2018年江苏高考数学考试说明(含最新试题)
2018年高考数学试题(江苏卷)含解析
一、填空题:本大题共 14 小题,每小题 5 分,共计 70 分.请把答案填写在答题卡相应位置上..绝密★启用前2018 年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,均为非选择题(第 1 题~第 20 题,共 20 题)。
本卷满分为 160 分,考试时间为 120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用 0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用 0.5 毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用 2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积 ,其中 是锥体的底面积, 是锥体的高.........1. 已知集合【答案】{1,8}, ,那么 ________.【解析】分析:根据交集定义详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.求结果.2. 若复数 满足 ,其中 i 是虚数单位,则 的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果详解:因为,则 ,则 的实部为 ..点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数点睛:的平均数为.4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5.函数【答案】[2,+∞)的定义域为________....【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域 详解:要使函数有意义,则 ,解得 ,即函数 的定义域为 .点睛:求给定函数的定义域往往需转化为解不等式(组)的问题 6. 某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从 5 名学生中抽取 2 名学生,共有 10 种方法,其中恰好选中 2 名女生的方法有 3 种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化 (4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目. 7. 已知函数 【答案】【解析】分析:由对称轴得的图象关于直线 对称,则 的值是________.,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数 (A >0,ω>0)的性质:(1);(2)最小正周期 ;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线 的右焦点 到一条渐近线的距离为 ,则其离心率的值是________.【答案】2..【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率 点睛:双曲线的焦点到渐近线的距离为 b ,焦点在渐近线上的射影到坐标原点的距离为 a .9. 函数 满足 ,且在区间 上, 则 的值为________. 【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由 得函数 的周期为 4,所以 因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果 详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为 1,底面正方形的边长等于,3.所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数 ________.【答案】– 在 内有且只有一个零点,则 在 上的最大值与最小值的和为【解析】分析:先结合三次函数图象确定在确定函数最值,即得结果.上有且仅有一个零点的条件,求出参数 a ,再根据单调性详解:由得 ,因为函数在 上有且仅有一个零点且 ,所以,因此从而函数 在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系交于另一点 D .若中,A 为直线 上在第一象限内的点, ,以 AB 为直径的圆 C 与直线 l,则点 A 的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果 详解:设,则由圆心 为 中点得 易得,与 联立解得点 D 的横坐标 所以 .所以,由因为得,所以或,点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角 所对的边分别为 , , 的平分线交 于点 D ,且 ,则的最小值为________... 二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值 详解:由题意可知, ,由角平分线性质和三角形面积公式得 ,化简得,因此当且仅当时取等号,则 的最小值为 .点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合数列.记 为数列 ,的前 n 项和,则使得 .将 的所有元素从小到大依次排列构成一个成立的 n 的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设 ,则由得所以只需研究是否有满足条件的解,此时, , 为等差数列项数,且 .由得满足条件的 最小值为 .点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和 分组转化法求和的常见类型主要有分段型(如 ),符号型(如 ),周期型(如 )........(程或演算步骤.15.在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,.“所以 AB 1⊥平面 A 1BC .因为 AB 1 平面 ABB 1A 1,所以平面 ABB 1A 1⊥平面 A 1BC .点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明 16. 已知 (1)求(2)求为锐角,的值;的值., .【答案】(1)(2)【解析】分析:先根据同角三角函数关系得公式得,再利用两角差的正切公式得结果.,再根据二倍角余弦公式得结果;(2)先根据二倍角正切详解:解:(1)因为 ,,所以 .因为,所以,因此,.(2)因为 为锐角,所以.又因为因此因为,所以.,所以 ,,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧(P 为此圆弧的中点)和线段 MN 构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为MN所成的角为.,要求均在线段上,均在圆弧上.设OC与(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cos△θ)平方米,CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定据单调性确定函数最值取法.的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ,则sinθ0=,θ0∈(0,).当θ∈[θ,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cos△θ)平方米,CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ,).设f(θ)=sinθcosθ+cosθ,θ∈[θ0,),则令,得θ=,.当θ∈(θ,)时,当θ∈(,)时,,所以f(θ)为增函数;,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18.如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为可设椭圆C的方程为.又点所以,解得,在椭圆C上,因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得所以,.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19.记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数(2)若函数与与不存在“S点”;存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析((2)a 的值为(3)对任意 a >0,存在 b >0,使函数 f (x )与 g (x )在区间(0,+∞)内存在“S 点”.【解析】分析:(1)根据题中“S 点”的定义列两个方程,根据方程组无解证得结论; 2)同(1)根据“S 点”的定义列两个方程,解方程组可得 a 的值;(3)通过构造函数以及结合 “S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数 f (x )=x ,g (x )=x 2+2x -2,则 f ′(x )=1,g ′(x )=2x +2.由 f (x )=g (x )且 f ′(x )= g ′(x ),得,此方程组无解,因此,f (x )与 g (x )不存在“S ”点.(2)函数则,.,设 x 0 为 f (x )与 g (x )的“S ”点,由 f (x 0)与 g (x 0)且 f ′(x 0)与 g ′(x 0),得,即,(*)得,即 ,则 .当时, 满足方程组(*),即 为 f (x )与 g (x )的“S ”点.因此,a 的值为 .(3)对任意 a >0,设因为所以存在 ∈(0,1),使得,令 .,且 h (x )的图象是不间断的,,则 b >0.函数,则.由 f (x )与 g (x )且 f ′(x )与 g ′(x ),得.(,即(**)此时, 满足方程组(**),即 是函数 f (x )与 g (x )在区间(0,1)内的一个“S 点”.因此,对任意 a >0,存在 b >0,使函数 f (x )与 g (x )在区间(0,+∞)内存在“S 点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路 20. 设 (1)设(2)若是首项为 ,公差为 d 的等差数列,,若 对,证明:存在是首项为 ,公比为 q 的等比数列.均成立,求 d 的取值范围;,使得 对 均成立,并求 的取值范围(用表示).【答案】(1)d 的取值范围为(2)d 的取值范围为.,证明见解析。
2018年江苏高考数学试题及答案
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积13V Sh,其中S 是锥体的底面积,h 是锥体的高.一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{0,1,2,8}A ,{1,1,6,8}B ,那么A B ∩▲.2.若复数z 满足i 12i z ,其中i 是虚数单位,则z 的实部为▲.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为▲.5.函数()f x 的定义域为▲.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为▲.7.已知函数sin(2)()22y x的图象关于直线3x 对称,则 的值是▲.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b 的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是▲.9.函数()f x 满足(4)()()f x f x x R ,且在区间(2,2] 上,cos ,02,2()1||,20,2x x f x x x-则((15))f f 的值为▲.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.11.若函数32()21()f x x ax a R 在(0,) 内有且只有一个零点,则()f x 在[1,1] 上的最大值与最小值的和为▲.12.在平面直角坐标系xOy 中,A 为直线:2l y x 上在第一象限内的点,(5,0)B ,以AB为直径的圆C 与直线l 交于另一点D .若0AB CD ,则点A 的横坐标为▲.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ,ABC 的平分线交AC 于点D ,且1BD ,则4a c 的最小值为▲.14.已知集合*{|21,}A x x n n N ,*{|2,}n B x x n N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a 成立的n 的最小值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D 中,1111,AA AB AB B C .求证:(1)11AB A B C 平面∥;(2)111ABB A A BC 平面平面.16.(本小题满分14分)已知, 为锐角,4tan 3,cos() .(1)求cos 2 的值;(2)求tan() 的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为 .(1)用 分别表示矩形ABCD 和CDP △的面积,并确定sin 的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为,求直线l 的方程.19.(本小题满分16分)记(),()f x g x分别为函数(),()f x g x 的导函数.若存在0x R ,满足00()()f x g x 且00()()f x g x ,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x 与2()22g x x x 不存在“S 点”;(2)若函数2()1f x ax 与()ln g x x 存在“S 点”,求实数a 的值;(3)已知函数2()f x x a ,e ()xb g x x .对任意0a ,判断是否存在0b ,使函数()f x 与()g x 在区间(0,) 内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ,若1||n n a b b 对1,2,3,4n 均成立,求d 的取值范围;(2)若*110,,a b m q N ,证明:存在d R ,使得1||n n a b b 对2,3,,1n m 均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题目:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8}2.23.904.85.[2,+∞)6.3107.π68.29.210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB 平面A 1B 1C ,A 1B 1 平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形,因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1,所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC 平面A 1BC ,所以AB 1⊥平面A 1BC .因为AB 1 平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3,sin tan cos ,所以4sin cos 3 .因为22sin cos 1 ,所以29cos 25 ,因此,27cos22cos 125.(2)因为, 为锐角,所以(0,π) .又因为cos()5,所以sin()5,因此tan()2 .因为4tan 3,所以22tan 24tan 21tan 7,因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f ′.令()=0f ′,得θ=π6,当θ∈(θ0,π6)时,()>0f ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f ′,所以f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分.解:(1)因为椭圆C的焦点为12(),F F ,可设椭圆C 的方程为22221(0)x y a b a b.又点1)2在椭圆C 上,所以2222311,43,ab a b,解得224,1,a b因此,椭圆C 的方程为2214x y .因为圆O 的直径为12F F ,所以其方程为223x y .(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y ,则22003x y ,所以直线l 的方程为000()x y x x y y,即0003x y x y y.由220001,43,x y x y x y y,消去y ,得222200004243640()x y x x x y .(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()( 24)(44364820)4x x y y y x .因为00,0x y,所以001x y .因此,点P的坐标为.②因为三角形OAB的面积为,所以1 2AB OP,从而AB.设1122,,()(),A x y B x y ,由(*)得001,2x,所以2222121()()x B y y x A 222000222200048(2)(1(4)x y x y x y.因为22003x y ,所以22022016(2)32(1)49x AB x,即42002451000x x ,解得22005(202x x 舍去),则2012y ,因此P的坐标为()22.综上,直线l的方程为y .19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得222122x x x x,此方程组无解,因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax (),()ln g x x ,则12f x ax g x x(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x,即200201ln 21ax x ax ,(*)得01ln 2x ,即120e x ,则1221e 22(e )a.当e 2a时,120e x 满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a .因为(0)0(1)1320h a h a a ,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x ,令302e (1)x x b x ,则b >0.函数2e ()()xb f x x a g x x,,则2e (1)()2()x b x f x x g x x′,′.由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ,即00320030202e e (1)2e (1)2e (1)xx x x x x a x x x x x x x(**)此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)由条件知:112(,)n n n a n d b .因为1||n n a b b 对n =1,2,3,4均成立,即112|()1|n n d 对n =1,2,3,4均成立,即1 1,1 d 3,3 2d 5,7 3d 9,得7532d.因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q .若存在d ,使得1||n n a b b (n =2,3,···,m +1)成立,即1111 |1|2,3,,(1())n b n d b q b n m ,即当2,3,,1n m 时,d 满足1111211n n q q b d b n n .因为(q ,则112n m q q ,从而11201n q b n ,1101n q b n ,对2,3,,1n m 均成立.因此,取d =0时,1||n n a b b 对2,3,,1n m 均成立.下面讨论数列12{}1n q n 的最大值和数列1{}1n q n 的最小值(2,3,,1n m ).①当2n m 时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n ,当112mq 时,有2n m q q ,从而1() 20n n n n q q q .因此,当21n m 时,数列12{}1n q n 单调递增,故数列12{}1n q n 的最大值为2m q m .②设()()21x f x x ,当x >0时,ln 21(0(n )l 22)x f x x ,所以()f x 单调递减,从而()f x <f (0)=1.当2n m 时,111112111()()()nn n q q n n f q n n nn ,因此,当21n m 时,数列1{}1n q n 单调递减,故数列1{}1n q n 的最小值为m q m .因此,d 的取值范围为11(2)[,]m m b q b q m m .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域..................内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC ,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312 A .(1)求A 的逆矩阵1A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ,求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26 ,曲线C 的方程为4cos ,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z 的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i ,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=,OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312A,det()221310A,所以A可逆,从而1 A2312.(2)设P(x,y),则233121xy,所以13311xyA,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cos,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos 6AB .因此,直线l 被曲线C 截得的弦长为.D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z .因为22=6x y z ,所以2224x y z ,当且仅当122x y z 时,不等式取等号,此时244333x y z ,,,所以222x y z 的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C .(1)因为P 为A 1B 1的中点,所以1,2)2P ,从而11(,2)(0,2,222),BP AC ,故111|||cos,|20||||BP ACBP ACBP AC.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以1,0)2Q,因此3(,0)22AQ,11(0,2,2),(0,0,2)AC CC.设n=(x,y,z)为平面AQC1的一个法向量,则10,0,AQACnn即30,2220.yy z不妨取1,1)n,设直线CC1与平面AQC1所成角为 ,则111||sin|cos|,|||5CCCCCC|nnn,所以直线CC1与平面AQC1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc为排列abc的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3,,,,,,所以333(0)1(1)(2)2f f f,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以(0)1nf.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n .为计算1(2)n f ,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n .当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f …242(1)(2)4(2)2n n n n f ,因此,n ≥5时,(2)n f 222n n .祝福语祝你马到成功,万事顺意!。
2018年江苏省高考数学真题试题含答案
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = ▲ .2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .5.函数2()log 1f x x =-的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x ya b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为3,则其离心率的值是 ▲ .9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩-则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC . 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为43∶.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8} 2.2 3.90 4.85.[2,+∞) 6.310 7.π6- 8.29.22 10.43 11.–3 12.313.9 14.27 二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. 证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos22cos 125αα=-=-.(2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()5αβ+=-,所以225sin()1cos ()5αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ, 则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则si n θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12()3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=,所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+.由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y , 由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)22.综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分. 解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==.当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的, 所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x =-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=.因为1||n n a b b -≤对n =1,2,3,4均成立,即1 12|()1|n n d ---≤对n =1,2,3,4均成立,即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤.因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+,即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为2]m q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求BC 的长. B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值. 23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC .又因为PC =23,OC =2,所以OP =22PC OC +=4.又因为OB =2,从而B 为Rt △OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过A (4,0),倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos236AB == 因此,直线l 被曲线C 截得的弦长为23 D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2, 所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,,2)22P -, 从而131(,,2)(0,2,222),BP AC ==--, 故111|||14|310|cos ,|20||||522BP AC BP AC BP AC ⋅-+===⋅⨯. 因此,异面直线BP 与AC 1所成角的余弦值为31020. (2)因为Q 为BC 的中点,所以31(,,0)22Q , 因此33(,,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即330,22220.x y y z ⎧+=⎪⎨⎪+=⎩ 不妨取(3,1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||25sin |cos |,|||552CC CC CC |θ==⋅⨯⋅==n n n , 所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年江苏高考数学试题及答案
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:锥体的体积13V Sh,其中S 是锥体的底面积,h 是锥体的高.一、填空题目:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{0,1,2,8}A ,{1,1,6,8}B ,那么A B ∩▲.2.若复数z 满足i 12i z ,其中i 是虚数单位,则z 的实部为▲.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为▲.5.函数()f x 的定义域为▲.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为▲.7.已知函数sin(2)()22y x的图象关于直线3x 对称,则 的值是▲.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b 的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是▲.9.函数()f x 满足(4)()()f x f x x R ,且在区间(2,2] 上,cos ,02,2()1||,20,2x x f x x x-则((15))f f 的值为▲.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.11.若函数32()21()f x x ax a R 在(0,) 内有且只有一个零点,则()f x 在[1,1] 上的最大值与最小值的和为▲.12.在平面直角坐标系xOy 中,A 为直线:2l y x 上在第一象限内的点,(5,0)B ,以AB为直径的圆C 与直线l 交于另一点D .若0AB CD ,则点A 的横坐标为▲.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ,ABC 的平分线交AC 于点D ,且1BD ,则4a c 的最小值为▲.14.已知集合*{|21,}A x x n n N ,*{|2,}n B x x n N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a 成立的n 的最小值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D 中,1111,AA AB AB B C .求证:(1)11AB A B C 平面∥;(2)111ABB A A BC 平面平面.16.(本小题满分14分)已知, 为锐角,4tan 3,cos() .(1)求cos 2 的值;(2)求tan() 的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为 .(1)用 分别表示矩形ABCD 和CDP △的面积,并确定sin 的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当 为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为,求直线l 的方程.19.(本小题满分16分)记(),()f x g x分别为函数(),()f x g x 的导函数.若存在0x R ,满足00()()f x g x 且00()()f x g x ,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x 与2()22g x x x 不存在“S 点”;(2)若函数2()1f x ax 与()ln g x x 存在“S 点”,求实数a 的值;(3)已知函数2()f x x a ,e ()xb g x x .对任意0a ,判断是否存在0b ,使函数()f x 与()g x 在区间(0,) 内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ,若1||n n a b b 对1,2,3,4n 均成立,求d 的取值范围;(2)若*110,,a b m q N ,证明:存在d R ,使得1||n n a b b 对2,3,,1n m 均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题目:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8}2.23.904.85.[2,+∞)6.3107.π68.29.210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB 平面A 1B 1C ,A 1B 1 平面A 1B 1C ,所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形,因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1,所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B 平面A 1BC ,BC 平面A 1BC ,所以AB 1⊥平面A 1BC .因为AB 1 平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3,sin tan cos ,所以4sin cos 3 .因为22sin cos 1 ,所以29cos 25 ,因此,27cos22cos 125.(2)因为, 为锐角,所以(0,π) .又因为cos()5,所以sin()5,因此tan()2 .因为4tan 3,所以22tan 24tan 21tan 7,因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10.过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ,故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ).过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10.令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ)=8000k (sin θcos θ+cos θ),θ∈[θ0,π2).设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f ′.令()=0f ′,得θ=π6,当θ∈(θ0,π6)时,()>0f ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f ′,所以f (θ)为减函数,因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分.解:(1)因为椭圆C的焦点为12(),F F ,可设椭圆C 的方程为22221(0)x y a b a b.又点1)2在椭圆C 上,所以2222311,43,ab a b,解得224,1,a b因此,椭圆C 的方程为2214x y .因为圆O 的直径为12F F ,所以其方程为223x y .(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y ,则22003x y ,所以直线l 的方程为000()x y x x y y,即0003x y x y y.由220001,43,x y x y x y y,消去y ,得222200004243640()x y x x x y .(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()( 24)(44364820)4x x y y y x .因为00,0x y,所以001x y .因此,点P的坐标为.②因为三角形OAB的面积为,所以1 2AB OP,从而AB.设1122,,()(),A x y B x y ,由(*)得001,2x,所以2222121()()x B y y x A 222000222200048(2)(1(4)x y x y x y.因为22003x y ,所以22022016(2)32(1)49x AB x,即42002451000x x ,解得22005(202x x 舍去),则2012y ,因此P的坐标为()22.综上,直线l的方程为y .19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2.由f (x )=g (x )且f ′(x )=g ′(x ),得222122x x x x,此方程组无解,因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax (),()ln g x x ,则12f x ax g x x(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x,即200201ln 21ax x ax ,(*)得01ln 2x ,即120e x ,则1221e 22(e )a.当e 2a时,120e x 满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a .因为(0)0(1)1320h a h a a ,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x ,令302e (1)x x b x ,则b >0.函数2e ()()xb f x x a g x x,,则2e (1)()2()x b x f x x g x x′,′.由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ,即00320030202e e (1)2e (1)2e (1)xx x x x x a x x x x x x x(**)此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”.因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.解:(1)由条件知:112(,)n n n a n d b .因为1||n n a b b 对n =1,2,3,4均成立,即112|()1|n n d 对n =1,2,3,4均成立,即1 1,1 d 3,3 2d 5,7 3d 9,得7532d.因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q .若存在d ,使得1||n n a b b (n =2,3,···,m +1)成立,即1111 |1|2,3,,(1())n b n d b q b n m ,即当2,3,,1n m 时,d 满足1111211n n q q b d b n n .因为(q ,则112n m q q ,从而11201n q b n ,1101n q b n ,对2,3,,1n m 均成立.因此,取d =0时,1||n n a b b 对2,3,,1n m 均成立.下面讨论数列12{}1n q n 的最大值和数列1{}1n q n 的最小值(2,3,,1n m ).①当2n m 时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n ,当112mq 时,有2n m q q ,从而1() 20n n n n q q q .因此,当21n m 时,数列12{}1n q n 单调递增,故数列12{}1n q n 的最大值为2m q m .②设()()21x f x x ,当x >0时,ln 21(0(n )l 22)x f x x ,所以()f x 单调递减,从而()f x <f (0)=1.当2n m 时,111112111()()()nn n q q n n f q n n nn ,因此,当21n m 时,数列1{}1n q n 单调递减,故数列1{}1n q n 的最小值为m q m .因此,d 的取值范围为11(2)[,]m m b q b q m m .数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域..................内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC ,求BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312 A .(1)求A 的逆矩阵1A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ,求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26 ,曲线C 的方程为4cos ,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z 的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i ,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=,OC=2,所以OP.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312A,det()221310A,所以A可逆,从而1 A2312.(2)设P(x,y),则233121xy,所以13311xyA,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cos,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos 6AB .因此,直线l 被曲线C 截得的弦长为.D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z .因为22=6x y z ,所以2224x y z ,当且仅当122x y z 时,不等式取等号,此时244333x y z ,,,所以222x y z 的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,,0,1,0,0,1,())()()2,,0,1,2)()A B C A B C .(1)因为P 为A 1B 1的中点,所以1,2)2P ,从而11(,2)(0,2,222),BP AC ,故111|||cos,|20||||BP ACBP ACBP AC.因此,异面直线BP与AC1所成角的余弦值为.(2)因为Q为BC的中点,所以1,0)2Q,因此3(,0)22AQ,11(0,2,2),(0,0,2)AC CC.设n=(x,y,z)为平面AQC1的一个法向量,则10,0,AQACnn即30,2220.yy z不妨取1,1)n,设直线CC1与平面AQC1所成角为 ,则111||sin|cos|,|||5CCCCCC|nnn,所以直线CC1与平面AQC1所成角的正弦值为.23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc为排列abc的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3,,,,,,所以333(0)1(1)(2)2f f f,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以(0)1nf.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n .为计算1(2)n f ,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n .当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f …242(1)(2)4(2)2n n n n f ,因此,n ≥5时,(2)n f 222n n .祝福语祝你马到成功,万事顺意!。
2018年全国普通高等学校招生统一考试数学(江苏卷)(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间;由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a.9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l 交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程.详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
2018年高考数学江苏卷(含答案与解析)
数学试卷 第1页(共42页) 数学试卷 第2页(共42页)绝密★启用前江苏省2018年普通高等学校招生全国统一考试数 学本试卷共160分.考试时长120分钟.参考公式:锥形的体积公式13V Sh =,其中S 是椎体的底面积,h 是椎体的高。
一、填空题:本大题共14小题,每小题5分,共计70分. 1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = .2.若复数z 满足i 12i z =+,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()f x =的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数ππsin(2)()22y x ϕϕ=+-<<的图象关于直线π3x =对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线22221(0)x y a b a b-=>>0,的右焦点(,0)F c 到一条渐近线的距离为2,则其离心率的值是 . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,()cos (2)2102x x f x x x π⎧⎪⎪=⎨⎪+⎪⎩0<≤,(-2<≤),,则((15))f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,点(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD =,则点A 的横坐标为 .13.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,120ABC ∠=,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 .14.已知集合{21,}A x x n n ==-∈*N ,{2,}n B x x n ==∈*N .将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共42页) 数学试卷 第4页(共42页)二、解答题:本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥. 求证:(Ⅰ)AB ∥平面11A B C ; (Ⅱ)平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知α,β为锐角,4tan 3α=,cos()αβ+=.(Ⅰ)求cos2α的值; (Ⅱ)求tan()αβ-的值.数学试卷 第5页(共42页) 数学试卷 第6页(共42页)17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成,已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求点A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(Ⅰ)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (Ⅱ)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点1(F,2F ,圆O 的直径为12F F .(Ⅰ)求椭圆C 及圆O 的方程;(Ⅱ)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △,求直线l 的方程.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共42页) 数学试卷 第8页(共42页)19.(本小题满分16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(Ⅰ)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (Ⅱ)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(Ⅲ)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (Ⅱ)若110a b =>,m ∈*N,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).数学试卷 第9页(共42页) 数学试卷 第10页(共42页)数学Ⅱ(附加题)本试卷均为非选择题(第21题~第23题). 本卷满分40分,考试时间为30分钟.21.【选做题】本题包括A ,B ,C ,D 四小题,请选定其中两小题并作答...........,若多做,则按作答的前两小题评分、解答时应写出文字说明、证明过程或演算步骤。
2018年江苏高考数学考试说明(含最新试题)
2018年江苏高考数学考试说明(含最新试题)掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i满足(34)|43|i z i-=+(i是虚数单位),则z的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】452. 设集合}1{aaA=B若,则实数a的值为_AB},,={3},+2,1{2=【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.3. 右图是一个算法流程图,则输出的本题属容易题.【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______. 【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.D ABC1C 1D 1A 1B13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅CA BA ,1-=⋅CF BF ,则CE BE ⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A .(2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c .16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=,解得2,1a c ==,于是b因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=-解得a =80,b=120. 所以BC150=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点. 另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2. 当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程在极坐标中,已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
最新江苏高考数学考试说明(含最新试题)
2018年江苏省高考说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i满足(34)|43|i z i-=+(i是虚数单位),则z的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】452. 设集合}1{aaA若,则实数a的值为_=BA IB3,={},},+2,1{2=【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.3. 右图是一个算法流程图,则输出的k【解析本题属容易题.【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.DABC 1C 1D1A1B13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅,1-=⋅,则⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A .(2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是223b a c =-=因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00473777x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为77(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1. 当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】 设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2018年高考江苏卷数学(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
学科.网参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=I▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数2()log 1f x x =-的定义域为 ▲.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为3c ,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=.(1)求cos2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.学科%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2 10.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .学.科网(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以001x y =. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅AB =. 设1122,,()(),A x y B x y ,由(*)得2200000 1,22448(2)x y xx±-=,所以2222121()()xB y yxA=-+-222000222200048(2)(1)(4)x y xy x y-=+⋅+.因为22003x y+=,所以2202216(2)32(1)49xABx-==+,即42002451000x x-+=,解得22005(202x x==舍去),则212y=,因此P的坐标为102(,).综上,直线l的方程为532y x=-+.学*科网19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得222122x x xx⎧=+-⎨=+⎩,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数21f x ax=-(),()lng x x=,则12f x axg xx'='=(),().设x0为f(x)与g(x)的“S”点,由f(x0)=g(x0)且f′(x0)=g′(x0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.学@科网(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+L , 即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n的所有排列中逆序数为k 的全部排列的个数.学.科网(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC .又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt △OCP 斜边的中点,所以BC =2.B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆, 从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1).C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6. 连结OB ,因为OA 为直径,从而∠OBA =π2,所以π4cos 6AB ==因此,直线l 被曲线C 截得的弦长为23. D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.学&科网22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO u u u r u u u r u u u u r 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -, 从而131(,2)(0,2,22),BP AC ==-u u u r u u u u r , 故111||310|cos ,|||||522BP AC BP AC BP AC ⋅===⋅⨯u u u r u u u u r u u u r u u u u r u u u r u u u u r . 因此,异面直线BP 与AC 1310.(2)因为Q 为BC的中点,所以1,0)2Q ,因此3,0)2AQ =u u u r ,11(0,2,2),(0,0,2)AC CC ==u u u u r u u u u r . 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=u u u r u u u u r n n即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ,则111||sin |cos |,|||CC CC CC |θ==⋅⋅==u u u u r u u u u r u u u u r n n n 所以直线CC 1与平面AQC 1. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.学&科网解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
(精校版)2018年江苏数学高考试题文档版(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
学科.网参考公式:锥体的体积13V Sh=,其中S是锥体的底面积,h是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{0,1,2,8}A=,{1,1,6,8}B=-,那么A B=▲ .2.若复数z满足i12iz⋅=+,其中i是虚数单位,则z的实部为▲ .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲ .5.函数2()log 1f x x =-的定义域为 ▲ .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离为32c ,则其离心率的值是 ▲ . 9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为▲ .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为 ▲ .14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面. 16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-.(1)求cos 2α的值; (2)求tan()αβ-的值. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大. 18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △的面积为267,求直线l 的方程. 19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.学科%网(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+ 均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8}2.23.904.8 5.[2,+∞) 6.310 7.π6-8.2 9.2210.4311.–312.313.914.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1. 因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .学.科网(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形. 又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈.又因为5cos()5αβ+=-,所以225sin()1cos ()5αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分.解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6, 当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数;当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C 的焦点为12() 3,0,(3,0)F F -,可设椭圆C 的方程为22221(0)x y a b a b+=>>.又点1(3,)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()( 24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为267,所以21 267AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得2200022001,22448(2)2(4)x y x x x y ±-=+,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)22. 综上,直线l 的方程为532y x =-+.学*科网19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得 222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点. (2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x =-+=,,则2e (1)()2()x b x f x x g x x-=-=′,′. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a xb x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.学@科网(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立, 即1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+ ,即当2,3,,1n m =+ 时,d 满足1111211n n q q b d b n n ---≤≤--.因为(1,2]m q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+ 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+ 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+ ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.学.科网(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n 的表达式(用n 表示).数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.又因为PC=23,OC=2,所以OP=22PC OC+=4.又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.解:(1)因为2312⎡⎤=⎢⎥⎣⎦A,det()221310=⨯-⨯=≠A,所以A可逆,从而1-A2312-⎡⎤=⎢⎥-⎣⎦.(2)设P(x,y),则233121xy⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311xy-⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A,因此,点P的坐标为(3,–1).C.[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分.解:因为曲线C的极坐标方程为=4cosρθ,所以曲线C的圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为πsin()26ρθ-=,则直线l过A(4,0),倾斜角为π6,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=π6.连结OB,因为OA为直径,从而∠OBA=π2,所以π4cos236AB==.因此,直线l 被曲线C 截得的弦长为23.D .[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.学&科网22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2, 所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,,2)22P -, 从而131(,,2)(0,2,222),BP AC ==-- , 故111|||14|310|cos ,|20||||522BP AC BP AC BP AC ⋅-+===⋅⨯ . 因此,异面直线BP 与AC 1所成角的余弦值为31020.(2)因为Q 为BC 的中点,所以31(,,0)22Q , 因此33(,,0)22AQ = ,11(0,2,2),(0,0,2)AC CC == . 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅= n n 即330,22220.x y y z ⎧+=⎪⎨⎪+=⎩ 不妨取(3,1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||25sin |cos |,|||552CC CC CC |θ==⋅⨯⋅== n n n , 所以直线CC 1与平面AQC 1所成角的正弦值为55. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.学&科网解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =.逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以(1)1n f n =-. 为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年江苏省高考数学试卷(含答案)
24.(10 分)(2018•江苏)若 x,y,z 为实数,且 x+2y+2z=6,求 x2+y2+z2 的最小值.
第 8页(共 32页)
第 12页(共 32页)
故选中的 2 人都是女同学的概率 P= =0.3, 故答案为:0.3 【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.
7.(5 分)(2018•江苏)已知函数 y=sin(2x+φ)(﹣
对称,则φ的值为
.
φ< )的图象关于直线 x=
【分析】根据正弦函数的对称性建立方程关系进行求解即可. 【解答】解:∵y=sin(2x+φ)(﹣ φ< )的图象关于直线 x= 对称, ∴2× +φ=kπ+ ,k∈Z, 即φ=kπ﹣ , ∵﹣ φ< , ∴当 k=0 时,φ=﹣ , 故答案为:﹣ .
面体的体积为
.
11.(5 分)(2018•江苏)若函数 f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有
一个零点,则 f(x)在[﹣1,1]上的最大值与最小值的和为
.
第 2页(共 32页)
12.(5 分)(2018•江苏)在平面直角坐标系 xOy 中,A 为直线 l:y=2x 上在第一象限内
∪B 的所有元素从小到大依次排列构成一个数列{an},记 Sn 为数列{an}的前 n 项和,则
使得 Sn>12an+1 成立的 n 的最小值为
.
第 3页(共 32页)
评卷人 得 分
2018年江苏省高考数学试卷及答案(解析版)
2018年普通高等学校统一考试试题(江苏卷)
一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+
=x y 的最小正周期为 .
【答案】π
【解析】T =|2πω |=|2π2 |=π.
2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .
【答案】5
【解析】z =3-4i ,i 2=-1,| z |==5. 3.双曲线19
162
2=-y x 的两条渐近线的方程为 . 【答案】x y 4
3±= 【解析】令:091622=-y x ,得x x y 4
31692±=±=. 4.集合}1,0,1{-共有 个子集.
【答案】8
【解析】23=8.
5.右图是一个算法的流程图,则输出的n 的值是 .
【答案】3
【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4.
6
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .
【答案】2
【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=
x . 方差为:25
)9092()9088()9091()9090()9089(2
22222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .
【答案】63
20 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯.。
2018江苏高考数学试题及答案解析(K12教育文档)
2018江苏高考数学试题及答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018江苏高考数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018江苏高考数学试题及答案解析(word版可编辑修改)的全部内容。
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=⋂B A .2.若复数z 满足i z i 21+=⋅,其中i 是虚数单位,则z 的实部为 .3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 .5.函数()1log 2-=x x f 的定义域为 .6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .7.已知函数()⎪⎭⎫ ⎝⎛<<-+=222sin ππϕx x y 的图象关于直线3π=x 对称,则ϕ的值是 .8.在平面直角坐标系xOy 中,若双曲线()0,012222>>=-b a by a x 的右焦点()0,c F 到一条渐近线的距离为c 23,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()⎪⎪⎩⎪⎪⎨⎧≤<-+≤<=02,2120,2cos x x x xx f π, 则()()15f f 的值为 .10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .11.若函数()()R a ax x x f ∈+-=1223在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上的最大值与最小值的和为 .12.在平面直角坐标系xOy 中,A 为直线x y l 2:=上在第一象限内的点,()0,5B ,以AB 为直径的圆C 与直线l 交于另一点D .若0=⋅,则点A 的横坐标为 .13.在ABC ∆中,角C B A 、、所对的边分别为c b a 、、, 120=∠ABC ,ABC ∠的平分线交AC 于点D ,且1=BD ,则c a +4的最小值为 .14.已知集合{}*∈-==N n n x x A ,12|,{}*∈==N n x x B n ,2|.将B A ⋃的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112+>n n a S 成立的n 的最小值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=. (1)求cos2α的值; (2)求tan()αβ-的值.17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(本小题满分16分)焦如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,点12(3,0),(3,0)F F -,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点",求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标. C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.学科#网22.(本小题满分10分)如图,在正三棱柱ABC—A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s 〈t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8} 2.2 3.90 4.85.[2,+∞)6.3107.π6-8.29.2210.4311.–3 12.313.9 14.27二、解答题15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分.证明:(1)在平行六面体ABCD—A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分.解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为5cos()αβ+=-,所以225sin()1cos ()αβαβ+=-+=, 因此tan()2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+.17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ), △CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6).当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1).答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0),则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2),则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ=--=-+-=--+′. 令()=0f θ′,得θ=π6,当θ∈(θ0,π6)时,()>0f θ′,所以f (θ)为增函数; 当θ∈(π6,π2)时,()<0f θ′,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a b a b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得 222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而42AB =. 设1122,,()(),A x y B x y , 由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=,解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,)2. 综上,直线l 的方程为532y x =-+.19.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.满分16分.解:(1)函数f (x )=x ,g (x )=x 2+2x —2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),().设x 0为f (x )与g (x )的“S ”点,由f (x 0)与g (x 0)且f ′(x 0)与g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e2.(3)对任意a 〉0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =,令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x -=-=′,′. 由f (x )与g (x )且f ′(x )与g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点". 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”. 20.本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. 解:(1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+, 即当2,3,,1n m =+时,d 满足1111211n n q q b d b n n ---≤≤--.因为q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x 〈f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mq m . 因此,d 的取值范围为11(2)[,]m mb q b q m m-.数学Ⅱ(附加题)参考答案21.【选做题】A .[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分. 证明:连结OC .因为PC 与圆O 相切,所以OC ⊥PC . 又因为PC =OC =2,所以OP .又因为OB =2,从而B 为Rt△OCP 斜边的中点,所以BC =2. B .[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分. 解:(1)因为2312⎡⎤=⎢⎥⎣⎦A ,det()221310=⨯-⨯=≠A ,所以A 可逆,从而1-A 2312-⎡⎤=⎢⎥-⎣⎦. (2)设P (x ,y ),则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A , 因此,点P 的坐标为(3,–1). C .[选修4—4:坐标系与参数方程]本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分10分. 解:因为曲线C 的极坐标方程为=4cos ρθ, 所以曲线C 的圆心为(2,0),直径为4的圆. 因为直线l 的极坐标方程为πsin()26ρθ-=, 则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.连结OB ,因为OA 为直径,从而∠OBA =π2, 所以π4cos 236AB ==.因此,直线l 被曲线C 截得的弦长为23. D .[选修4-5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分. 证明:由柯西不等式,得2222222()(122)(22)x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122xy z ==时,不等式取等号,此时244333x y z ===,,, 所以222x y z ++的最小值为4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.学科%网解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以31(,2)2P -,从而131(,,2)(0,2,22),BP AC ==--,故111|||cos ,|||||5BP AC BP AC BP AC ⋅===⋅. 因此,异面直线BP 与AC 1 (2)因为Q 为BC 的中点,所以1,0)2Q , 因此33(,0)2AQ =,11(0,2,2),(0,0,2)AC CC ==. 设n =(x ,y ,z )为平面AQC 1的一个法向量,则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.x y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n 所以直线CC 1与平面AQC 1. 23.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力.满分10分.解:(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有(123)=0(132)=1(213)=1(231)=2(312)=2(321)=3ττττττ,,,,,,所以333(0)1(1)(2)2f f f ===,.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,4333(2)(2)(1)(0)5f f f f =++=.(2)对一般的n (n ≥4)的情形,逆序数为0的排列只有一个:12…n ,所以(0)1n f =. 逆序数为1的排列只能是将排列12…n 中的任意相邻两个数字调换位置得到的排列,所以2018江苏高考数学试题及答案解析(word 版可编辑修改)牛人数学助力高考数学 (1)1n f n =-.为计算1(2)n f +,当1,2,…,n 的排列及其逆序数确定后,将n +1添加进原排列,n +1在新排列中的位置只能是最后三个位置.因此,1(2)(2)(1)(0)(2)n n n n n f f f f f n +=++=+.当n ≥5时,112544(2)[(2)(2)][(2)(2)][(2)(2)](2)n n n n n f f f f f f f f ---=-+-++-+…242(1)(2)4(2)2n n n n f --=-+-+⋯++=, 因此,n ≥5时,(2)n f =222n n --.。
2018年江苏高考数学试题解析
年普通高等学校招生全国统一考试(江苏卷)2018数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
学科@网4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:1锥体的体积,其中是锥体的底面积,是锥体的高.hSShV?3一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...AB?▲.,那么.已知集合1,1,1,6,8}?{0,1,2,8}{B?A?2.若复数满足,其中i是虚数单位,则的实部为▲.2i?i?z1?zz3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.▲的值为S.一个算法的伪代码如图所示,执行此算法,最后输出的4.▲5的定义域为.函数1??logxf(x)2名2名女生,现从中任选2名学生去参加活动,则恰好选中6.某兴趣小组有2名男生和3女生的概率为▲.??????.已知函数7.的值是的图象关于直线对称,则▲??)y?sin(2x??)(?x322 22yx0)??0,ba??1(到一条渐近8.在平面直角坐标系的右焦点中,若双曲线,0)FxOy(c22ba 3 ▲.线的距离为,则其离心率的值是c2x??2,x??cos,0??2则,且在区间9.函数满足上,2,2]xx)(?R)?(fxf(?4)?(?x)f()(fx?1?0,?-|,2?x|x??2?的值为(15))ff( .▲,以其所有面的中心为顶点的多面体的体积为2▲.10.如图所示,正方体的棱长为32?1(a??axRf(x)?2x)在11.若函数内有且只有一个零点,则在上的)(0,??,1]?x)1[f(最大值与最小值的和为▲.12.在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为xxOy?y2l:(5,0)B直径的圆C与直线l交于另一点D.若,则点A的横坐标为▲.0?CD?AB A,B,Ca,b,c,所对的边分别为中,角13.在,的平分线交AC?ABCABC??ABC?120△于点D,且,则的最小值为▲.1BD?ca?4*n*AB},n?{B?x|x?2nxA?{|x?2n?1,?NN}的所有元素从小到.已知集合14.将,大依次排列构成一个数列.记为数列的前n项和,则使得成立的a12S?}{{a}aS1?nnnnn n的最小值为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字.......说明、证明过程或演算步骤.15.(本小题满分14分)在平行六面体中,.CAB?BBACDAA?AB,ABCD?11111111求证:(1)平面;∥ABCBA11(2)平面平面.BCAABB?A111分)14(本小题满分.16.54?????.已知,为锐角,,??)cos(??tan53?的值;(1)求cos2??)求的值.(2)tan(?14分)17.(本小题满分某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)MPN和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此大棚Ⅱ内的地块形状为,大棚Ⅰ内的地块形状为矩形ABCD农田上修建两个温室大棚,DC,A,BOC,要求上,均在圆弧上.设均在线段MNCDP△? MN所成的角为.与??的并确定)1用的面积,分别表示矩形和(sinCDP△ABCD 取值范围;且甲、大棚Ⅱ内种植乙种蔬菜,2()若大棚Ⅰ内种植甲种蔬菜,?为何值时,乙两种蔬菜的单位面积年产值之比为.求当34∶能使甲、乙两种蔬菜的年总产值最大.16分)18.(本小题满分1,焦点过点如图,在平面直角坐标系中,椭圆CxOy)3,(2.,圆O的直径为3,0)F(?3,0),F(FF2121的方程;)求椭圆C及圆O(1 .与圆O相切于第一象限内的点P(2)设直线l 的坐标;C有且只有一个公共点,求点P①若直线l与椭圆62B,A,的面积为与椭圆C 交于两点.若②直线lOAB△7 求直线l的方程.16分)19.(本小题满分??且,满足分别为函数的导函数.若存在记)g(x)xf(x),gf((x),)(?x R xf(x)?g000??点”.与,则称为函数的一个“S))xg(f(xx)(x)f(x?g00022xxx)???2g( S)证明:函数点”;不存在“与(1x)?f(x21x()?ax?f S与存在“(2)若函数点”,求实数a的值;xln)?g(x x eb2a??f(x)?x?)(xg,使函,判断是否存在3()已知函数.对任意,0?a0?bx 数与在区间内存在“S点”,并说明理由.)??(0,)xf()gx(20.(本小题满分16分)设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.}a{bb{a}n11n n?1,2,3,4均成立,求对)设,若d的取值范围;(12a?0,b?1,q?b?|a?b|111nn*m,证明:存在,(2)使若得对2]??N(1,,qa?b?0,m R d?b?b||a?111nn n?2,3,,m?1均成立,并求的取值范围(用.表示)dqm,b,1数学Ⅰ试题参考答案一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分.1.{1,8}2.2 3.90 4.8π328.7..[2,+∞)6.5?610243 ..–3 129.1011.2327 .13.914 二、解答题.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象15 分.能力和推理论证能力.满分14.ABCD中,AB∥B证明:(1)在平行六面体ABCD-A111111?C,BAB平面AB因为A平面ABC,?111111.∥平面ABC所以AB11 A中,四边形ABB为平行四边形.)在平行六面体ABCD-ABCD(2111111 ABBA为菱形,又因为AA=AB,所以四边形111 B.因此AB⊥A11,BC∥BC,又因为AB⊥BC11111.AB⊥BC所以1 BCBC平面A,BCBBB又因为A∩BC=,A平面A,??1111.BCAB所以⊥平面A11 A平面ABB因为AB,?111.A所以平面ABB⊥平面ABC.111.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求16 解能力.满分14分.?44sin????cos??tansin?tan ,所以1)因为.,(解:?33cos9222????cos,所以因为,1sincos??2572????2cos1?cos2?因此,.25????为锐角,所以.(2)因为)?(0,,?π5522??????又因为,所以,?sin(??cos)?cos(1?)???)(55??2?)??tan( 因此.?242tan4????tantan??2因为,所以,2?731?tan???2)?tan(tan2????????tan[2)???()]tan(??因此,.???11?tan(1+tan2).本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建17 分.模及运用数学知识分析和解决实际问题的能力.满分14.H,则PH⊥MN,所以OH=10)连结解:(1PO并延长交MN于θ,MN,所以∠COE=OEO 过作OE⊥BC于E,则∥,,EC=40sinθ故OE=40cosθ),4sinθ则矩形ABCD的面积为2×40cos(40sinθ+10)=800(θcosθ+cosθ1 40cos×2×θ(40–40sinθ)).θ–cosθsinθcos=1600(的面积为△CDP 2 =KN=10.KOEGN作⊥MN,分别交圆弧和的延长线于G和,则GK过Nπ1 .0,,θ)∈(=,则令∠GOK=θsinθ00064π)时,才能作出满足条件的矩形[θABCD,,∈当θ021,1).所以sinθ的取值范围是[4答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1,1)[.的取值范围是)sin(1600cosθ–θcosθ,sinθ4(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,,)>0k(k3,乙的单位面积的年产值为k4设甲的单位面积的年产值为θ)θ1600(cosθ–sincos4k×800(4sinθcosθ+cosθ)+3k×则年总产值为π),θ∈[θ,.=8000k(sinθcosθ+cosθ)02π),+cosθ)=sinθcosθθ,θ∈[θ,设f(02222????????′?1)(sin?(2sinf??sin1)(?)?cos1)??sin?sin?(2sin?则.π?,得θ令=,)=0f′(6π?当θ∈(θ,)为增函数;,所以f(θ)时,)>0(f′06ππ?,所以f(θ,)时,当θ∈()为减函数,)<0f′(26π=θ)取到最大值.因此,当θ时,f(6π时,能使甲、乙两种蔬菜的年总产值最大.答:当θ=6.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、18 直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分.,)因为椭圆C的焦点为解:(13,0)(3,0),FF(?2122yx1??1(a?b?0).又点在椭圆CC的方程为上,可设椭圆)(3,22ab213?2???1,4,a???22所以,解得4ab??2b?1,???22a?b?3,?2x2?1?y.因此,椭圆C的方程为422?3?xy.,所以其方程为因为圆O的直径为FF2122?yx3?,,则(2)①设直线l与圆O相切于0),?0y?yP(x,)(x000000xx300.所以直线l的方程为,即???yxy??y?)(x?x00yyy0002?x2?y?1,? 4?由消去y,得?x3?0x??y?,?yy?002222?y04x?24x?36?xyx(4?).(*)0000有且只有一个公共点,C与椭圆l因为直线222222?? )?(x0?)(36?4y2)?4x(?24)8?4(4xy?y所以.000000,所以.因为12,y?x?0x,y?0000的坐标为.P 因此,点2,1)(2642612 的面积为,从而.,所以②因为三角形OAB???OPABAB7277 设,)xy(x,,y),BA(221122?x48y2)(24x?000,)得由(* ?x1,222)?xy2(400222)?y?(x?(?x)yAB 所以2112222?xy2)x(48000.?(1?)?2222)?yy(4x00022?3?yx,因为002?2)16(x3242200???45x1002x ,所以,即??AB002249?1)(x0 21015222的坐标为.,因此解得P舍去),则)(,???20(xyx0002222的方程为l.综上,直线2?3y??5x.本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解19 分.决问题以及逻辑推理能力.满分162 +2.x)=2x′)fx+2-2,则′(x=1,g(=xgx)()函数(解:1fx=,()x ,得)x(′g=)x(′f)且x(g=)x(f由.2?2?2xx?x?,此方程组无解,?2?2x?1? x)不存在“S”点.因此,f(x)与g(2(?ax1fx)?)函数(2,,x?lng(x)1 则.?2ax,g(?x)f(?x)?x ,得x)(x)=g′(x)的“S”点,由f (x)=g(x)且f′g设x为f(x)与(000002?x?lnax?1200?x?lnax?1??00 *),即,(1???2ax21ax?2???0x0?01e11?.得,则,即ex??a??lnx?200122?2)2(e21e?”点.x)的“S(x)与g 当(时,满足方程组(*),即为fe?xx?a2002e .a的值为因此,232?ax?xa?3xh(x)?.a>0,设(3)对任意因为,且h(x)的图象是不间断的,02?1?3?a?a??h(0)?a?0,h(1)?32x0所以存在∈(0,1),使得.令,则b>0.?b0?xx)h(00x e(1?x)00x eb2?x),g(x)??x?af( 函数,x x1)xe?(b?)′(x??2x,g′f(x) .则2x由f(x)=g(x)且f′(x)=g′(x),得3x?x2e x?eb20??x?a?2??x?a??x xe(1?x)0??x0,即,(**)??x3x be(x?1)x21)ex?(???x?20?2x????2x2x?x(1?x)e0?0此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“Sxx00点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.考查代数推理、性质等基础知识,通项公式、本小题主要考查等差和等比数列的定义、.20.转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.n?1a?(n?1)d,b?2.)由条件知:解:(1nn因为对n=1,2,3,4均成立,b|?|a?b1nn n?1|?)d?21|(n? 1对n=1,即2,3,4均成立,75????????d?.d 5,7即191,13dd3,3,得23275[,].因此,d的取值范围为32n?1a?b?(n?1)d,b?bq.(2)由条件知:1n1n若存在d,使得(n=2,3,···,m+1)成立,b|a?b|?1nn n?1|?b(n?2,3,,m?1)|b?(n?1d?bq ),即111n?1n?1qq?2,m?2,3,n?1b?d?b.时,d满足即当11n?1n?1n?1m?2q?q1?m,,则因为2]?(1,q n?1n?1q?2qn?2,3,,m?10b?0?b均成立.,对,从而111?n1?n,m?1n?2,3,均成立.对因此,取d=0时,bb?|?|a1nn n?1n?1qq2?n?12,3,,m?{}}{下面讨论数列的最大值和数列).的最小值(n?1n?1nn?1nnn?1nn?1n?q2n(q?2nq)?q??nqq??2 qq?2???2?n?m时,,①当nn?1n(n?1)n(n?1)1n1nn?mn0?q? 2q?q)?n(2q?q?2?1?q ,从而当时,有.mn?1?2q}{1??m2?n时,数列因此,当单调递增,n?1n?1m?q2?2q}{.故数列的最大值为n?1m xx?)?x2(1f(x)?(x)?(ln2?1?xfln2)2?0,>0②设时,,当xf(x)f(x)<所以f(0单调递减,从而)=1.n q1q(n?1)11n?1f()??(?21?)n mn?2?时,当,1?n qnnn1?nn?1q}{1??m2?n时,数列因此,当单调递减,n?1n?1m qq}{.的最小值为故数列n?1m mm qb?b(q2)11因此,d的取值范围为.][,mm数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内...................作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算..步骤.A.[选修4—1:几何证明选讲](本小题满分10分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,.若,求BCC的长.过P作圆O的切线,切点为32PC?B.[选修4—2:矩阵与变换](本小题满分10分)23??已知矩阵.?A??12???1A;(1)求的逆矩阵A?,求点P的坐标.2)若点P在矩阵对应的变换作用下得到点(A(3,1)PC.[选修4—4:坐标系与参数方程](本小题满分10分) π????,求直线l,曲线C在极坐标系中,直线l的方程为的方程为4cos?2sin()??6被曲线C 截得的弦长.D.[选修4—5:不等式选讲](本小题满分10分)222z?x?y的最小值.+2z为实数,且xy+2z=6,求,若x,y【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解.......答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在正三棱柱ABC-ABC中,AB=AA=2,点P,Q分别为AB,111111BC的中点.(1)求异面直线BP与AC 所成角的余弦值;1.(2)求直线CC与平面AQC所成角的正弦值.1123.(本小题满分10分)*,对1,2,···,n的一个排列设,如果当s<t时,有,则称是N n?)ii,(iiiii?tsn12ts的所有逆序的总个数称为其逆序数.例如:对排列1的一个逆序,排列,iiiiii n1221n2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f(k)n为1,2,···,n的所有排列中逆序数为k 的全部排列的个数.(1)求的值;(2)ff(2),43(2)求的表达式(用n表示).5)n(2)(?f n数学Ⅱ(附加题)参考答案21.【选做题】A.[选修4—1:几何证明选讲]本小题主要考查圆与三角形等基础知识,考查推理论证能力.满分10分.证明:连结OC.因为PC与圆O相切,所以OC⊥PC.=,OC=2,又因为PC 3222OCPC?=4=.所以OP又因为OB=2,从而B为Rt△OCP斜边的中点,所以BC=2.B.[选修4—2:矩阵与变换]本小题主要考查矩阵的运算、线性变换等基础知识,考查运算求解能力.满分10分.23??解:(1)因为,,所以A可逆,?A0??1?2?2?1?3Adet()??12??2?3???1A?.从而???12??23x3x33????????????1???A?(2)设P(x,y),则,所以,????????????12?1yy11????????????因此,点P的坐标为(3,–1).]:坐标系与参数方程4—4选修[.C.10分.本小题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.满分??因为曲线C的极坐标方程为,解:=4cos 4的圆.,0),直径为所以曲线C的圆心为(2π??因为直线,l的极坐标方程为2?)sin(?6π0),倾斜角为,则直线l过A(4, 6 的一个交点.为直线l与圆C所以AπOAB=.设另一个交点为B,则∠6π,连结OB,因为OA为直径,从而∠OBA=2π.所以3?2AB?4cos6因此,直线l被曲线C截得的弦长为.32D.[选修4—5:不等式选讲]本小题主要考查柯西不等式等基础知识,考查推理论证能力.满分10分.2222222)2z?x2?2y?2?(x)?y?z?)(1(.证明:由柯西不等式,得222?zy4x??,因为,所以=62x?2y?zxyz244时,不等式取等号,此时,当且仅当??,zx?,y??122333222zyx??的最小值为所以4.22.【必做题】本小题主要考查空间向量、异面直线所成角和线面角等基础知识,考查运用空间向量解决问题的能力.满分10分.解:如图,在正三棱柱ABC?ABC中,设AC,AC的中点分别为O,O,则OB⊥111111{OB,OC,OO} ⊥OOOC⊥,OCOO,OB.xyz,以?O为基底,建立空间直角坐标系111,=AA=2因为AB1.所以)(3,0,2),C0,1,2(),B(3,0,0),C(0,1,0),A0,?1,2),B(0,A(?1,011113 B的中点,所以,(1)因为P为A,2),P(?112213 从而,)??((0,2,2?,?,2),ACBP122|?AC|BP103|?1?4|1故.??|?cosBP,AC|120||AC|BP|?25?21103 所成角的余弦值为与AC.因此,异面直线BP12013 ,为BC的中点,所以(Q2)因为,0)(,Q2233 .,因此(0,0,2)CC?AC?(0,2,2),,0)?(,AQ1122 的一个法向量,)为平面AQC设n=(x,y,z1?33?0,n?AQ?0,y?x???则即?22?0,??AC n???0.?2y?2z1?,不妨取1,1)??(3,n?与平面AQC,所成角为设直线CC11|CC?n|25?1???nsin?CC|cos,|,则15|||CC?|n2?515.所成角的正弦值为CC所以直线与平面AQC11523.【必做题】本小题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证分.10能力.满分.?为排列abc的逆序数,对1,2,3解:(1)记的所有排列,有)(abc??????,(321)=3,(132)=1,(213)=1,(312)=2(231)=2,(123)=0,所以.2?f(2)?f(0)?1,f(1)333在新排列添加进去,43的排列,将数字4,4的排列,利用已有的1,2,1对,2,3中的位置只能是最后三个位置.学科¥网.因此,5??(2)?f(1)f(0)f(2)?f3334,所以.逆序数为0的排列只有一个:12…n)(2)对一般的n(n≥4的情形,1?f(0)n所中的任意相邻两个数字调换位置得到的排列,逆序数为1的排列只能是将排列12…n .以1?(1)?nf n+1n的排列及其逆序数确定后,将+1添加进原排列,n为计算,当1,2,…,n(2)f1?n在新排列中的位置只能是最后三个位置.因此,.n?(1)?f(0)?f(2)(2)f(2)?f?f nnn?1nn≥5时,当n (2)?f(2)?…?[f?f(2)](2)]f(2)?(2)](2)(2)f?[f?f[f?441n2n51n?n??n22nn????f(2)???(n?(?1)?n?2)4 ,4222n??n.n≥5时,因此,?f(2)n2。
2018年江苏省高考数学试卷及解析(20200803023152).pdf
2018年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.(5.00分)若复数z满足i?z=1+2i,其中i是虚数单位,则z的实部为.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为.5.(5.00分)函数f(x)=的定义域为.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.17.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为.214.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.3(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.19.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在4x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.5B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.C.[选修4-4:坐标系与参数方程](本小题满分0分),23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ求直线l被曲线C截得的弦长.D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内6作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.26.设n∈N*,对1,2,……,n的一个排列i1i2……in,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……in的一个逆序,排列i1i2……in的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).72018年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B={1,8} .【分析】直接利用交集运算得答案.【解答】解:∵A={0,1,2,8},B={﹣1,1,6,8},∴A∩B={0,1,2,8}∩{﹣1,1,6,8}={1,8},故答案为:{1,8}.【点评】本题考查交集及其运算,是基础的计算题.2.(5.00分)若复数z满足i?z=1+2i,其中i是虚数单位,则z的实部为2.【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】解:由i?z=1+2i,得z=,8∴z的实部为2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为90.【分析】根据茎叶图中的数据计算它们的平均数即可.【解答】解:根据茎叶图中的数据知,这5位裁判打出的分数为89、89、90、91、91,它们的平均数为×(89+89+90+91+91)=90.故答案为:90.【点评】本题考查了利用茎叶图计算平均数的问题,是基础题.4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为8.9【分析】模拟程序的运行过程,即可得出程序运行后输出的S值.【解答】解:模拟程序的运行过程如下;I=1,S=1,I=3,S=2,I=5,S=4,I=7,S=8,此时不满足循环条件,则输出S=8.故答案为:8.【点评】本题考查了程序语言的应用问题,模拟程序的运行过程是解题的常用方法.5.(5.00分)函数f(x)=的定义域为[2,+∞).【分析】解关于对数函数的不等式,求出x的范围即可.【解答】解:由题意得:≥1,10解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).【点评】本题考查了对数函数的性质,考查求函数的定义域问题,是一道基础题.6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为0.3.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,11故选中的2人都是女同学的概率P==0.3,故答案为:0.3【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,则φ的值为.【分析】根据正弦函数的对称性建立方程关系进行求解即可.【解答】解:∵y=sin(2x+φ)(﹣φ<)的图象关于直线x=对称,∴2×+φ=kπ+,k∈Z,即φ=kπ﹣,∵﹣φ<,∴当k=0时,φ=﹣,故答案为:﹣.【点评】本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.128.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为2.【分析】利用双曲线的简单性质,以及点到直线的距离列出方程,转化求解即可.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【分析】根据函数的周期性,进行转化求解即可.13【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:【点评】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用转化法是解决本题的关键.10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【分析】求出多面体中的四边形的面积,然后利用体积公式求解即可.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,14多面体的中心为顶点的多面体的体积为:2×=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【分析】推导出f′(x)=2x(3x﹣a),x∈(0,+∞),当a≤0时,f′(x)=2x(3x ﹣a)>0,f(0)=1,f(x)在(0,+∞)上没有零点;当a>0时,f′(x)=2x (3x﹣a)>0的解为x>,f(x)在(0,)上递减,在(,+∞)递增,由f(x)只有一个零点,解得a=3,从而f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x ∈[﹣1,1],利用导数性质能求出f(x)在[﹣1,1]上的最大值与最小值的和.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零15点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减,f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.【点评】本题考查函数的单调性、最值,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.16【分析】设A(a,2a),a>0,求出C的坐标,得到圆C的方程,联立直线方程与圆的方程,求得D的坐标,结合=0求得a值得答案.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.【点评】本题考查平面向量的数量积运算,考查圆的方程的求法,是中档题.13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为9.【分析】根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【解答】解:由题意得acsin120°=asin60°+csin60°,17即ac=a+c,得+=1,得4a+c=(4a+c)(+)=++5≥2+5=4+5=9,当且仅当=,即c=2a时,取等号,故答案为:9.【点评】本题主要考查基本不等式的应用,利用1的代换结合基本不等式是解决本题的关键.14.(5.00分)已知集合A={x|x=2n﹣1,n∈N*},B={x|x=2n,n∈N*}.将A∪B 的所有元素从小到大依次排列构成一个数列{a n},记S n为数列{a n}的前n项和,则使得S n>12a n+1成立的n的最小值为27.【分析】采用列举法,验证n=26,n=27即可.【解答】解:利用列举法可得:当n=26时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,2,4,8,16,32.S26=,a27=43,?12a27=516,不符合题意.当n=27时,A∪B中的所有元素从小到大依次排列,构成一个数列{a n},18所以数列{a n}的前26项分别1,3,5,7,9,11,13,15,17,19,21,23.25,…41,43,2,4,8,16,32.S27==546,a28=45?12a28=540,符合题意,故答案为:27.【点评】本题考查了集合、数列的求和,属于中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14.00分)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【分析】(1)由?AB∥平面A1B1C;(2)可得四边形ABB1A1是菱形,AB1⊥A1B,19由AB1⊥B1C1?AB1⊥BC?AB1⊥面A1BC,?平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB?平面A1B1C,A1B1?∥平面A1B1C?AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,?四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1?AB1⊥BC.∴?AB1⊥面A1BC,且AB1?平面ABB1A1?平面ABB1A1⊥平面A1BC.【点评】本题考查了平行六面体的性质,及空间线面平行、面面垂直的判定,属于中档题.16.(14.00分)已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【分析】(1)由已知结合平方关系求得sinα,cosα的值,再由倍角公式得cos2α的值;(2)由(1)求得tan2α,再由cos(α+β)=﹣求得tan(α+β),利用tan(α20﹣β)=tan[2α﹣(α+β)],展开两角差的正切求解.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.【点评】本题考查三角函数的恒等变换及化简求值,考查同角三角函数基本关系式的应用,是中档题.17.(14.00分)某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为△CDP,要求A,B均在线段MN上,C,D 均在圆弧上.设OC与MN所成的角为θ.(1)用θ分别表示矩形ABCD和△CDP的面积,并确定sinθ的取值范围;21(2)若大棚I内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【分析】(1)根据图形计算矩形ABCD和△CDP的面积,求出sinθ的取值范围;(2)根据题意求出年总产值y的解析式,构造函数f(θ),利用导数求f(θ)的最大值,即可得出θ为何值时年总产值最大.【解答】解:(1)S矩形ABCD=(40sinθ+10)?80cosθ+cosθ),=800(4sinθcosθS△CDP=?80cosθ(40﹣40sinθ)),=1600(cosθ﹣cosθsinθ当B、N重合时,θ最小,此时sinθ=;当C、P重合时,θ最大,此时sinθ=1,∴sinθ的取值范围是[,1);(2)设年总产值为y,甲种蔬菜单位面积年产值为4t,乙种蔬菜单位面积年产值为3t,22)+cosθ)+4800t(cosθ﹣cosθsinθ则y=3200t(4sinθcosθ+cosθ),其中sinθ∈[,1);=8000t(sinθcosθ+cosθ,设f(θ)=sinθcosθ则f′(θ)=cos2θ﹣sin2θ﹣sinθ=﹣2sin2θ﹣sinθ+1;令f′(θ)=0,解得sinθ=,此时θ=,cosθ=;当sinθ∈[,)时,f′(θ)>0,f(θ)单调递增;当sinθ∈[,1)时,f′(θ)<0,f(θ)单调递减;∴θ=时,f(θ)取得最大值,即总产值y最大.+cosθ),答:(1)S矩形ABCD=800(4sinθcosθ),S△CDP=1600(cosθ﹣cosθsinθsinθ∈[,1);θ=时总产值y最大.【点评】本题考查了解三角形的应用问题,也考查了构造函数以及利用导数求函数的最值问题,是中档题.2318.(16.00分)如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【分析】(1)由题意可得.,又a2﹣b2=c2=3,解得a=2,b=1即可.(2)①可设直线l的方程为y=kx+m,(k<0,m>0).可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,解得k=﹣,m=3.即可②设A(x1,y1),B(x2,y2),联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,24O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.即可【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2﹣b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,25可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由?k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.【点评】本题考查了椭圆的方程,直线与圆、椭圆的位置关系,属于中档题.2619.(16.00分)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【分析】(1)根据“S点”的定义解两个方程,判断方程是否有解即可;(2)根据“S点”的定义解两个方程即可;(3)分别求出两个函数的导数,结合两个方程之间的关系进行求解判断即可.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;27(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),假设b>0,得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.【点评】本题主要考查导数的应用,根据条件建立两个方程组,判断方程组是否有解是解决本题的关键.20.(16.00分)设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1=0,b1=1,q=2,若|a n﹣b n|≤b1对n=1,2,3,4均成立,求d的取值范围;28(2)若a1=b1>0,m∈N*,q∈(1,],证明:存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,并求d的取值范围(用b1,m,q表示).【分析】(1)根据等比数列和等差数列的通项公式,解不等式组即可;(2)根据数列和不等式的关系,利用不等式的关系构造新数列和函数,判断数列和函数的单调性和性质进行求解即可.【解答】解:(1)由题意可知|a n﹣b n|≤1对任意n=1,2,3,4均成立,∵a1=0,q=2,∴,解得.即≤d≤.证明:(2)∵a n=a1+(n﹣1)d,b n=b1?q n﹣1,若存在d∈R,使得|a n﹣b n|≤b1对n=2,3,…,m+1均成立,则|b1+(n﹣1)d﹣b1?q n﹣1|≤b1,(n=2,3,…,m+1),即b1≤d≤,(n=2,3,…,m+1),∵q∈(1,],∴则1<q n﹣1≤q m≤2,(n=2,3,…,m+1),∴b1≤0,>0,因此取d=0时,|a n﹣b n|≤b1对n=2,3,…,m+1均成立,29下面讨论数列{}的最大值和数列{}的最小值,①当2≤n≤m时,﹣==,当1<q≤时,有q n≤q m≤2,从而n(q n﹣q n﹣1)﹣q n+2>0,因此当2≤n≤m+1时,数列{}单调递增,故数列{}的最大值为.②设f(x)=2x(1﹣x),当x>0时,f′(x)=(ln2﹣1﹣xln2)2x<0,∴f(x)单调递减,从而f(x)<f(0)=1,当2≤n≤m时,=≤(1﹣)=f()<1,因此当2≤n≤m+1时,数列{}单调递递减,故数列{}的最小值为,∴d的取值范围是d∈[,].【点评】本题主要考查等比数列和等差数列以及不等式的综合应用,考查学生的30运算能力,综合性较强,难度较大.数学Ⅱ(附加题)【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10.00分)如图,圆O的半径为2,AB为圆O的直径,P为AB延长线上一点,过P作圆O的切线,切点为C.若PC=2,求BC的长.【分析】连接OC,由题意,CP为圆O的切线,得到垂直关系,由线段长度及勾股定理,可以得到PO的长,即可判断△COB是等边三角形,BC的长.【解答】解:连接OC,因为PC为切线且切点为C,所以OC⊥CP.因为圆O的半径为2,,所以BO=OC=2,,所以,31所以∠COP=60°,所以△COB为等边三角形,所以BC=BO=2.【点评】本题主要考查圆与直线的位置关系,切线的应用,考查发现问题解决问题的能力.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10.00分)已知矩阵A=.(1)求A的逆矩阵A﹣1;(2)若点P在矩阵A对应的变换作用下得到点P′(3,1),求点P的坐标.【分析】(1)矩阵A=,求出det(A)=1≠0,A可逆,然后求解A的逆矩阵A﹣1.(2)设P(x,y),通过?=,求出=,即可得到点P的坐标.【解答】解:(1)矩阵A=,det(A)=2×2﹣1×3=1≠0,所以A可逆,从而:A的逆矩阵A﹣1=.(2)设P(x,y),则?=,所以=A﹣1=,32因此点P的坐标为(3,﹣1).【点评】本题矩阵与逆矩阵的关系,逆矩阵的求法,考查转化思想的应用,是基本知识的考查.C.[选修4-4:坐标系与参数方程](本小题满分0分),23.在极坐标系中,直线l的方程为ρsin(﹣θ)=2,曲线C的方程为ρ=4cosθ求直线l被曲线C截得的弦长.【分析】将直线l、曲线C的极坐标方程利用互化公式可得直角坐标方程,利用直线与圆的相交弦长公式即可求解.,∴ρ2=4ρcosθ【解答】解:∵曲线C的方程为ρ=4cosθ,?x2+y2=4x,∴曲线C是圆心为C(2,0),半径为r=2得圆.∵直线l的方程为ρsin(﹣θ)=2,∴﹣=2,∴直线l的普通方程为:x﹣y=4.圆心C到直线l的距离为d=,∴直线l被曲线C截得的弦长为2.【点评】本题考查了极坐标方程化为直角坐标方程、直线与圆的相交弦长关系、点到直线的距离公式,属于中档题.33D.[选修4-5:不等式选讲](本小题满分0分)24.若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【分析】根据柯西不等式进行证明即可.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为4【点评】本题主要考查不等式的证明,利用柯西不等式是解决本题的关键.,【必做题】第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.如图,在正三棱柱ABC﹣A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.34【分析】设AC,A1C1的中点分别为O,O1,以{}为基底,建立空间直角坐标系O﹣xyz,(1)由|cos|=可得异面直线BP与AC1所成角的余弦值;(2)求得平面AQC1的一个法向量为,设直线CC1与平面AQC1所成角的正弦值为θ,|cos|=,即可得直线CC1与平面AQC1所成角可得sinθ=的正弦值.【解答】解:如图,在正三棱柱ABC﹣A1B1C1中,设AC,A1C1的中点分别为O,O1,则,OB⊥OC,OO1⊥OC,OO1⊥OB,故以{}为基底,建立空间直角坐标系O﹣xyz,35∵AB=AA1=2,A(0,﹣1,0),B(,0,0),C(0,1,0),A1(0,﹣1,2),B1(,0,2),C1(0,1,2).(1)点P为A1B1的中点.∴,∴,.|cos|===.∴异面直线BP与AC1所成角的余弦值为:;(2)∵Q为BC的中点.∴Q()∴,,设平面AQC1的一个法向量为=(x,y,z),由,可取=(,﹣1,1),设直线CC1与平面AQC1所成角的正弦值为θ,sinθ=|cos|==,36∴直线CC1与平面AQC1所成角的正弦值为.【点评】本题考查了向量法求空间角,属于中档题.26.设n∈N*,对1,2,……,n的一个排列i1i2……in,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2……in的所有逆序的总个数称为n的一个逆序,排列i1i2……i其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).【分析】(1)由题意直接求得f3(2)的值,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置,由此可得f4(2)的值;(2)对一般的n(n≥4)的情形,可知逆序数为0的排列只有一个,逆序数为137的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置,可得f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n,则当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)﹣f4(2)]+f4(2),则f n(2)(n≥5)的表达式可求.【解答】解:(1)记μ(abc)为排列abc得逆序数,对1,2,3的所有排列,有μ(123)=0,μ(132)=1,μ(231)=2,μ(321)=3,∴f3(0)=1,f3(1)=f3(2)=2,对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,f4(2)=f3(2)+f3(1)+f3(0)=5;(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,∴f n(0)=1.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,f n(1)=n﹣1.为计算f n+1(2),当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位置只能是最后三个位置.因此,f n+1(2)=f n(2)+f n(1)+f n(0)=f n(2)+n.当n≥5时,f n(2)=[f n(2)﹣f n﹣1(2)]+[f n﹣1(2)﹣f n﹣2(2)]+…+[f5(2)38﹣f4(2)]+f4(2)=(n﹣1)+(n﹣2)+…+4+f4(2)=.因此,当n≥5时,f n(2)=.【点评】本题主要考查计数原理、排列等基础知识,考查运算求解能力和推理论证能力,是中档题.39。
2018年江苏高考数学考试说明(含最新试题)
精心整理2018年江苏省高考说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏.12(1)(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断. (3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.3列24-2(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.大致为大致为1. 【解析【答案2.【解析【答案】1.3. 右图是一个算法流程图,则输出的【解析本题属容易题. 【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数【解析【答案504.0+⨯6. 【解析. 【答案7. 标为3π【解析数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题. 【答案】6π.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦【答案10.12cm AA =【解析【答案11.【解析【答案12.设(f ,,10其中R a ∈.2(2的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案】52-13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅CA BA ,1-=⋅CF BF ,则CE BE ⋅的值是 .【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解【答案15.在(1)求(2)求【解析. 【(1)在 (2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:((2)【解析【证明:((2ABD 平面BCD BC 平面BCD ,⊥平面ABD 因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC ,所以AD ⊥AC.17.如图,在平面直角坐标系xOy中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2(2设当x 当x 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --, 从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00x y ==220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解.18. O 和A 60m 处,点C (1(2)当(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=-解得a =80,b=120. 所以BC150=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即r =103因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当19. (1)若 (2)若. ,故a >0a -1)上是a -1≤1,即a ≥1.g ′(x )>0.又g (x )(2)a <e x ,即x >结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a-1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.x 2x 2x 再设l (x )故当x h h (当-1)>0,[1时,f ′(x )当 20. n mS a =,(((3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =∵d <(3令nb(n c n =则nb{}n b 当n 当n 当n {}n c 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =2.选修设A ,0b =,0c =,d 23-⎤⎥⎦. 3.选修C 【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省高考说明—数学科—、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力•试卷保持较高的信度、效度以及必要的区分度和适当的难度.1. 突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例•注重知识内在联系的考查,不刻意追求知识的覆盖面•注重对中学数学中所蕴涵的数学思想方法的考查.2. 重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3. 注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成•选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答•必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2 (不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题)对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.第2页共25页掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题具体考查要求如下: 1必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型3.右图是个算法流程图,则输出的 k 的值是1【解析】本题主要考查算法流程图的基础k — k +11.必做题 必做题部分由填空题和解答题两种题型组成•其中填空题14小题,约 占70分;解答题6小题,约占90分.2 .附加题 附加题部分由解答题组成,共6题•其中,必做题2小题,考查选修系 列2 (不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、 4-4、4-5这4个专题的内容,考生只须从中选 2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写 出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤 .(三)试题难易比例必做题部分由容易题、中等题和难题组成•容易题、中等题和难题在试卷中的比例 大致为4: 4: 2.附加题部分由容易题、中等题和难题组成•容易题、中等题和难题在试卷中的比例 大致为5:4: 1.四、典型题示例A.必做题部分1.设复数i 满足(3 4i )z |4 3i |( i 是虚数单位),则z 的虚部为 _____________【解析】本题主要考查复数的基本概念,基本运算•本题属容易题. 【答案】452.设集合A {1,2}, B {a,a 2 3},若A B {1},则实数a 的值为_【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.【答案】1.第11页 共25页工- /输出k2-5k+4>本题属容易题.【答案】54.函数f(x) ln(x 1)的定义域为__________________x 1【解析】本题主要考查对数函数的单调性,本题属容易题【答案】(1,1) (1,)5•某棉纺厂为了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[5,40]中,其频率分布直方图如图所示,贝S在抽测的100根中,有_ _根棉花纤维的长度小于20mm.【解析】本题主要考查统计中的抽样方法与总体分布的估计•本题属容易题.【答案】由频率分布直方图观察得棉花纤维长度小于20mm的频率为0.04 5 0.01 5 0.01 5 0.3,故频数为0.3 100 30.6. 将一颗质地均匀的骰子(一种各个面上分别标有1, 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,贝畑现向上的点数之和小于10的概率是________________ .【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题.【答案】567. 已知函数y cosx与y sin(2x )(0 x ),它们的图像有一个横坐标为一的交点,贝S的值是____________ .3【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力 本题属容易题. 【答案】—.68.在各项均为正数的等比数列 a n 中,若a 2 1,a 8 a 6 a 。
,则a 6的值是____________________ .【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力 •本题属容易题. 【答案】4.29.在平面直角坐标系xOy 中,双曲线于y 2 1的右准线与它的两条渐近线分别交于p ,Q ,其焦点是F i ,F 2,贝卩四边形FfF z Q 的面积是 ___________ .【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦 点、焦距和直线与直线的交点等基础知识•本题属中等难度题 【答案】2 310.如图,在长方体ABCD ABGD 中,AB AD 3cm ,AA 2cm ,则四棱锥A BBQQ 的体积为 __________________ cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力•本题属容易题. 【答案】6.11. 设直线y 1 x b 是曲线y In x(x 0)的一条切线,则实数b 的值是 ______________________ .2【解析】本题主要考查导数的几何意义、切线的求法•本题属中等题. 【答案】l n2 1.x a1 x 012. 设f(x)是定义在R 上且周期为2的函数,在区间[1,1) 上, f(x) |2 *'其中I L X|, 0 x 1 ,ACa R 若 f( 5) f(9),则 f(5a)的值是 ____________________ .2 2【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力 属中等难度题• 【答案】-513.如图,在 ABC 中,D 是BC 的中点,E , F 是AD 上的两个三等分点,BA CA 4, BF CF 1,贝y BE CE 的值是 ___________________ .【解析】本题主要考查平面向量的概念、平面向量的运算以及平 面向量的数量积等基础知识,考查数形结合和等价转化的思想, 考查运算求解能力•本题属难题. 【答案】7.814.已知正数a,b,c 满足:5c 3a w b <4c a ,clnb > a clnc ,则-的取值范围是 _____________________ .a【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解 决问题的能力•本题属难题. 【答案】[e,7] 二、解答题15.在 ABC 中,角A,B,C 的对边分别为a,b,c .已知a 3, b 2. 6, B 2A.(1) 求 cos A 值; (2) 求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力 本题属容易题. 【参考答案】(1)在 ABC 中,因为 a 3, b 2 6, B 2A ,第14页共25页.本题 (弟13題)从而 sinB -,1 cos 2 B 在ABC 中,因为A Bsin (A B) si nAcosB cos As in B 因此由正弦定理得c 竺匹5.sin A16 .如图,在三棱锥 A-BCD 中, AB 丄AD, BC 丄BD,平面 ABD丄平面BCD,点E 、F (E 与A 、D 不重合)分别在棱AD, BD 上, 且 EF ±AD.求证:(1) EF//平面ABC (2) AD 丄 AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB 丄AD, EF AD ,所以EF // AB .又因为EF 平面ABC AB 平面ABC 所以EF /平面ABC (2)因为平面ABD 丄平面BCD故由正弦定理得— sin A烏,于是2 sin AcosA 2 6sin A所以cosA f(2)由(1)得 cosA3.所以 sin A Jcos 2A .3 3又因为B 2A ,所以cosB cos2A2 cos 2 1所以sinC平面ABD I 平面BCD=BD, BC 平面 BCD BC BD , 所以BC 平面ABD . 因为AD 平面ABD ,所以BC AD .又 AB 丄 AD, BCI AB B , AB 平面 ABC BC 平面 ABC , 所以AD 丄平面ABC, 又因为AC 平面ABC 所以AD 丄AC.的左、右焦点分别为Fl , F 2,离心率为1,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点 F l 作直线PF 的垂线11,过点F 2作直线PF>的垂线12.(1) 求椭圆E 的标准方程;(2) 若直线11,|2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何 性质等基础知 识,考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c.因为椭圆E 的离心率为1,两准线之间的距离为8,所以-£,空 8,2a 2 c解得 a 2,c 1,于是 b a 2 c 2 -■/3,2 2因此椭圆E 的标准方程是-1.4 3(2)由(1)知,R ( 1,0),F 2(1,0).17.如图,在平面直角坐标系 xOy 中,=1(a > b >0) V(第17題)设P(x 0,y o ),因为点P 为第一象限的点,故X ) 0,y 。