AVR外设汇总之MAX7219数码管
串行LED显示驱动器MAX7219及其应用
串行L ED显示驱动器M AX7219及其应用胡奕明(空军工程大学工程学院研究生大队 西安 710038)摘 要 阐述了新型显示驱动芯片M A X7219的基本工作原理和软件设计方法。
该芯片功能强大、编程简单、控显可靠,可广泛用于工业控制器等方面的数码显示驱动。
关键词 显示驱动器 串行发送 M A X72191 概 述M A X7219是美国M A X I M公司生产的串行输入 输出共阴极显示驱动器。
该芯片可直接驱动最多8位7段数字L ED显示器,或64个L ED和条形图显示器。
它与微处理器的接口非常简单,仅用3个引脚与微处理器相应端连接即可实现最高10M H z 串行接口。
M A X7219的位选方式独具特色,它允许用户选择多种译码方式译码选位,而且,每个显示位都能个别寻址和刷新,而不需要重写其他的显示位,这使得软件编程十分简单且灵活。
另外,它具有数字和模拟亮度控制以及与M O TOROLA SP I, Q SP I及M A T I ONAL M I CROW I R E串行口相兼容等特点。
2 引脚说明该芯片采用24脚D IP和SO封装,工作电压410~515V,最大功耗111W。
引脚说明见表1。
3 基本工作原理及使用方法M A X7219与8031单片机连接采用三线串行接口,典型应用电路如图1。
对于M A X7219,串行数据是以16位数据包的形式从D in脚串行输入,在CL K的每一个上升沿一位一位地送入芯片内部16位移位寄存器,而不管L out脚的状态如何。
L oad脚必须在第16个CL K上升沿出现的同时或之后,但在下一个CL K上升沿之前变为高电平,否则移入的数据将丢失。
表1 引脚说明引脚号名称功能说明1D in串行数据输入端。
在CL K的上升沿数据被锁入芯片内部16位移位寄存器2,3,5~8,10,11D IG0~D IG78位L ED位选线,从共阴极L ED中吸入电流4,9GND地线(两个GND必须接在一起)12L oad锁入输入的数据。
MAX7219
多功能LED译码显示驱动IC PS7219 1 引言PS7219是由力源公司自行研制、开发的一款新型多功能8位LED显示驱动IC。
接口采用三线SPI方式,用户只需简单修改内部相关的控制或数字RAM,便可很容易地实现多位LED显示。
在性能上PS7219与MAXIM 公司的MAX7219完全兼容,并增加了位闪等功能。
PS7219具有多个级联特性,为大屏幕LED显示提供了方便。
在理论上,只需三根用户I/O口控制线,便可以实现无穷多的LED级联显示。
在实际应用中,已实现了149片PS7219级联,可以控制1192位LED 显示。
2 PS7219特点与引脚说明PS7219的特点:★ 串行接口(16位控制字);★ 8位共阴级LED显示驱动;★ 显示位数1~8,可数字调节;★ 按位进行BCD译码/不译码数字制;★ 16级亮度数字控制;★ 上电LED全熄;★ 提供位闪功能;★ 多个PS7219级联可实现任意多的LED显示;★ 宽24脚双列直插模块封装。
PS7219引脚图如图1所示。
引脚功能说明见表1。
3 PS7219内部结构如图2 所示,PS7219由六部分组成。
图2 PS7219内部组成框图图1 PS7219引脚排列3.1 串行输入缓冲部分主要功能是与外部控制信号接口,将控制命令串行读入,并进行串并转换,供控制器读取。
3.2 控制器是整个IC的核心部分。
它先将输入缓冲部分的控制字读入处理,根据其地址值送到相应的控制RAM或数字RAM,同时将数据送入串行同步输出部分,以便在下一个控制字输入周期,将其串行输出。
3.3 控制RAM数据RAM这两部分一起控制LED译码显示部分,实现不同功能及字符的显示。
控制RAM包括:空操作寄存器,译码模式控制寄存器,亮度控制寄存器,掉电控制寄存器,闪烁控制寄存器,测试控制寄存器和扫描界线寄存器。
数据RAM包括:数据1—8寄存器。
3.4 LED译码显示根据控制RAM和数据RAM的不同值,来实现相应的显示功能。
max7219使用详解
Max7219驱动程序一般的MCU因IO脚驱动能力不够,再加之MCU IO口资源有限,产品开发中通常是通过专门的驱动IC来驱动数码管。
7.1 学会看DatasheetMAX7219就是一款可以同时驱动8个数码管的IC。
下图是其引脚图及典型应用电路:我们的CPU只须三根线就可以控制MAX7219,这三根线是:DIN(第一脚),CS(第12脚),CLK(第13脚)。
DIN是数据输入脚,我们要显示的数据就是通过这根线发送到MAX7219的;CS是片选脚,MCU通过把该脚电平拉低来选中MAX7219,或者说MAX7219通过判断该引脚是否为低电平来使能该芯片。
CLK是时钟引脚,该时钟频率是MCU给到MAX7219的,MCU与7219之间的通信频率就根据该信号做基准。
7.2 MAX7219数据格式我们要让8个数码管显示"12345678",这个过程是怎么实现的呢?首先,要搞清楚MAX7219的数据格式,看图:MAX7219是以16位数据接收和发送的,也就是MCU传给MAX7219的数据必须是16位。
下面分析这16位数据格式:D15~D12为X:表示可以为任意值,因为这四位MAX7219目前还用不到。
D11~D8为ADDRESS:表示MAX7219的地址。
D7~D0为DATA,并且位7为高位(最先发送),位0位低位(最后发送)。
也就是当MCU向MAX7219发送一个16位数据时,其中的D11~D8表示选择MAX7219哪个地址,即数据D7~D0是送到该地址的。
7.3 地址译码MAX7219可以挂8个数码管,MCU是怎么把数据显示到指定的数码管的呢?这就要理解MAX7219的地址译码原理。
下图为MAX7219的地址映射图:D15~12以X表示,代表可为0,也可为1。
Digit0~7对应到8个数码管的地址。
Decode Mode:解码模式寄存器,其地址用16进制表示为0x09;Intensity:亮度调节寄存器,其地址用16进制表示为0x0A;Scan Limit:扫描范围寄存器,其地址用16进制表示为0x0B;Shutdown:省电模式,其地址用16进制表示为0x0C;Display Test:测试寄存器,其地址用16进制表示为0x0F;如果,我们要让第一个数码管显示,那么我们这里送到MAX7219的16位数据中的D11~8应该为0001。
如何利用MAX7219 、7221驱动更高的电压或电流
如何利用MAX7219 / 7221驱动更高的电压或电流摘要:放大MAX7219和MAX7221串行接口LED驱动器电流和电压驱动能力的技术。
MAX7219 / 7221是一个8位,7段共阴极多路LED显示驱动器,在4V至5.5V电源下工作时,可驱动高达40mA的段电流。
本应用笔记讨论了MAX7219 / 7221如何与外部驱动晶体管配合使用,以用于需要更高峰值段电流和/或更高驱动电压的应用。
MAX7219 / 7221无法通过5V 电源直接驱动每节使用三个或三个以上LED管芯的LED,因为存在多个LED压降。
图1至图4所示的驱动器将工作在4V至5V的MAX7219 / 7221与共阳极显示器相连接,该共阳极显示器以比MAX7219 / 7221可提供的更高的段电流和/或驱动电压工作。
需要八个实例的低电流阴极列驱动器和八个实例的高电流阳极数字驱动器。
MAX7219 / 7221的PWM数字强度控制仍然可以使用。
但是,峰值段电流现在由与LED阴极串联的外部限流电阻设置,而不是由电阻R SET设置。
要使用这些驱动器,请选择R1(参见图4)以根据驱动器电源电压V driver设置所需的峰值LED 段电流I SEG。
LED正向压降V LED:I PEAK=(V驱动器-V LED-V CE(sat)Q1)/(R1 + R DS(on)Q2)A在段电流I SEG下对Q1进行速率,在数字电流I SEG下对Q2进行速率,这是I SEG的8倍。
请注意,显示器必须是共阳极(CA)类型,才能与此处所述的驱动器连接;MAX7219 / 7221直接驱动共阴极(CC)显示,但这些外部驱动器会反转数字/段驱动极性。
数字驱动器MAX7219 / 7221的数字驱动输出是电源开关,它们一次变为低电平有效以打开一个数字,而关断则为高阻抗。
这里建议使用三种替代的数字驱动电路。
最简单的电路(图1)适合需要大于40mA的分段电流的应用,但仍可以使用4V-5V MAX7219 / 7221电源电压来驱动LED。
max7219驱动数码管程序(51单片机+STM32 MAX7219数码管程序案例)
SPI1_InitStructure.SPI_FirstBit=SPI_FirstBit_MSB; //高位MSB在先
SPI1_InitStructure.SPI_CPOL = SPI_CPOL_High; //选择了串行时钟的稳态,时钟悬空高
*功能:STM32_SPI1硬件配置初始化
*入口参数:无
*出口参数:无
*说明:STM32_SPI1硬件配置初始化,使用3V3
****************************************************************************/
void SPI1_Init(void)
SPI1_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;//数据捕获于第二个时钟沿
SPI1_InitStructure.SPI_NSS = SPI_NSS_Soft;CPolynomial = 7;//CRC值计算的多项式
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1,ENABLE);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_3;
GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;
GPIO_Init(GPIOA,GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7;//SPI1相关引脚
MAX7219
_______________General DescriptionThe MAX7219/MAX7221 are compact, serial input/out-put common-cathode display drivers that interface microprocessors (µPs) to 7-segment numeric LED dis-plays of up to 8 digits, bar-graph displays, or 64 indi-vidual LEDs. Included on-chip are a BCD code-B decoder, multiplex scan circuitry, segment and digit drivers, and an 8x8 static RAM that stores each digit.Only one external resistor is required to set the seg-ment current for all LEDs. The MAX7221 is compatible with SPI™, QSPI™, and Microwire™, and has slew-rate-limited segment drivers to reduce EMI.A convenient 3-wire serial interface connects to all common µPs. Individual digits may be addressed and updated without rewriting the entire display. The MAX7219/MAX7221 also allow the user to select code-B decoding or no-decode for each digit.The devices include a 150µA low-power shutdown mode, analog and digital brightness control, a scan-limit register that allows the user to display from 1 to 8digits, and a test mode that forces all LEDs on.________________________ApplicationsBar-Graph Displays 7-Segment Displays Industrial Controllers Panel Meters LED Matrix Displays____________________________Featureso 10MHz Serial Interfaceo Individual LED Segment Control o Decode/No-Decode Digit Selectiono 150µA Low-Power Shutdown (Data Retained)o Digital and Analog Brightness Control o Display Blanked on Power-Up o Drive Common-Cathode LED Display o Slew-Rate Limited Segment Drivers for Lower EMI (MAX7221)o SPI, QSPI, Microwire Serial Interface (MAX7221)o 24-Pin DIP and SO PackagesMAX7219/MAX7221Serially Interfaced, 8-Digit LED Display Drivers________________________________________________________________Maxim Integrated Products1________Typical Application Circuit__________________Pin Configuration19-4452; Rev 3; 7/97SPI and QSPI are trademarks of Motorola Inc. Microwire is a trademark of National Semiconductor Corp.For free samples & the latest literature: , or phone 1-800-998-8800.For small orders, phone 408-737-7600 ext. 3468.M A X 7219/M A X 72212_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V+ = 5V ±10%, R SET = 9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Voltage (with respect to GND)V+............................................................................-0.3V to 6V DIN, CLK, LOAD, CS ...............................................-0.3V to 6V All Other Pins.............................................-0.3V to (V+ + 0.3V)CurrentDIG0–DIG7 Sink Current................................................500mA SEGA–G, DP Source Current.........................................100mA Continuous Power Dissipation (T A = +85°C)Narrow Plastic DIP..........................................................0.87W Wide SO..........................................................................0.76W Narrow CERDIP.................................................................1.1WOperating Temperature RangesMAX7219C_G/MAX7221C_G ..............................0°C to +70°C MAX7219E_G/MAX7221E_G............................-40°C to +85°C Storage Temperature Range.............................-65°C to +160°C Lead Temperature (soldering, 10sec).............................+300°CMAX7219/MAX7221_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(V+ = 5V ±10%, R SET =9.53k Ω±1%, T A = T MIN to T MAX , unless otherwise noted.)M A X 7219/M A X 72214_________________________________________________________________________________________________________________________________Typical Operating Characteristics(V+ = +5V, T A = +25°C, unless otherwise noted.)730750740770760790780800820810830 4.04.44.85.25.66.0SCAN FREQUENCY vs. POSITIVE SUPPLY VOLTAGEM A X 7219/21 01POSITIVE SUPPLY VOLTAGE (V)S C A N F R E Q U E N C Y (H z )20104030605070012345SEGMENT DRIVER OUTPUT CURRENTvs. OUTPUT VOLTAGEOUTPUT VOLTAGE (V)O U T P U T C U R R E N T (m A )MAX7219SEGMENT OUTPUT CURRENTM A X 7219/21 035µs/div10mA/div0MAXIMUM INTENSITY = 31/32MAX7221SEGMENT OUTPUT CURRENTM A X 7219/21 045µs/div10mA/divMAXIMUM INTENSITY = 15/16MAX7219/MAX7221______________________________________________________________Pin Description_________________________________________________________Functional DiagramM A X 7219/M A X 72216______________________________________________________________________________________________________Detailed DescriptionMAX7219/MAX7221 DifferencesThe MAX7219 and MAX7221 are identical except fortwo parameters: the MAX7221 segment drivers are slew-rate limited to reduce electromagnetic interfer-ence (EMI), and its serial interface is fully SPI compati-ble.Serial-Addressing ModesFor the MAX7219, serial data at DIN, sent in 16-bit packets, is shifted into the internal 16-bit shift register with each rising edge of CLK regardless of the state of LOAD. For the MAX7221, CS must be low to clock data in or out. The data is then latched into either the digit or control registers on the rising edge of LOAD/CS .LOAD/CS must go high concurrently with or after the 16th rising clock edge, but before the next rising clock edge or data will be lost. Data at DIN is propagated through the shift register and appears at DOUT 16.5clock cycles later. Data is clocked out on the falling edge of CLK. Data bits are labeled D0–D15 (Table 1).D8–D11 contain the register address. D0–D7 contain the data, and D12–D15 are “don’t care” bits. The first received is D15, the most significant bit (MSB).Digit and Control RegistersTable 2 lists the 14 addressable digit and control regis-ters. The digit registers are realized with an on-chip,8x8 dual-port SRAM. They are addressed directly so that individual digits can be updated and retain data as long as V+ typically exceeds 2V. The control registers consist of decode mode, display intensity, scan limit (number of scanned digits), shutdown, and display test (all LEDs on).Shutdown ModeWhen the MAX7219 is in shutdown mode, the scan oscil-lator is halted, all segment current sources are pulled to ground, and all digit drivers are pulled to V+, thereby blanking the display. The MAX7221 is identical, except the drivers are high-impedance. Data in the digit and control registers remains unaltered. Shutdown can be used to save power or as an alarm to flash the display by successively entering and leaving shutdown mode. For minimum supply current in shutdown mode, logic inputs should be at ground or V+ (CMOS-logic levels).Typically, it takes less than 250µs for the MAX7219/MAX7221 to leave shutdown mode. The display driver can be programmed while in shutdown mode, and shutdown mode can be overridden by the display-test function.Figure 1. Timing DiagramTable 1. Serial-Data Format (16 Bits)Initial Power-UpOn initial power-up, all control registers are reset, the display is blanked, and the MAX7219/MAX7221 enter shutdown mode. Program the display driver prior to display use. Otherwise, it will initially be set to scan one digit, it will not decode data in the data registers, and the intensity register will be set to its minimum value.Decode-Mode RegisterThe decode-mode register sets BCD code B (0-9, E, H,L, P, and -) or no-decode operation for each digit. Each bit in the register corresponds to one digit. A logic high selects code B decoding while logic low bypasses the decoder. Examples of the decode mode control-regis-ter format are shown in Table 4.When the code B decode mode is used, the decoder looks only at the lower nibble of the data in the digit registers (D3–D0), disregarding bits D4–D6. D7, which sets the decimal point (SEG DP), is independent of the decoder and is positive logic (D7 = 1 turns the decimal point on). Table 5 lists the code B font.When no-decode is selected, data bits D7–D0 corre-spond to the segment lines of the MAX7219/MAX7221.Table 6 shows the one-to-one pairing of each data bit to the appropriate segment line.MAX7219/MAX7221Table 3. Shutdown Register Format (Address (Hex) = XC)Table 4. Decode-Mode Register Examples (Address (Hex) = X9)M A X 7219/M A X 7221Intensity Controland Interdigit BlankingThe MAX7219/MAX7221 allow display brightness to be controlled with an external resistor (R SET ) connected between V+ and ISET. The peak current sourced from the segment drivers is nominally 100 times the current entering ISET. This resistor can either be fixed or vari-able to allow brightness adjustment from the front panel. Its minimum value should be 9.53Ω, which typi-cally sets the segment current at 40mA. Display bright-ness can also be controlled digitally by using the intensity register.Digital control of display brightness is provided by an internal pulse-width modulator, which is controlled by the lower nibble of the intensity register. The modulator scales the average segment current in 16 steps from a maximum of 31/32 down to 1/32 of the peak current set by R SET (15/16 to 1/16 on MAX7221). Table 7 lists the intensity register format. The minimum interdigit blank-ing time is set to 1/32 of a cycle.8_______________________________________________________________________________________Table 5. Code B FontTable 6. No-Decode Mode Data Bits and Corresponding Segment Lines*The decimal point is set by bit D7 = 1Scan-Limit RegisterThe scan-limit register sets how many digits are dis-played, from 1 to 8. They are displayed in a multiplexed manner with a typical display scan rate of 800Hz with 8digits displayed. If fewer digits are displayed, the scan rate is 8f OSC /N, where N is the number of digitsscanned. Since the number of scanned digits affects the display brightness, the scan-limit register should not be used to blank portions of the display (such as leading zero suppression). Table 8 lists the scan-limit register format.MAX7219/MAX7221_______________________________________________________________________________________9Table 7. Intensity Register Format (Address (Hex) = XA)Table 8. Scan-Limit Register Format (Address (Hex) = XB)*See Scan-Limit Register section for application.M A X 7219/M A X 7221If the scan-limit register is set for three digits or less,individual digit drivers will dissipate excessive amounts of power. Consequently, the value of the R SET resistor must be adjusted according to the number of digits dis-played, to limit individual digit driver power dissipation.Table 9 lists the number of digits displayed and the corresponding maximum recommended segment cur-rent when the digit drivers are used.Display-Test RegisterThe display-test register operates in two modes: normal and display test. Display-test mode turns all LEDs on by overriding, but not altering, all controls and digit reg-isters (including the shutdown register). In display-test mode, 8 digits are scanned and the duty cycle is 31/32(15/16 for MAX7221). Table 10 lists the display-test reg-ister format.No-Op RegisterThe no-op register is used when cascading MAX7219s or MAX7221s. Connect all devices’ LOAD/CS inputs together and connect DOUT to DIN on adjacent devices. DOUT is a CMOS logic-level output that easily drives DIN of successively cascaded parts. (Refer to the Serial Addressing Modes section for detailed infor-mation on serial input/output timing.) For example, if four MAX7219s are cascaded, then to write to thefourth chip, sent the desired 16-bit word, followed by three no-op codes (hex XX0X, see Table 2). When LOAD/CS goes high, data is latched in all devices. The first three chips receive no-op commands, and the fourth receives the intended data.__________Applications InformationSupply Bypassing and WiringTo minimize power-supply ripple due to the peak digit driver currents, connect a 10µF electrolytic and a 0.1µF ceramic capacitor between V+ and GND as close to the device as possible. The MAX7219/MAX7221 should be placed in close proximity to the LED display, and connections should be kept as short as possible to minimize the effects of wiring inductance and electro-magnetic interference. Also, both GND pins must be connected to ground.Selecting R SET Resistor andUsing External DriversThe current per segment is approximately 100 times the current in ISET. To select R SET , see Table 11. The MAX7219/MAX7221’s maximum recommended seg-ment current is 40mA. For segment current levels above these levels, external digit drivers will be need-ed. In this application, the MAX7219/MAX7221 serve only as controllers for other high-current drivers or tran-sistors. Therefore, to conserve power, use R SET = 47k Ωwhen using external current sources as segment dri-vers.The example in Figure 2 uses the MAX7219/MAX7221’s segment drivers, a MAX394 single-pole double-throw analog switch, and external transistors to drive 2.3”AND2307SLC common-cathode displays. The 5.6V zener diode has been added in series with the decimal point LED because the decimal point LED forward volt-age is typically 4.2V. For all other segments the LED forward voltage is typically 8V. Since external transis-tors are used to sink current (DIG 0 and DIG 1 are used as logic switches), peak segment currents of 45mA are allowed even though only two digits are displayed. In applications where the MAX7219/MAX7221’s digit dri-vers are used to sink current and fewer than four digits are displayed, Table 9 specifies the maximum allow-able segment current. R SET must be selected accord-ingly (Table 11).Refer to the Power Dissipation section of the Absolute Maximum Ratings to calculate acceptable limits for ambient temperature, segment current, and the LED forward-voltage drop.10______________________________________________________________________________________Table 9. Maximum Segment Current for 1-, 2-, or 3-Digit DisplaysTable 10. Display-Test Register Format (Address (Hex) = XF)Note: The MAX7219/MAX7221 remain in display-test mode (all LEDs on) until the display-test register is reconfigured for normal operation.Computing Power DissipationThe upper limit for power dissipation (PD) for the MAX7219/MAX7221 is determined from the following equation:PD = (V + x 8mA) + (V+ - V LED )(DUTY x I SEG x N)where:V+ = supply voltageDUTY = duty cycle set by intensity register N = number of segments driven (worst case is 8)V LED = LED forward voltageI SEG = segment current set by R SET Dissipation Example:I SEG = 40mA, N = 8, DUTY = 31/32, V LED = 1.8V at 40mA, V+ = 5.25V PD = 5.25V(8mA) + (5.25V - 1.8V)(31/32 x 40mA x 8) = 1.11WThus, for a CERDIP package (θJA = +60°C/W from Table 12), the maximum allowed ambient temperature T A is given by:T J(MAX)= T A + PD x θJA + 150°C = T A +1.11W x60°C/Wwhere T A = +83.4°C.Cascading DriversThe example in Figure 3 drives 16 digits using a 3-wire µP interface. If the number of digits is not a multiple of 8, set both drivers’ scan limits registers to the same number so one display will not appear brighter than the other. For example, if 12 digits are need, use 6 digits per display with both scan-limit registers set for 6 digits so that both displays have a 1/6 duty cycle per digit. If 11 digits are needed, set both scan-limit registers for 6digits and leave one digit driver unconnected. If one display for 6 digits and the other for 5 digits, the sec-ond display will appear brighter because its duty cycle per digit will be 1/5 while the first display’s will be 1/6.Refer to the No-Op Register section for additional infor-mation.MAX7219/MAX7221______________________________________________________________________________________11Table 11. R SET vs. Segment Current and LED Forward VoltageTable 12. Package Thermal Resistance DataM A X 7219/M A X 722112______________________________________________________________________________________Figure 2. MAX7219/MAX7221 Driving 2.3-Inch DisplaysMAX7219/MAX7221______________________________________________________________________________________13Figure 3. Cascading MAX7219/MAX7221s to Drive 16 7-Segment LED DigitsM A X 7219/M A X 722114_______________________________________________________________________________________Ordering Information (continued)___________________Chip TopographySEG FSEG ACLK LOAD OR CS DIG 1DIG 5GNDGNDDIG 7DIG 3DIG 2DIG 60.093"(2.36mm)0.080"(2.03mm)SEG B ISET SEG ESEG DP SEG CSEG G DIG 4DIG 0DIN DOUT SEG DTRANSISTOR COUNT: 5267SUBSTRATE CONNECTED TO GNDMAX7219/MAX7221______________________________________________________________________________________15________________________________________________________Package InformationM A X 7219/M A X 7221___________________________________________Package Information (continued)Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.16____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1997 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
8位串行接口数码显示驱动器MAX7219及其应用
8位串行接口数码显示驱动器MAX7219及其应用潍坊高等专科学校 王瑞兰LED数码管的应用已十分广泛,用于数码管显示的驱动电路种类较多,但大致可分为静态显示驱动和动态扫描显示驱动两大类别。
本文所要介绍的MAX7219芯片就是 用于动态扫描显示驱动的芯片。
该芯片的特点是利用一块芯片就能完成8位字数据和8位线数据的驱动,使得电路紧凑。
多芯片级联时,采用串行输入输出,可节省CPU的口线和接口芯片。
与数码管联接时无需限流电阻,8位显示的电流可通过一个外部电阻进行调节。
显示亮度也可通过程序进行控制。
片内具有,可以对输入的数据先进行译码再驱动输出,也可以将输入的数据直接驱动。
一、管脚功能MAX7219采用24管脚DIP和SO两种封装形式,管脚排列如图1所示,各引脚功能见表1。
二、MAX7219内部结构MAX7219的内部功能框图如图2所示。
16位移位寄存器所存数据为D0~D15,见表2。
D8~D11为寄存器地址,D0-D7为数据,D12-D15为不关心位。
片内有14个寄存器,其中8个数据寄存器,寄存着与DIG 0-DIG 7对应的显示数据,地址依次为×1H-8H;6个控制寄存器,即译码控制寄存器(Decode Mode)、显示亮度控制寄存器(Intensity)、扫描频率限制寄存器(Scan Limit)、消隐控制寄存器(Shutdown)、显示测试寄存器Display Test)及无操作寄存器(No-Op),其地址依次为×9H-CH、×FH、×0H。
数据寄存器为8×8双指针SRAM。
因为各寄存器可直接寻址,所以寄存器的数据可分别进行修改。
寄存器的数据可以保存到电源电压降低到2V。
三、控制寄存器1. Shutdown 寄存器Shutdown 寄存器写入×××××××0B数据时,将呈现消隐状态。
MAX7219点阵数码管介绍
MAX7219(MAX7221)LED驱动器介绍MAX7219(MAX7221)LED驱动器简介MAX7219(MAX7221)是一种多位LED显示驱动器,它采用3线串行接口传送数据,可直接与微处理器接口连接,用户可以方便修改其内部参数以实现多位LED 显示。
MAX7219(MAX7221)内部含硬件动态扫描电路、BCD译码器、段驱动器和位驱动器。
此外,MAX7219(MAX7221)内部还含有8X8 位静态RAM,用于存放8个数字的显示数据。
MAX7219(MAX7221)可直接驱动64 段LED点阵数码管。
当多片MAX7219(MAX7221)级联时,可控制更多的LED 点阵数码管。
MAX7219实物图 MAX7221实物图MAX7219(MAX7221)LED驱动器应用领域1、条线图显示应用领域。
2、仪表面板应用领域。
3、工业控制应用领域。
4、LED矩阵显示应用领域。
MAX7219(MAX7221)LED驱动器特点1、10MHz连续串行口。
2、独立的LED段控制。
3、数字的译码与非译码选择。
4、150μA的低功耗关闭模式。
5、亮度的数字和模拟控制。
6、高电压中断显示。
7、共阴极LED显示驱动。
8、限制回转电流的段驱动来减少EMI(MAX7221)。
9、SPI, QSPI, MICROWIRE串行接口(MAX7221)。
10、24脚的 DIP和 SO 封装。
MAX7219(MAX7221)LED驱动器管脚说明MAX7219(MAX7221)LED驱动器管脚内部分配MAX7219(MAX7221)LED驱动器寄存器下表列出了MAX7219(MAX7221)LED驱动器的14 个可寻址的数据寄存器和控制寄存器。
数据寄存器由一个在片上的8×8 的双向SRAM 来实现,它们可以直接寻址,所以只要在电压大于2V 的情况下每个数据都可以独立的修改或保存。
控制寄存器包括译码控制寄存器、亮度控制寄存器、扫描界限寄存器、关断模式寄存器、测试控制寄存器。
MAX7219在带清零与置数功能的增量式光电码盘中的应用
< 气自 化20年 8 电 动 ) 6 第2卷第4 0 期
传 感 器 与检 测 技 术
S ns r e o s& Detc i etg n
— —
MA 7 X 2 带 清 零 与置 数 功 能 的增 量式 光 电码 盘 1 9在 中的应 用
[ 中图 分 类 号 ]M9 5 [ 献 标识 码 ] [ 章 编 号 ]0 03 8 (0 6 0 .0 20 T 3 文 A 文 10 .8 6 2 0 )40 6 .2
增量式光 电码盘是一种高精度的位置检测装 置 ,广泛用于需
要 精 确 检测 位 置 的控 制 系统 中 。增 量 式 光 电 码 盘 的 特 点 是 每 产 生
一
2 1 机上 系统 电路 设计 .
工 作方 式选 择 应 用 两 个 自锁 开 关 接 入 到 A 8C 的 P . T 9A1 10和 P. 1 1口实 现 工作 方式 选 择 :o真 实值 显 示方 式 ( 示 当前 码盘 的实 o 显 际检 测设 备 位 置 )0 清 零显 示 方式 ( 当前 位 置为 零点 检 测设 备位 ;1 以 置 )1 ;X置数 显示 方 式 ( 置 入 的值 为 当前 位 置值 检 测设 备 位置 ) 设 。
M X 29串行驱 动 7位共 阴极数码管 , A 71 显示从 串行接 口接收 到的码盘位置检测角度值。
关键 词 : 量 式 光 电 编码 盘 增 M X 29 压缩 B D码 A 71 C 六 十进 制
Ab ta t T ea ge o c e na p ia -l cr a o e h c s ipa e h o g s r c : h n l f n r me tl t lee t c c d rw ih i s ly d t r u h MAX 2 9 i ito u e .I ce n a p ia- lcrc o e i o c il d 7 1 s n rd c d n r me t l t l ee t a c d r o c il
数码管驱动芯片有哪些
数码管驱动芯片有哪些数码管是一种显示设备,它是由多个发光二极管组成的。
为了驱动数码管的显示,需要使用特定的驱动芯片。
下面是一些常见的数码管驱动芯片:1. TM1637:TM1637是一种常用的4位数码管驱动芯片,适用于控制共阳或共阴数码管。
它具有简单的接口和丰富的功能,可以轻松实现数字、字母、符号的显示和控制。
2. TM1650:TM1650是一种集成了键盘扫描和数码管驱动功能的芯片。
它可以同时驱动4位数码管,并且具有内置的键盘扫描功能,可直接与开关矩阵连接,实现灵活的控制。
3. MAX7219:MAX7219是一种广泛使用的8位数码管驱动器,具有独特的串行接口。
它可以同时驱动8位共阳或共阴数码管,并且可以级联多个芯片,实现更多数码管的显示。
4. HT1621:HT1621是一种针对液晶数码管设计的驱动芯片,可以同时驱动4位数码管,同时支持多种显示模式和字符设置。
它具有低功耗特性和简单易用的接口。
5. CD4543:CD4543是一种BCD-7段数码管驱动芯片,适用于显示0-9数字和部分字母。
它具有直接BCD码输入和简单的复位功能。
6. CD4511:CD4511是一种BCD-7段数码管驱动芯片,适用于显示0-9数字和部分字母。
它具有多种输入模式和BCD码转换功能。
7. HT1622:HT1622是一种驱动静态和多功能数码管显示的专用控制器,兼容于HT1621。
它具有低功耗和扫描速度快的特点。
8. MBI5168:MBI5168是一种高亮度LED数码管驱动芯片,适用于控制共阳数码管。
它具有高驱动电流能力和优秀的亮度调节范围。
除了这些常见的数码管驱动芯片外,还有许多其他型号和品牌的芯片可供选择。
根据不同的应用场景和需求,选择合适的数码管驱动芯片非常重要。
MAX7219在数码管显示电路中的应用研究
在 单 片 机 显 示 电 路 设 计 中 , 码 管 以 其 结 构 简 单 、 格 数 价 低 廉 、 于 扩 展 等 特 点 得 到广 泛 的应 用 , 而 数 码 管 工 作 时 易 然 需 要 占用 较 多 的单 片 机 口线 . 如 4位 数 码 管 , 要 8条 段 例 需 码 线 和 4条 位 码 线 。 果 数 码 管 位 数 增 加 则 占用 的 口线 也 相 如 应 增 加 , 将 使 单 片 机 有 限 的 资源 更 加 紧 张 I] 一 方 面 , 这 】, -另 2 数
内集 成硬 件 动 态扫 描 显 示控 制 电路 , 持 软 件 修 改 内部 参 数 以 实现 数 码 管 的 自由 显 示 。 章 设 计 了 MA 7 1 动 8 支 文 X 29驱 位数 码 管 的 应 用 电路 , 供 了程 序 代 码 。 实验 表 明 , X 2 9可较 大 程 度 地 简化 电路 , 高 集 成 度 , 强 系 统 的 可 靠 提 MA 7 1 提 增
性. 一款优 秀的 L 是 ED数 码 管 显 示驱 动 器件 。
关键 词 : 片机 ;数 码 管 ;显 示 驱动 器 ; A 7 1 单 M X 29 中 图 分 类 号 : P 1+ T 215 文献标识码 : A 文 章 编 号 :1 7 — 2 6 2 1 ) 8 0 8 — 3 6 4 6 3 (0 1 1— 17 0
c mpe h l d p i gd n mi c n mo e n o d rt ov n u h p o l ms T e a t o nr d c sMAX7 1 o l x w i a o t y a c s a d ,I r e s l i g s c r b e , h u h ri to u e e n o 2 9,a s e il p c a
MAX7219
MAX7219是一个采用3线串行接口的8位共阴极7段LED显示驱动器。
本文分析了MAX7219各个寄存器的功能,并结合MAX7219的工作时序,给出了MAX7219在Motorola MC68HC908单片机系统中的一个应用实例。
关键词:MCU;MAX7219;LED Motorola MC68HC908MAX7219工作时序及其寄存器MAX7219是一个高性能的多位LED显示驱动器,可同时驱动8位共阴极LED或64个独立的LED。
其内部结构框图如图1所示,主要包括移位寄存器、控制寄存器、译码器、数位与段驱动器以及亮度调节和多路扫描电路等。
MAX7219采用串行接口方式,只需LOAD、DIN、CLK三个管脚便可实现数据传送。
DIN管脚上的16位串行数据包不受LOAD状态的影响,在每个CLK的上升沿被移入到内部16位移位寄存器中。
然后,在LOAD的上升沿数据被锁存到数字或控制寄存器中。
LOAD必须在第16个时钟上降沿或之后,但在下一个时钟上升沿之前变高,否则数据将会丢失。
DIN端的数据通过移位寄存器传送,并在16.5个时钟周期后出现在DOUT端,随CLK的下降沿输出。
MAX7219的操作时序如图2所示。
MAX7219的串行数据标记为D15~D0,其中低8位表示显示数据本身,最高的4位D15~D12未使用,寻址内部寄存器的地址位占用D11~D8,选择14个内部寄存器,见表1。
图1 MAX7219内部结构框图图2 MAX7219的数据传送时序MAX7219内部具有14个可寻址数字和控制寄存器。
其中的8个数字寄存器由一个片内8×8双端口SRAM实现。
它们可直接寻址,因此可对单个数进行更新并且通常只要V+超过2V数据就可保留下去。
除8个数位寄存器之外,还有无操作、译码方式、亮度调整、扫描位数、睡眠模式和显示器测试6个控制寄存器。
无操作寄存器用于多片MAX7219级联,在不改变显示或不影响任意控制寄存器条件下,它允许数据从DIN传送到DOUT。
max7219笔记
DIN(1脚):串行数据输入端口。
在时钟上升DIG 0~DIG 7(2,3,5~8,10,11脚):8个数据驱动线路置显示器共阴极为低电平。
关闭时7219此管脚输出高电平,7221呈现高祖抗。
GND(4,9脚):地线(4脚和9脚必须同时接地)。
LOAD(12脚,max7219):载入数据。
连接数据的后16位在LOAD端的上升沿时被锁定。
CS(12脚,max7221):片选端。
该端为低电平时串行数据被载入移位寄存器。
连续数据的后16位在CS端的上升沿时被锁定。
CLK(13脚):时钟序列输入端。
最大速率位10MHz,在时钟的上升沿,数据移入内部移位寄存器。
下降沿时,数据从DOUT端输出。
对MAX7221来说,只有当CS端为低电平时时钟输入才有效。
SEG A~SEG G,DP(14~17,20~23脚):7段和小数点驱动,为显示器提供电流。
当一个段驱动关闭时,7219的此端呈低电平,7221呈高祖抗。
SET(18脚):通过一个电阻连接的V+来提高段电流。
V+(19脚):正极电压输入,+5V。
DOUT(24脚):串行数据输出端口,从DIN输入的数据在16.5个时钟周期后在此端有效。
当使用多个MAX7219或MAX7221时用此端方便扩展。
数据寄存器和控制寄存器1、译码模式寄存器(0X09)2、亮度控制(0X0A)越向下,数码管越亮3、扫描控制寄存器(0X0B)4、掉电模式(0X0C)掉电模式:0X00;正常模式:0X01。
5、显示检测寄存器(0X0F)。
串行LED显示驱动器MAX7219及其应用
沿出现的同时或之后,但在下一个CI。K上升沿之前 变为高电平,否则移人的数据将丢失。
表l引脚说明
引脚号
l 2。3.5~ 8.10.11 4.9 12
13
14~17 20~23 18 19
24
名称
功能说明
D。 DIG0~
串行数据输入端。在CLK的上升沿数 据被锁人芯片内部16位移位寄存器 8位LED位选线.从共阴极LED中吸
等教育出版社,1991 4 谢嘉奎.电子线路(第4版).北京:高等教育出
版社,1999
The Calculating of the Power Factor for Switching Power Supply
I。i Tin鲥un Mi Yulin Jiang Zhongshan Ren Jiancun I。i Xin
Key words non—sine waveform,power factor,switching power supply,fourier analysis
万方数据
D15 D14 D13 D12 D1l D10 D9
D8 D7 D6 D5 D4
RESS
MSB
DATA
LSB
万方数据
第5期
胡奕明:串行I。ED显示驱动器MAX7219及其应用
29
+5V
图l典型应用电路 其中:D7~DO:8位数据位,D7最高位,
Do为最底位; D11~D8:4位地址位; D15~D12:无关位,通常全取1。 MAX7219通过D11~D8 4位地址位译码,可 寻址14个内部寄存器,分别是8个LED显示位寄 存器,5个控制寄存器和1个空操作寄存器。LED显 示寄存器由内部8×8静态RAM构成,操作者可直 接对位寄存器进行个别寻址,以刷新和保持数据,只 要V+超过2 V(一般为+5 V)。 控制寄存器包括:译码模式,显示亮度调节,扫 描限制(选择扫描位数),关断和显示测试寄存器。
MAX7219串行LED驱动器的扩展应用
MAX7219串行LED驱动器的扩展应用铁道部武汉工程机械研究所(430066) 容毅摘要: 本文通过一个工程实例详细介绍了在不动用单片机AT89C2051串行口及定时器的情况下,如何应用MAX7219来驱动大尺寸LED数码管.关键词: 并行工作, 电平转换, 不工作方式寄存器美国MAXIM公司生产的MAX7219串行LED显示驱动器自推出以来,已为国内广大电子设计者及爱好者所接受,逐渐成为单片机控制系统中LED显示驱动器的首选芯片之一.MAX7219除了具有能与CPU并行工作这一突出优点外;另外两个能吸引设计者的地方应该是它的低功耗及灵活的控制方式.前者对于那些全日制的工作方式的设备来说尤为重要.最近笔者因实际工作需要,采用MAX7219 芯片设计了两套单片机控制系统.用其驱动6只2.3吋及6只4吋大型LED数码管. 实际24小时不间断工作效果良好.在同等亮度情况下与其它静态LED显示驱动器相比,实测数码显示电路电源功耗仅为后者的五分之一.下面我将根据这个应用实例给出MAX7219显示驱动部分尽可能详尽的软硬件开发资料,以飨各位同仁.有兴趣者可直接引用.一. 硬件组成.关于MAX7219 芯片原理介绍的文章已屡见于许多刊物杂志上,故本文只谈应用并不涉及该芯片结构原理.需要这方面知识的读者.请自行参考相关刊物上的技术文章.下面图1是显示驱动部分的硬件原理图.以4寸LED数码管为例,它的每一段显示由5只发光二极管串联而成(小数点除外). 每一段典型电压降约为10V. 而2.3寸LED数码管则每段显示由4 只发光二极管串联而成.典型压降为8.4V.两种数码管的段电流约为10-20MA.所以直接用MAX7219来驱动是很难胜任的,这里采用光电隔离器件来完成电平转换驱动.由于所采用的光隔器件为反相型,故在其后面又增加了一级反相驱动器ULN2804A.整个驱动电路的基本原理为; 在MAX7219动态扫描瞬间,当某一段输出为高电平(约+5V),某位输出为低电平(约为0V)时. 这时对应光隔二极管导通,相应的发射极为高电平.经 ULN2804A 反相送出的低电平接近负电源电压.连接该位输出的数码管某段得到的电压为VCC - VSS; 对4吋数码管来说为5V-(-9V)=14V; 2.3寸为5V-(-5V)=10V; 均超过其本身正向压降. 上述位段必然导通发光.值得提出的是,本例未使用数码管的小数点.如要应用小数点的话,则应在小数点段外部电路串联二极管,串接二极管的数量应以数码管每段的典型压降为依据. 特别要注意普通二极管与发光二极管正向压降的差别.二.软件编制MAX7219的编程也非常简单.只占用系统的3个普通I/O口,本例使用的是P1.5,P1. 6 与P1.7口.实际上改用其它任意3个普通I/O口只都可以.为了使读者更容易理解下面的程序, 有必要对MAX7219的工作原理作一归纳.a.)从CPU输出I/O口到MAX7219芯片DIN数据输入口的基本数据传输格式为16位串行数.不管是送控制数据还是显示数据,都是按16位串行数据进行.b.) 对单片MAX7219而言.送数的顺序从DIG0至DIG7 即先送高位,后送低位.而且每一位所对应的16位串行数据也是从位15开始至位0结束,这一点恰好与我们以前常用的单片机系统移位寄存器74LS164相反.c.)在多片MAX7219串联的方式下,CPU先向最远端的MAX7219芯片送数. 然后依次由远到近,最后才送相邻最靠近CPU的那一片MAX7219.注意到以上几点结论,编程应该说不是件难事.就图1对应的原理图来说. 可以对两片7219一次同时送数,即采用32位串行数据移位通信的方法.也可以充分利用7219的不工作方式寄存器的原理.对两片7219分别送16位串行数据.这样程序要更简洁一些,可读性更好.下面介绍的是采用上述第二种方法编制的这段程序.┊┊┊MOV 70H, #0FFH 译码方式控制字MOV 71H, #0F5H 亮度控制字*(可调)MOV 72H, #0F5H 扫描个数控制字MOV 73H, #0F1H 关闭REG控制字MOV 74H, #0F0H 显示测试控制字MOV R1, #05H 7219-1初始化MOV R2, #09HMOV R5, #00HMOV R0, #70HLCALL DIPMOV R1, #05H 7219-2初始化MOV R2, #09HMOV R5, #0FHMOV R0, #70HLCALL DIP┊┊┊┊(40H为显示 BCD码缓冲区首址)MOV R1, #06H 7219-1送数MOV R2, #01HMOV R5, #00HMOV R0, #40HLCALL DIPMOV R1, #06H 7219-2送数MOV R2, #01HMOV R5, #0FHMOV R0, #46HLCALL DIP┊┊┊┊(显示驱动子程)DIP: NOPPL1: MOV A, R5 R5=0 送数据给7219-1 JNZ PL2 R5≠0 送数据给7219-2 MOV 21H, #00H 启动不工作方式REGMOV 20H, #00HLCALL DIP2PL2: MOV 21H, R2 7219REG地址指针送21H MOV 20H, @R0 BCD码缓冲区指针送20H INC R2INC R0LCALL DIP2MOV A, R5JZ PL3MOV 21H, #00HMOV 20H, #00HLCALL DIP2PL3: SETB P1.5 LOAD上升沿锁存最后移入的16位数 DJNZ R1, PL1 如未完,接着送下一组16位数RET(16位数移位子程)DIP2: CLR P1.5CLR P1.6MOV R7, #10HPL4: MOV C, 0FH 16位数的最高位送7219的DINMOV P1.7, CSETB P1.6 7219CLK的上升沿锁存该位数MOV A, 21H 移位操作RL AMOV 21H, AMOV A, 20HRLC AMOV 20H, AMOV 08H, CCLR P1.6 下降沿把数据移出DOUT端口DJNZ R7, PL4RET。
max7219点阵屏工作原理
max7219点阵屏工作原理MAX7219是一种数字电路芯片,用于驱动点阵屏,起源于MAXIM公司。
MAX7219的主要特点是在使用少量的I/O管脚的情况下,就能够驱动8×8的点阵屏甚至16×16的点阵屏。
MAX7219芯片采用了数字方式控制,有多个控制模式,主要有:1、不带显示存储器,仅驱动数字显示寄存器法下面我们来具体介绍一下MAX7219点阵屏的工作原理。
一、接线原理MAX7219有两个重要的管脚,一个是数字输出管脚,一个是列选择管脚。
数字输出管脚把数据发给点阵屏,列选择管脚则决定了需要显示的是哪一列的数据。
因为点阵屏是由多行、多列的 LED 灯组成的,它们通过多个引脚与 MAX7219 进行连接。
这个连接方式是以级联的方式连接的,也就是前一个屏幕的 data pin 与后一个屏幕的 input pin 连在一起,最后一个屏幕的 output pin 连接与控制芯片的 data pin , 所有点阵屏的共同管脚,比如chip select(片选)、load(装载)、clk(时钟)连接到了MAX7219的3、2、1管脚。
二、数据格式MAX7219点阵屏与单片机通信的数据有三个,一个是地址,一个是数据,一个是控制字。
其中地址是指向MAX7219内部寄存器,数据用于寄存器内部的信息,操作码是控制MAX7219的操作命令。
寄存器地址:MAX7219芯片内置有多个数据寄存器,比如:CODE_B,CODE_A,SHTDWN,TEST,DIG3-0,SCAN_DIG, INTEN ,DECODE_MODE。
各寄存器的功能就不再多赘述了。
在数据通信中,最重要的就是数据格式,如何格式化数据才能让MAX7219芯片理解?数据格式分两种:普通数据格式和控制字数据格式。
MAX7219内部有8个数字显示寄存器,用于显示8位数码或字符。
以将编号为0的数字显示寄存器的信息显示在LED上时为例,我们要按照一下方式进行数据输入:1、向控制器发送选通这名(chip select)信号。
max7219资料及电路图
MAX7219是MAXIM公司生产的串行输入/输出共阴极数码管显示驱动芯片,一片MAX7219可驱动8个7段(包括小数点共8段)数字LED、LED条线图形显示器、或64个分立的LED发光二级管。
该芯片具有10MHz传输率的三线串行接口可与任何微处理器相连,只需一个外接电阻即可设置所有LED的段电流。
它的操作很简单,MCU只需通过模拟SPI三线接口就可以将相关的指令写入MAX7219的内部指令和数据寄存器,同时它还允许用户选择多种译码方式和译码位。
此外它还支持多片7219串联方式,这样MCU就可以通过3根线(即串行数据线、串行时钟线和芯片选通线)控制更多的数码管显示。
MAX7219的外部引脚分配如图1所示及内部结构如图2所示。
图1 MAX7219的外部引脚分配图2 MAX7219的内部引脚分配各引脚的功能为:DIN:串行数据输入端DOUT:串行数据输出端,用于级连扩展LOAD:装载数据输入CLK:串行时钟输入DIG0~DIG7:8位LED位选线,从共阴极LED中吸入电流SEG A~SEG G DP 7段驱动和小数点驱动ISET:通过一个10k电阻和Vcc相连,设置段电流MAX7219有下列几组寄存器:(如图3)MAX7219内部的寄存器如图3,主要有:译码控制寄存器、亮度控制寄存器、扫描界限寄存器、关断模式寄存器、测试控制寄存器。
编程时只有正确操作这些寄存器,MAX7219才可工作。
图 3 MAX7219内部的相关寄存器分别介绍如下:(1)译码控制寄存器(X9H)如图4所示,MAX7219有两种译码方式:B译码方式和不译码方式。
当选择不译码时,8个数据为分别一一对应7个段和小数点位;B译码方式是BCD译码,直接送数据就可以显示。
实际应用中可以按位设置选择B译码或是不译码方式。
图4 MAX7219的译码控制寄存器(2)扫描界限寄存器(XBH)如图5所示,此寄存器用于设置显示的LED的个数(1~8),比如当设置为0xX4时,LED 0~5显示。
MAX7219原理及其应用1
MAX7219原理及其应用西安通信学院(710106) 王建华 逄玉台摘 要 在单片机应用系统中,单片机与LED的连接有并行和串行方式。
由于串行方式占用单片机口线少,因而得到广泛应用。
MAX7219芯片是一个专用的八位LED显示驱动串行接口,文章介绍了其组成原理、应用电路、程序设计及应用中应注意的问题。
关键词 寄存器 液晶显示器 单片机MAX7219是微处理器和共阴极七段——八位LED显示、图条/柱图显示或64点阵显示接口的小型串行输入/输出芯片。
片内包括BCD译码器、多路扫描控制器、字和位驱动器和8×8静态RAM。
外部只需要一个电阻设置所有LED显示器字段电流。
MAX7219和微处理器只需三根导线连接,每位显示数字有一个地址由微处理器写入。
允许使用者选择每位是BCD译码或不译码。
使用者还可选择停机模式、数字亮度控制、从1~8选择扫描位数和对所有LED显示器的测试模式。
1 MAX7219工作原理1.1 MAX7219简介MAX7219和单片计算机连接有三条引线(DIN、CLK、LOAD),采用16位数据串行移位接收方式。
即单片机将16位二进制数逐位发送到DIN端,在CLK上升沿到来前准备就绪,CLK的每个上升沿将一位数据移入MAX7219内移位寄存器,当16位数据移入完,在LOAD引脚信号上升沿将16位数据装入MAX7219内的相应位置,在MAX7219内部硬件动态扫描显示控制电路作用下实现动态显示。
1.2 MAX7219引脚说明MAX7219为24引脚芯片,引脚排列如图1所示,各引脚功能如下:DIN:串行数据输入端;DIG0~DIG7:LED位线;LOAD:数据装载信号输入端;SEGA~SEGG,SEGDp:段码输出端;ISET:硬件亮度调节端;DOUT:串行数据输出端;CLK:移位脉冲输入端;V+:正电源;GND:地。
SEGDpSEGASEGCSEGDDOUTDINDIG0DIG4GNDDIG6DIG2DIG3DIG7GNDDIG5DIG1LOAD CLKSEGFSEGBSEGGISETSEGEV+图1 MAX7219引脚图1.3 MAX7219内部组成结构MAX7219组成如图2所示。
用MAX7219多功能显示驱动芯片构成的8位LED数码管显示电路
用MAX7219多功能显示驱动芯片构成的8位LED数码管显
示电路
宋忠典
【期刊名称】《电子技术应用》
【年(卷),期】1997(023)001
【摘要】介绍用MAX7219多功能显示驱动芯片构成的显示电路,该电路与单片机接口简单,不需附加元件,能驱动8个数码管,占用很小的印刷板面积,是微处理器仪表理想的显示电路。
【总页数】2页(P53,55)
【作者】宋忠典
【作者单位】山东大学电子工程系
【正文语种】中文
【中图分类】TP216.02
【相关文献】
1.用ICM7218构成的LED数码管显示电路 [J], 宋忠典;常桂芝
2.读一篇文章,作一个单片机电路(八):基于AT89C2051串口的LED数码管显示电路 [J], 黄亮
3.基于LED数码管的单片机显示电路实验平台开发 [J], 钟达
4.基于LED数码管的单片机显示电路实验平台开发 [J], 钟达
5.基于LED数码管的单片机显示电路实验平台开发 [J], 钟达
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//延时,确保硬件能检测到 CLK 端口的上升沿 _delay_us(2); //时钟置为低电平,准备下一次上升沿 MAX7219_CLK_0; //将地址最高位的下一位左移到最高位 addr<<=1; } //循环过后,已将地址发送给 7219 了,时钟初始化置为低电平 MAX7219_CLK_0; //再用 8 次循环,将数据发送给 7219,8 位数据位都有效 for(i=0;i<8;i++) { if(data&0x80){MAX7219_DIN_1;} else {MAX7219_DIN_0;} _delay_us(2); MAX7219_CLK_1; _delay_us(2); MAX7219_CLK_0; data<<=1; } //将 LOAD 置为高电平,实现上升沿锁定的操作 MAX7219_LOAD_1; } void init7219(void) { //设置 8 个数码管的模式选择都为译码模式 Write7219(0x9,0xFF); //设置占空比为 15/32(数码管亮与灭的时间比) ,即设置数码管的亮度 Write7219(0xa,0x7); //设置需扫描的显示器的个数为 8 个, Write7219(0xb,0x7); //设置掉电时的模式为普通模式 Write7219(0xc,0x1); }