徐汇区第一中学2018-2019学年高二上学期第二次月考试卷物理
徐汇区高中2018-2019学年高二上学期第二次月考试卷物理
徐汇区高中2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.对于电容,以下说法正确的是A. 一只电容器所充电荷量越大,电容就越大B. 对于固定电容器,它的带电量跟两极板间所加电压的比值保持不变C. 电容器的带电量跟加在两极间的电压成反比D. 如果一个电容器没有带电,也就没有电容2.(2017武昌模拟)一质量为m的带电小球,在竖直方向的匀强电场中以水平速度抛出,小球的加速度竖直向下,大小为2g/3,空气阻力不计。
小球在下落h个过程中,关于其能量的变化,下列说法中正确的是A.动能增加了mgh/3B.电势能增加了mgh/3C.重力势能减少了2mgh/3D.机械能减少了mgh/33.(2018开封质检)如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示。
T=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~T/3时间内微粒做匀速运动,T时刻微粒恰好经金属边缘飞出。
微粒运动过程中未与金属板接触。
重力加速度的大小为g。
关于微粒在0~T时间内运动的描述,正确的是A v0B.末速度沿水平方向C.克服电场力做功为12 mgdD.微粒只能从下极板边缘飞出4.一种锌汞电池的电动势为1.2V,这表示A. 该电源与电动势为2V铅蓄电池相比非静电力做功一定慢B. 该电源比电动势为1.5V的干电池非静电力做功一定少C. 电源在每秒内把1.2J其他形式的能转化为电能D. 电路通过1C 的电荷量,电源把1.2J 其他形式的能转化为电能5.如图,一充电后的平行板电容器的两极板相距l 。
在正极板附近有一质量为M 、电荷量为q (q >0)的粒子;在负极板附近有另一质量为m 、电荷量为-q 的粒子。
在电场力的作用下,两粒子同时从静止开始运动。
已知两粒子同时经过一平行于正极板且与其相距l 的平面。
若两粒子间相互作用力可忽略,不计重力,则M ∶m 25为( )A .3∶2 B .2∶1C .5∶2D .3∶16. 横截面积为S 的铜导线,流过的电流为I ,设单位体积的导体中有n 个自由电子,电子的电荷量为e ,此时电子的定向移动的平均速率设为v ,在时间内,通过导线横截面的自由电子数为A. B.C. D.7. 在水平向右的匀强电场中,质量为m 的带正电质点所受重力mg 是电场力的倍.现将其以初速度v 0竖3直向上抛出,则从抛出到速度最小时所经历的时间为( )A .t =B .t =v 0g 2v 03gC .t =D .t =3v 02g3v 04g 8. 如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
上海市徐汇中学2018-2019学年初三物理上学期第一次月考(含答案)
2018学年第一学期九年级学业质量调研期中测试物理试卷(满分100分,时间70分钟)2018.10一、选择题(共20分)下列各题只有一个正确选项,请将正确选项的代号用2B铅笔填涂在答题纸的相应位置上。
1. 下列家用电器中,正常工作时电流最接近0.2安的是A. 日光灯B. 空调器C. 节能台灯D. 电视机2. 为了将圆规更好地固定在画板上,我们把圆规一个脚做得很尖锐,其目的是A. 增大压力B. 减小压力C. 增大压强D. 减小压强3. 两人在相同的沙滩上漫步,留下了大小不同、深浅相同的脚印,则A. 两人对沙滩的压力一定相同B. 脚印小的人对沙滩的压强一定大C. 两人对沙滩的压强一定相同D. 脚印大的人对沙滩的压力可能大4. 下列现象中与大气压无关的是A. 塑料吸管吸饮料B. 摩擦过的玻璃棒吸纸屑C. 胶头滴管吸液体D. 家用吸尘器吸灰尘5 如图1所示,下列在日常生活、生产中使用的装置,利用的物理原理相同的是A.(1)、(2)B.(2)、(3)、(4)C.(1)、(2)、(3)D.(1)、(3)6. 电动自行车两刹车手柄中各有一只开关S1和S2,在行驶过程中,开关处于闭合状态,电动机正常运转。
用任一只手柄刹车时,该手柄上的开关立即断开,电动自行车停止工作,图2中电路符合要求的是7. 测力计上挂一重为8牛的金属块,当金属块全部浸入水中且未碰到容器底部时,测力计的示(1)茶壶(2)牲畜饮水机图1 (3)下水弯管(4)液体密度计图2S2S1MS2S1MS2S1MS1S2MA B C D数为5牛。
若将金属块三分之一浸入水中静止时,测力计的示数为A. 5牛B. 6牛C. 7牛D. 8牛8. 如图3所示,水平桌面上放着相同的两个平底试管A和B,其中分别装着密度不同的液体,A管竖直放置,B管倾斜放置,它们对管底的压强P A等于P B,则下列关于液体质量m A和m B 判断正确的是A. m A>m BB.m A=m BC. m A<m BD. 条件不足,无法判断9. 如图4所示,甲、乙两正方体对地面的压强P甲小于P乙,若沿水平方向切去相同高度,则甲、乙切去的质量△m甲、△m乙,剩余部分的压强P甲´、P乙´,正确的是A.△m甲<△m乙,P甲´<P乙´B. △m甲>△m乙,P甲´>P乙´C. △m甲=△m乙,P甲´=P乙´D. △m甲<△m乙,P甲´>P乙´10. 如图5所示,在物理实验中小明把鸡蛋放入盛有不同浓度盐水的杯中,在这三种情况中,各物理量之间的关系正确的是A. 鸡蛋受到的浮力F甲<F乙<F丙B. 鸡蛋排开液体的质量m甲=m乙<m丙C. 容器对桌子的压强P甲<P乙<P丙D. 液体对容器底部的压强增加量△P甲>△P乙=△P丙二、填空题(共27分)请将结果填入答题纸的相应位置11. 家庭电路的电压为(1)伏,两节5号干电池的电压为(2)伏。
徐汇区第一中学2018-2019学年高二上学期第二次月考试卷数学
徐汇区第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在正方体ABCD ﹣A ′B ′C ′D ′中,点P 在线段AD ′上运动,则异面直线CP 与BA ′所成的角θ的取值范围是( )A .0<B .0C .0D .02. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)3. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .on 4. “3<-b a ”是“圆056222=++-+a y x y x 关于直线b x y 2+=成轴对称图形”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.guo 5. “24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性. 6. 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A .30B .50C .75D .1507. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<8. 已知函数f (x )=x 2﹣,则函数y=f (x )的大致图象是( )A .B .C .D .9. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )A .B .C .D .10.i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i11.已知数列{}n a 为等差数列,n S 为前项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B .110C .10D .2012.用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( )A .a ,b ,c 中至少有两个偶数B .a ,b ,c 中至少有两个偶数或都是奇数C .a ,b ,c 都是奇数D .a ,b ,c 都是偶数二、填空题13.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.14.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)15.(文科)与直线10x -=垂直的直线的倾斜角为___________.16.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .17.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .18.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.三、解答题19.已知函数3()1xf x x =+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.20.(本小题满分12分)已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;(2)若与夹角为锐角,求的取值范围.21.已知直线l :x ﹣y+9=0,椭圆E :+=1,(1)过点M (,)且被M 点平分的弦所在直线的方程;(2)P 是椭圆E 上的一点,F 1、F 2是椭圆E 的两个焦点,当P 在何位置时,∠F 1PF 2最大,并说明理由;(3)求与椭圆E 有公共焦点,与直线l 有公共点,且长轴长最小的椭圆方程.22.记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:(Ⅰ)集合M,N;(Ⅱ)集合M∩N,∁R(M∪N).23.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.24.已知函数f(x)=2cos2ωx+2sinωxcosωx﹣1,且f(x)的周期为2.(Ⅰ)当时,求f(x)的最值;(Ⅱ)若,求的值.徐汇区第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.2.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.3.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D .【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.4. 【答案】A 【解析】5. 【答案】A【解析】因为tan y x =在,22ππ⎛⎫-⎪⎝⎭上单调递增,且24x ππ-<≤,所以tan tan 4x π≤,即tan 1x ≤.反之,当tan 1x ≤时,24k x k πππ-<≤+π(k Z ∈),不能保证24x ππ-<≤,所以“24x ππ-<≤”是“tan 1x ≤”的充分不必要条件,故选A. 6. 【答案】B【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,则其体积V=S ×h=30×5=50.故选B .7. 【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 8. 【答案】A【解析】解:由题意可得,函数的定义域x ≠0,并且可得函数为非奇非偶函数,满足f (﹣1)=f (1)=1,可排除B 、C 两个选项.∵当x >0时,t==在x=e 时,t 有最小值为∴函数y=f (x )=x 2﹣,当x >0时满足y=f (x )≥e 2﹣>0,因此,当x >0时,函数图象恒在x 轴上方,排除D 选项 故选A9. 【答案】D【解析】解:∵f (x )=y=2x 2﹣e |x|,∴f (﹣x )=2(﹣x )2﹣e |﹣x|=2x 2﹣e |x|,故函数为偶函数,当x=±2时,y=8﹣e 2∈(0,1),故排除A ,B ;当x ∈[0,2]时,f (x )=y=2x 2﹣e x, ∴f ′(x )=4x ﹣e x=0有解,故函数y=2x 2﹣e |x|在[0,2]不是单调的,故排除C ,故选:D10.【答案】A【解析】解:由复数性质知:i 2=﹣1故i+i 2+i 3=i+(﹣1)+(﹣i )=﹣1故选A【点评】本题考查复数幂的运算,是基础题.11.【答案】B 【解析】试题分析:若{}n a 为等差数列,()()111212nn n na S d a n nn -+==+-⨯,则n S n ⎧⎫⎨⎬⎩⎭为等差数列公差为2d ,2017171100,2000100,201717210S S d d ∴-=⨯==,故选B. 考点:1、等差数列的通项公式;2、等差数列的前项和公式. 12.【答案】B【解析】解:∵结论:“自然数a ,b ,c 中恰有一个偶数” 可得题设为:a ,b ,c 中恰有一个偶数 ∴反设的内容是 假设a ,b ,c 中至少有两个偶数或都是奇数.故选B .【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.二、填空题13.【答案】(1,2)-,(,5)-∞.【解析】将圆的一般方程化为标准方程,22(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞. 14.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm , ∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.15.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.16.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3), 整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.17.【答案】 ﹣3 .【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f (x )=的函数值.当x=2时,f (x )=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.18.【答案】 6【解析】解:集合A 为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.三、解答题19.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<, 所以()f x 在[]2,5上是增函数.所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.120.【答案】(1)2或2)(1,0)(0,3)-.【解析】试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.(2)与夹角为锐角,0a b ∙>,2230x x -++>,13x -<<,又因为0x =时,//a b ,所以的取值范围是(1,0)(0,3)-.考点:向量平行的坐标运算,向量的模与数量积.【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是0a b a b⋅>且,a b 不同向,同样两向量夹角为钝角的充要条件是0a b a b⋅<且,a b 不反向.21.【答案】【解析】解:(1)设以点M (,)为中点的弦的端点为A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=1,y 1+y 2=1,把A (x 1,y 1),B (x 2,y 2)代入椭圆E :+=1,得,∴k AB ==﹣=﹣,∴直线AB 的方程为y ﹣=﹣(x ﹣),即2x+8y ﹣5=0.(2)设|PF 1|=r 1,|PF 2|=r 1,则cos ∠F 1PF 2==﹣1=﹣1=﹣1,又r 1r 2≤()2=a 2(当且仅当r 1=r 2时取等号)∴当r 1=r 2=a ,即P (0,)时,cos ∠F 1PF 2最小,又∠F 1PF 2∈(0,π),∴当P 为短轴端点时,∠F 1PF 2最大.(3)∵=12,=3,∴=9.则由题意,设所求的椭圆方程为+=1(a 2>9),将y=x+9代入上述椭圆方程,消去y ,得(2a 2﹣9)x 2+18a 2x+90a 2﹣a 4=0,依题意△=(18a 2)2﹣4(2a 2﹣9)(90a 2﹣a 4)≥0, 化简得(a 2﹣45)(a 2﹣9)≥0,∵a 2﹣9>0,∴a 2≥45,故所求的椭圆方程为=1.【点评】本题考查直线方程、椭圆方程的求法,考查当P在何位置时,∠F1PF2最大的判断与求法,是中档题,解题时要认真审题,注意根的判别式、余弦定理、椭圆性质的合理运用.22.【答案】【解析】解:(1)由2x﹣3>0 得x>,∴M={x|x>}.由(x﹣3)(x﹣1)>0 得x<1 或x>3,∴N={x|x<1,或x>3}.(2)M∩N=(3,+∞),M∪N={x|x<1,或x>3},∴C R(M∪N)=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.23.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.24.【答案】【解析】(本题满分为13分)解:(Ⅰ)∵=,…∵T=2,∴,…∴,…∵,∴,∴,…∴,…当时,f(x)有最小值,当时,f(x)有最大值2.…(Ⅱ)由,所以,所以,…而,…所以,…即.…。
徐汇区高级中学2018-2019学年高二上学期第二次月考试卷物理
徐汇区高级中学2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.右图是质谱仪的工作原理示意图。
带电粒子被加速电场加速后,进入速度选择器。
速度选择器内存在相互正交的匀强磁场和匀强电场。
匀强磁场的磁感应强度为B,匀强电场的电场强度为E。
平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2。
平板S下方有磁感应强度为B0的匀强磁场。
下列表述正确的是()A. 质谱仪是分析同位素的重要工具B. 速度选择器中的磁场方向垂直纸面向外C. 能通过狭缝P的带电粒子的速率等于D. 粒子打在胶片上的位置越靠近狭缝P,粒子的比荷越小【答案】ABC【解析】A.因同位素原子的化学性质完全相同,无法用化学方法进行分析,故质谱仪就成为同位素分析的重要工具,选项A正确;B.在速度选择器中,带电粒子所受静电力和洛伦兹力在粒子沿直线运动时应等大反向,结合左手定则可知,选项B正确;C.再由qE=qvB有v=,选项C正确;D.在磁感应强度为B0的匀强磁场中R=,所以选项D错误。
故选:ABC。
点睛:带电粒子经加速后进入速度选择器,速度v=E/B的粒子可通过选择器,然后进入匀强磁场,由于比荷不同,做圆周运动的半径不同,打在S板的不同位置。
2.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MN,P点在y轴的右侧,MP⊥ON,则()A.M点的电势比P点的电势高B.将负电荷由O点移动到P点,电场力做正功C.M、N 两点间的电势差大于O、M两点间的电势差D.在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动【答案】AD3.如图所示,让平行板电容器带上一定的电量并保持不变,利用静电计可以探究平行板电容器电容的决定因素及决定关系,下列说法正确的是A. 静电计指针张角越大,说明电容器带电量越大B. 静电计指针张角越大,说明电容器的电容越大C. 将平行板间距离减小,会看到静电计指针张角减小D. 将平行板间正对面积减小,会看到静电计张角减小【答案】C【解析】因平行板电容器上带的电量保持不变,故选项A错误;电容器的电容与两板带电量及电势差无关,故选项B错误;根据可知,将平行板间距离减小,则C变大,因Q一定,根据Q=CU可知,U变小,则会看到静电计指针张角减小,选项C正确;将平行板间正对面积减小,则C变小,因Q一定,根据Q=CU 可知,U变大,则会看到静电计指针张角变大,选项D错误;故选C.点睛:对于电容器动态变化分析问题,关键根据电容的决定式和定义式结合进行分析,同时要抓住不变量.4.如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地。
徐汇区一中2018-2019学年高二上学期第二次月考试卷数学
徐汇区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°2. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)3. 若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2 B .3C .4D .54. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-5. 二项式(1)(N )n x n *+?的展开式中3x 项的系数为10,则n =( )A .5B .6C .8D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 6. 在ABC ∆中,22tan sin tan sin A B B A =,那么ABC ∆一定是( )A .锐角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 7. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣8. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .9. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( )A.90种B.180种C.270种D.540种10.已知命题p;对任意x∈R,2x2﹣2x+1≤0;命题q:存在x∈R,sinx+cosx=,则下列判断:①p且q 是真命题;②p或q是真命题;③q是假命题;④¬p是真命题,其中正确的是()A.①④B.②③C.③④D.②④x ,则输出的所有x的值的和为()11.执行如图所示的程序,若输入的3A.243B.363C.729D.1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.12.已知双曲线的方程为﹣=1,则双曲线的离心率为()A.B.C.或D.或二、填空题13.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .14.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .16.已知x 是400和1600的等差中项,则x= .17.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .三、解答题19.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.20.已知函数f (x )=2x ﹣,且f (2)=. (1)求实数a 的值; (2)判断该函数的奇偶性;(3)判断函数f (x )在(1,+∞)上的单调性,并证明.21.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.22.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?23.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.24.在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣.(Ⅰ)求动点P的轨迹方程;(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.徐汇区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b , ∴A <B , ∴A=45°,∴C=180°﹣A ﹣B=75°, 故选:D .2. 【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .3. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.4. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 5. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 6. 【答案】D【解析】试题分析:在ABC ∆中,22tan sin tan sin A B B A =,化简得22sin sin sin sin cos cos A BB A A B=,解得 sin sin sin cos sin cos cos cos B AA AB B A B =⇒=,即si n 2s i n 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,故选D .考点:三角形形状的判定.【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出sin 2sin 2A B =,从而得到A B =或2A B π+=是试题的一个难点,属于中档试题. 7. 【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可. 【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D8. 【答案】C 【解析】解:∵a >b >0,∴﹣a <﹣b <0,∴(﹣a )2>(﹣b )2,故选C .【点评】本题主要考查不等式的基本性质的应用,属于基础题.9. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种. 故选D .10.【答案】D【解析】解:∵命题p ;对任意x ∈R ,2x 2﹣2x+1≤0是假命题,命题q :存在x ∈R ,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D .11.【答案】D【解析】当3x =时,y 是整数;当23x =时,y 是整数;依次类推可知当3(*)n x n N =∈时,y 是整数,则由31000nx =≥,得7n ≥,所以输出的所有x 的值为3,9,27,81,243,729,其和为1092,故选D .12.【答案】C【解析】解:双曲线的方程为﹣=1,焦点坐标在x 轴时,a 2=m ,b 2=2m ,c 2=3m ,离心率e=.焦点坐标在y 轴时,a 2=﹣2m ,b 2=﹣m ,c 2=﹣3m ,离心率e==.故选:C .【点评】本题考查双曲线的离心率的求法,注意实轴所在轴的易错点.二、填空题13.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3), 整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.14.【答案】 8 .【解析】解:∵抛物线y 2=8x=2px , ∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10, ∴x=8, 故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.15.【答案】 2016 .【解析】解:由a n+1=e+a n ,得a n+1﹣a n =e , ∴数列{a n }是以e 为公差的等差数列, 则a 1=a 3﹣2e=4e ﹣2e=2e ,∴a 2015=a 1+2014e=2e+2014e=2016e . 故答案为:2016e .【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.16.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项, ∴x==1000.故答案为:1000.17.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥= 18.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.三、解答题19.【答案】【解析】20.【答案】【解析】解:(1)∵f(x)=2x﹣,且f(2)=,∴4﹣=,∴a=﹣1;(2分)(2)由(1)得函数,定义域为{x|x≠0}关于原点对称…(3分)∵=,∴函数为奇函数.…(6分)(3)函数f(x)在(1,+∞)上是增函数,…(7分)任取x1,x2∈(1,+∞),不妨设x1<x2,则=…(10分)∵x1,x2∈(1,+∞)且x1<x2∴x2﹣x1>0,2x1x2﹣1>0,x1x2>0∴f(x2)﹣f(x1)>0,即f(x2)>f(x1),∴f(x)在(1,+∞)上是增函数…(12分)【点评】本题考查函数的单调性与奇偶性,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.22.【答案】【解析】解:(1)先排3个女生作为一个整体,与其余的5个元素做全排列有A33A66=4320种.(2)从中选5人,且要求女生只有2名,则男生有3人,先选再排,故有C32C53A55=3600种【点评】本题主要考查排列与组合及两个基本原理,排列数公式、组合数公式的应用,注意特殊元素和特殊位置要优先排.23.【答案】【解析】解:(1)圆弧C1所在圆的方程为x2+y2=169,令x=5,解得M(5,12),N(5,﹣12)…2分则直线AM的中垂线方程为y﹣6=2(x﹣17),令y=0,得圆弧C2所在圆的圆心为(14,0),又圆弧C2所在圆的半径为29﹣14=15,所以圆弧C2的方程为(x﹣14)2+y2=225(5≤x≤29)…5分(2)假设存在这样的点P(x,y),则由PA=PO,得x2+y2+2x﹣29=0 …8分由,解得x=﹣70 (舍去)9分由,解得x=0(舍去),综上知,这样的点P不存在…10分【点评】本题以圆为载体,考查圆的方程,考查曲线的交点,同时考查距离公式的运用,综合性强.24.【答案】【解析】解:(Ⅰ)因为点B与A(﹣1,1)关于原点O对称,所以点B得坐标为(1,﹣1).设点P的坐标为(x,y)化简得x2+3y2=4(x≠±1).故动点P轨迹方程为x2+3y2=4(x≠±1)(Ⅱ)解:若存在点P使得△PAB与△PMN的面积相等,设点P的坐标为(x0,y0)则.因为sin∠APB=sin∠MPN,所以所以=即(3﹣x0)2=|x02﹣1|,解得因为x02+3y02=4,所以故存在点P使得△PAB与△PMN的面积相等,此时点P的坐标为.【点评】本题主要考查了轨迹方程、三角形中的几何计算等知识,属于中档题.。
松江区第一中学2018-2019学年高二上学期第二次月考试卷物理
松江区第一中学2018-2019学年高二上学期第二次月考试卷物理 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 某型号的回旋加速器的工作原理如图所示(俯视图)。
D 形盒内存在匀强磁场,磁场的磁感应强度为B 。
D 形盒半径为R ,两盒间狭缝很小,带电粒子穿过狭缝的时间忽略不计。
设氘核()从粒子源A 处射入加速电场的初速度不计。
氘核质量为m 、带电荷量为q 。
加速器接频率为f 的高频交流电源,其电压为U 。
不计重力,不考虑相对论效应。
下列正确的是A .氘核第1次经过狭缝被加速后进入D 形盒运动轨道的半径为B .只增大电压U ,氘核从D 形盒出口处射出时的动能不变C .不改变磁感应强度B 和交流电频率f ,该回旋加速器不能加速氦核()D .不改变磁感应强度B 和交流电频率f ,该回旋加速器也能加速氦核()2. 关于磁感应强度B 的概念,下面说法中正确的是( ) A .由磁感应强度的定义式ILFB可知,磁感应强度与磁场力成正比,与电流和导线长度的乘积成反比 B .一小段通电导线在空间某处不受磁场力的作用,那么该处的磁感应强度一定为零 C .一小段通电导线放在磁场中,它受到的磁场力可能为零D .磁场中某处的磁感应强度的方向,跟电流在该处所受磁场力的方向可以不垂直3. 对下列物理公式的理解,说法正确的是:A 由公式可知,加速度由速度的变化量和时间决定B 由公式a=F/m 可知,加速度a 由物体所受合外力F 和物体的质量m 决定C 由公式E=F/q 可知,电场强度E 由电荷受到的电场力F 和电荷的电量q 决定D由公式R=U/I可知,电阻R由电阻两端的电压U和通过电阻的电流I决定4.一枚玩具火箭由地面竖直向上发射,其速度和时间的关系如图所示,则A.时刻玩具火箭距地面最远B.时间内,玩具火箭在向下运动C.时间内,玩具火箭处于超重状态D.时间内,玩具火箭始终处于失重状态5.如图所示,带正电的小球Q固定在倾角为θ的光滑固定绝缘细杆下端,让另一穿在杆上的质量为m、电荷量为q的带正电小球从A点由静止释放,到达B点时速度恰好为零。
徐汇区第一中学校2018-2019学年高二上学期第二次月考试卷数学
徐汇区第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B. C. D.2. 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥113. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种4. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .46. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 7. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2x y -=8. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )9. 已知||=3,||=1,与的夹角为,那么|﹣4|等于( )A .2B .C .D .1310.过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .5611.已知全集U={0,1,2,3,4},集合M={2,3,4},N={0,1,4},则集合{0,1}可以表示为( ) A .M ∪NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )12.为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题.二、填空题13.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .14.已知直线l 过点P (﹣2,﹣2),且与以A (﹣1,1),B (3,0)为端点的线段AB 相交,则直线l 的斜率的取值范围是 .15.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 .16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.17.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.已知S n 为等差数列{a n }的前n 项和,且a 4=7,S 4=16. (1)求数列{a n }的通项公式; (2)设b n =,求数列{b n }的前n 项和T n .20.已知函数f (x )=xlnx ,求函数f (x )的最小值.21.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈).(I )若12a >,求)(x f y =的单调区间; (II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.22.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.23.已知函数f(x)=log2(m+)(m∈R,且m>0).(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.徐汇区第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=,选C . 2. 【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1 终值为10、步长为1故经过10次循环才能算出S=的值,故i ≤10,应不满足条件,继续循环 ∴当i ≥11,应满足条件,退出循环 填入“i ≥11”. 故选D .3. 【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.4. 【答案】D【解析】解:∵“a 2>b 2”既不能推出“a >b ”; 反之,由“a >b ”也不能推出“a 2>b 2”. ∴“a 2>b 2”是“a >b ”的既不充分也不必要条件.故选D .5. 【答案】B【解析】解:∵M ∩{1,2,4}={1,4}, ∴1,4是M 中的元素,2不是M 中的元素. ∵M ⊆{1,2,3,4}, ∴M={1,4}或M={1,3,4}. 故选:B .6. 【答案】B【解析】因为(1)(N )n x n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 7. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2xy -=为非奇非偶函数。
徐汇区一中2018-2019学年高二上学期第二次月考试卷物理
徐汇区一中2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(多选)如图所示,氕核、氘核、氚核三种粒子从同一位置无初速地飘入电场线水平向右的加速电场E1,之后进入电场线竖直向下的匀强电场E2发生偏转,最后打在屏上。
整个装置处于真空中,不计粒子重力及其相互作用,那么()A.偏转电场E2对三种粒子做功一样多B.三种粒子打到屏上时的速度一样大C.三种粒子运动到屏上所用时间相同D.三种粒子一定打到屏上的同一位置【答案】AD【解析】2.物体从静止开始做匀加速直线运动,第3秒内通过的位移是3m,则()A. 第3秒内的平均速度是3m/sB. 物体的加速度是1.2m/s2C. 前3秒内的位移是6mD. 3S末的速度是3.6m/s【答案】ABD3.如图所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是()A.增大B.先减小后增大C.减小D.先增大后减小【答案】B【解析】4.如图,一充电后的平行板电容器的两极板相距l。
在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子。
在电场力的作用下,两粒子同时从静止开始运动。
已知两粒子同时经过一平行于正极板且与其相距25l的平面。
若两粒子间相互作用力可忽略,不计重力,则M∶m为()A .3∶2B .2∶1C .5∶2D .3∶1【答案】 A【解析】 设极板间电场强度为E ,两粒子的运动时间相同,对M ,由牛顿第二定律有:qE =Ma M ,由运动学公式得:25l =12a M t 2;对m ,由牛顿第二定律有qE =ma m根据运动学公式得:35l =12a m t 2由以上几式解之得:M m =32,故A 正确。
徐汇区第二中学校2018-2019学年高二上学期第一次月考试卷物理
徐汇区第二中学校2018-2019学年高二上学期第一次月考试卷物理 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一正弦交变电流的电压随时间变化的规律如图所示。
由图可知该交变电流A .周期为0.125sB .电压的有效值为C .电压的最大值为VD .电压瞬时值的表达式为u t π=(V ) 2. 如图,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘。
当MN 中电流突然减小时,线圈所受安培力的合力方向( ) A .向左B .垂直纸面向外C .向右D .垂直纸面向里3. 关于电源电动势E 的下列说法中错误的是:( ) A .电动势E 的单位与电势、电势差的单位相同,都是伏特V B .干电池和铅蓄电池的电动势是不同的 C .电动势E 可表示为E=qW,可知电源内非静电力做功越多,电动势越大 D .电动势较大,表示电源内部将其它形式能转化为电能的本领越大4. 如图所示,物块A 和B 用细线绕过定滑轮相连,B 物块放在倾角为θ=37°的斜面上刚好不下滑,连接物块B 的细线与斜面垂直,物块与斜面间的动摩擦因数为μ=0.8,设物块B 受到的最大静摩擦力等于滑动摩擦力,则物块A 与B 的质量之比为A. 1:20B. 1:15C. 1:10D. 1:55. 甲、乙两车在平直公路上沿同一方向行驶,其v -t 图像如图所示,在 t =0时刻,乙车在甲车前方x 0处,在t =t 1时间内甲车的位移为x .下列判断正确的是( )A. 若甲、乙在t 1时刻相遇,则x 0=13x B. 若甲、乙在12t 时刻相遇,则下次相遇时刻为132t C. 若x 0=34x ,则甲、乙一定相遇两次 D. 若x 0=12x ,则甲、乙一定相遇两次6. 为测某电阻R 的阻值,分别接成如图(a )、(b )两电路,在(a )电路中电压表和电流表的示数分别为3V 、3mA ,乙电路中两表示数分别是2.9V 、4mA ,则被测电阻的值应为A .比Ω1000略大一些B .比Ω1000略小一些C .比Ω750略大一些D .比750略小一些7. 下列物理量属于矢量的是A. 电势B. 电势能C. 电场强度D. 电动势8. 甲、乙两物体在同一直线上做直线运动的速度﹣时间图象如图所示,则( )A. 前3秒内甲、乙运动方向相反B. 前3秒内甲的位移大小是9mC. 甲、乙两物体一定是同时同地开始运动D. t=2s 时,甲、乙两物体可能恰好相遇9. 关于电场强度和静电力,以下说法正确的是( ) A. 电荷所受静电力很大,该点的电场强度一定很大B. 以点电荷为圆心、r 为半径的球面上各点的电场强度相同C. 若空间某点的电场强度为零,则试探电荷在该点受到的静电力也为零D. 在电场中某点放入试探电荷q ,该点的电场强度E=,取走q 后,该点电场强度为010.如图所示,质量为M 的小车置于光滑的水平面上,车的上表面是粗糙的,有一质量为m 的木块,以初速度v 0滑上小车的上表面.若车的上表面足够长,则( ) A .木块的最终速度一定为mv 0/(M+m )B .由于车的上表面粗糙,小车和木块组成的系统动量减小C .车的上表面越粗糙,木块减少的动量越多D .车的上表面越粗糙,小车增加的动量越多11.(2016·河南开封模拟)如图所示,倾角为θ=30°的光滑绝缘斜面处于电场中,斜面AB 长为L ,一带电荷量为+q 、质量为m 的小球,以初速度v 0由斜面底端的A 点开始沿斜面上滑,到达斜面顶端时速度仍为v 0,则( )A .小球在B 点时的电势能一定大于小球在A 点时的电势能B .A 、B 两点之间的电势差一定为mgL2qC .若该电场是匀强电场,则电场强度的值一定是mgqD .若该电场是由放在AC 边中垂线上某点的点电荷Q 产生的,则Q 一定是正电荷12.(2018南宁高三摸底考试)中国北斗卫星导航系统(BDS )是中国自行研制的全球卫星导轨系统,是继美国全球定位系统(GPS )、俄罗斯格洛纳斯卫星导航系统(GLONASS )之后第三个成熟的卫星导航系统。
徐汇区第一高级中学2018-2019学年高二上学期第二次月考试卷数学
徐汇区第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 若函数()y f x =的定义域是[]1,2016,则函数()()1g x f x =+的定义域是( )A .(]0,2016 B .[]0,2015 C .(]1,2016 D .[]1,20172. 已知函数y=x 3+ax 2+(a+6)x ﹣1有极大值和极小值,则a 的取值范围是( )A .﹣1<a <2B .﹣3<a <6C .a <﹣3或a >6D .a <﹣1或a >23. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 已知函数f (x )=lnx+2x ﹣6,则它的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5. 设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1B .2C .3D .46. 若函数f (x )=3﹣|x ﹣1|+m 的图象与x 轴没有交点,则实数m 的取值范围是( ) A .m ≥0或m <﹣1 B .m >0或m <﹣1 C .m >1或m ≤0 D .m >1或m <07. 已知集合A={x|x ≥0},且A ∩B=B ,则集合B 可能是( )A .{x|x ≥0}B .{x|x ≤1}C .{﹣1,0,1}D .R8. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}9. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( )A .[2,)+∞B .[]2,4C .(,2]-∞D .[]0,2 10.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日C .6日和11日D .2日和11日11.在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π12.若a >0,b >0,a+b=1,则y=+的最小值是( ) A .2B .3C .4D .5二、填空题13.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .14.= .15.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .16.若函数63e ()()32e x xbf x x a =-∈R 为奇函数,则ab =___________. 【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力.17.过原点的直线l 与函数y=的图象交于B ,C 两点,A 为抛物线x 2=﹣8y 的焦点,则|+|= .18.已知函数y=log (x 2﹣ax+a )在区间(2,+∞)上是减函数,则实数a 的取值范围是 .三、解答题19.某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (Ⅰ)求底面积并用含x 的表达式表示池壁面积; (Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?20.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.21.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.22.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.23.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a ,b 足+=,求证:+≥m .24.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.徐汇区第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】2.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.3.【答案】A【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;故选:A.【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.4.【答案】C【解析】解:易知函数f(x)=lnx+2x﹣6,在定义域R+上单调递增.因为当x→0时,f(x)→﹣∞;f(1)=﹣4<0;f(2)=ln2﹣2<0;f(3)=ln3>0;f(4)=ln4+2>0.可见f(2)•f(3)<0,故函数在(2,3)上有且只有一个零点.故选C.5.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.6.【答案】A【解析】解:∵函数f(x)=3﹣|x﹣1|+m的图象与x轴没有交点,∴﹣m=3﹣|x﹣1|无解,∵﹣|x﹣1|≤0,∴0<3﹣|x﹣1|≤1,∴﹣m≤0或﹣m>1,解得m≥0或m>﹣1故选:A.7.【答案】A【解析】解:由A={x|x≥0},且A∩B=B,所以B⊆A.A、{x|x≥0}={x|x≥0}=A,故本选项正确;B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.8.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D9.【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m需从开始,要取得最大值为,由图可知m 的右端点为,故m的取值范围是[]2,4.考点:二次函数图象与性质.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.12.【答案】C【解析】解:∵a>0,b>0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.二、填空题13.【答案】 ( 1,±2) .【解析】解:设点P 坐标为(a 2,a )依题意可知抛物线的准线方程为x=﹣2a 2+2=,求得a=±2∴点P 的坐标为( 1,±2)故答案为:( 1,±2).【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.14.【答案】 2 .【解析】解: =2+lg100﹣2=2+2﹣2=2,故答案为:2.【点评】本题考查了对数的运算性质,属于基础题.15.【答案】 a ≤0或a ≥3 .【解析】解:∵A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},且A ∩B=B , ∴B ⊆A ,则有a+1≤1或a ≥3, 解得:a ≤0或a ≥3, 故答案为:a ≤0或a ≥3.16.【答案】2016【解析】因为函数()f x 为奇函数且x ∈R ,则由(0)0f =,得0063e 032e ba -=,整理,得2016ab =. 17.【答案】 4 .【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.18.【答案】a≤4.【解析】解:令t=x2﹣ax+a,则由函数f(x)=g(t)=log t 在区间[2,+∞)上为减函数,可得函数t在区间[2,+∞)上为增函数且t(2)>0,故有,解得a≤4,故实数a的取值范围是a≤4,故答案为:a≤4【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)设水池的底面积为S1,池壁面积为S2,则有(平方米),可知,池底长方形宽为米,则(Ⅱ)设总造价为y,则当且仅当,即x=40时取等号,所以x=40时,总造价最低为297600元.答:x=40时,总造价最低为297600元.20.【答案】【解析】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.21.【答案】【解析】解:(1)证明:∵AE=AF,∴∠AEF=∠AFE.又B,C,F,E四点共圆,∴∠ABC=∠AFE,∴∠AEF=∠ACB,又∠AEF=∠AFE,∴EF∥BC.(2)由(1)与∠B=60°知△ABC为正三角形,又EB=EF=2,∴AF=FC=2,设DE=x,DF=y,则AD=2-y,在△AED中,由余弦定理得DE2=AE2+AD2-2AD·AE cos A.,即x2=(2-y)2+22-2(2-y)·2×12∴x2-y2=4-2y,①由切割线定理得DE2=DF·DC,即x2=y(y+2),∴x2-y2=2y,②由①②联解得y=1,x=3,∴ED= 3.22.【答案】【解析】解:(Ⅰ)曲线C2:(p∈R)表示直线y=x,曲线C1:ρ=6cosθ,即ρ2=6ρcosθ所以x2+y2=6x即(x﹣3)2+y2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB的长度.【点评】本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.23.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.24.【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.。
徐汇区高中2018-2019学年高二上学期9月月考物理试卷含解析
徐汇区高中2018-2019学年高二上学期9月月考物理试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.横截面积为S的铜导线,流过的电流为I,设单位体积的导体中有n个自由电子,电子的电荷量为e,此时电子的定向移动的平均速率设为v,在时间内,通过导线横截面的自由电子数为A. B.C. D.2.下列说法中与人们的日常习惯相吻合的是()A.测量三楼楼道内日光灯的高度,选择地面为参考系B.测量井的深度,以井底为参考系,井“深”为0米C.以卡车司机为参考系,卡车总是静止的D.以路边的房屋为参考系判断自己是否运动3.如图所示,虚线是小球由空中某点水平抛出的运动轨迹,A、B 为其运动轨迹上的两点。
小球经过A点时,速度大小为10 m/s、与竖直方向夹角为60°;它运动到B点时速度方向与竖直方向夹角为30°。
不计空气阻力,重力加速度取10m/s²,下列叙述正确的是A. 小球通过B点的速度为12m/sB. 小球的抛出速度为5m/sC. 小球从A点运动到B点的时间为1sD. A、B之间的距离为6m4.世人瞩目的2008北京奥运会上,中国代表团参加了包括田径、体操、柔道在内的所有28个大项的比赛,并取得了51块金牌,这是中国代表团在奥运史上的最好成绩,下列几种奥运比赛项目中的研究对象可视为质点的是()A.在撑杆跳高比赛中研究运动员手中的支撑杆在支撑地面过程中的转动情况时B.帆船比赛中规定帆船在大海中位置时C.跆拳道比赛中研究运动员动作时D .铅球比赛中研究铅球被掷出后在空中飞行时间时5. 如右图所示,在光滑的斜面上放置3个相同的小球(可视为质点),小球1、2、3距斜面底端A 点的距离分别为1x 、2x 、3x ,现将它们分别从静止释放,到达A 点的时间分别为1t 、2t 、3t ,斜面的倾角为θ。
则下列说法正确的是( )A .123123x x x t t t == B .123123x x x t t t << C .123222123x x x t t t ==D .若θ增大,则121x t 的值减小 6. 如图所示,在同一坐标系中画出a 、b 、c 三个电源的U 一I 图 象,其中a 和c 的图象平行,下列说法中正确的是( ) A . E a <E b ,r a =r b B . E b =E c ,r c >r b C . E a <E c ,r a =r c D . E b <E c ,r b =r c7. 把一个带正电的金属球A 跟不带电的同样的金属球B 相碰,两球都带等量的正电荷,这是因为( )A .A 球的正电荷移到B 球上 B .B 球的负电荷移到A 球上C .A 球的负电荷移到B 球上D .B 球的正电荷移到A 球上8. 如图所示电路,水平放置的平行板电容器的一个极板与滑动变阻器的滑片P 相连接。
徐汇区高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷
徐汇区高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知向量,,其中.则“”是“”成立的()A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件2.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是()A.B.y=x2C.y=﹣x|x| D.y=x﹣24.i是虚数单位,i2015等于()A.1 B.﹣1 C.i D.﹣i5.函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0 B.a>0,b<0,c<0,d>0C.a<0,b<0,c<0,d>0 D.a>0,b>0,c>0,d<06.已知f(x)=m•2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠∅,则m+n的取值范围为()A.(0,4) B.[0,4)C.(0,5] D.[0,5]x-=表示的曲线是()7.方程1A.一个圆B.两个半圆C.两个圆D.半圆8. 函数f (x )=tan (2x+),则( )A .函数最小正周期为π,且在(﹣,)是增函数B .函数最小正周期为,且在(﹣,)是减函数C .函数最小正周期为π,且在(,)是减函数D .函数最小正周期为,且在(,)是增函数9. 在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项的和是( )A .13B .26C .52D .5610.阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?11.记,那么ABC D12.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .二、填空题13.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 . 14.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .15.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________. 16.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是 . 17.在中,角、、所对应的边分别为、、,若,则_________18.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .三、解答题19.如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M ,N 均在直线x=5上,圆弧C 1的圆心是坐标原点O ,半径为13;圆弧C 2过点A (29,0).(1)求圆弧C 2的方程;(2)曲线C 上是否存在点P ,满足?若存在,指出有几个这样的点;若不存在,请说明理由.20.已知函数f (x )=2|x ﹣2|+ax (x ∈R ). (1)当a=1时,求f (x )的最小值;(2)当f (x )有最小值时,求a 的取值范围;(3)若函数h (x )=f (sinx )﹣2存在零点,求a 的取值范围.21.在平面直角坐标系xOy 中,过点(2,0)C 的直线与抛物线24y x 相交于点A 、B 两点,设11(,)A x y ,22(,)B x y .(1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程 和弦长,如果不存在,说明理由.22.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]C[]D[]23.已知等差数列{a n}中,a1=1,且a2+2,a3,a4﹣2成等比数列.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和S n.24.斜率为2的直线l经过抛物线的y2=8x的焦点,且与抛物线相交于A,B两点,求线段AB的长.徐汇区高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】【知识点】平面向量坐标运算【试题解析】若,则成立;反过来,若,则或所以“”是“”成立的充分而不必要条件。
徐汇区高中2018-2019学年高二上学期第三次月考试卷物理
徐汇区高中2018-2019学年高二上学期第三次月考试卷物理 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一根光滑金属杆,一部分为直线形状并与x 轴负方向重合,另一部分弯成图示形状,相应的曲线方程为25y x =-。
(单位:m ),一质量为0.1Kg 的金属小环套在上面.t=0时刻从1x =-m 处以01v =m /s 向右运动,并相继经过1x m =的A 点和2x m =的B 点,下列说法正确的是A. 小环在B 点与金属环间的弹力大于A 点的弹力B. 小环经过B 点的加速度大于A 点时的加速度C. 小环经过B 点时重力的瞬时功率为20WD. 小环经过B 点的时刻为t=2s 【答案】C【解析】A 、若金属小环做平抛运动,则有0x v t =, 222201522gh gt x x v ===,故平抛运动轨迹方程与曲线方程一样,所以金属小环做平抛运动,与金属环间的弹力为0,故A 错误;B 、金属小环做平抛运动,小环经过B 点的加速度等于A 点时的加速度,故B 错误;C 、小环经过B 点的时间()02131x t s s v --∆===,所以小环经过B 点的时刻为t=3s ,小环经过B 点时()120/y v g t m s =-=,所以小环经过B 点时重力的瞬时功率为20y P mgv w ==,故C 正确,D 错误;故选C 。
2. 为了研究超重与失重现象,某同学把一体重秤放在电梯的地板上,他站在体重秤上随电梯运动并观察体重秤示数的变化。
下表记录了几个特定时刻体重秤的示数。
下列说法正确的是A .t 1和t 2时刻该同学的质量并没有变化,但所受重力发生变化B .t 1和t 2时刻电梯的加速度方向一定相反C .t 1和t 2时刻电梯运动的加速度大小相等;但运动的速度方向一定相反D .t 3时刻电梯可能向上运动 【答案】BD 【解析】3. 一条形磁铁静止在斜面上,固定在磁铁中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示,若将磁铁的N 极位置与S 极位置对调后,仍放在斜面上原来的位置,则磁铁对斜面的压力F 和摩擦力f F 的变化情况分别是A. F 增大, f F 减小B. F 减小,f F 增大C. F 与f F 都减小D. F 与f F 都增大 【答案】D【解析】在磁铁的N 极位置与S 极位置对调前,根据左手定则判断可以知道,导线所受的安培力方向斜向下, 由牛顿第三定律得知,磁铁所受的安培力方向斜向上,设安培力大小为F 安,斜面的倾角为α,磁铁的重力为G,由磁铁的受力平衡得: 斜面对磁铁的支持力: =)cos F G F α-安( , 摩擦力: f=)sin G F α-安( , 在磁铁的N 极位置与S 极位置对调后,同理可以知道,斜面对磁铁的支持力: =)cos F G F α+安( , 摩擦力: f=)sin G F α+安( 可见,F 、f 都增大,故D 正确; 综上所述本题答案是:D4. 在匀强磁场中,一矩形金属框绕与磁感线垂直的转轴匀速转动, 如图甲所示,产生的交变电动势的图象如图乙所示,则( ) A.t=0.005 s 时线框的磁通量变化率为零 B.t=0.01 s 时线框平面与中性面重合 C.线框产生的交变电动势有效值为311 V D.线框产生的交变电动势频率为100 Hz 【答案】 B【解析】解析:由题图知,该交变电流电动势峰值为311V ,交变电动势频率为f=50Hz,C 、D 错;t=0.005s 时,e=311V,磁通量变化最快,t=0.01s 时,e=0,磁通量最大,线圈处于中性面位置,A 错,B 对。
徐汇区第一中学校2018-2019学年高二上学期第一次月考试卷化学
徐汇区第一中学校2018-2019学年高二上学期第一次月考试卷化学一、选择题1. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=()A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)2. 已知向量,(),且,点在圆上,则(,2)a m =r (1,)b n =-r 0n >0a b ⋅=r r (,)P m n 225x y +=( )|2|a b +=r rAB . C.D.3. 下列说法中正确的是( )A .三点确定一个平面B .两条直线确定一个平面C .两两相交的三条直线一定在同一平面内D .过同一点的三条直线不一定在同一平面内4. 已知i 是虚数单位,则复数等于()A .﹣ +iB .﹣ +iC .﹣iD .﹣i5. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( )A .48B .±48C .96D .±966. 已知直线x ﹣y+a=0与圆心为C 的圆x 2+y 2+2x ﹣4y+7=0相交于A ,B 两点,且•=4,则实数a 的值为( )A .或﹣B .或3C .或5D .3或57. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题8. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为()A .B .C .D .9. 已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能10.在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )A .3B .6C .7D .811.下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( )A .f (x )=﹣xe |x|B .f (x )=x+sinxC .f (x )=D .f (x )=x 2|x|班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________12.下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =+2y x =tan y x =xy e=二、填空题13.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .14.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = . 15.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形PACB 的周长最小时,△ABC 的面积为________.16.函数f (x )=log (x 2﹣2x ﹣3)的单调递增区间为 .17.设p :∃x ∈使函数有意义,若¬p 为假命题,则t 的取值范围为 .18.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题19.已知曲线C 的极坐标方程为4ρ2cos 2θ+9ρ2sin 2θ=36,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系;(Ⅰ)求曲线C 的直角坐标方程;(Ⅱ)若P (x ,y )是曲线C 上的一个动点,求3x+4y 的最大值. 20.已知函数f (x )=x 3+ax+2.(Ⅰ)求证:曲线=f (x )在点(1,f (1))处的切线在y 轴上的截距为定值;(Ⅱ)若x ≥0时,不等式xe x +m[f ′(x )﹣a]≥m 2x 恒成立,求实数m 的取值范围. 21.已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M ;(Ⅱ)求M 5.22.本小题满分12分如图,在边长为4的菱形中,,点、分别在边、上.点ABCD 60BAD ∠=oE F CD CB 与点、不重合,,,沿将翻折到的位置,使平面E C D EF AC ⊥EF AC O =I EF CEF ∆PEF ∆PEF ⊥平面.ABFED Ⅰ求证:平面;BD ⊥POA Ⅱ记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长.P ABD -1V P BDEF -2V 1243V V =PO 23.已知f (x )=|x ﹣1|+|x+2|.(1)解不等式f (x )≥5;(2)若关于x 的不等式f (x )>a 2﹣2a 对于任意的x ∈R 恒成立,求a 的取值范围.PACDO EF FEO DCA24.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.徐汇区第一中学校2018-2019学年高二上学期第一次月考试卷化学(参考答案)一、选择题1.【答案】B【解析】解:排除法:横坐标为2+(﹣6)=﹣4,故选B.2.【答案】A【解析】考点:1、向量的模及平面向量数量积的运算;2、点和圆的位置关系.3.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.4.【答案】A【解析】解:复数===,故选:A.【点评】本题考查了复数的运算法则,属于基础题.5.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a2和a8的等比中项为=±48.故选:B.6.【答案】C【解析】解:圆x2+y2+2x﹣4y+7=0,可化为(x+)2+(y﹣2)2=8.∵•=4,∴2•2cos∠ACB=4∴cos∠ACB=,∴圆心到直线的距离为,∴=,∴a=或5.故选:C.7.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.8.【答案】B【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,所以a2+1=4,即a2=3,所以双曲线方程为,设点P(x0,y0),则有,解得,因为,,所以=x0(x0+2)+=,此二次函数对应的抛物线的对称轴为,因为,所以当时,取得最小值=,故的取值范围是,故选B.【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.【解析】解:如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AA 1∩平面ABCD=A ,BB 1∩平面ABCD=B ,AA 1∥BB 1;AA 1∩平面ABCD=A ,AB 1∩平面ABCD=A ,AA 1与AB 1相交;AA 1∩平面ABCD=A ,CD 1∩平面ABCD=C ,AA 1与CD 1异面.∴直线a ,b 都与平面α相交,则a ,b 的位置关系是相交、平行或异面.故选:D .10.【答案】B【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8,∴2a 4=a 3+a 5=8,解得a 4=4,∴公差d==,∴a 7=a 1+6d=2+4=6故选:B . 11.【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数,A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数,故选:A . 12.【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x奇非偶函数,故选A.考点:函数的单调性与奇偶性.二、填空题13.【答案】 3π .【解析】解:将棱长均为3的三棱锥放入棱长为的正方体,如图∵球与三棱锥各条棱都相切,∴该球是正方体的内切球,切正方体的各个面切于中心,而这个切点恰好是三棱锥各条棱与球的切点由此可得该球的直径为,半径r=∴该球的表面积为S=4πr2=3π故答案为:3π【点评】本题给出棱长为3的正四面体,求它的棱切球的表面积,着重考查了正多面体的性质、多面体内切球和球的表面积公式等知识,属于基础题.14.【答案】 .【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an的关系,属于中档题.15.【答案】【解析】解析:圆x2+y2-2x+4y-4=0的标准方程为(x-1)2+(y+2)2=9.圆心C(1,-2),半径为3,连接PC,∴四边形PACB 的周长为2(PA +AC )=2+2AC =2+6.PC 2-AC 2PC 2-9当PC 最小时,四边形PACB 的周长最小.此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由,解得点P 的坐标为(4,1),{x +y -5=0x -y -3=0)由于圆C 的圆心为(1,-2),半径为3,所以两切线PA ,PB 分别与x 轴平行和y 轴平行,即∠ACB =90°,∴S △ABC =AC ·BC =×3×3=.121292即△ABC 的面积为.92答案:9216.【答案】 (﹣∞,﹣1) .【解析】解:函数的定义域为{x|x >3或x <﹣1}令t=x 2﹣2x ﹣3,则y=因为y=在(0,+∞)单调递减t=x 2﹣2x ﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1) 17.【答案】 .【解析】解:若¬P 为假命题,则p 为真命题.不等式tx 2+2x ﹣2>0有属于(1,)的解,即有属于(1,)的解,又时,,所以.故t >﹣.故答案为t>﹣.18.【答案】 ﹣ .【解析】解:∵α为锐角,若sin(α﹣)=,∴cos(α﹣)=,∴sin=[sin(α﹣)+cos(α﹣)]=,∴cos2α=1﹣2sin2α=﹣.故答案为:﹣.【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题.三、解答题19.【答案】【解析】解:(Ⅰ)由4ρ2cos2θ+9ρ2sin2θ=36得4x2+9y2=36,化为;(Ⅱ)设P(3cosθ,2sinθ),则3x+4y=,∵θ∈R,∴当sin(θ+φ)=1时,3x+4y的最大值为.【点评】本题考查了椭圆的极坐标方程、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.20.【答案】【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,即有f(1)=a+,f′(1)=1+a,则切线方程为y﹣(a+)=(1+a)(x﹣1),令x=0,得y=为定值; (Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,得xe x+mx2﹣m2x≥0对x≥0时恒成立,即e x+mx﹣m2≥0对x≥0时恒成立,则(e x+mx﹣m2)min≥0,记g(x)=e x+mx﹣m2,g′(x)=e x+m,由x≥0,e x≥1,若m ≥﹣1,g ′(x )≥0,g (x )在[0,+∞)上为增函数,∴,则有﹣1≤m ≤1,若m <﹣1,则当x ∈(0,ln (﹣m ))时,g ′(x )<0,g (x )为减函数,则当x ∈(ln (﹣m ),+∞)时,g ′(x )>0,g (x )为增函数,∴,∴1﹣ln (﹣m )+m ≥0,令﹣m=t ,则t+lnt ﹣1≤0(t >1),φ(t )=t+lnt ﹣1,显然是增函数,由t >1,φ(t )>φ(1)=0,则t >1即m <﹣1,不合题意.综上,实数m 的取值范围是﹣1≤m ≤1.【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.21.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M 5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.22.【答案】【解析】Ⅰ证明:在菱形中,ABCD ∵,∴.BD AC ⊥BD AO ⊥∵,∴,EF AC ⊥PO EF ⊥∵平面⊥平面,平面平面,且平面,PEF ABFED PEF I ABFED EF =PO ⊂PEF ∴平面,PO ⊥ABFED ∵平面,∴.BD ⊂ABFED PO BD ⊥∵,∴平面.AO PO O =I BD ⊥POA Ⅱ设.由Ⅰ知,平面,AO BD H =I PO ⊥ABFED ∴为三棱锥及四棱锥的高,PO P ABD -P BDEF -∴,∵,1211,33ABD BFED V S PO V S PO ∆=⋅=⋅梯形1243V V =∴,∴, 3344ABD CBD BFED S S S ∆∆==梯形14CEF CBD S S ∆∆=∵,,BD AC EF AC ⊥⊥∴,∴∽. ∴, //EF BD CEF ∆CBD ∆21(4CEF CBDS CO CH S ∆∆==∴, ∴.111222CO CH AH ===⨯PO OC ==23.【答案】【解析】解:(1)不等式即|x ﹣1|+|x+2|≥5,由于|x ﹣1|+|x+2|表示数轴上的x 对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故不等式的解集为(﹣∞,﹣3]∪[2,+∞).(2)若关于x 的不等式f (x )>a 2﹣2a 对于任意的x ∈R 恒成立,故f (x )的最小值大于a 2﹣2a .而由绝对值的意义可得f (x )的最小值为3,∴3>a 2﹣2a ,解得﹣1<a <3,故所求的a 的取值范围为(﹣1,3).24.【答案】【解析】解:(1)若 x >0,则﹣x <0…(1分)∵当x <0时,f (x )=()x .∴f (﹣x )=()﹣x .∵f (x )是定义在R 上的奇函数,f (﹣x )=﹣f (x ),∴f (x )=﹣()﹣x =﹣2x .…(4分)(2)∵(x )是定义在R 上的奇函数,∴当x=0时,f (x )=0,∴f (x )=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.。
徐汇区一中2018-2019学年高二上学期第一次月考试卷化学
徐汇区一中2018-2019学年高二上学期第一次月考试卷化学 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知甲、乙、丙和X 是4种中学化学中常见的物质,其转化关系如下图,则甲和X 不可能是A .甲为C ,X 是O 2B .甲为CO 2,X 是NaOH 溶液C .甲为Cl 2,X 为FeD .甲为Na ,X 为O 22. 利用图1和图2中的信息,按图3装置(连接的A 、B 瓶中已充有NO 2气体)进行实验。
下列说法正确的是 A .H 2O 2中只含有极性共价键,不含离子键 B .2NO 2N 2O 4的平衡常数K 随温度升高而减小C .向H 2O 2中加入Fe 2(SO 4)3后,B 中颜色变浅D .H 2O 2分解反应中Fe 2(SO 4)3作催化剂,可以使反应的△H 减小3. 《电石安全技术说明书》中对电石的描述为“……遇水或湿气能迅速产生高度易燃的乙炔气体,应与氧化剂类物质分开存放……”。
下列说法不合理...的是A .盛装电石的包装上贴有的危险化学品标志为:B .电石与硝酸分开存放C .运输电石的铁桶内可充入氮气D .电石着火可用泡沫灭火器扑灭4. 设N A 为阿伏加德罗常数的值,下列说法正确的是 A .2.3g 钠与水反应产生气体的分子数为0.1N A B .28gN 2和CO 组成的混合气体中含有的原子数为2N A C .0.1 mol•L ﹣1Na 2SO 4溶液含有0.1N A 个SO 42﹣ D .22.4L 氯气中含有的电子总数一定为34N A反应过程反应过程能 量AB能 量H 2OH 2O 2和 Fe 2(SO 4)3H 2O 2(l)H 2O(l)+1/2O 2(g)2NO 2(g)N 2O 4(g) 图1 图2 图35.甲基丙烯酸甲酯是合成有机玻璃的单体,其合成方法之一如下:CH3OC≡CH+CH3OH+A CH2=C (CH3)COOCH3,下列说法正确的是A.已知该反应的原子利用率为100%,则A为CO2B.CH3OH和甘油互为同系物C.CH3C≡CH与丙烯的性质相似,则该物质可以发生加成、氧化反应D.能与NaHCO3反应的CH2=C(CH3)COOCH3的同分异构体有9种6.下列指定反应的离子方程式正确的是()A.NaHSO4溶液与Ba(OH)2溶液混舍后呈中性:2H++ SO42-+ Ba2++ 2OH- =BaSO4↓+2H2OB.Ca(HCO3)2溶液与过量NaOH溶液反应:Ca2++ HCO3-+OH- =CaCO3↓+H2OC.Ca(ClO)2溶液中通入少量CO2:2C1O-+ CO2+H2O=2HC1O+ CO32-D.Fe(NO3)3溶液中加入过量的HI溶液:Fe3++ NO3-+4H++ 4I- =Fe2++ NO↑ +2I2+2H2O7.在常温下,pH=2的氯化铁洛液,pH=2的硫酸溶液,pH=12的氨水溶液,pH=12的碳酸钠溶液,水的电离程度分别为a、b、c、d,则这四种溶液中,水的电离程度大小比较正确的是A.a=d>c>b B.a=d>b=c C.b=c>a=d D.b=c>a>d8.一种新型的“锂-呼吸CO2电池”,结构如图所示,下列说法不正确的是A.该装置是化学能转变为电能B.利用该技术可减少温室气体CO2的排放C.正极的电极反应为:2CO2+ 2e- = C2O42-D.每生成10.2g Li2C2O4,有0.2mol Li+从正极迁移至负极9.某学习小组设计实验探究NO与铜粉的反应并检验NO,实验装置如图所示(夹持装置略)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐汇区第一中学2018-2019学年高二上学期第二次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.如图所示电路中,三个相同的灯泡额定功率是40 W,在不损坏灯泡的情况下,这三个灯泡消耗的总功率最大不应超过A.40 W B.60 W C.80 W D.120 W【答案】B2.(2018广州一模)如图,在匀强电场中,质量为m、电荷量为+q的小球由静止释放沿斜向下做直线运动,轨迹与竖直方向的夹角为θ,则m gA.场强最小值为qB.电场方向可能水平向左C.电场力对小球可能不做功D.小球的电势能可能增加【答案】CD【解析】本题考查物体做直线运动的条件,受力分析,电场力,极值问题,电场力做功和电势能变化及其相关的知识点。
3.如图所示,A、B、C、D为匀强电场中相邻的等势面,一个电子垂直经过等势面D时的动能为20 eV,经过等势面C时的电势能为-10 eV,到达等势面B时的速度恰好为零。
已知相邻等势面间的距离为5 cm,不计电子的重力,下列说法中正确的是()A. C等势面的电势为10 VB. 匀强电场的电场强度为200 V/mC. 电子再次经过D等势面时,动能为10 eVD. 电子的运动是匀变速曲线运动【答案】AB【解析】试题分析:只有电场力做功,电势能和动能之和保持不变.根据题目所给条件,C等势面的电势为,故A等势面电势不为10V,A错;电子在相邻等势面间运动时,电场力做功W=qU 相等,因为电子在D等势面的动能为20eV,到达等势面B时的速度恰好为零,电子在D到C等势面间运动时,电场力做功大小为,,匀强电场的场强为,B项正确。
电子再次经过D等势面时,动能不变仍为20eV,C项错误。
电子在匀强电场中受恒力作用,运动方向和电场力方向共线电子的运动是匀变速直线运动,D项错误,故选B 考点:电势能、能的转化和守恒点评:难度中等,学习电场中的功能关系时可以类比在重力场的功能关系,如只有重力做功,动能和电势能之和保持不变;那么只有电场力做功,电势能和动能之和保持不变4.将质量为m的圆环套在固定的水平直杆上,环的直径略大于杆的截面直径,环与杆间的动摩擦因数为μ,对环施加一位于竖直平面内斜向上且与杆夹角为θ的拉力F,使圆环以加速度a沿杆运动,则F的大小不可能是A.B.C.D.【答案】C【解析】对环受力分析,受重力、拉力、弹力和摩擦力的作用,其中弹力可能向上,也可能向下,也可能等于零。
若环受到的弹力为零,则F cosθ=ma,F sinθ=mg,解得或;若环受到的弹力的方向向上,则:F cosθ–μ(mg–F sinθ)=ma,解得;若环受到的弹力的方向向下,则:F cosθ–μ(F sinθ–mg)=ma,解得,故ABD是可能的,选项C是不可能的。
5.测量国际单位制规定的三个力学基本物理量分别可用的仪器是A.刻度尺、弹簧秤、秒表B.刻度尺、测力计、打点计时器C.量筒、天平、秒表 D.刻度尺、天平、秒表【答案】D6.如图所示为一个质量为m、电荷量为+q的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B的匀强磁场中,不计空气阻力,现给圆环向右的初速度v0,在以后的运动过程中,圆环运动的速度图象不可能是下图中的()【答案】B7.在匀强电场中,把一个电量为q的试探电荷从A移动到B点。
已知场强为E,位移大小为d,初末位置电势差为U,电场力做功为W,A 点电势为。
下面关系一定正确的是A.B.C.D.【答案】A【解析】因初末位置电势差为U,则电场力的功为W=Uq,选项A正确;因位移d不一定是沿电场线的方向,则U=Ed不一定正确,故选项BCD错误;故选A.8.(2018南宁高三摸底考试)中国北斗卫星导航系统(BDS)是中国自行研制的全球卫星导轨系统,是继美国全球定位系统(GPS)、俄罗斯格洛纳斯卫星导航系统(GLONASS)之后第三个成熟的卫星导航系统。
预计2020年左右,北斗卫星导航系统将形成全球覆盖能力。
如图所示是北斗导航系统中部分卫星的轨道示意图,已知a、b、c三颗卫星均做圆周运动,a是地球同步卫星,则()A.卫星a的角速度小于c的角速度B.卫星a的加速度大于b的加速度C.卫星a的运行速度大于第一宇宙速度D.卫星b的周期等于24 h【答案】AD【解析】【命题意图】本题考查万有引力定律和卫星的运动、第一宇宙速度及其相关的知识点。
所以卫星a 的向心加速度等于b 的向心加速度,选项B 错误;由G 2Mmr =m 2v r可得线速度与半径的关系:v r 越大,速率v 越小。
而第一宇宙速度为轨道半径等于地球半径是环绕地球运动的卫星速度,所以卫星a 的运行速度一定小于第一宇宙速度,选项C 错误;由G 2Mm r =mr (2T)2,可得周期T =2πa 的轨道半径与卫星b 的轨道半径相等,所以卫星b 的周期等于同步卫星的运行周期,即等于地球自转周期24h ,选项D 正确。
9. 甲和乙两个物体在同一直线上运动,它们的速度—时间图象 分别如图中的a 和b 所示。
在t 1时刻( )A. 它们的运动方向相同B. 它们的运动方向相反C. 甲的速度比乙的速度大D. 乙的速度和甲的速度相等 【答案】A10.家用电吹风中,有一个小电动机和与它串联的一段电热丝。
电热丝加热空气,电动机带动风叶转动,送出热风。
设电动机线圈的电阻为,电热丝的电阻为。
将电吹风接到直流电源上,电源输出电压为U ,输出电流为I ,电吹风消耗的电功率为P 。
以下表达式中正确的是A. B.C. D. 【答案】AD【解析】A 、电吹风机消耗的电功率P 是总的功率,总功率的大小应该是用P=IU 来计算,所以总功率P=IU ,故A 正确,B 错误;电吹风机中发热的功率要用I 2R 来计算,所以总的发热功率为P=I 2(R 1+R 2),吹风机的总功率P=IU 要大于发热部分的功率,所以C 错误,D 正确;故选AD .点睛:对于电功率的计算,一定要分析清楚是不是纯电阻电路,对于非纯电阻电路,总功率和发热功率的计算公式是不一样的.11.如图,闭合开关S ,a 、b 、c 三盏灯均正常发光,电源电动势恒定且内阻不可忽略,现将变阻器R 的滑片稍向上滑动一些,三盏灯亮度变化为( )A.a灯变亮,b、c灯变暗B.a、c灯变亮,b灯变暗C.a、c灯变暗,b灯变亮D.a、b灯变暗,c灯变亮【答案】B【解析】12.(2017武昌模拟)一质量为m的带电小球,在竖直方向的匀强电场中以水平速度抛出,小球的加速度竖直向下,大小为2g/3,空气阻力不计。
小球在下落h个过程中,关于其能量的变化,下列说法中正确的是A.动能增加了mgh/3B.电势能增加了mgh/3C.重力势能减少了2mgh/3D.机械能减少了mgh/3【答案】BD【解析】13.探月卫星绕地运行一段时间后,离开地球飞向月球。
如图所示是绕地飞行的三条轨道,轨道1是近地圆形轨道,2和3是变轨后的椭圆轨道。
A点是2轨道的近地点,B点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s,则下列说法中正确的()A.卫星在2轨道经过A点时的速率一定大于7.7 km/sB.卫星在2轨道经过B点时的速率一定小于7.7 km/sC.卫星在3轨道所具有的机械能小于在2轨道所具有的机械能D.卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率【答案】AB【解析】考点:考查了万有引力定律的应用【名师点睛】题要掌握离心运动的条件和近心运动的条件,能够根据这两个条件判断速度的大小.还要知道卫星的运动的轨道高度越高,需要的能量越大,具有的机械能越大.14.a、b两个电容器如图所示,关于电容器下列说法正确的是A. b电容器的电容是B. a电容器的电容小于b的电容C. a与b的电容之比是8:1D. a电容器只有在80V电压下才能正常工作【答案】B【解析】由图可知a电容器的电容是,b电容器的电容是,故A错误,B正确;a与b的电容之比是1:10,故C错误;80V是指电容器正常工作时的电压,不是只有在80V电压下才能正常工作,故D 错误。
所以B正确,ACD错误。
15.如图所示,两根相互平行的长直导线过纸面上的M、N两点,且与纸面垂直,导线中通有大小相等、方向相反的电流。
A、O、B在M、N的连线上,O为MN的中点,C、D位于MN的中垂线上,且A、B、C、D到O点的距离均相等。
关于以上几点处的磁场,下列说法错误的是()A. O点处的磁感应强度为0B. A、B两点处的磁感应强度大小相等、方向相反C. C、D两点处的磁感应强度大小相等、方向相同D. A、C两点处的磁感应强度的方向不同【答案】ABD【解析】A.根据安培定则判断:两直线电流在O点产生的磁场方向均垂直于MN向下,O点的磁感应强度不为0,故选项A错误;B.A、B两点处的磁感应强度大小相等、方向相同,故选项B错误;C.根据对称性,C、D两点处的磁感应强度大小相等、方向相同,故C选项正确;D.A、C两点处的磁感应强度方向相同,故选项D错误。
故选:ABD。
点睛:根据安培定则判断磁场方向,再结合矢量的合成知识求解。
二、填空题16.如图所示,水平导轨间距为L=0.5m,导轨电阻忽略不计;导体棒ab的质量m=l kg,电阻R0=0.9Ω,与导轨接触良好;电源电动势E=10V,内阻r=0.1Ω,电阻R=4Ω;外加匀强磁场的磁感应强度B=5T,方向垂直于ab,与导轨平面成α=53°角;ab与导轨间动摩擦因数为μ=0.5(设最大静摩擦力等于滑动摩擦力),定滑轮摩擦不计,线对ab的拉力为水平方向,重力加速度g=10m/s2,ab处于静止状态.(已知sin53°=0.8,cos53°=0.6).求:(1)ab受到的安培力大小和方向.(2)重物重力G的取值范围.【答案】(1)由闭合电路的欧姆定律可得,17.如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一正电荷在等势面φ3上时具有动能60J,它运动到等势面φ1上时,速度恰好为零,令φ2=0,那么,当该电荷的电势能为12 J时,其动能大小为____ J。
【答案】18三、解答题18.真空室中有如图甲所示的裝置,电极K持续发出的电子(初速度不计)经过加速电场加速后,从小孔0沿水平放置的偏转极板M、N的中心轴线OO′射入偏转电场。
极板M、N长度均为L,加速电压,偏转极板右侧有荧光屏(足够大且未画出)。
M、N两板间的电压U随时间t变化的图线如图乙所示,其中。
调节两板之间的距离d,使得每个电子都能通过偏转极板,已知电子的质量为m、电荷量为e,电子重力不计。
(1)求电子通过偏转极板的时间t;(2)求偏转极板之间的最小距离d;(3)当偏转极板间的距离为最小值d时,荧光屏如何放置时电子击中的范围最小? 该范围的长度是多大?【答案】(1)T(2)d>L(3)【解析】试题分析:根据动能定理求出加速后的速度,进入偏转电场后做类平抛运动,水平方向匀速直线运动,根据运动学方程即可解题;t=0、T、2T…时刻进入偏转电场的电子,竖直方向先加速运动,后作匀速直线运动,射出电场时沿垂直于竖直方向偏移的距离y最大,根据运动学公式即可求解;先求出不同时刻射出偏转电场的电子沿垂直于极板方向的速度,再求出电子速度偏转角,从而求出侧移距离的最大值与最小值之差,即可求解。