =-2x +3两个函数中的最小值,则f (x )的最大值是______. 分析因为f (x )取y =2x -1,y =-2x +3两个函数中的最小值, 故函数f (x )的图象如图中加粗线条所示:由图易得f (x )的最大值是1. 答案:115.已知函数f (x -1)=x 2+(2a -2)x +3-2a .(1)若函数f (x )在区间[-5,5]上为单调函数,则实数a 的取值范围为________; (2)若f (x )在区间[-5,5]上的最小值为-1,则a 的值为______.分析令x -1=t ,则x =t +1,f (t )=(t +1)2+(2a -2)·(t +1)+3-2a =t 2+2at +2, 所以f (x )=x 2+2ax +2.(1)因为f (x )图象的对称轴为x =-a ,由题意知-a ≤-5或-a ≥5,解得a ≤-5或a ≥5. 故实数a 的取值范围为(-∞,-5]∪[5,+∞). (2)当a >5时,f (x )最小值=f (-5)=27-10a =-1, 解得a =145(舍去);当-5≤a ≤5时,f (x )最小值=f (-a )=-a 2+2=-1,解得a =±3 ; 当a <-5时,f (x )最小值=f (5)=27+10a =-1, 解得a =-145 (舍去).综上a =±3 .答案:(1)(-∞,-5]∪[5,+∞) (2)±316.某单位计划建造的三个相同的矩形饲养场(如图所示),现有总长为1的围墙材料,则每个矩形的长、宽之比为______时,围出的饲养场的总面积最大.分析如图所示,设一个矩形饲养场的长为AB =x ,宽为AD =y ,则4x +6y =1,所以y =16 (1-4x ),则饲养场的总面积S =3xy =12 x (1-4x )=-2⎝ ⎛⎭⎪⎫x -18 2+132 , 故当x =18 ,y =112,即长、宽之比为18 ∶112=3∶2时,饲养场的总面积最大.答案:3∶2四、解答题(共70分)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x <2,2x ,x ≥2.(1)求f (f (3 ))的值;(2)若f (a )=3,求a 的值. 分析(1)因为-1<3 <2,所以f (3 )=(3 )2=3. 又因为3≥2,所以f (f (3 ))=f (3)=2×3=6. (2)当a ≤-1时,f (a )=a +2. 又因为f (a )=3,所以a =1(舍去); 当-1<a <2时,f (a )=a 2.又因为f (a )=3,所以a =±3 ,其中负值舍去, 所以a =3 ; 当a ≥2时,f (a )=2a .又因为f (a )=3,所以a =32 (舍去).综上所述a =3 .18.(12分)已知函数f (x )=2x5x +5.(1)求f ⎝ ⎛⎭⎪⎫12 +f (2)的值; (2)求f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)的值.分析(1)因为函数f (x )=2x5x +5. 所以f ⎝ ⎛⎭⎪⎫12 +f (2)=2×125×12+5 +2×25×2+5 =25 . (2)因为函数f (x )=2x5x +5. 所以f (x )+f ⎝ ⎛⎭⎪⎫1x =2x 5x +5 +2x 5x+5=2x 5x +5 +25x +5 =25 ,所以f ⎝⎛⎭⎪⎫12 020 +f ⎝ ⎛⎭⎪⎫12 019 +…+f ⎝ ⎛⎭⎪⎫12 +f (1)+f (2)+…+f (2 019)+f (2 020)=2 019×25 +25+5 =4 0395. 19.(12分)大气中的温度随着高度的上升而降低,根据实测的结果上升到12 km 为止,温度的降低大体上与升高的距离成正比,在12 km 以上温度一定,保持在-55℃.(1)当地球表面大气的温度是a ℃时,在x km 的上空为y ℃,求a ,x ,y 间的函数关系式; (2)问当地表的温度是29℃时,3 km 上空的温度是多少?分析(1)由题设知,可设y -a =kx (0≤x ≤12,k <0),即y =a +kx .依题意,当x =12时,y =-55, 所以-55=a +12k ,解得k =-55+a12 .所以当0≤x ≤12时,y =a -x12(55+a )(0≤x ≤12).又当x >12时,y =-55.所以所求的函数关系式为y =⎩⎪⎨⎪⎧a -x 12(55+a ),(0≤x ≤12),-55,(x >12).(2)当a =29,x =3时,y =29-312 (55+29)=8,即3 km 上空的温度为8℃.20.(12分)已知函数f (x )是定义在R 上的奇函数,当x ∈(0,+∞)时,f (x )=x 2+ax +3-2a . (1)求f (x )的解析式;(2)若f (x )是R 上的单调函数,求实数a 的取值范围.分析(1)根据题意,因为函数f (x )是定义在R 上的奇函数,所以f (0)=0, 当x <0时,-x >0,则f (-x )=(-x )2+a (-x )+3-2a =x 2-ax +3-2a =-f (x ),所以f (x )=-x 2+ax -3+2a (x <0),所以f (x )=⎩⎪⎨⎪⎧x 2+ax +3-2a ,x >00,x =0-x 2+ax -3+2a ,x <0.(2)若f (x )是R 上的单调函数,且f (0)=0, 则实数a 满足⎩⎪⎨⎪⎧3-2a ≥0-a 2≤0 ,解得0≤a ≤32 ,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,32 . 21.(12分)已知函数f (x )的定义域为(-2,0)∪(0,2),当x ∈(0,2)时,函数f (x )=ax -1x -2.(1)若a =0,利用定义研究f (x )在区间(0,2)上的单调性;(2)若f (x )是偶函数,求f (x )的解析式.分析(1)当a =0时,f (x )=12-x, 设x 1,x 2∈(0,2)且x 1<x 2,则f (x 1)-f (x 2)=12-x 1 -12-x 2 =x 1-x 2(2-x 1)(2-x 2), 因为x 1,x 2∈(0,2)且x 1<x 2,所以x 1-x 2<0,2-x 1>0,2-x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )=12-x在区间(0,2)上单调递增. (2)令x ∈(-2,0),则-x ∈(0,2),所以f (-x )=a -x -1-x -2 =1x +2 -a x, 因为f (x )是偶函数,所以f (x )=f (-x )=1x +2 -a x,所以函数 f (x )在(-2,0)∪(0,2)上的解析式为:f (x )=⎩⎪⎨⎪⎧a x -1x -2,0<x <21x +2-a x ,-2<x <0. 22.(12分)已知定义在R 上的奇函数f (x ),当x <0时,f (x )=x x -1 . (1)求函数f (x )的解析式;(2)画出函数f (x )在R 上的图象;(3)解关于x 的不等式f (ax 2-x )>f (ax -1)(其中a ∈R ). 分析(1)令x >0,则-x <0,依题意得f (-x )=-x -x -1 =x x +1, 所以f (x )=-f (-x )=-xx +1 (x >0),又f (0)=0, 所以f (x )=⎩⎪⎨⎪⎧xx -1,x <00,x =0-x x +1,x >0. (2)图象如图所示.(3)解关于x 的不等式f (ax 2-x )>f (ax -1), 由图象可知,函数f (x )在R 上单调递减, 所以所求不等式等价于ax 2-x <ax -1,即ax 2-(a +1)x +1<0,即(ax -1)(x -1)<0, 当a =0时,解得x >1;当0<a <1时,解得1<x <1a ;当a =1时,解得x ∈∅;当a >1时,解得1a <x <1;当a <0时,解得x >1或x <1a .。

高一数学必修一函数概念表示及函数性质练习题(含答案)

高一数学必修一函数概念表示及函数性质练习题(含答案)

11.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________. 10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数222f xmx m mx 为偶函数,求实数m 的值= .17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________. 18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= .19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数; (3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.123.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数(2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;1(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数1g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则221212||(1)[()4]AB k x x x x =++- 25(8)b +=,O点到直线AB 的距离5d =,∴225(8)1||8()25b b b S f b ++==⋅⋅=. ∵()()f b f b -=,∴()f b 为偶函数.当0x >时,28()4b b f b ⋅+=,易知()f b 单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用. 7.A 【解析】 试题分析:因为2121()(()())0x x f x f x -->,所以函数()f x 在),0(+∞上单调增. 由(21)f x -<1()3f 得:.3221,31120<<<-<x x考点:利用函数单调性解不等式 8.C 【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x 2-x -2>0, 解得x<-1或x>2.令x ≥g(x),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f(x)=当x <-1或x >2时,函数f(x)>f(-1)=2; 当-1≤x ≤2时,函数≤f(x )≤f(-1),即≤f(x )≤0.1故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。

高一数学集合函数概念、函数的基本性质测试题(含答案与解析)

高一数学集合函数概念、函数的基本性质测试题(含答案与解析)

高一数学集合函数概念、函数的基本性质测试题一、选择题(本大题共12小题,共60.0分)1.已知集合M满足,则集合M的个数是()A. 4B. 3C. 2D. 12.设A={x|-1<x<1},B={x|x-a>0},若A⊆B,则a的取值范围是()A. (−∞,−1)B. (−∞,−1]C. [1,+∞)D. (1,+∞)3.设全集U=R,集合A={x∈N|x2<6x},B={x∈N|3<x<8},则如图阴影部分表示的集合是()A. {1,2,3,4,5}B. {1,2,3}C. {3,4}D. {4,5,6,7}4.设集合A={x|x(x+1)≤0},集合B={x|2x>1},则集合A∪B等于()A. {x|x≥0}B. {x|x≥−1}C. {x|x>0}D. {x|x>−1}5.设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=()A. (−3,0)B. (−3,−1)C. (−3,−1]D. (−3,3)6.下列各组函数表示同一函数的是()A. f(x)=x,g(x)=(√x)2B. f(x)=x2+1,g(t)=t2+1C. f(x)=1,g(x)=xxD. f(x)=x,g(x)=|x|7.给出函数f(x),g(x)如表,则f[g(x)]的值域为()x 1 2 3 4f(x) 4 3 2 1x 1 2 3 4g(x) 1 1 3 3A. {4,2}B. {1,3}C. {1,2,3,4}D. 以上情况都有可能8.已知f(2x+3)=3x+2,则f(9)的值为()A. 1B. 5C. 9D. 119.函数f(x)={x2+1,x≤12x,x>1,则f(f(3))的值为()A. 15B. 3 C. 23D. 13910.根据图表分析不恰当的一项是()A. 王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;B. 张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;C. 赵磊同学的数学学习成绩低于班级平均水平,但他的成绩曲线呈上升趋势,表明他的数学成绩在稳步提高.D. 第一次考试均分最高,说明第一次考试试题难度低于其它次考试试题的难度. 二、多项选择题(本大题共2小题,共10.0分)11. 设函数f (x ),g (x )分别是R 上的奇函数和偶函数,则以下结论不正确的是( )A. f (x )g(x)是偶函数B. f (x )|g(x)|是奇函数C. |f (x )|g(x)是奇函数D. f (x )−g(x)偶函数 12. 已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x-x 2,则下列说法正确的是()A. f(x)的最大值为B. f(x)在(−1,0)上是增函数C. f(x)>0的解集为(−1,1)D. f(x)+2x ≥0的解集为[0,3]三、填空题(本大题共4小题,共20.0分) 13. 函数)1(21)(-++=x xx f 的定义域是______ . 14. 已知f (x )=ax 3+bx -2,若f (2015)=7,则f (-2015)的值为______ . 15. 已知函数f (x )满足)5()(+=x f x f ,当x ∈[-1,4)时,f (x )=2x +1-5, 则f (17)=______.16. (1)函数f(x)=−x 2+2x +2,x ∈[−1,2]的值域是______ .(2)函数))(1()(a x x x f ++=为偶函数,则实数a 的值为______.四、解答题(本大题共6小题,共70.0分)17. (12分)已知函数f(x)=√x +1√4−2x 的定义域为A ,g(x)=−x 2+1的值域为B.设全集U =R .(I)求A ,B ; (II)求A ∩(∁U B).18. (6+6=12分)(1)84)(2--=kx x x f 在]20,5[不具单调性,求k 取值范围(2 )化简:(2a 14b−13)(−3a −12b 23)÷(−14a −14b −23).19. (12分) 已知函数f(x)={−x +2(x >1)x 2(−1≤x ≤1)x +2(x <−1).(1)求f(f(52))的值;(2)画出函数的图象,并根据图象写出函数的值域和单调区间;20. (12分)已知函数f(x)=x +1x .(1)用定义证明f (x )在[1,+∞)上是增函数; (2)求f (x )在[1,4]上的最大值及最小值.21. (12分)已知函数f(x)=x2−2|x|.(1)写出f(x)的分段解析式,(2)画出函数f(x)的图象.22. (10分) 2018年1月8日,中共中央、国务院隆重举行国家科学技术奖励大会,在科技界引发热烈反响,自主创新正成为引领经济社会发展的强劲动力.某科研单位在研发新产品的过程中发现了一种新材料,由大数据测得该产品的性能指标值y与这种新)x−t.材料的含量x(单位:克)的关系为:当0≤x<6时,y是x的二次函数;当x≥6时,y=(13测得数据如表(部分)(I)求y关于x的函数关系式y=f(x);(II)求函数f(x)的最大值.答案和解析1.【答案】B【解析】【分析】本题考查真子集和子集的概念,属于基础题.由真子集、子集的概念即可确定集合M,从而可得结果.【解答】解:∵集合M满足,∴集合M={1,2},{1,2,3},{1,2,4},∴满足要求的集合M的个数是3.故选B.2.【答案】B【解析】解:集合B=(a,+∞),A⊆B,则只要a≤-1即可,即a的取值范围是(-∞,-1].故选B.求出集合B,由A⊆B即可找到a所满足的不等式,解出它的取值范围.考本题考查集合的关系的参数取值的问题,解题的关键是正确理解包含的含义,根据其关系转化出关于参数的不等式,求解本题可以借助数轴的直观帮助判断.3.【答案】B【解析】【分析】根据题意,图中阴影部分表示的区域为只属于A的部分,即A∩(∁R B),计算可得集合A与∁R B,对其求交集可得答案.本题考查集合的Venn表示法,关键是分析出阴影部分表示的集合.【解答】∵A={x∈N|x2<6x}={x∈N|0<x<6}={1,2,3,4,5},B={x∈N|3<x<8}={4,5,6,7}∴∁R B={x|x≠4,5,6,7|},∴A∩(∁R B)={1,2,3}.故选B.4.【答案】B【解析】解:A={x|x(x+1)≤0}=[-1,0],B={x|2x>1}=(0,+∞),∴A∪B=[-1,+∞)故选:B.先求出集合A,B的对应元素,根据集合关系和运算即可得到结论.本题主要考查集合的基本运算,利用不等式的解法求出集合A,B是解决本题的关键,比较基础.5.【答案】C【解析】【分析】根据补集的定义求得∁R B,再根据两个集合的交集的定义,求得A∩(∁R B).本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.【解答】解:∵集合A={x|x2-9<0}={x|-3<x<3},B={x|-1<x≤5},∴∁R B={x|x≤-1,或x >5},则A∩(∁R B)={x|-3<x≤-1},故选C.6.【答案】B【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相同函数.本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.【解答】解:对于A,f(x)=x(x∈R),与g(x)==x(x≥0)的定义域不同,所以不是同一函数;对于B,f(x)=x2+1(x∈R),与g(t)=t2+1(t∈R)的定义域相同,对应关系也相同,是同一函数;对于C,f(x)=1(x∈R),与g(x)==1(x≠0)的定义域不同,所以不是同一函数;对于D,f(x)=x(x∈R),与g(x)=|x|(x∈R)的对应关系不同,所以不是同一函数.故选B.7.【答案】A【解析】【分析】本题考查函数的表示方法,关键在于理解图表中表达的函数,属于基础题.当x=1或x=2时,;当x=3或x=4时,,可得答案.【解答】解:∵当x=1或x=2时,,∴;当x=3或x=4时,,∴.故的值域为.故选A.8.【答案】D【解析】【分析】题x.解:由题意得,.故选D.9.【答案】D【解析】【分析】本题主要考查了求函数值,先求的值,再求.【解答】解:函数,则,所以.故选D.10.【答案】D【解析】【分析】本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.【解答】解:由图象可知,王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.11.【答案】ACD【解析】【分析】根据奇函数和偶函数的定义进行判断即可;【解答】解:由奇函数和偶函数的定义可知是奇函数,故不正确的是A,C,D;故选ACD.12.【答案】ACD【解析】【分析】本题考查函数的奇偶性,考查学生的计算能力,比较基础.对四个命题分别进行判断,即可得出结论.【解答】解:x≥0时,f(x)=x﹣x2=﹣(x﹣)2+,∴f(x)的最大值为,故A正确;f(x)在(﹣,0)上是增函数,故B不正确;当x≥0时,f(x)=x﹣x2,f(x)>0的解集为(0,1),函数f(x)是定义在R上的偶函数,∴f(x)>0的解集为(﹣1,1),故C正确;x≥0时,f(x)+2x=3x﹣x2≥0的解集为[0,3],x<0时,f(x)+2x=x﹣x2≥0无解,故D正确.故选:ACD.13.【答案】{x|x>-2且x≠1}【解析】解:由题意得:,解得:x>-2且x≠1,故答案为:{x|x>-2且x≠1}.根据二次根式的性质以及幂函数的性质得到关于x的不等式组,解出即可.本题考查了求函数的定义域问题,考查二次根式以及幂函数的性质,是一道基础题.14.【答案】-11【解析】解:∵f(x)=ax3+bx-2,∴f(x)+2=ax3+bx是奇函数,设g(x)=f(x)+2,则g(-x)=-g(x),即f(-x)+2=-(f(x)+2)=-2-f(x),即f(-x)=-4-f(x),f(2015)=7,f(-2015)=-4-f(2015)=-4-7=-11,故答案为:-11.根据条件构造函数g(x)=f(x)+2,判断函数的奇偶性,进行求解即可.本题主要考查函数值的计算,根据条件构造函数,判断函数的奇偶性是解决本题的关键.15.【答案】3【解析】解:根据题意,)5xff,则f(17)=f(12)=f(7)= f(2)()(+=x又由当x∈[-1,4)时,f(x)=2x+1-5,则f(2)=23-5=3,故f(17)=3;故答案为:3.根据题意,由函数的周期可得f(17)=f(2),结合函数的解析式求出f(2)的值,即可得答案.本题考查函数的周期性的应用,涉及函数值的计算,属于基础题.16.【答案】(1)[−1,3] 方法:画图!!!!(2)1-17.【答案】【答案】解:(I)由题意得:{x+1≥04−2x>0,解得−1≤x<2,所以函数g(x)的值域B ={y|y ≤1};(II)由(I)知B ={x|x ≤1},所以C U B ={x|x >1},所以A ∩(C U B)={x|1<x <2}.【解析】本题考查集合的混合运算,同时考查函数的定义域和值域的求法,考查运算能力,属于基础题.(I)运用偶次根式被开方数非负和分式分母不为0,可得集合A ;由二次函数的值域可得集合B ;(II)运用补集和交集的定义,即可得到所求集合.18. 【答案】解:(1)(40,160)19. (2)(2a 14b −13)(−3a −12b 23)÷(−14a −14b −23) = 24a14−12+14b −13+23+23 = 24b .19.【答案】解:(1)f(f(52))=f(−12)=14.(2)由图象可知,函数的值域是(−∞,1],单调增区间(−∞,−1]和[0,1],减区间[−1,0]和[1,+∞).【解析】(1)利用分段函数,直接代入求值即可.(2)根据分段函数,作出函数的图象,结合图象确定函数的值域和单调区间.20.【答案】解:(1)设1≤x 1<x 2,f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=。

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试(答案解析)(1)

(常考题)人教版高中数学必修第一册第三单元《函数概念与性质》测试(答案解析)(1)

一、选择题1.已知m R ∈,若函数()||x m f x e +=对任意x ∈R 满足()()20212120f x f x -=-,则不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是( ) A .[)1,,e e⎛⎤-∞⋃+∞ ⎥⎝⎦B .1,e e ⎡⎤⎢⎥⎣⎦C .[)10,,e e⎛⎤+∞ ⎥⎝⎦D .[),e +∞2.定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,当0x y <<时,都有()()f x f y >,且112f ⎛⎫= ⎪⎝⎭,则不等式()()32f x f x -+-≥-的解集为( )A .[)1,0-B .[)4,0-C .(]3,4D .[)(]1,03,4-3.若奇函数()f x 在区间[]3,6上是增函数,且在区间[]3,6上的最大值为7,最小值为-1,则()()263f f -+-的值为( ) A .5B .-5C .13D .-134.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有( )A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<5.已知定义在R 上的偶函数()f x 满足:当0x ≥时,()2x f x =,且(2)(3)f x af x +≤-对一切x ∈R 恒成立,则实数a 的取值范围为( ) A .1,32⎡⎫+∞⎪⎢⎣⎭B .1,32⎛⎤-∞ ⎥⎝⎦C .[32,)+∞D .(0,32]6.已知幂函数()(1)n f x a x =-的图象过点(2,8),且(2)(12)f b f b -<-,则b 的取值范围是( ) A .(0,1) B .(1,2)C .(,1)-∞D .(1,)+∞7.奇函数()f x 在(0)+∞,内单调递减且(2)0f =,则不等式(1)()0x f x +<的解集为( ) A .()()(),21,02,-∞--+∞ B .()()2,12,--+∞C .()(),22,-∞-+∞D .()()(),21,00,2-∞--8.对于实数a 和b ,定义运算“*”:,,,.b a b a b a a b ≤⎧*=⎨>⎩设()f x x =,()224g x x x =--+,则()()()M x f x g x =*的最小值为( )A .0B .1C .2D .39.函数()ln x xxf x e e-=-的大致图象是( ) A . B .C .D .10.函数()21x f x x-=的图象大致为( )A .B .C .D .11.已知函数()2sin tan 1cos a x b xf x x x +=++,若()10100f =,则()10f -=( )A .100-B .98C .102-D .10212.已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则实数a 的取值范围是( )A .2a <-或2a >B .2a >C .22a -<<D .2a <13.已知()2()ln ,(,)f x x ax b x a b R =++⋅∈,当0x >时()0f x ≥,则实数a 的取值范围为( ) A .20a -≤< B .1a ≥-C .10a -<≤D .01a <≤14.设函数1,()0,x D x x ⎧=⎨⎩为有理数为无理数,则下列结论正确的是( )A .()D x 的值域为[0,1]B .()D x 是偶函数C .()(3.14)D D π>D .()D x 是单调函数 15.下列函数中,既是偶函数又在(0,+∞)上单调递增的是 ( )A .2x y =B .2yx C .2log y x = D .21y x =+二、填空题16.已知函数()f x 为定义在R 上的奇函数,且对于12,[0,)x x ∀∈+∞,都有()()()221112210x f x x f x x x x x ->≠-,且(3)2f =,则不等式6()f x x>的解集为___________.17.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.18.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.19.设函数()f x 在(,0)(0,)-∞+∞上满足()()0f x f x ,在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,又(3)0f -=,则(1)()0x f x -<的解是___________.20.已知a R ∈,函数229()f x x a a x=++-在区间[3,1]--上的最大值10,则a 的取值范围是__________.21.已知函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩给出下列三个结论:①()f x 是偶函数; ②()f x 有且仅有3个零点; ③()f x 的值域是[]1,1-. 其中,正确结论的序号是______.22.已知函数246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,则()()2f f -=______.23.设函数()3,111,1x x f x x x x <⎧⎪=⎨-+≥⎪⎩,,则不等式()()26f x f x ->-的解集为____________.24.函数()22f x x x =-,[]2,2x ∈-的最大值为________.25.设函数()f x 在定义域(0,+∞)上是单调函数,()()0,,xx f f x e x e ⎡⎤∀∈+∞-+=⎣⎦,若不等式()()f x f x ax '+≥对()0,x ∈+∞恒成立,则实数a 的取值范围是______. 26.已知函数()f x 是定义在R 上的奇函数,且满足x R ∀∈,都有()()2f x f x +=-,当[]0,1x ∈时,()21xf x =-,则()15f =______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先判断函数为偶函数,根据奇偶性求得0m =,将原不等式化为ln x e e ≥,等价于ln 1x ≥,进而可得答案.【详解】设2021x t -=,()()()()20212120f x f x f t f t -=-⇒=-, 所以()||x m f x e+=是偶函数,则||||x m x m e e +-+=恒成立,即()()2240x m x m x m x m mx +=-+⇔+=-+⇔=对任意x ∈R 恒成立, 所以0m =⇒()||x f x e =,因为11lnln ln x x x-==-, 所以()1ln ln2f x f e x ⎛⎫+≥ ⎪⎝⎭即为()()ln ln 2f x f x e +-≥, ()()ln 2ln 2ln xf x e f x e ee ≥⇒≥⇒≥,因为xy e =为增函数,所以可得ln 1x ≥,则ln 1x ≥或ln 1x ≤-, 解得x e ≥或10x e<≤,即不等式()1ln ln 2f x f e x ⎛⎫+≥ ⎪⎝⎭的解集是[)10,,e e ⎛⎤+∞ ⎥⎝⎦,故选:C. 【点睛】方法点睛:已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由()()+0f x f x -= 恒成立求解,(2)偶函数由()()0f x f x --= 恒成立求解;二是利用特殊值:奇函数一般由()00f = 求解,偶函数一般由()()110f f --=求解,用特殊法求解参数后,一定要注意验证奇偶性.2.A解析:A 【分析】采用赋值法,令1x y ==求得()10f =,同理可求()21f =-,()42f =-; 化()()32f x f x -+-≥-为()()234f x x f -≥,再结合单调性解不等式得结果.【详解】令1x y ==,得()()121f f =即()10f =,令12x =,2y =则()()1122f f f ⎛⎫=+ ⎪⎝⎭得()21f =-,令2x y ==,()()()4222f f f =+=-,所以由()()32f x f x -+-≥-得()()234f x x f -≥;又因为函数()f x 的定义域为()0,∞+,且0x y <<时,都有()()f x f y >,所以203034x x x x ->⎧⎪->⎨⎪-≤⎩ 即0314x x x <⎧⎪<⎨⎪-≤≤⎩所以10x -≤<, 即不等式()()32f x f x -+-≥-的解集为[)1,0-. 故选:A 【点睛】思路点晴:抽象函数往往通过赋值法来解决问题.3.D解析:D 【分析】先利用条件找到()31f =-,(6)7f =,再利用()f x 是奇函数求出(3)f -,(6)f -代入即可. 【详解】由题意()f x 在区间[]3,6上是增函数,在区间[]3,6上的最大值为7,最小值为1-, 得()31f =-,(6)7f =,()f x 是奇函数,(3)2(6)(3)2(6)12713f f f f ∴-+-=--=-⨯=-.故答案为:13-. 【点睛】本题主要考查利用函数的单调性求最值,关键点是利用函数的奇偶性先求函数值,着重考查了推理与运算能力,属于基础题.4.B解析:B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小. 【详解】()()22f x f x -=-+,()()4f x f x ∴+=-,即()()8f x f x +=, ()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=, ()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<, 即()()()192119782021f f f <<. 故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +. 5.C解析:C 【分析】根据题意,可得()f x 的解析式,分别求得当23x -≤≤时,3x >时,2x <-时,(2)f x +和(3)f x -的表达式,结合题意,即可求得a 的范围,综合即可得答案.【详解】由题意知:2,0()2,0x x x f x x -⎧≥=⎨<⎩当23x -≤≤时,20,30x x +≥-≥,所以2322x x a +-≤⋅,所以212x a -≥, 因为23x -≤≤,所以215max (2)232x a -≥==;当3x >时,20,30x x +>-<, 所以2(3)22x x a +--≤⋅,所以5232a ≥=; 当2x <-时,20,30x x +<-> 所以(2)322x x a -+-≤⋅,所以51232a -≥=, 综上32a ≥. 故选:C 【点睛】解题的关键是根据题意求得()f x 的解析式,分类讨论,将(2)f x +和(3)f x -进行转化,考查分类讨论的思想,属中档题.6.C解析:C 【分析】先根据题意得幂函数解析式为3()f x x =,再根据函数的单调性解不等式即可得答案. 【详解】解:因为幂函数()(1)nf x a x =-的图像过点(2,8),所以1128n a -=⎧⎨=⎩,所以23a n =⎧⎨=⎩,所以3()f x x =,由于函数3()f x x =在R 上单调递增,所以(2)(12)212f b f b b b -<-⇔-<-,解得:1b <. 故b 的取值范围是(,1)-∞. 故选:C. 【点睛】本题考查幂函数的定义,根据幂函数的单调性解不等式,考查运算求解能力,是中档题.本题解题的关键在于根据幂函数的系数为1待定系数求得解析式,进而根据单调性解不等式.7.A解析:A 【分析】由已知可作出函数的大致图象,结合图象可得到答案. 【详解】因为函数()f x 在(0)+∞,上单调递减,(2)0f =,所以当(02)x ∈,时,()0f x >,当(2)x ∈+∞,,()0f x <, 又因为()f x 是奇函数,图象关于原点对称,所以()f x 在()0-∞,上单调递减,(2)0f -=, 所以当(20)x ∈-,时,()0f x <,当2()x ∈-∞-,时,()0f x >, 大致图象如下,由(1)()0x f x +<得10()0x f x +>⎧⎨<⎩或10()0x f x +<⎧⎨>⎩,解得2x >,或10x -<<,或2x <-, 故选:A. 【点睛】本题考查了抽象函数的单调性和奇偶性,解题的关键点是由题意分析出()f x 的大致图象,考查了学生分析问题、解决问题的能力.8.B解析:B 【分析】由题意可得()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩,通过解不等式得出()()2117242117,1,2x x x M x x x ⎧⎡⎤---+∈⎪⎢⎥⎪⎣⎦=⎨⎛-⎪∈-∞⋃+∞ ⎪ ⎝⎭⎩,作出函数()M x 的图象,根据函数图象可得答案. 【详解】由条件有()()()()()()()()()g x f x g x M x f x g x f x f x g x ⎧≤⎪=*=⎨>⎪⎩当0x ≥时,()224g x x x x =--+≥,得到01x ≤≤, 即01x ≤<时,()()f x g x <,当1x >时,()()f x g x >当0x <时,()224g x x x x =--+≤-,得1172x --≤即当1172x --≤时,()()f x g x >,当11702x --<<时,()()f x g x <所以()()211724,12117,1,x x x M x x x ⎧⎡⎤----+∈⎪⎢⎥⎪⎣⎦=⎨⎛⎫--⎪∈-∞⋃+∞ ⎪⎪ ⎪⎝⎭⎩作出函数()M x 的图象,如图所示,由图可得,当1x =时,()M x 有最小值1 故选:B9.C解析:C 【分析】结合选项中函数图象的特征,利用函数的性质,采用排除法求解即可. 【详解】由题可知,函数()f x 的定义域为()(),00,-∞⋃+∞,()()ln ln x x x xx xf x f x e e e e----==-=---, 所以函数()f x 为奇函数,所以排除选项BD ;又()10f =,所以排除选项A. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.10.D解析:D【分析】分析函数()f x 的奇偶性及其在区间()0,∞+上的单调性,由此可得出合适的选项. 【详解】函数()21x f x x -=的定义域为{}0x x ≠,()()()2211x x f x f x x x----===-, 函数()f x 为偶函数,其图象关于y 轴对称,排除B 、C 选项;当0x >时,()211x f x x x x-==-,因为y x =,1y x =-在区间()0,∞+上都是增函数,所以函数()f x 在()0,∞+上单调递增,排除A 选项, 故选:D. 【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左、右位置;从函数的值域,判断图象的上、下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 利用上述方法排除、筛选选项.11.D解析:D 【分析】令()()21g x f x x =--,根据奇偶性定义可判断出()g x 为奇函数,从而可求得()()10101g g -=-=,进而求得结果.【详解】令()()2sin tan 1cos a x b xg x f x x x+=--=()()()()()sin tan sin tan cos cos a x b x a x b xg x g x x x-+---∴-===--()g x ∴为奇函数又()()210101011g f =--=- ()()10101g g ∴-=-=即()()2101011f ----= ()10102f ∴-=本题正确选项:D 【点睛】本题考查利用函数的奇偶性求解函数值的问题,关键是能够通过构造函数的方式得到奇函数,利用奇函数的定义可求得对应位置的函数值.12.D解析:D【分析】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,分0a =,0a <和0a >三种情况讨论求解.【详解】若存在1212,,x x R x x ∈≠,使得()()12f x f x =成立,则说明()f x 在R 上不单调,当0a =时,2,1()1,1x x f x x ⎧-≤=⎨->⎩,图象如图,满足题意;当0a <时,函数2y x ax =-+的对称轴02a x =<,其图象如图,满足题意;当0a >时,函数2y x ax =-+的对称轴02a x =>,其图象如图,要使()f x 在R 上不单调,则只要满足12a <,解得2a <,即02a <<.综上,2a <.故选:D.【点睛】本题考查分段函数的单调性的应用及二次函数的性质的应用,得出()f x 在R 上不单调是解题的关键.13.B解析:B【分析】讨论01x <<、1x =、1x >确定2()g x x ax b =++的函数值符号,根据二次函数的性质求a 的取值范围即可.【详解】当0x >时,()()2ln 0x a x x f b x ++⋅=≥, ∵01x <<时,ln 0x <,即需20x ax b ++≤成立;1x =时,ln 0x =,()0f x ≥恒成立;1x >时,ln 0x >,即需20x ax b ++≥成立;∴对于函数2()g x x ax b =++,在(0,1)上()0g x ≤,在(1,)+∞上()0g x ≥, ∴2(1)1040(0)0g a b a b g b =++=⎧⎪∆=->⎨⎪=≤⎩解得1a ≥-,故选:B【点睛】思路点睛:令2()g x x ax b =++,即()()ln f x g x x =⋅.(0,)+∞上讨论x :由()0f x ≥,根据ln x 符号确定()g x 函数值的符号.由()g x 对应区间的函数值符号,结合二次函数性质求参数范围.14.B解析:B【分析】计算函数值域为{}0,1A 错误,根据偶函数定义知B 正确,()0D π=,(3.14)1D =,C 错误,()()011D D ==,故D 错误,得到答案.【详解】根据题意:()D x 的值域为{}0,1,A 错误;当x 为有理数时,x -为有理数,()()D x D x =-,当x 为无理数时,x -为无理数,()()D x D x =-,故函数为偶函数,B 正确; ()0D π=,(3.14)1D =,C 错误;()()011D D ==,故D 错误.故选:B.【点睛】本题考查了分段函数的值域,奇偶性和单调性,意在考查学生对于函数性质的综合应用. 15.D解析:D【解析】根据基本初等函数的性质知,符合条件的是21y x =+,因为满足2()1()f x x f x -=+=,且在(0,)+∞上是增函数,故选D.二、填空题16.【分析】令可得是上的增函数根据为奇函数可得为偶函数且在上是减函数分类讨论的符号将变形后利用的单调性可解得结果【详解】令则对于都有所以是上的增函数因为函数为定义在R 上的奇函数所以所以所以是定义在R 上的 解析:(3,0)(3,)-⋃+∞【分析】令()()g x xf x =,可得()g x 是[0,)+∞上的增函数,根据()f x 为奇函数可得()g x 为偶函数,且在(,0)-∞上是减函数,分类讨论x 的符号,将6()f x x >变形后,利用()g x 的单调性可解得结果.【详解】令()()g x xf x =,则对于12,[0,)x x ∀∈+∞,都有211221()()0()g x g x x x x x ->≠-, 所以()g x 是[0,)+∞上的增函数,因为函数()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()g x xf x xf x g x -=--==,所以()g x 是定义在R 上的偶函数,所以()g x 在(,0)-∞上是减函数,当0x >时,6()f x x>化为()63(3)xf x f >=,即()(3)g x g >,因为()g x 是[0,)+∞上的增函数,所以3x >,当0x <时,6()f x x>化为()6xf x <,因为()f x 为奇函数,且(3)2f =,所以(3)(3)2f f -=-=-,所以()6xf x <化为()3(3)(3)g x f g <--=-,因为()g x 在(,0)-∞上是减函数,所以30x -<<, 综上所述:6()f x x>的解集为(3,0)(3,)-⋃+∞. 故答案为:(3,0)(3,)-⋃+∞ 【点睛】关键点点睛:构造函数()()g x xf x =,利用()g x 的奇偶性和单调性求解是解题关键. 17.【分析】先由解出a 讨论的单调性利用函数单调性解不等式即可【详解】因为且所以解得在R 上单增可化为:解得:不等式的解集为故答案为:【点睛】利用单调性解不等式通常用于:(1)分段函数型不等式;(2)复合函 解析:()1,+∞【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可. 【详解】因为()x f x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+'ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞故答案为:()1,+∞【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;18.【分析】由题意把函数在上恒成立转化为对上恒成立列不等式解得a 的范围【详解】恒成立即恒成立所以时显然不成立当时得所以故答案为:【点睛】(1)求参数的范围是常见题型之一处理的方法有两种:①不分离参数直接 解析:4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R 上恒成立,列不等式解得a 的范围.【详解】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭. 故答案为:4,3⎛⎫+∞⎪⎝⎭ 【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式. 19.【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图等价于或根据函数图像解不等式【详解】由函数定义域及可知函数为奇函数在上对任意实数都有成立函数在上为增函数又函数为奇函数函数在为增函数又则作出 解析:()()3,01,3- 【分析】根据已知条件判断函数的奇偶性与单调性作出函数的草图,(1)()0x f x -<等价于1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩,根据函数图像解不等式. 【详解】由函数()f x 定义域及()()0f x f x ,可知函数()f x 为奇函数,()f x 在(0,)+∞上对任意实数12x x ≠都有1212()(()())0x x f x f x -->成立,∴函数()f x 在(0,)+∞上为增函数,又函数()f x 为奇函数,∴函数()f x 在(,0)(0,)-∞+∞为增函数,又(3)0f -=,则(3)0f =, 作出函数草图如图所示:(1)()0x f x -<⇒1()0x f x >⎧⎨<⎩或1()0x f x <⎧⎨>⎩, 根据()f x 的图像可知(1)()0x f x -<的解为:(3,0)(1,3)-.故答案为:(3,0)(1,3)-20.【分析】求出的范围后根据绝对值的性质根据最大值得不等关系可得的范围【详解】时当且仅当时等号成立又或时所以而的最大值为10所以的最大值为所以解得故答案为:【点睛】关键点点睛:本题考查函数的最值掌握绝对 解析:[8,)-+∞【分析】 求出229x x+的范围后根据绝对值的性质根据最大值得不等关系,可得a 的范围. 【详解】[3,1]x ∈--时,2[1,9]x ∈,2296x x +≥=,当且仅当23x =时等号成立, 又1x =-或3x =-时,22910x x +=,所以229610a x a a x +≤++≤+, 而()f x 的最大值为10,所以229x a x ++的最大值为10a +, 所以100610a a a +≥⎧⎨+≤+⎩,解得8a ≥-. 故答案为:[8,)-+∞.【点睛】关键点点睛:本题考查函数的最值.掌握绝对值的性质是解题关键.当0a b >≥时,a b >,当0a b 时,a b <,当0a b >>时,0a b +>,则a b >,0a b +<时,a b <.21.②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③【详解】函数①由于所以是非奇非偶函数所以①不正确;②可得所以函数有且仅有3个零点;所以②正确;③函数的值域是正确;正确结论的解析:②③【分析】判断函数的奇偶性判断①;求出函数的零点判断②;函数的值域判断③.【详解】函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩, ①由于()()1,sin 0f f πππ-=-==,所以()f x 是非奇非偶函数,所以①不正确;②()0f x =,可得2x π=-,0x =,x π=,所以函数有且仅有3个零点;所以②正确;③函数()cos ,0sin ,0x x f x x x ππ-≤<⎧=⎨≤≤⎩,()f x 的值域是[]1,1-,正确; 正确结论的序号是:②③.故答案为:②③.【点睛】本小题主要考查函数的奇偶性、零点、值域.22.11【分析】用分段函数的解析式先求出从而可得的值【详解】解:∵且∴∴故答案为:【点睛】本题主要考查分段函数的解析式属于中档题对于分段函数解析式的考查是命题的动向之一这类问题的特点是综合性强对抽象思维 解析:11【分析】用分段函数的解析式先求出()2f - ,从而可得()()2f f -的值.【详解】 解:∵ 246,0()log ,0x x f x x x x ⎧++>⎪=⎨⎪<⎩,且20-<, ∴ ()222log 10f -=->=∴ ()()()42116111f f f -==++=. 故答案为:11.【点睛】本题主要考查分段函数的解析式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰. 23.【分析】先判断函数是增函数于是可把函数不等式转化为自变量的关系进而可得原不等式的解集【详解】当时单调递增且;当时单调递增且所以函数在上单调递增于是等价于则解得故答案为:【点睛】本题考查函数单调性的判 解析:()2,3-【分析】先判断函数()f x 是增函数,于是可把函数不等式转化为自变量的关系,进而可得原不等式的解集.【详解】当1x <时,()f x x =单调递增,且()1f x <;当1≥x 时,31()1f x x x=-+单调递增,且()1f x ≥. 所以函数()f x 在R 上单调递增.于是()()26f x f x ->-等价于26x x ->-,则260x x --<,()()320x x -+<,解得23x -<<.故答案为:()2,3-.【点睛】本题考查函数单调性的判断与应用.遇到函数不等式问题,要利用单调性转化为自变量的关系再求解.判断分段函数的单调性,一定要关注对分段间隔点处的情况.24.8【分析】首先画出的图象根据图象即可求出函数的最大值【详解】函数的图象如图所示:由图可知故答案为:【点睛】本题主要考查利用函数的图象求最值熟练画出函数图象为解题的关键属于中档题解析:8【分析】首先画出()f x 的图象,根据图象即可求出函数的最大值.【详解】函数()f x 的图象如图所示:由图可知,max ()(2)44=8f x f =-=+.故答案为:8【点睛】本题主要考查利用函数的图象求最值,熟练画出函数图象为解题的关键,属于中档题. 25.【分析】先利用换元法求出然后再用分离变量法借助函数的单调性解决问题【详解】解:由题意可设则∵∴∴∴∴由得∴对恒成立令则由得∴在上单调递减在单调递增∴∴故答案为:【点睛】本题主要考查利用导数研究函数的 解析:(],21e -∞-【分析】先利用换元法求出()f x ,然后再用分离变量法,借助函数的单调性解决问题.【详解】解:由题意可设()x f x e x t -+=,则()xf x e x t =-+, ∵()xf f x e x e ⎡⎤-+=⎣⎦,∴()t tf t e t t e e =-+==, ∴1t =,∴()1xf x e x =-+, ∴()1xf x e '=-, 由()()f x f x ax '+≥得11x x e x e ax -++-≥, ∴21x e a x≤-对()0,x ∈+∞恒成立, 令()21xe g x x =-,()0,x ∈+∞,则()()221'x e x g x x -=, 由()'0g x =得1x =,∴()g x 在()0,1上单调递减,在()1,+∞单调递增,∴()()121g x g e ≥=-,∴21a e ≤-,故答案为:(],21e -∞-.【点睛】本题主要考查利用导数研究函数的最值,考查利用函数的单调性解决恒成立问题,属于中档题.26.【分析】根据函数为奇函数有结合可得是以4为周期的周期函数将所求函数值转化成已知解析式区间上的函数值即可求解【详解】由函数是定义在上的奇函数则又所以则所以是以4为周期的周期函数所以故答案为:【点睛】考 解析:1-【分析】根据函数为奇函数有()()f x f x =--,结合()()2f x f x +=-,可得()f x 是以4为周期的周期函数,将所求函数值转化成已知解析式区间上的函数值,即可求解.【详解】由函数()f x 是定义在R 上的奇函数,则()()f x f x =--又()()2f x f x +=-,所以()()2f x f x +=-则()()()()4222f x f x f x f x +=++=-+=⎡⎤⎣⎦所以()f x 是以4为周期的周期函数.所以()()()()()1151611121=1f f f f =-=-=-=--- 故答案为:1-【点睛】考查函数奇偶性和周期性的综合应用,具体数值求解,有一定综合性,属于中档题.。

高一数学函数的基本性质试题一及答案

高一数学函数的基本性质试题一及答案

函数的基本性质试题一一、选择题(每小题5分,共50分)。

1.下面说法正确的选项()A.函数的单调区间可以是函数的定义域B.函数的多个单调增区间的并集也是其单调增区间C.具有奇偶性的函数的定义域定关于原点对称D.关于原点对称的图象一定是奇函数的图象2.在区间上为增函数的是()A. B.C. D.3.函数是单调函数时,的取值范围()A. B. C . D.4.如果偶函数在具有最大值,那么该函数在有()A.最大值 B.最小值 C .没有最大值 D.没有最小值5.函数,是()A.偶函数 B.奇函数 C.不具有奇偶函数 D.与有关6.函数在和都是增函数,若,且那么()A. B.C.D.无法确定7.函数在区间是增函数,则的递增区间是()A.B. C.D.8.函数在实数集上是增函数,则()A.B.C. D.9.定义在R上的偶函数,满足,且在区间上为递增,则() A. B.C. D.10.已知在实数集上是减函数,若,则下列正确的是()A. B.C. D.二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.函数在R上为奇函数,且,则当, . 12.函数,单调递减区间为,最大值和最小值的情况为 . 13.定义在R上的函数(已知)可用的和来表示,且为奇函数,为偶函数,则= .(用表示)14.构造一个满足下面三个条件的函数实例,①函数在上递减;②函数具有奇偶性;③函数有最小值为; .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知,求函数得单调递减区间.16.(12分)判断下列函数的奇偶性①;②;③;④。

17.(12分)已知,,求.18.(12分))函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.(14分)在经济学中,函数的边际函数为,定义为,19.某公司每月最多生产100台报警系统装置。

生产台的收入函数为(单位元),其成本函数为(单位元),利润的等于收入与成本之差.①求出利润函数及其边际利润函数;②求出的利润函数及其边际利润函数是否具有相同的最大值;③你认为本题中边际利润函数最大值的实际意义.20.(14分)已知函数,且,,试问,是否存在实数,使得在上为减函数,并且在上为增函数.函数的基本性质试题一参考答案一、CBAAB DBAAD二、11.;12.和,;13.; 14.;三、15.解:函数,,故函数的单调递减区间为.16.解:①定义域关于原点对称,且,奇函数.②定义域为不关于原点对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学 函数概念及其性质测试题一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设f 、g 都是由A 到A 的映射,其对应法则如下表(从上到下):表1 映射f表2 映射g 的对应法则则与f [g (1)]相同的是 ( )A .g [f (1)]B .g [f (2)]C .g [f (3)]D .g [f (4)]2.函数f (x ) =822--x x 的定义域是集合A ,函数g (x ) =||11a x --的定义域是集合B ,且B A 为空集,则实数a 的取值范围是 ( ) A .[-1,3] B .(-1,3) C . ]3,1(- D .)3,1[-3.若函数f (x ) = x -2px p +在(1,+∞)上是增函数,则实数p 的取值范围是 ( )A .),1[∞+-B .),1[∞+C .]1,(--∞D .]1,(-∞4.已知⎩⎨⎧>+-≤=0,1)1(0,cos )(x x f x x x f π,则)34()34(-+f f 的值为 ( )A .-2B .-1C .1D .25.已知函数f (x ) = 3-2 |x |, g (x ) = x 2-2x ,构造函数y = F (x ),定义如下:当f (x )≥g (x )时,F (x ) = g (x );当f (x ) < g (x )时,F (x ) = f (x ),那么F (x ) ( )A .有最大值3,最小值-1B .有最大值3,无最小值C .有最大值772-,无最小值D .无最大值,也无最小值6.已知函数f (x ) = ⎪⎩⎪⎨⎧>≤)1(log )1(221x xx x,则函数y = f (1-x )的图象为 ( )7.已知函数f (x ) =xx+-11lg ,若f (a ) = b ,则f (-a )等于 ( ) A .b B .-b C .b 1 D .-b18.若f (x )是偶函数,且当x ∈),0[∞+时,f (x ) = x -1,则f (x -1) < 0的解集是 ( )A .{x |-1 < x < 0}B .{x | x < 0或1< x < 2}C .{x | 0 < x < 2}D .{x | 1 < x < 2}9.设定义域为R 的函数f (x ) = ⎪⎩⎪⎨⎧=≠-)2(1)2(|2|1x x x ,若关于x 的方程f 2(x ) + a f (x ) + b = 0有3个不同的实数解x 1、x 2、x 3且x 1< x 2<x 3,则下列说法中错误..的是A .4232221=++x x xB .1 + a + b = 0C .x 1 + x 3 = 4D .x 1 + x 3 > 2x 210.设函数f (x ) = x |x | + bx + c ,给出下列四个命题:①c = 0时,y = f (x )是奇函数; ②b = 0,c > 0时,方程f (x ) = 0只有一个实根; ③ y = f (x )的图象关于(0,c )对称; ④方程f (x ) = 0至多两个实根 其中正确的命题是 A .①、④B .①、③C .①、②、③D .①、②、④二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中横线上)11.已知函数f (x ) = 3a x -2a + 1在区间 (-1,1)内存在x 0;使f (x 0) = 0,则实数a 的取值范围是 .12.已知函数f (x )=⎪⎩⎪⎨⎧<≥0,0,33x x x x 与函数d (x ) =⎩⎨⎧为无理数)(为有理数x x 0)(1,则这两个函数图象的公共点的坐标为 .13.设函数f (x )为偶函数,对于任意的x >0的数都有f (2+x ) =-2 f (2-x ),已知f (-1) = 4,那么f (-3) = .14.已知f (x )是定义在R 上的奇函数,且是周期为2的周期函数,当x )1,0[∈时,f (x ) = 2x -1,则)6(log 21f 的值为 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分12分)已知函数f (x ) =111-+x ,g (x )= f (2| x |). (1)函数f (x )和g (x )是否具有奇偶性,并说明理由; (2)证明函数g (x )在(∞-,0)上为增函数.16.(本小题满分12分)已知函数f (x ) =xa ax --+1,R a ∈.(1)证明函数y = f (x )的图象关于点(a ,-1)成中心对称图形; (2)当x ]2,1[++∈a a 时,求证:f (x )]23,2[--∈.17.(本小题满分14分)已知函数f (t ) =log 2t ,]8,2[∈t . (1)求f (t )的值域G ;(2)若对于G 内的所有实数x ,不等式-x 2+2mx -m 2+2m ≤1恒成立,求实数m 的取值范围.18.(本小题满分14分)定义在区间(-1,1)上的函数f (x )满足:①对任意的x ,y ∈(-1,1),都有f (x ) + f (y )=)1(xy yx f ++; ②当x ∈(-1,0),f (x ) > 0. (1)求证f (x )为奇函数;(2)试解不等式:f (x ) + f (x -1) )21(f >.19.(本小题满分14分)对定义域分别是D f 、D g 的函数y = f (x )、y = g (x ),规定:⎪⎪⎩⎪⎪⎨⎧∈∉∉∈∈∈⋅=.,)(,,)(,),()()(g f g f g f D x D x x g D x D x x f D x D x x g x f x h 且当且当且当(1)若函数f (x ) =11-x ,g (x ) = x 2,写出函数h (x )的解析式; (2)求问题(1)中函数h (x )的值域;(3)请设计一个定义域为R 的函数y = f (x ),及一个实常数a 的值,使得f (x )·f (x + a ) =x 4 + x 2 + 1,并予证明.20.(本小题满分14分)已知函数f (x ) =ax 2-bx +c (a > 0, b ,c ∈R ),f (x ) = 0在0< x < 1有两个互异实根,求证: (1)b > 2c 且a > c ; (2)f (0)·f (1) < 162a .参考答案一、选择题 1.A g (1) = 4,f [ g (1) ] = f (4) = 1,而f (1) = 3,g [ f (1) ] = g (3) = 1 2.A A = ),4[]2,(∞+--∞ ,B = (a -1, a + 1) 3.A f /(x ) = 012>+xp ,p >-x 2在(1, +∞)上恒成立,∴p =-14.C 12)34()32()34()34(=+-+-=-+f f f f 5.C作出函数y = F (x )的图象即可6.D由已知得f (1-x ) =⎪⎩⎪⎨⎧<-≥-),0()1(log ),0(2211x x x x 当x = 0时,y = 2,排除A 、B ;当x > 0时,y =021>-x ,排除C . 故选D.7.Ba a ab a a b⇒=+-⇒=+-101111lg b b 101101+-=,b a f a f b-=-⇒=-)(101lg)(8.C ∵f (x )是偶函数,在),0[∞+∈x 时,f (x ) = x -1.又当x < 0时,-x > 0,∴f (-x )=-x -1,∴f (x )=-x -1. 9.D 10.C①显然成立. 当b = 0,f (x ) = x | x | + c ,方程只有一实根,正确f (-x ) =-x | x |-bx + c =-(f (x )-c ) + c = 2c -f (x ),故关于点(0, c )对称, ③正确二、填空题 11.51>a 或a <-1 由f (-1)·f (1) < 0可得12.(1,1) 就x 为负有理数,非负有理数,负无理数,非负无理数解方程f (x ) = d (x ) 13.-8 f (-3) = f (3) = f (2 + 1) =-2 f (1) =-2 f (-1) =-8 14.-5三、解答题15.解:(I )g x f x x ()()||||==+-211212100||x x -≠⇒≠ 又101-≠⇒≠x x 函数f x ()的定义域为{|}x x R x ∈≠且1, 函数g x ()的定义域{|}x x R x ∈≠且0, 由f x ()的定义域为{|}x x ≠1可知函数f x ()为非奇非偶函数,g x g x x x ()()||||-=+-=+-=-11211121∴g x ()为偶函数 (II )设x x 120,,∈-∞()且x x 12<g x g x x x x x x x ()()()()||||||||||||12121121222121122112-=---=--- x x 120,,∈-∞()且x x 12<,∴>>||||x x 120 所以2212||||x x >,22021||||x x -<,2102101212||||()()x x g x g x ->->⇒<,16.解:(I )设点P (x 0,y 0)是函数,y=f (x )图象上一点, 则0001x a ax y --+=点P (x 0,y 0)关于(a ,-1)的对称点为)2,2(00y x a P ---',1212)2(00000ax x a x a a a x a x a f -+-=+--+-=-ax x a x a a x y -+-=--+--=--000001122 )2(200x a f y -=--∴即P ′点在函数y=f (x )的图象上所以函数y=f (x )的图象关于点)1,(-a 成中心对称图形 (II )2)(2)2)(1()(221]23)(][2)([x a a x a x x a xa x a x a x f x f -----=--+⋅-+-=++)(20)2)(1(],2,1[2>-≤----∴++∈x a a x a x a a x 又.23)(2,0]23)(][2)([-≤≤-∴≤++∴x f x f x f17.解:(Ⅰ)∵f (t )=log 2t 在t ∈[2,8]上是单调递增的,∴log 22≤log 2t ≤log 28.即21≤f (t )≤3. ∴f (t )的值域G 为[,321].(Ⅱ)由题知-x 2+2mx -m 2+2m ≤1在x ∈[321,]上恒成立2x ⇔-2mx +m 2-2m +1≥0在x ∈[,321]上恒成立.令g (x )=x 2-2mx+m 2-2m+1,x ∈[,321].只需g min (x )≥0即可.而g (x )=(x -m )2-2m +1,x ∈[,321].(1)当m ≤21时,g min (x )=g (21)=41-3m +m 2+1≥0. ∴4m 2-12m+5≥0.解得m ≥25或≤21. ∴m ≤.21(2)当21<m <3时,g min (x )=g (m )= -2m+1≥0. 解得m ≤.21这与21<m <3矛盾.(3)当m ≥3时,g min (x )=g(3)=10+m 2-8m ≥0. 解得m ≥4+6或m ≤4-6. 而m ≥3,∴m ≥4+6.综上,实数m 的取值范围是 (-∞,21)∪[4+6,+∞].18.(1)解:令x = y = 0,则 f (0) + f (0) = )0()0100(f f =++ ∴ f (0) = 0令x ∈(-1, 1) ∴-x ∈(-1, 1) ∴ f (x ) + f (-x ) = f (21xx x --) = f (0) = 0∴ f (-x ) =-f (x )∴ f (x ) 在(-1,1)上为奇函数(2)解:令-1< x 1 < x 2 < 1 则f (x 1) -f (x 2) = f (x 1) + f (-x 2) = )1(2121x x x x f --∵x 1-x 2 < 0,1-x 1x 2 > 0∴012121<--x x x x ∴ )1(2121x x x x f --> 0∴ f (x 1) > f (x 2) ∴ f (x ) 在(-1,1)上为减函数 又f (x ) + f (x -1) >)21(f>-+-⇒)112(2xx x f )21(f∴ 不等式化为⎪⎪⎪⎩⎪⎪⎪⎨⎧<-+-<-<-<<-21112111112x x x x x ⎪⎩⎪⎨⎧>+-<<⇒035102x x x⎪⎩⎪⎨⎧-<<<⇒213510x x 或2135+>x 21350-<<⇒x∴ 不等式的解集为}21350|{-<<x x 19.解:(1)h (x ) = ⎪⎩⎪⎨⎧=∞+-∞∈-1,1),1()1,(,12x x x x(2)当x = 1时,h (1) = 1 当x ≠1时,12-=x x y ,即x 2-yx + y = 0由关于x 的方程x 2-yx + y = 0有实数解(显然解不为1)知△= (-y ) 2-4y ≥0,得y ≥4或y ≤0, ∴ 函数h (x )的值域),4[}1{]0,(∞+-∞ (3)∵ x 4 + x 2 + 1 = (x 2 + 1)2-x 2 = (x 2 + x + 1) (x 2-x + 1)= (x 2 + x + 1) [(x -1)2 + (x -1) + 1]∴ 可取f (x ) = x 2 + x + 1, a =-1注:取f (x ) = x 2-x + 1, a = 1;f (x ) =-x 2 + x -1, a = 1;f (x ) =-x 2-x -1,a =-1均可.20.解:(1)f (x ) = 0,在0 < x < 1内有两个互异实根∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>-<<>=->④4③120②0①02ac b a bc b a c∵ a > 0,由③得02>>ba由④得b 2 > 4ac∵ c > 0 ∴ b 2 > 4ac > 4·2b·c = 2bc ∴ b > 2c又212>>b a ·2c = c ∴ b > 2c 且a > c(2)f (0)·f (1) = c (a -b + c ) = a 2)]1([(+-a b a c a c由(4)b 2 > 4ac ∴ 4)(2>a b ·ac ∴2)(41ab ac < ∴ f (0)·f (1) < a 2 [)1)(41()(4122+-abab ab ] =])2()[(16222-a ba b a=22)]2([16ab a b a -由(3)20<<a b ∴ 0>a b ,2-0>ab ∴ 1]2)2([)2(2=-+≤-a ba b a b a b∴ f (0)·f (1) < 162a。

相关文档
最新文档