【数学】2014-2015年江苏省盐城市东台市七年级下学期数学期末试卷和答案解析PDF
盐城市七年级下册数学期末试卷(带答案)-百度文库
盐城市七年级下册数学期末试卷(带答案)-百度文库一、选择题1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >> 2.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm 3.如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a ∥b )的一边b 上,若∠1=30°,则三角板的斜边与长尺的另一边a 的夹角∠2的度数为( )A .10°B .15°C .30°D .35° 4.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5B .k=5C .k=-10D .k=10 5.计算23x x 的结果是( ) A .5xB .6xC .8xD .23x 6.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 7.下列各式中,能用平方差公式计算的是( )A .(p +q )(p +q )B .(p ﹣q )(p ﹣q )C .(p +q )(p ﹣q )D .(p +q )(﹣p ﹣q ) 8.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°9.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-10.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠2二、填空题11.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.12.某球形流感病毒的直径约为0.000000085m,0.000000085用科学记数法表为_____.13.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x的值为_____.14.如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=105°,则∠AED的度数是_____.15.已知m为正整数,且关于x,y的二元一次方程组210320mx yx y+=⎧⎨-=⎩有整数解,则m的值为_______.16.已知21xy=⎧⎨=⎩是方程2x﹣y+k=0的解,则k的值是_____.17.有两个正方形,A B,现将B放在A的内部得图甲,将,A B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B的边长之和为________.18.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.19.若2m =3,2n =5,则2m+n =______.20.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.三、解答题21.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.22.先化简,再求值:(2a ﹣b )2﹣(a +1﹣b )(a +1+b )+(a +1)2,其中a =12,b =﹣2.23.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法: 15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.24.如图,已知:点A C 、、B 不在同一条直线,ADBE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.已知a 6=2b =84,且a <0,求|a ﹣b|的值.26.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.27.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 28.[知识生成]通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式. 例如:如图①是一个长为2a ,宽为2b 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的形状拼成一个正方形.请解答下列问题:(1)图②中阴影部分的正方形的边长是________________;(2)请用两种不同的方法求图②中阴影部分的面积:方法1:________________________;方法2:_______________________;(3)观察图②,请你写出(a+b )2、2()a b -、ab 之间的等量关系是____________________________________________;(4)根据(3)中的等量关系解决如下问题:若6x y +=,112xy =,则2()x y -= [知识迁移]类似地,用两种不同的方法计算同一几何体的体积,也可以得到一个恒等式. (5)根据图③,写出一个代数恒等式:____________________________;(6)已知3a b +=,1ab =,利用上面的规律求332a b +的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19-,c=(-3)0=1, ∴c >a >b ,故选B .【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂. 2.C解析:C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意;故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.3.B解析:B【解析】∠1与它的同位角相等,它的同位角+∠2=45°所以∠2=45°-30°=15°,故选B4.A解析:A【分析】根据方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,可得方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值,再代入4x-3y+k=0即可求得k 的值.【详解】∵方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解, ∴5320x y x y -=⎧⎨-=⎩, 解得,1015x y =-⎧⎨=-⎩; 把1015x y =-⎧⎨=-⎩代入4x-3y+k=0得, -40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x y x y -=⎧⎨-=⎩,解方程组求得x 、y 的值是解决问题的关键.5.A解析:A【分析】根据同底数幂相乘,底数不变,指数相加即可求解.【详解】解:∵23235x x x x +==,故选A .【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.6.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A .原式=x 2﹣2x +1,B .原式=﹣(x ﹣1)2=﹣x 2+2x ﹣1;C .(x +1)(x ﹣1)=x 2﹣1;D .原式=x 2+2x ﹣x ﹣2=x 2+x ﹣2;∴计算结果为x 2﹣1的是C .故选:C .【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.7.C解析:C【分析】利用完全平方公式和平方差公式对各选项进行判断.【详解】(p +q )(p +q )=(p +q )2=p 2+2pq +q 2;(p ﹣q )(p ﹣q )=(p ﹣q )2=p 2﹣2pq +q 2;(p +q )(p ﹣q )=p 2﹣q 2;(p +q )(﹣p ﹣q )=﹣(p +q )2=﹣p 2﹣2pq ﹣q 2.故选:C .【点睛】本题考查了完全平方公式和平方差公式,熟练掌握公式的结构及其运用是解答的关键.8.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.9.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.10.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题11.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.12.5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000085=8.5×10﹣8.故答案为:8.5×10﹣8【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;16.-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x与y的值代入方程计算即可求出k的值.【详解】解:把21xy=⎧⎨=⎩代入方程得:4﹣1+k=0,解得:k=﹣3,则k的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.17.5【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A,B的边长分别为a,b,根据图形构建方程组即可解决问题.【详解】解:设正方形A,B的边长分别为a,b.由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 18.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =.故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.19.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.20.84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得 解析:84【分析】设原两位数的个位上的数字为x ,则十位上的数字为2x ,根据数位问题的数量关系建立方程求出其解就可以得出结论.【详解】解:设原两位数的个位上的数为x ,则十位上的数字为2x ,由题意,得10×2x+x-(10x+2x )=36,解得:x=4,则十位数字为:2×4=8,则原两位数为84.故答案为:84.【点睛】本题考查了一元一次方程的应用-数字问题,考查了百位数字×100+十位上的数字×10+个位数字的运用,解答时根据数位问题的数量关系建立方程式是关键.三、解答题21.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.22.22442a ab b -+;13【分析】原式利用平方差公式及完全平方公式展开,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:原式=4a 2﹣4ab+b 2﹣(a 2+2a+1﹣b 2)+a 2+2a+1=4a 2﹣4ab+b 2﹣a 2﹣2a ﹣1+b 2+a 2+2a+1=4a 2﹣4ab+2b 2,当a =12,b =﹣2时,原式=1+4+8=13. 【点睛】 此题考查了整式的混合运算−化简求值,熟练掌握运算法则是解本题的关键.23.[初步应用]5,3;[深入研究]x 3+2x 2-x -2=(x +2)(x +1)(x -1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x 3+2x 2-x -2÷(x +2),即可将多项式x 3+2x 2-x -2因式分解.【详解】[初步应用]∵多项式x 2+□x +6能被x +2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.24.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CFAD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.25.16【分析】根据幂的乘方运算法则确定a 、b 的值,再根据绝对值的定义计算即可.【详解】解:∵(±4)6=2b =84=212,a <0,∴a =﹣4,b =12,∴|a ﹣b|=|﹣4﹣12|=16.【点睛】本题考查幂的乘方,难度不大,也是中考的常考知识点,熟练掌握幂的乘方运算法则是解题的关键.26.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 27.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-;(3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.28.(1) a-b ;(2)()2a-b ; ()2a b 4ab +-; (3)22()4()a b ab a b +-=-;(4) 14;(5) (a+b )3=a 3+b 3+3a 2b+3ab 2;(6) 9.【分析】(1)由图直接求得边长即可,(2)已知边长直接求面积,阴影面积是大正方形面积减去四个长方形面积,可得答案,(3)利用面积相等推导公式22()4()a b ab a b +-=-;(4)利用(3)中的公式求解即可,(5)利用体积相等推导33322()33a b a b a b ab +=+++;(6)应用(5)中的公式即可.【详解】解:(1)由图直接求得阴影边长为a-b ;故答案为:a-b ;(2)方法一:已知边长直接求面积为2()a b -;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为2()4a b ab +-;故答案为2()a b -;2()4a b ab +-;(3)由阴影部分面积相等可得22()4()a b ab a b +-=-;故答案为: 22()4().a b ab a b +-=-(4)由22()4()a b ab a b +-=-, 可得22()4()x y xy x y -+=+,∵116,2x y xy +==, ∴2211()462x y -+⨯= , ∴2()14x y -= ;故答案为14;(5)方法一:正方体棱长为a+b , ∴体积为3()a b +,方法二:正方体体积是长方体和小正方体的体积和,即332233a b a b ab +++,∴33322()33a b a b a b ab +=+++;故答案为33322()33a b a b a b ab +=+++;(6)∵33322()33a b a b a b ab +=+++; 将a+b=3,ab=1,代入得:333333,a b a b =+++ 33279,a b =++3318a b +=;339.2a b +∴= 【点睛】本题考查完全平方公式的几何意义;同时考查对公式的熟练的应用,能够由面积相等,过渡到利用体积相等推导公式是解题的关键.。
七年级下册盐城数学期末试卷试卷(word版含答案)
七年级下册盐城数学期末试卷试卷(word版含答案)一、选择题1.下列图形中,1∠和2∠不是内错角的是()A.B.C.D.2.下列图案可以由部分图案平移得到的是()A.B.C.D.3.在平面直角坐标系中,点A(1,﹣2021)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列说法中,真命题的个数为()①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行;③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A.1个B.2个C.3个D.4个5.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒6.下列说法中,正确的是( )A .(﹣2)3的立方根是﹣2B .0.4的算术平方根是0.2C .64的立方根是4D .16的平方根是47.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )A .62°B .48°C .58°D .72°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.若23(2)m n =0,则n m =________ .10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,在ABC 中,40B ︒∠=.三角形的外角DAC ∠和ACF ∠的角平分线交于点E ,则AEC ∠=_____度.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果236x =,那么6x =±.15.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______. 16.如图,在平面直角坐标系中,////AB EG x 轴,////////BC DE HG AP y 轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A→→→→→→→→→的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.三、解答题17.(1310.0484-(2)计算:2231(3)0.125(4)64--- 18.求下列各式中x 的值:(1)9x 2-25=0;(2)(x +3)3+27=0.19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________20.如图,在平面直角坐标系中,()1,2--A ,()2,4B --,()4,1C --.ABC 中任意一点()00,P x y 经平移后对应点为()1001,2P x y ++,将ABC 作同样的平移得到111A B C △.(1)请画出111A B C △并写出点1A ,1B ,1C 的坐标;(2)求111A B C △的面积;(3)若点P 在y 轴上,且11A B P △的面积是1,请直接写出点P 的坐标.21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469263<<6262.根据上面的材料,解决下列问题:(111m 5n 5m n +(2)若7142x ,小数部分是y ,求142x y -+ 二十二、解答题22.如图,用两个边长为2(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?二十三、解答题23.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.24.已知,如图①,∠BAD=50°,点C为射线AD上一点(不与A重合),连接BC.(1)[问题提出]如图②,AB∥CE,∠BCD=73 °,则:∠B= .(2)[类比探究]在图①中,探究∠BAD、∠B和∠BCD之间有怎样的数量关系?并用平行....线的性质....说明理由.(3)[拓展延伸]如图③,在射线BC上取一点O,过O点作直线MN使MN∥AD,BE平分OG BE交AD于G点,当C点沿着射∠ABC交AD于E点,OF平分∠BON交AD于F点,//线AD方向运动时,∠FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.26.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.(1)求证:∠BED=90°;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论:.【参考答案】一、选择题1.B解析:B【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答.【详解】解:A、∠1和∠2是内错角,故选项不合题意;B、∠1和∠2不是内错角,故选项符合题意;C、∠1和∠2是内错角,故选项不合题意;D、∠1和∠2是内错角,故选项不合题意;故选B.【点睛】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A、是旋转变换,不是平移,选项错误,不符合题意;B、轴对称变换,不是平移,选项错误,不符合题意;C、是平移,选项正确,符合题意;D、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.D【分析】根据各象限内点的坐标特征解答.【详解】解:∵点A(1,-2021),∴A点横坐标是正数,纵坐标是负数,∴A点在第四象限.故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.B【分析】记∠1顶点为A ,∠2顶点为B ,∠3顶点为C ,过点B 作BD ∥l 1,由平行线的性质可得∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B 作BD ∥l 1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 6.A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案.【详解】解:A .(﹣2)3的立方根是﹣2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;2,故本选项不符合题意;CD.16的平方根是±4,故本选项不符合题意;故选:A.【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.7.B【分析】先根据平行线的性质求出∠CED,再根据三角形的内角和等于180°即可求出∠CDE.【详解】解:∵DE∥AF,∠CAF=42°,∴∠CED=∠CAF=42°,∵∠DCE=90°,∠CDE+∠CED+∠DCE=180°,∴∠CDE=180°-∠CED-∠DCE=180°-42°-90°=48°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的关键.二、填空题9.9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n -2=0,解得:m=-3,n=2,则n m =2(3) =9.考点:非负数的性质.10.(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴解析:(2,﹣5).【分析】根据题意分析点P ,先关于y 轴对称,再求关于x 轴对称的点即可【详解】∵点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,∴点Q 的坐标为(2,5),∵点P 与点Q 关于x 轴对称,∴点P 的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B=40°,∴∠解析:【分析】如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC +∠ACF 的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.【详解】解:如图,∵∠B =40°,∴∠1+∠2=180°-∠B =140°,∴∠DAC +∠ACF =360°-∠1-∠2=220°,∵AE 和CE 分别是DAC ∠和ACF ∠的角平分线, ∴113,422DAC ACF ∠=∠∠=∠, ∴()113422011022DAC ACF ∠+∠=∠+∠=⨯=, ∴()1803418011070E ∠=-∠+∠=-=.故答案为:70.【点睛】本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC=∠DEF ,从而求出∠DEC 的度数,即可得到∠EDC .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC =∠DEF ,从而求出∠DEC 的度数,即可得到∠ED C .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =44°,∠B =90°,∴∠BEF =46°,∴∠DEC =12(180°-46°)=67°,∴∠EDC =90°-∠DEC =23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.所以∠1+∠2=12∠CAE+12∠ACF=1 2(∠CAE+∠ACF)=12×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果236x=,那么6x=±,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.15.-1<a<3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴,解不等式①得,a <3,解不等式②得,a >解析:-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴3010a a -⎧⎨+⎩<①>②, 解不等式①得,a <3,解不等式②得,a >-1,∴-1<a <3.故答案为:-1<a <3.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.【详解】解:,,,,,∴,“凸”形的周长为20,又∵的余数为1,细线另一端所在位置的点在的中点处,坐标为.故解析:(0,2)【分析】先求出“凸”形ABCDEGHP 的周长为20,得到202120÷的余数为1,由此即可解决问题.【详解】解:(1,2)A ,(1,2)B -,(3,0)D -,(3,2)E --,(3,2)G -,∴2,2,2,2,6,2,2AB BC AP CD DE EG GH PH ========,∴ “凸”形ABCDEGHP 的周长为20,又∵202120÷的余数为1,∴细线另一端所在位置的点在AB的中点处,坐标为(0,2).故答案为:(0,2).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1);(2)【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解解析:(1) 2.3;(2)1【分析】(1)先根据算术平方根、立方根的定义化简各项,然后进行加减计算即可;(2)先根据算术平方根、立方根、平方的定义,绝对值的性质化简各项,然后进行加减计算即可.【详解】解:(110.2(2)=+--2=-;2.3(6-(2)211=---+-3()4622=.1【点睛】本题主要考查了实数的运算,解题的关键是熟练掌握算术平方根、立方根、平方的定义,绝对值的性质及实数运算法则.18.(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x =53±;(2)x =-6 【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可.【详解】(1)29250x -=解:2925x =2259x = 53x =±(2)3(3)270x ++=解:3(3)27x +=-33x +=-6x =-【点睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键. 19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)图见解析,,,;(2)3.5;(3)点的坐标为或【分析】(1)依据点P (x0,y0)经平移后对应点为P1(x0+1,y0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A1B解析:(1)图见解析,()10,0A ,()11,2B --,()131C ,-;(2)3.5;(3)点P 的坐标为()02,或()0,2-【分析】(1)依据点P (x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;(3)设P (0,y ),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.【详解】解:(1)如图所示,111A B C △即为所求;()10,0A ,()11,2B --,()131C ,-;(2)111A B C △的面积为:()11113313126 1.51 3.5222+⨯-⨯⨯-⨯⨯=--=; (3)设()0,P y ,则1A P y =,∵11A B P △的面积是1, ∴1112y ⨯⨯=, 解得2y =±,∴点P 的坐标为()02,或()0,2-.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<,∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3, ∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 二十二、解答题22.(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长; (2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:(22⨯∴=30;(2)设长方形纸片的长为4xcm ,宽为3xcm ,则4x •3x =720,解得:x ,4x >30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm 2.故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式. 二十三、解答题23.(1)证明见解析;(2)证明见解析;(3)∠FBE =35°.【分析】(1)根据平行线的性质得出∠ABF =∠BFE ,∠DCF =∠EFC ,进而解答即可; (2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE =∠FBG +∠GBE =2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.24.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.25.(1),理由见解析;(2)当点P 在B 、O 两点之间时,;当点P 在射线AM 上时,.【分析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠C解析:(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)分两种情况:①点P 在A 、M 两点之间,②点P 在B 、O 两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出结论.【详解】解:(1)∠CPD =∠α+∠β,理由如下:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE +∠CPE =∠α+∠β.(2)当点P 在A 、M 两点之间时,∠CPD =∠β-∠α.理由:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.26.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.。
盐城市七年级下册数学期末试卷(含答案)
盐城市七年级下册数学期末试卷(含答案)一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.已知多项式x a -与22x x -的乘积中不含2x 项,则常数a 的值是( )A .2-B .0C .1D .2 3.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )4.下列计算中正确的是( )A .2352a a a +=B .235a a a +=C .235a a a =D .236a a a = 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-6.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案.A .0B .1C .2D .37.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 8.若8x a =,4y a =,则2x y a +的值为( ) A .12B .20C .32D .256 9.下列计算中,正确的是( )A .(a 2)3=a 5B .a 8÷ a 2=a 4C .(2a )3=6a 3D .a 2+ a 2=2 a 2 10.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个二、填空题11.用简便方法计算:10.12﹣2×10.1×0.1+0.01=_____.12.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.13.分解因式:29a -=__________.14.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.15.已知某种植物花粉的直径为0.00033cm ,将数据0.00033用科学记数法表示为 ________________.16.目前,世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为_____.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.三角形两边长分别是3、5,第三边长为偶数,则第三边长为_______19.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.已知:如图,//AB DC ,AC 和BD 相交于点O ,E 是CD 上一点,F 是OD 上一点,且∠1=∠A .(1)求证://FE OC ;(2)若∠BFE =110°,∠A =60°,求∠B 的度数.22.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.23.解方程组(1)2431y x x y =-⎧⎨+=⎩(2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩. 24.在校运动会中,篮球队和排球队共有24支,其中篮球队每队10名队员,排球队每队12名队员,共有260名队员.请问篮球队、排球队各有多少支?(利用二元一次方程组解决问题)25.杨辉三角是一个由数字排列成的三角形数表,一般形式如图所示,其中每一横行都表示(a+b)n (此处n=0,1,2,3,4...)的展开式中的系数.杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两数之和.…… ……(1)请直接写出(a +b )4=__________;(2)利用上面的规律计算:①24+4×23+6×22+4×2+1=__________;②36-6×35+15×34-20×33+15×32-6×3+1=________.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-27.计算(1) (-a 3) 2·(-a 2)3(2) (2x -3y )2-(y+3x )(3x -y )(3) ()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭ 28.先化简,再求值:4(x ﹣1)2﹣(2x +3)(2x ﹣3),其中x =﹣1.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.A解析:A【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:()232()2(2)2x a x x x a x ax --+-=+,∵不含2x 项,∴(2)0a -+=,解得2a =-.故选:A .【点睛】本题主要考查单项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键. 3.B解析:B【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解.考点:因式分解4.C解析:C【分析】根据同底数幂的加法和乘法法则进行计算判断即可.【详解】解:A 、23a a +无法合并,故A 选项错误;B 、23a a +无法合并,故B 选项错误;C 、235a a a =,故C 选项正确;D 、235a a a =,故D 选项错误.故选:C【点睛】此题考查同底数幂的运算法则,同底数幂的加减必须是同类项才可以进行加减,同底数幂的乘除底数不变,指数相加减.5.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.C解析:C【分析】设小明买了签字笔x 支,练习本y 本,根据已知列出关于x 、y 的二元一次方程,用y 表示出x ,由x 、y 均为非负整数,解不等式可得出y 可取的几个值,从而得出结论.【详解】设小明买了签字笔x 支,练习本y 本,根据已知得:2x+3y=10, 解得:1032y x -=. ∵x 、y 均为非负整数, ∵令1030y -≥,解得:103y ≤, ∴y 只能为0、2两个数,∴只有两种购买方案.故选:C .【点睛】本题考查了二元一次方程的应用以及解一元一次不等式,解题的关键是根据x 、y 均为正整数,解不等式得出y 可取的值.本题属于基础题,难度不大,只要利用x 、y 为正整数,结合不等式即可得出结论.7.C解析:C【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC =∠BFE−∠CFE =x−24°,∵纸条沿BF 折叠,∴∠C ′FB =∠BFC =x−24°,而∠B ′FE +∠BFE +∠C ′FE =180°,∴x +x +x−24°=180°,解得x =68°,∵A ′D ′∥B ′C ′,∴∠A ′EF =180°−∠B ′FE =180°−68°=112°,∴∠AEF =112°.故选:C .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.8.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 9.D解析:D【分析】直接利用同底数幂的乘除运算法则,积的乘方运算法则以及合并同类项法则分别计算得出答案.【详解】解:A 、(a 2)3=a 6,故此选项错误;B 、a 8÷ a 2=a 6,故此选项错误;C 、(2a )3=8a 3,,故此选项错误;D 、a 2+ a 2=2 a 2,故此选项正确.故选:D【点睛】此题主要考查了同底数幂的乘除运算以及积的乘方运算等知识,正确掌握运算法则是解题关键.10.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.二、填空题11.100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(解析:100【分析】利用完全平方公式解答.【详解】解:原式=(10.1﹣0.1)2=102=100.故答案是:100.【点睛】本题考查了完全平方公式,能够把已知式子变成完全平方的形式,求得(10.1-0.1)的值.12.7【分析】连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,从而有S 四边形AEOH+S 四边形CGOF=S 四边形DHO解析:7【分析】连接OC ,OB ,OA ,OD ,易证S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,S △OAE =S △OBE ,从而有S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,由此即可求得答案.【详解】连接OC ,OB ,OA ,OD ,∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得:S 四边形DHOG =7,故答案为:7.【点睛】本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.13.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.14.20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm ,即AE=2,解析:20【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积【详解】解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm ,即CF=1,则DF=DC-CF=6-1=5cm则S 矩形DEB'F =DE•DF=4×5=20cm 2故答案为20【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.15.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:43.310-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数据0.00033用科学记数法表示为43.310-⨯,故答案为:43.310-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000004,4的前面有8个0,所以n =8,所以0.00000004=4×10-8.故答案为:4×10-8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<解析:4或6【解析】【分析】根据三角形三边关系,可令第三边为x ,则5-3<x <5+3,即2<x <8,又因为第三边长为偶数,即可求得答案.【详解】由题意,令第三边为x ,则5-3<x<5+3,即2<x<8,∵第三边长为偶数,∴第三边长是4或6,故答案为:4或6.【点睛】本题考查了三角形三边关系,熟练掌握三角形的三边关系是解决此类问题的关键.19.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)见详解;(2)50°.【分析】AB DC,可知∠A=∠C ,然后等量代换得到∠C=∠1,利用同位角相等两直线平(1)由//行即可得证;(2)由EF与OC平行,利用两直线平行同旁内角互补得到∠BFE+∠DOC=180°,然后通过三角形内角和即可求出∠B的度数.【详解】(1)证明:∵AB∥CD,∴∠A=∠C ,又∵∠1=∠A,∴∠C=∠1,∴FE∥OC;(2)解:∵FE∥OC,∴∠BFE+∠DOC=180°,又∵∠BFE=110°,∴∠DOC=180°-110°=70°,∴∠AOB=∠DOC=70°,∵∠A=60°,∴∠B=180°-60°-70°=50°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.23.(1)12xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12x y =⎧⎨=-⎩; (2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩方程组整理得:211213x y x y +=⎧⎨+=⎩①②, ①×2﹣②得:3y =9,解得:y =3,把y =3代入②得:x =5,则方程组的解为53x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.24.篮球队14支,排球队10支【分析】根据题意可知,本题中的等量关系是“有24支队”和“260名运动员”,列方程组求解即可.【详解】设篮球队x 支,排球队y 支,由题意可得: 241012260x y x y +=⎧⎨+=⎩解的:1410x y =⎧⎨=⎩答:设篮球队14支,排球队10支【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.25.(1)++++432234a 4a b 6a b 4ab b ;(2)①81;②64【分析】(1)根据杨辉三角的数表规律解答即可;(2)由杨辉三角的数表规律和(1)题的结果可得所求式子=(2+1)4,据此解答即可; ②由杨辉三角的数表规律可得所求式子=(3-1)6,据此解答即可.【详解】解:(1)()4432234464a b a a b a b ab b +=++++;故答案为:++++432234a 4a b 6a b 4ab b ;(2)①24+4×23+6×22+4×2+1=(2+1)4=34=81;故答案为:81;②36-6×35+15×34-20×33+15×32-6×3+1=(3-1)6=26=64;故答案为:64.【点睛】本题考查了多项式的乘法和完全平方公式的拓展以及数的规律探求,正确理解题意、找准规律是解题的关键.26.(1)4;(2)462x y -;(3)-4ab+9b 2;(4)m 2-4n 2+12n-9.【分析】(1)原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果;(2)原式利用积的乘方运算法则计算,合并即可得到结果;(3)原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用平方差公式化简,再利用完全平方公式展开,计算即可得到结果.【详解】解:(1)原式=-1+1+4=4;(2)原式=464646242x y x y x y -=-; (3)原式=4a 2-12ab+9b 2-4a 2+8ab=-4ab+9b 2;(4)原式=m 2-(2n-3)2=m 2-4n 2+12n-9.【点睛】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.27.(1)-12a ;(2)-522x 10y 12xy +-;(3)1034. 【分析】(1)先计算幂的乘方,然后计算同底数幂相乘,即可得到答案;(2)先计算完全平方公式和平方差公式,然后合并同类项,即可得到答案;(3)先计算负整数指数幂,零指数幂,绝对值,然后合并同类项,即可得到答案.【详解】解:(1)32236612()()()a a a a a -•-=•-=-;(2)2(23)(3)(3)x y y x x y --+- =22224129(9)x xy y x y -+--=2251210x xy y --+;(3)()()()102323223π--⎛⎫+-+-+- ⎪⎝⎭=3118 24+++=3 104;【点睛】本题考查了负整数指数幂,零指数幂,完全平方公式,平方差公式,以及同底数幂的乘法,解题的关键是熟练掌握运算法则进行解题.28.化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2 x+1)-(4x2-9) =4x2-8 x+4-4x2+9=-8 x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.。
江苏省东台市七年级数学下学期期末考试试题(扫描版)
江苏省东台市2015-2016学年七年级数学下学期期末考试试题学生学业质量调查分析与反馈七年级数学参考答案题号 1 2 3 4 5 6 7 8答案 B D C A A C D B9. 7×10-4 10.-1/8 x3y6 11.能被5整除的数,末位数字是5 12.6 13.25 14.3 15.60°或100 ° 16. 11三、解答题(本大题共9题,计60 分)17. (1)解:原式=8-1+1……………………………2分;(每错一个扣1分)=8 …………………………………3分;(2)化简得18+24y……………………………………2分;当x=-0.5时,原式=6……………………………3分18. 解:(1)原式=-a(a2-2a+1) ……………………………………1分=-a(a-1)2………………………………………… 3分(2) 原式= (x2+1)(x2-1) ……………………………………2分= (x2+1)(x+1)(x-1) ………………………………3分19. 解:解不等式不等式①得x≥-1解不等式不等式②得x<2……………………………2分(每对一个得1分)在数轴上表示其解集…………………………………3分;不等式组的解集为-1≤x<2…………………………4分20. (每填对一个得1分)解:角平分线的定义;∠1;两直线平行,内错角相等;∠2;两直线平行,同位角相等;等量代换.21. (第1小题4分,第2小题2分)(1)求出x=2k-1,y=k-3………………………………………………2分;(每对一个得1分)代入求出k=-4……………………………………………………4分(2)正确给出k的值(k为大于3的任意整数) ………………………1分写出相应方程组的正整数解…………………………………2分(注:其它正确解法参照给分)22.(每小题4分)解:(1)证明(略)……………………………………………………4分(2)画图正确…………………………………………5分判断∠AEC=∠CFE ………………………………6分证明过程正确…………………………………………8分23. (每小题4分)解:(1)设每台A品牌电脑的价格为x元,每张B品牌课桌的价格为y元……1分由题意,得…………………………………………2分,解得:…………………………………………3分答:每台A品牌电脑的价格为4000元,每张B品牌课桌的价格为150元……………4分(2)设购进A品牌电脑m台,B品牌课桌n张,由题意,得4000×0.9m+150×0.8n=240000,则n=2000-30m………………5分又…………………………………………6分解得:则m=50或51n=500或470…………………………………………………………7分答:有2种方案:购买A品牌电脑50台,B品牌课桌500张或A品牌电脑51张,B品牌课桌470张.…………………………………………8分(注:其它正确解法参照给分)24. (1)每空1分,合计3分:0,1,2;(2)规律:3n —3n-1=2×3n-1………………………………………………1分证明:3n —3n-1=3×3n-1—1×3n-1=2×3n-1…………………………………3分(3)每空1分,合计2分:1/2(32017—1),125.(每小题4分)(1)∠BPC=∠ABP +∠ACP+90°………………………………………1分证明(略)…………………………………………………………4分(2)共4种可能,每种情况1分,合计4分:①下方∠BPC=270°—∠ABP —∠ACP (含点P在AB或AC的延长线上);②左侧∠BPC=90°+∠ACP—∠ABP(含点P在CB的延长线上);③右侧∠BPC=90°+∠ABP—∠ACP (含点P在BC的延长线上);④上方∠BPC=90°—∠ABP —∠ACP(含点P在BA或CA的延长线上).(注:其它正确写法参照给分)。
盐城市人教版七年级下册数学期末试卷及答案
盐城市人教版七年级下册数学期末试卷及答案一、选择题1.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >> 2.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2B .﹣6a 3C .12a 3D .6a 3 3.以下列各组数据为边长,可以构成等腰三角形的是( ) A .1cm 、2cm 、3cmB .3cm 、 3cm 、 4cmC .1cm 、3cm 、1cmD .2cm 、 2cm 、 4cm 4.把多项式228x -分解因式,结果正确的是( ) A .22(8)x -B .22(2)x -C .D .42()x x x- 5.下列各式由左边到右边的变形,是因式分解的是( )A .x (x +y )=x 2+xyB .2x 2+2xy =2x (x +y )C .(x +1)(x -2)=(x -2)(x +1)D .2111x x x x x ⎛⎫++=++ ⎪⎝⎭ 6.下列方程中,是二元一次方程的是( ) A .x 2+x =1 B .2x ﹣3y =5C .xy =3D .3x ﹣y =2z 7.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-8.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷=9.甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A .36x y x y -=⎧⎨+=⎩B .36x y x y +=⎧⎨-=⎩C .331661x y x y +=⎧⎨-=⎩D .331661x y x y -=⎧⎨+=⎩10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.计算()()12x x --的结果为_____;12.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,ED '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1=_______.13.如图,∠1、∠2是△ABC 的外角,已知∠1+∠2=260°,求∠A 的度数是______.14.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .15.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.16.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.17.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____. 18.把长和宽分别为a 和b 的四个相同的小长方形拼成如图的图形,若图中每个小长方形的面积均为3,大正方形的面积为20,则()2a b -的值为_____.19.如图,AD、AE分别是△ABC的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.20.若长方形的长为a+3b,宽为a+b,则这个长方形的面积为_____.三、解答题21.把下列各式分解因式:(1)4x2-12x3(2)x2y+4y-4xy(3)a2(x-y)+b2(y-x)22.解方程组:(1)23 38 y xx y=-⎧⎨-=⎩(2)7 43832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩23.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239345x yx y-=⎧⎨+=⎩①②.24.如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB =∠ADP ,请你说明小明猜测的正确性(要求写出过程).25.因式分解:(1)2()4()a x y x y ---(2)2242x x -+-(3)2616a a --26.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.27.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2;(3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1).28.启秀中学初一年级组计划将m 本书奖励给本次期中考试中取得优异成绩的n 名同学,如果每人分4本,那么还剩下78本;如果每人分8本,那么最后一人分得的书不足8本,但不少于4本.最终,年级组讨论后决定,给n 名同学每人发6本书,那么将剩余多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19,c=(-3)0=1,∴c>a>b,故选B.【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.2.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a2)·3a=(-2×3)×(a2·a)=-6a3故选:B.【点睛】本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.3.B解析:B【分析】先判断三边长是否能构成三角形,再判断是否是等腰三角形.【详解】上述选项中,A、C、D不能构成三角形,错误B中,满足三角形三边长关系,且有2边相等,是等腰三角形,正确故选:B.【点睛】本题考查的等腰三角形的性质和三角形三边长的关系,注意在判断等腰三角形的时候,一定要先满足三边长能构成三角形.4.C解析:C【解析】试题分析:首先进行提取公因式,然后利用平方差公式进行因式分解.原式=2(2x-4)=2(x+2)(x-2).考点:因式分解.5.B解析:B【分析】根据因式分解的意义求解即可.【详解】A、从左边到右边的变形不属于因式分解,故A不符合题意;B、把一个多项式转化成几个整式积的形式,故B符合题意;C、从左边到右边的变形不属于因式分解,故C不符合题意;D、因式分解是把一个多项式化为几个整式的积的形式,而1x是分式,故D不符合题意.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.B解析:B【分析】根据二元一次方程的定义对各选项逐一判断即可得.【详解】解:A.x2+x=1中x2的次数为2,不是二元一次方程;B.2x﹣3y=5中含有2个未知数,且含未知数项的最高次数为一次的整式方程,是二元一次方程;C.xy=3中xy的次数为2,不是二元一次方程;D.3x﹣y=2z中含有3个未知数,不是二元一次方程;故选:B.【点睛】本题主要考查了二元一次方程的定义判断,准确理解是解题的关键.7.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A、属于因式分解,故本选项正确;B、因式分解不彻底,故B选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、是整式的乘法,故D不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.8.C解析:C【解析】解:A.x2⋅x3=x5,故A错误;B.(-2x2)2 =4 x4,故B错误;C.( x3 )2=x6,正确;D.x5÷x =x4,故D错误.故选C.9.C解析:C【分析】根据“反向而行,当甲、乙相遇时,甲、乙跑的路程之和等于一圈;同向而行,当甲、乙相遇时,甲跑的路程比乙跑的路程多一圈”建立方程组即可.【详解】设甲每分钟跑x圈,乙每分钟跑y圈则可列方组为:331 661 x yx y+=⎧⎨-=⎩故选:C.【点睛】本题考查了二元一次方程组的实际应用,读懂题意,依次正确建立反向和同向情况下的方程是解题关键.10.B解析:B【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断.【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确;从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确,故选:B.【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题11.【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则解析:2-32x x+【分析】原式利用多项式乘多项式法则计算即可得到结果.【详解】原式=x²−2x−x+2=x²−3x+2,故答案为:x²−3x+2.【点睛】点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF解析:100︒;【解析】分析:先根据平行线的性质得∠DEF=∠EFG=50°,∠1=∠GED,再根据折叠的性质得∠DEF=∠GEF=50°,则∠GED=100°,即可得到结论.详解:∵DE∥GC,∴∠DEF=∠EFG=50°,∠1=∠GED.∵长方形纸片沿EF折叠后,点D、C 分别落在点D′、C′的位置,∴∠DEF=∠GEF=50°,即∠GED=100°,∴∠1=∠GED=100°.故答案为100.点睛:本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.13.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.14.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【±解析:10【解析】【分析】原式利用平方差公式化简,整理即可求出a+b的值.【详解】已知等式整理得:9(a+b)2-1=899,即(a+b)2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.210-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决解析:2⨯10-7【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000 0002=2×10-7,故答案为:2⨯10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 17.-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把代入方程得:4﹣1+k =0,解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解析:-3【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:把21x y =⎧⎨=⎩代入方程得:4﹣1+k =0, 解得:k =﹣3,则k 的值是﹣3.故答案为:﹣3.【点睛】此题考查的是根据二元一次方程的解,求方程中的参数,掌握二元一次方程解的定义是解决此题的关键.18.8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:.故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根解析:8【解析】【分析】根据阴影部分的面积等于大正方形的面积减去中间小正方形的面积,即可写出等式.【详解】阴影部分的面积是:()22(4)a b a b ab +-=-. ()22()204384a b a b ab ∴+-==-⨯=-故答案为8【点睛】本题主要考查问题推理能力,解答本题关键是根据图示找出大正方形,长方形,小正方形之间的关键. 19.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.20.a2+4ab +3b2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a2+4ab +3b2. 故答案为解析:a 2+4ab +3b 2【分析】根据长方形面积公式可得长方形的面积为(a +3b )(a +b ),计算即可.【详解】解:由题意得,长方形的面积:(a +3b )(a +b )=a 2+4ab +3b 2.故答案为:a 2+4ab +3b 2.【点睛】本题考查长方形的面积公式和多项式乘法,熟练掌握多项式乘法计算法则是解题的关键.三、解答题21.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b )【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.22.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解. (2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60 故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩【点睛】本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;23.(1)43x y =⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x =7﹣y ③,把③代入②得:2(7﹣y )﹣3y =﹣1,解得:y =3,把y =3代入③得:x =4,所以这个二元一次方程组的解为:43x y =⎧⎨=⎩; (2)①×4+②×3得:17x =51,解得:x =3,把x =3代入①得:y =﹣1,所以这个方程组的解为31x y =⎧⎨=-⎩. 【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.24.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.25.(1)()(2)(2)x y a a -+-;(2)22(1)x --;(3)(2)(8)a a +-【分析】(1)先提公因式再利用平方差因式分解;(2)先提公因式再利用完全平方公式因式分解;(3)直接利用2(x+p)(x+q)x +(p+q)x+pq =公式因式分解.【详解】解:(1)2()4()a x y x y --- ()2()4x y a =--()(2)(2)x y a a =-+-(2)2242x x -+-()2221x x =--+22(1)x =--(3)2616a a --(2)(8)a a =+-【点睛】此题考查因式分解的几种常见的方法,主要考查运算能力.26.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.27.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)2 1122⎛⎫⎛⎫-⨯-⎪ ⎪⎝⎭⎝⎭=312⎛⎫-⎪⎝⎭18=-;(2)m2•m4+(﹣m3)2=m6+m6=2m6;(3)(x+y)(2x﹣3y)=2x2﹣3xy+2xy﹣3y2=2x2﹣xy﹣3y2;(4)(x+3)2﹣(x+1)(x﹣1)=x2+6x+9﹣x2+1=6x+10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.28.38本【分析】先表示书的总量,利用不等关系列不等式组,求不等式组的正整数解即可得到答案.【详解】解:由题意得:4788(1)8 4788(1)4n nn n+--⎧⎨+--≥⎩<①②由①得:12 n>19由②得:1202 n≤∴不等式组的解集是:11 1922≤<n20n为正整数,20,n∴=478158, m n∴=+=∴-⨯=15820638.答:剩下38本书.【点睛】本题考查的是不等式组的应用,掌握利用不等关系列不等式组是解题的关键.。
苏科版七年级苏科初一数学下册第二学期期末测试题及答案(共五套)
苏科版七年级苏科初一数学下册第二学期期末测试题及答案(共五套)一、选择题1.已知,则a 2-b 2-2b 的值为 A .4 B .3C .1D .0 2.下列运算正确的是( ) A .()3253a b a b = B .a 6÷a 2=a 3C .5y 3•3y 2=15y 5D .a +a 2=a 33.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b 4.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-5.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2567.如图,下列结论中不正确的是( )A .若∠1=∠2,则AD ∥BCB .若AE ∥CD ,则∠1+∠3=180°C .若∠2=∠C ,则AE ∥CDD .若AD ∥BC ,则∠1=∠B 8.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,9 9.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1 B .m =-1,n =1 C .14m ,n 33==- D .14,33m n =-= 10.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 11.若多项式224a kab b ++是完全平方式,则k 的值为( )A .4B .2±C .4±D .8± 12.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④二、填空题13.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.14.已知等腰三角形的两边长分别为4和8,则它的周长是_______.15.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.16.若 a m =6 , a n =2 ,则 a m−n =________17.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.18.计算:32(2)xy -=___________.19.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________20.阅读材料:①1的任何次幂都等于1;②﹣1的奇数次幂都等于﹣1;③﹣1的偶数次幂都等于1;④任何不等于零的数的零次幂都等于1,试根据以上材料探索使等式(2x+3)x+2016=1成立的x 的值为_____.21.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.22.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.23.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.24.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.三、解答题25.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆.(1)补全'''A B C ∆,利用网格点和直尺画图;(2)图中AC 与''A C 的位置关系是: ;(3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .26.先化简,再求值:()()()()2212112,x x x x x --+---其中2230x x --=.27.(1)如图,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x 、y 的等式表示) ;(2)若2(32)5x y -=,2(32)9x y +=,求xy 的值;(3)若25,2x y xy +==,求2x y -的值.28.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每出售一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a 箱,苹果b 箱,其余均分配给乙店,由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?②若老徐希望获得总利润为1000元,则a b +=?29.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.30.因式分解:(1)43312x x -(2)2()a b x a b -+-(3)2169x -(4)(1)(5)4x x +++31.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC 先向右平移5个单位长度,再向上平移2个单位长度所得的△A 1B 1C 1; (2)画出△ABC 的中线AD ;(3)画出△ABC 的高CE 所在直线,标出垂足E :(4)在(1)的条件下,线段AA 1和CC 1的关系是32.把下列各式分解因式:(1)4x 2-12x 3(2)x 2y +4y -4xy(3)a 2(x -y )+b 2(y -x )33.解方程组:41325x y x y +=⎧⎨-=⎩. 34.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.35.计算:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).36.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 2.C解析:C【分析】根据积的乘方、同底数幂的除法、单项式乘以单项式、合并同类项法则进行计算即可.【详解】解:A 、(a 2b )3=a 6b 3,故A 错误;B 、a 6÷a 2=a 4,故B 错误;C 、5y 3•3y 2=15y 5,故C 正确;D 、a 和a 2不是同类项,不能合并,故D 错误;故选:C .【点睛】此题主要考查了单项式乘以单项式、同底数幂的除法、积的乘方、合并同类项,关键是掌握各计算法则.3.A解析:A【分析】根据多项式与多项式相乘知(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,据此可以求得k 的值.【详解】解:∵(x ﹣a )(x +b )=x 2+(b ﹣a )x ﹣ab ,又∵x 2﹣kx ﹣ab =(x ﹣a )(x +b ),∴x 2﹣kx ﹣ab =x 2+(b ﹣a )x ﹣ab ,∴﹣k =b ﹣a ,k =a ﹣b ,故选:A .【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.4.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5.C解析:C【分析】根据同位角的定义,逐一判断选项,即可得到答案.【详解】A. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;B. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意;C. ∠1与∠2分别是四条直线中的两对直线的夹角,不符合同位角的定义,故它们不是同位角,符合题意;D. ∠1和∠2在两条直线的同侧,也在第三条直线的同侧,故它们是同位角,不符合题意.故选C .【点睛】本题主要考查同位角的定义,掌握同位角的定义:“两条直线被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键.6.D解析:D【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解.【详解】解:∵()222=84256x y xy a a a +⋅=⋅=.故选D .【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键. 7.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C、∵∠2=∠C,∴AE∥CD,原结论正确,故此选项不符合题意;D、∵AD∥BC,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.8.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C.【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.9.A解析:A【分析】根据二元一次方程的概念列出关于m、n的方程组,解之即可.【详解】∵关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴22111m nm n--=⎧⎨++=⎩即23m nm n-=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩, 故选:A .【点睛】本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.10.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x ,则3<x <9,纵观各选项,符合条件的整数只有6.故选:A .【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.11.C解析:C【分析】根据完全平方式的特征解答即可.【详解】∵224a kab b ++是一个完全平方式,∴224a kab b ++=(a ±2b )2,而(a ±2b )2=a 2±4ab+24b ,∴k=±4,故选C .【点睛】本题考查了完全平方式,根据完全平方式的特点得到k=±4是解决问题的关键.12.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C .【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.二、填空题13.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AE C,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.14.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.15.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角解析:30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.16.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.17.【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作 解析:40392 【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n = ,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM , ∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 18.【分析】根据积的乘方进行计算即可.【详解】解:,故答案为:.【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘.解析:264x y【分析】根据积的乘方进行计算即可.【详解】解:3226(2)4xy x y -=,故答案为:264x y .【点睛】此题考查积的乘方.积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘. 19.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20.﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12解析:﹣1或﹣2或﹣2016【分析】根据1的乘方,﹣1的乘方,非零的零次幂,可得答案.【详解】解:①当2x+3=1时,解得:x=﹣1,此时x+2016=2015,则(2x+3)x+2016=12015=1,所以x=﹣1.②当2x+3=﹣1时,解得:x=﹣2,此时x+2016=2014,则(2x+3)x+2016=(﹣1)2014=1,所以x=﹣2.③当x+2016=0时,x=﹣2016,此时2x+3=﹣4029,则(2x+3)x+2016=(﹣4029)0=1,所以x=﹣2016.综上所述,当x=﹣1,或x=﹣2,或x=﹣2016时,代数式(2x+3)x+2016的值为1.故答案为:﹣1或﹣2或﹣2016.【点睛】本题考查的是乘方运算,特别是乘方的结果为1的情况,分类讨论的思想是解题的关键.21.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)//AB CD故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.22.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.23.1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b的值,代入计算即可.【详解】解:∵是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x、y的指数均为1,这样就可以分别求出a、b 的值,代入计算即可.【详解】解:∵2a b-1x+y=3是关于x、y的二元一次方程,所以x、y的指数均为1∴2a=1,b-1=1,解得a=12,b=2,则ab=122⨯=1,故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.24.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.三、解答题25.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C'''即可;(2)根据平移的性质可得出AC与A C''的关系;(3)先取AB的中点E,再连接CE即可;(4)线段AC扫过的面积为平行四边形AA C C''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形. 26.6【解析】试题分析:先根据乘法公式和单项式乘以多项式的法则计算化简,根据化简的结果,将2230x x --=变形后整体代入计算即可.试题解析:原式=()()222441212x x x x x -+---- 222441222x x x x x =-+-+-+223x x =-+∵2230x x --=,∴223x x -=,∴原式=3+3=6.27.(1)224()()xy x y x y =+--;(2)16xy =;(3)23x y -=±. 【分析】(1)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(2)先利用完全平方公式展开,然后两个式子相减,即可求出答案;(3)利用完全平方变形求值,即可得到答案.【详解】解:(1)图中阴影部分的面积为:224()()xy x y x y =+--;故答案为:224()()xy x y x y =+--;(2)∵2(32)5x y -=,∴2291245x xy y -+=①,∵2(32)9x y +=,∴2291249x xy y ++=②,∴由②-①,得 24954xy =-=, ∴16xy =; (3)∵25,2x y xy +==, ∴222(2)4425x y x xy y +=++=,∴224254217x y +=-⨯=,∴222(2)4417429x y x y xy -=+-=-⨯=;∴23x y -=±;【点睛】本题考查了完全平方公式的几何背景,准确识图,以及完全平方公式变形求值,根据阴影部分的面积的两种不同表示方法得到的代数式的值相等列式是解题的关键.28.(1)草莓35箱,苹果25箱;(2)①340元,②53或52【分析】(1)抓住题中关键的已知条件,老徐购得草莓和苹果共60箱,刚好花费3100元,设未知数列方程组,求解方程即可;(2)①由题意列二元一次方程,可得到34120a b +=,列式求出他在乙店获利;②根据老徐希望获得总利润为1000元,建立关于a 、b 的二元一次方程,整理可得18034a b -=,再根据a 、b 的取值范围及a 一定是4的整数倍,即可求出结果; 【详解】(1)解:设草莓购买了x 箱,苹果购买了y 箱,根据题意得:6060403100x y x y ⎧+=⎨+=⎩,解得3525x y ⎧=⎨=⎩. 答:草莓购买了35箱,苹果购买了25箱;(2)解:①若老徐在甲店获利600元,则1520600ab +=, 整理得:34120a b +=,他在乙店的获利为:()()12351625a b -+-, =()820434a b -+,=820-4120⨯,=340元;②根据题意得:()()1520123516251000a b a b ++-+-=, 整理得:34180ab +=, 得到18034ab -=,∵a、b 均为正整数,∴a 一定是4的倍数,∴a 可能是0,4,8…,∵035a ≤≤,025b ≤≤, ∴当且仅当a=32,b=21或a=25,b=24时34180ab +=成立, ∴322153a b +=+=或28+24=52. 故答案为340元;53或52.【点睛】本题主要考查了二元一次方程组的应用,根据题意列式是解题的关键.29.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC 的面积是3,得出格点△ABP 的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S △ABC =13232⨯⨯= S △ABP =2S △ABC =6 画格点△ABP 如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.30.(1)3x 3(x ﹣4);(2)(a ﹣b )(1+2x );(3)(4﹣3x )(4+3x );(4)2(3)x +.【分析】(1)原式提取公因式3x 3即可;(2)原式提取公因式-a b 即可;(3)原式利用平方差公式分解即可;(4)原式变形后,利用完全平方公式分解即可.【详解】解:(1)原式=3x 3(x ﹣4);(2)原式=(a ﹣b )(1+2x );(3)原式=(4﹣3x )(4+3x );(4)原式=2554x x x ++++=269x x ++=2(3)x +.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.31.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A 、B 、C 的对应点A 1、B 1、C 1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A 1B 1C 1即为所作图形;(2)如图,线段AD 即为所作图形;(3)如图,直线CE 即为所作图形;(4)∵△A 1B 1C 1是由△ABC 平移得到,∴A 和A 1,C 和C 1是对应点,∴AA 1和CC 1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.32.(1)4x 2(1-3x )(2)y (x -2)2(2)(x -y )(a +b )(a -b ) 【分析】(1)直接利用提公因式法分解因式即可;(2)先提取公因式,然后利用完全平方公式分解因式即可;(3)先提取公因式,然后利用平方差公式分解因式即可.【详解】(1)()232412413x x x x =--; (2)()()22244442x y y xy y x x y x +-=+-=-; (3)()()()()()2222()()a x y b y x x y a b x y a b a b =--=-+--+-.【点睛】本题考查了分解因式,解题的关键是熟练掌握提取公因式法和公式法分解因式.33.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①② 由+2⨯①②得:7x=11, 解得117x =, 把117x =代入方程①得:17y =-, 故原方程组的解为:11717x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键.34.(1)2(4)(2)(2)x x x ++- (2)22()a x y -【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【详解】解:(1)原式=(x 2+4)(x 2﹣4)=(x 2+4)(x +2)(x ﹣2);(2)原式=2a (x 2﹣2xy +y 2)=2a (x ﹣y )2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.35.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.36.(1)11x y =⎧⎨=-⎩;(2)13x ≤<【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.。
盐城市人教版七年级下册数学期末试卷及答案.doc
盐城市人教版七年级下册数学期末试卷及答案.doc一、选择题1.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 2.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1-3.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=0 4.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 5.下列计算正确的是( )A .a +a 2=2a 2B .a 5•a 2=a 10C .(﹣2a 4)4=16a 8D .(a ﹣1)2=a ﹣2 6.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 7.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 48.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .9.如图,在下列给出的条件下,不能判定AB ∥DF 的是( )A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A10.已知x ay b=⎧⎨=⎩是方程组24213x yx y-=⎧⎨+=⎩的解,则32a b-的算术平方根为()A.4±B.4C.2D.2±二、填空题11.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.12.若 a m=6 , a n=2 ,则 a m−n=________13.一个多边形的内角和与外角和之差为720︒,则这个多边形的边数为______.14.如果9-mx+x2是一个完全平方式,则m的值为__________.15.已知a+b=5,ab=3,求:(1)a2b+ab2; (2)a2+b2.16.有两个正方形A、B,现将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A,B的面积之和为_________.17.若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为_____.18.若2a+b=﹣3,2a﹣b=2,则4a2﹣b2=_____.19.计算:2m·3m=______.20.已知x2a+y b﹣1=3是关于x、y的二元一次方程,则ab=_____.三、解答题21.解方程组(1)24 31 y xx y=-⎧⎨+=⎩(2)121632(1)13(2)x yx y--⎧-=⎪⎨⎪-=-+⎩.22.如图,大圆的半径为r,直径AB上方两个半圆的直径均为r,下方两个半圆的直径分别为a,b.(1)求直径AB上方阴影部分的面积S1;(2)用含a,b的代数式表示直径AB下方阴影部分的面积S2=;(3)设a=r+c,b=r﹣c(c>0),那么()(A)S2=S1;(B)S2>S1;(C)S2<S1;(D)S2与S1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.23.计算 (1)1012(2)3π-⎛⎫---+- ⎪⎝⎭; (2)52482(2)()()x x x x +-÷-.24.如图1,在△ABC 的AB 边的异侧作△ABD ,并使∠C =∠D ,点E 在射线CA 上. (1)如图,若AC ∥BD ,求证:AD ∥BC ;(2)若BD ⊥BC ,试解决下面两个问题:①如图2,∠DAE =20°,求∠C 的度数;②如图3,若∠BAC =∠BAD ,过点B 作BF ∥AD 交射线CA 于点F ,当∠EFB =7∠DBF 时,求∠BAD 的度数. 25.解方程或不等式(组)(1)24231x y x y +=⎧⎨-=⎩(2)2151132x x -+-≥ (3)312(2)15233x x x x +<+⎧⎪⎨-≤+⎪⎩ 26.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.27.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.28.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1,可以得到222()2a b a ab b +=++这个等式,请解答下列问题:(1)写出图2中所表示的数学等式 .(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++= .(4)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张长宽分别为a 、b 的长方形纸片拼出一个面积为2)(4)a b a b ++(的长方形,则x y z ++= .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同底数幂的乘法底数不变指数相加,可得答案.【详解】A 、(﹣a )2(﹣a )3=(﹣a )5,故A 错误;B 、(﹣a )(﹣a )4=(﹣a )5,故B 错误;C 、(﹣a 2)a 3=﹣a 5,故C 错误;D 、(﹣a 3)(﹣a 2)=a 5,故D 正确;故选:D .【点睛】本题考查了同底数幂的乘法,利用了同底数幂的乘法法则.2.D解析:D【分析】利用完全平方公式的特征判断即可得到结果.【详解】解:()22316x m x --+是一个完全平方式, ∴()22316x m x --+=2816x x -+或者()22316x m x --+=2+816x x +∴-2(m-3)=8或-2(m-3)=-8解得:m =-1或7故选:D【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A .x-y 2=1不是二元一次方程;B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程;故选B .【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.4.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是因式分解,故A正确;B、是整式的乘法运算,故B错误;C、是单项式的变形,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.D解析:D【分析】根据负整数指数幂、合并同类项、幂的乘方与积的乘方、同底数幂的乘法等知识点进行作答.【详解】解:A、a+a2不是同类项不能合并,故本选项错误;B、根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,∴a5•a2=a7,故本选项错误;C、根据幂的乘方法则:底数不变,指数相乘,(﹣2a4)4=16a16,故本选项错误;D、(a﹣1)2=a﹣2,根据幂的乘方法则,故本选项正确;故选:D.【点睛】本题考查了合并同类项,同底数的幂的乘法,负整数指数幂,积的乘方等多个运算性质,需同学们熟练掌握.6.B解析:B【解析】【分析】设馒头每个x元,包子每个y元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x元,包子每个y元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.7.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.8.D解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同,观察图形可知D 可以通过图案①平移得到.故答案选:D.【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.9.D解析:D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、∵∠A +∠2=180°,∴AB ∥DF ,故本选项错误;B 、∵∠A =∠3,∴AB ∥DF ,故本选项错误;C 、∵∠1=∠4,∴AB ∥DF ,故本选项错误;D 、∵∠1=∠A ,∴AC ∥DE ,故本选项正确.故选:D .【点睛】点评:本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题11.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.3【解析】.故答案为3.解析:3【解析】623m n m n a a a -=÷=÷=.故答案为3.13.8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n ,则(n-2)•180°-360°=720°,解得n=8.故答案为解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n ,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.14.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.15.(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=a解析:(1)15;(2)19.【解析】【分析】(1)原式提取公因式,将已知等式代入计算即可求出值;(2)原式利用完全平方公式变形,将已知等式代入计算即可求出值;【详解】(1)a2b+ab2=ab(a+b)=3×5=15(2)a2+b2=(a+b)2-2ab=52-2×3=19【点睛】此题考查了完全平方公式,以及代数式求值,熟练掌握完全平方公式是解本题的关键.16.11【分析】设A的边长为a,B的边长为b,根据阴影面积得到关于a、b的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 17.【分析】把m 看做已知数表示出x 与y ,代入x+y =0计算即可求出m 的值.【详解】解:,①+②得:5x =3m+2,解得:x =,把x =代入①得:y =,由x 与y 互为相反数,得到=0,去分母解析:【分析】把m 看做已知数表示出x 与y ,代入x +y =0计算即可求出m 的值.【详解】解:33221x y m x y m +=+⎧⎨-=-⎩①②, ①+②得:5x =3m +2,解得:x =325m +, 把x =325m +代入①得:y =945m -,由x与y互为相反数,得到3294+55m m+-=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.18.-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】解析:-6【分析】根据平方差公式可以求得题目中所求式子的值.【详解】解:∵2a+b=﹣3,2a﹣b=2,∴4a2﹣b2=(2a+b)(2a﹣b)=(﹣3)×2=﹣6,故答案为:﹣6.【点睛】此题考查的是根据平方差公式求值,掌握利用平方差公式因式分解是解决此题的关键.19.6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:.故答案为:.【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键.解析:6m2【分析】根据单项式乘以单项式的法则解答即可.【详解】解:2236m m m ⋅=.故答案为:26m .【点睛】本题考查了单项式乘以单项式的法则,属于基础题型,熟练掌握运算法则是解题关键. 20.1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a=1,解析:1【分析】根据题意可知该式是二元一次方程组,所以x 、y 的指数均为1,这样就可以分别求出a 、b 的值,代入计算即可.【详解】解:∵2a b-1x +y =3是关于x 、y 的二元一次方程,所以x 、y 的指数均为1∴2a =1,b-1=1,解得a =12,b =2, 则ab =122⨯=1, 故答案为:1.【点睛】该题考查了二元一次方程的定义,即含有两个未知量,且未知量的指数为1,将其代数式进行求解,即可求出答案.三、解答题21.(1)12x y =⎧⎨=-⎩;(2)53x y =⎧⎨=⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】解:(1)2431y x x y =-⎧⎨+=⎩①②,把①代入②得:3x +2x ﹣4=1,解得:x =1,把x =1代入①得:y =﹣2,则方程组的解为12x y =⎧⎨=-⎩; (2)121632(1)13(2)x y x y --⎧-=⎪⎨⎪-=-+⎩方程组整理得:211213x y x y +=⎧⎨+=⎩①②, ①×2﹣②得:3y =9,解得:y =3,把y =3代入②得:x =5,则方程组的解为53x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,要根据方程特点选择合适的方法简化运算.22.(1)214r π ;(2)14ab π ;(3)C ;(4)理由见解析【分析】(1)用半径为r 的半圆的面积减去直径为r 的圆的面积即可;(2)用直径为(a +b )的半圆的面积减去直径为a 的半圆的面积,再减去直径为b 的半圆的面积即可;(3)(4)将a =r +c ,b =r ﹣c ,代入S 2,然后与S 1比较即可.【详解】解:(1)S 1=222111244r r r πππ-=; (2)S 2=22211111()222424a b a b πππ+•-•-•, =18π(a +b )2﹣18πa 2﹣218b π =14ab π, 故答案为:14ab π;(3)选:C ;(4)将a =r +c ,b =r ﹣c ,代入S 2,得:S2=14π(r+c)(r﹣c)=14π(r2﹣c2),∵c>0,∴r2>r2﹣c2,即S1>S2.故选C.【点睛】此题考查了列代数式表示图形的面积,解题的关键是:结合图形分清各个半圆的半径及熟记圆的面积公式.23.(1)2-;(2)103x【分析】(1)根据负整数指数幂以及零指数幂运算即可求解;(2)根据同底数幂相乘(除),底数不变,指数相加(减),即可求解.【详解】解:(1)原式=213=2---;(2)原式12252481010122101010221=24443xx x x x x x x xx x⨯+-⎛⎫⋅+⋅-=-=-=-=⎪⎝⎭.【点睛】本题目考查整数指数幂,涉及知识点有正整数指数幂、零指数幂、负整数指数幂等,难度一般,熟练掌握整数指数幂的运算法则是顺利解题的关键.24.(1)见解析;(2)35°;(3)117°【分析】(1)由AC∥BD得∠D=∠DAE,角的等量关系证明∠DAE与∠C相等,根据同位角得AD∥BC;(2)由BD⊥BC得∠HBC=90°,余角的性质和三角形外角性质解得∠C的度数为35°;(3)由BF∥AD得∠D=∠DBF,垂直的定义得∠DBC=90°,三角形的内角和定理,角的和差求得∠DBA=∠CBA=45°,由已知条件∠EFB=7∠DBF,角的和差得出∠BAD的度数为117°.【详解】解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.【点睛】本题考查了平行线的判定与性质,余角的性质,三角形的内角和性质,三角形的外角性质,角的和差等相关知识点,掌握平行线的判定与性质,三角形内角和和外角的性质是解题的关键.25.(1)21x y =⎧⎨=⎩;(2)1x ≤-;(3)13x -≤< 【分析】(1)根据加减消元法解答;(2)根据解一元一次不等式的方法解答即可;(3)先分别解两个不等式,再取其解集的公共部分即得结果.【详解】解:(1)对24231x y x y +=⎧⎨-=⎩①②, ①×2,得248x y +=③,③-②,得7y =7,解得:y =1,把y =1代入①,得x +2=4,解得:x =2,∴原方程组的解为:21x y =⎧⎨=⎩; (2)不等式两边同乘以6,得()()2216351x x --≥+,去括号,得426153x x --≥+,移项、合并同类项,得1111x -≥,不等式两边同除以﹣1,得1x ≤-;(3)对()312215233x x x x ⎧+<+⎪⎨-≤+⎪⎩①②, 解不等式①,得x <3,解不等式②,得1x ≥-,∴原不等式组的解集为13x -≤<.【点睛】本题考查了二元一次方程组、一元一次不等式和一元一次不等式组的解法,属于基本题型,熟练掌握解二元一次方程组和一元一次不等式的方法是关键.26.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC 的面积=5×7-12×7×5-12×7×2-12×5×1=8. 27.(1)105°;(2)150°;(3)5或17;11或23.【分析】(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.28.(1) ()2222222.a b c a b c ab ac bc ++=+++++(2)证明见解析;(3) 30; (4) 15.【分析】(1)依据正方形的面积=()2a b c ++ ;正方形的面积=222a +b +c +2ab+2ac+2bc.,可得等式;(2)运用多项式乘多项式进行计算即可;(3)依据()2222a b +c a b c -2ab-2ac-2bc,+=++ 进行计算即可;(4)依据所拼图形的面积为:22xa yb zab ++ , 而()()222224284249a b a b a ab ab b a b ab ++=+++=++ ,即可得到x, y, z 的值,即可求解.【详解】解: (1) 正方形的面积=()2a b c ++ ;大正方形的面积=222a +b +c +2ab+2ac+2bc. 故答案为:()2222222.a b c a b c ab ac bc ++=+++++(2)证明: (a+b+c) (a+b+c) ,=222a ab ac ab b bc ac bc c ++++++++ ,=222222a b c ab ac bc +++++ .(3)()2222222,a b c a b c ab ac bc ++=++---=()2102ab ac bc -++ , =100235-⨯ ,=30.故答案为: 30;(4)由题可知,所拼图形的面积为:22xa yb zab ++ ,(2a+b) (a+4b)=222a 8ab ab 4b ,+++=222a 4b 9ab,++∴x=2,y=4, z=9.∴x+y+z=2+4+9=15.故答案为: 15.【点睛】本题考查了完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.。
江苏省盐城市七年级下学期期末考试数学试卷
江苏省盐城市七年级下学期期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七下·海淀期中) 小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A . (3.2,1.3)B . (﹣1.9,0.7)C . (0.8,﹣1.9)D . (3.8,﹣2.6)2. (2分) (2018八上·东台期中) 下列说法正确的是()A . =±2B . 0没有平方根C . 一个数的算术平方根一定是正数D . 9的平方根是±33. (2分) (2019七下·东方期中) 已知,是有理数,下列各式中正确的是()A .B .C .D .4. (2分) (2020八下·宜兴期中) 下列调查中,适宜采用普查方式的是()A . 了解一批圆珠笔的寿命B . 了解全国七年级学生身高的现状C . 了解市民对“垃圾分类知识”的知晓程度D . 检查一枚用于发射卫星的运载火箭的各零部件5. (2分)如右图,数轴上点N表示的数可能是()A .B .C .D .6. (2分) (2017七下·惠山期末) 如图,不能判断l1∥l2的条件是()A . ∠1=∠3B . ∠2+∠4=180°C . ∠4=∠5D . ∠2=∠37. (2分) (2020八上·成都月考) 下列判断正确的是().A . 0没有算术平方根B . 1的立方根为±1C . 4的平方根为2D . 负数没有平方根8. (2分)如图,直线l1 , l2被直线l3所截,且l1∥l2 ,若∠1=72°,∠2=58°,则∠3=()A . 45°B . 50°C . 60°D . 58°9. (2分)若方程组的解x与y的和为3,则a的值为()A . 7B . 4C . 0D . ﹣410. (2分)如下图,以中心广场为坐标原点,建立如图所示的平面直角坐标系,已知牡丹园的坐标是(3,3),那么音乐台的坐标是()A . (0,4)B . (3,0)C . (0,300)D . (0,150)11. (2分)(2020·重庆模拟) 若关于x的不等式组无解,且关于y的分式方程有非正整数解,则符合条件的所有整数k的值之和为()A . ﹣7B . ﹣12C . ﹣20D . ﹣3412. (2分) (2017七下·宁城期末) 某种商品价格为33元/件,某人只带有2元和5元的两种面值的购物劵各若干张,买了一件这种商品;若无需找零钱,则付款方式中张数之和(指付2元和5元购物券的张数)最少和张数之和最多的方式分别是()A . 8张和16张B . 8张和15张C . 9张和16张D . 9张和15张二、填空题 (共8题;共12分)13. (1分) (2017七下·商水期末) 在方程组中,若未知数x、y满足x+y>0,则m的取值范围是________.14. (1分)(2018·潮南模拟) 定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=________.15. (1分) (2020八下·甘州期中) 在平面直角坐标系中,已知三点O(0,0),A(1,﹣2),B(3,1),若以A、B、C、O为顶点的四边形是平行四边形,则点C的坐标为________.16. (5分) (2016七下·嘉祥期末) 如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG________.∴∠1=∠2________.________ =∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3________.∴AD平分∠BAC________.17. (1分) 9的算术平方根是________.18. (1分)下列语句:①11排6号;②解放路112号;③南偏东36°;④东经118°,北纬40°.其中能确定物体具体位置的是________(填序号).19. (1分) (2020七下·和平期末) 若方程组的解也是二元一次方程的一个解,则m的值等于________.20. (1分) (2020七下·上虞期末) 三位先生A,B,C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,先生B比a多买7件商品,则先生A的妻子是________。
2014-2015年江苏省盐城市七年级下开学考试数学试题及答案
(考试时间:100分钟 试卷满分150分 考试形式:闭卷)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.) 1.3-的绝对值是A .-3B .13- C .3 D .3± 2.下列计算正确的是A .ab b a 523=+B .235=-y yC .277a a a =+D .y x yx y x 22223=- 3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面相对面上的字是 A .我 B .中 C .国 D .梦4.下列方程中,解为2=x 的方程是A .323=-xB .1)1(24=--xC .x x 26=+-D .0121=+x 5. 下列长度的3根小木棒能搭成三角形的是 A.3cm ,5 cm ,5 cm B. 4 cm ,5 cm ,9 cm C.4 cm ,6 cm ,11 cm . D. 12 cm ,5 cm ,5 cm 6.将下面的直角梯形绕直线l 旋转一周,可以得到右边立体图形的是7.如图,已知∠1=70°,∠2=110°,∠3=95°,那么∠4= A .80° B .85° C .95° D .100°8. 如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是 A.∠1=∠3 B.∠1=180°-∠3 C.∠1=90°+∠3 D.∠3=90°+∠1 二、填空题(本大题共10小题,每小题3分,共30分.)9. 8的相反数是 .10. 某天温度最高是12℃,最低是-7℃,这一天温差是 ℃.11.某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体 是 .12.若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 13.如果21m x -+8=0是一元一次方程,则m = .14.台湾是我国最大的岛屿,总面积约为36000平方千米,这个数据用科学记数法可以表示为 平方千米.15.若四边形的四个内角之比是1:2:3:4.则它的最大内角是 °. 16.如果代数式21x -+与3互为倒数,则x 的值为 .17. 一个多边形的每一个外角是它相邻内角度数的一半,这个多边形的边数为 . 18. 如图,12BC AB =,D 为AC 的中点,cm DC 3=,则AB 的长是 cm .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.)19.(本题共有2小题,每小题6分,共12分)计算:(1)4-(-4)+(-3); (2))6(30)43()4(2-÷+-⨯-.20.(本题共有2小题,每小题6分,共12分) 解方程:(1)x x =--)3(26; (2)3512531xx +=--.22.(本题满分6分)先化简,再求值:)42()34(22a a a a --+-,其中2a =-.23.(本题满分6分)画出下图中由几个正方体组成的几何体的三视图.主视图 左视图 俯视图24.(本题满分8分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.25.(本题满分10分)如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.26.(本题满分10分)如图,已知AE ∥BD ,∠1=3∠2,∠2=25°,求C ∠的度数.27.(本题满分12分)某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠”;乙旅行社说:“教师在内全部按票价的6折优惠”;若全票价格是240元/张.(1)如果有10名学生,应选择哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多.28.(本题满分12分)如图,在△ABC中,∠B>∠C,BCAD⊥,AE平分∠BAC.(1)若∠B=70°,∠C=30°.①求∠BAE= °;②∠DAE= °.(2)探究:小明认为如果只要知道∠B-∠C=n°,就能求出∠DAE的度数?请你就这个问题展开探究:∠B的度数∠C的度数∠DAE的度数70°30°(此格不需填写)65°25°50°20°80°56°②结论:当时,试用含的代数式表示∠的度数,并写出推导过程;③应用:若∠A=56°,∠DAE=12°,则∠B= °.D CEBA一、选择题(每小题3分,共24分)题 号 1 2 3 4 5 6 7 8 答 案CDBCABBC二、填空题(每小题3分,共30分)9.-8 10.19 11. 圆柱 12.5 13.1 14.3.6×104 15.144 16.1317.6 18. 4三、解答题(本大题共有10小题,共96分) 19.(本题共有2小题,每小题6分,共12分) 计算:(1)4-(-4)+(-3);原式=4+4-3 ……………………3分 =5 ……………………6分(2))6(30)43()4(2-÷+-⨯-原式=16)5()43(-+-⨯ ……………………2分=-12+(-5) ……………………4分 =-17 ……………………6分20.(本题共有2小题,每小题6分,共12分) 解方程:(1)x x =--)3(26x x =+-626 ……………………3分 4=x ……………………6分(2)3512531xx +=--x x 1021596+=+- ……………………4分 1=x ……………………6分21.(本题满分6分)(1)如图……………………3分 (2)4,左,3 ………6分 (每空一分)原式=4a 2-3 a +2-a 2-4 a ………………2分=3 a 2-7 a +2, ………………4分 a =-2代入计算得28 ……………… 6分24.(本题满分8分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数. 解:设这个多边形的边数为n °, 根据题意得:(n -2)×180=360×4+180 ………………3分 解之,得:n =11 ………………6分 则(n -2)×180°=(11-2) ×180°=1620° ………………8分 所以,这个多边形的边数为11,内角和度数为1620°. 25.(本题满分10分)如图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=40°,求∠2和∠3的度数. .解:∵AB 为直线,∴ ∠3+∠FOC +∠1=180°. ……………… 2分 ∵ ∠FOC =90°,∠1=40°, ∴ ∠3=180°-90°-40°=50°. ……………… 5分 ∵ ∠3与∠AOD 互补, ∴ ∠AOD =180°-∠3=130°. ………………7分 ∵ OE 平分∠AOD ,∴ ∠2=21∠AOD =65°. ………………10分 26.(本题满分10分) 解:∵∠2=25°,∴∠1=3∠2=75°. ………………2分 ∵AE ∥BD ,∴∠A GB =∠1=75°. ………………4分 ∵∠AGB +∠BGC =180°, ∴∠BGC =180°-75°=105°。
2015年苏科版七下数学期末试卷及答案(精品)52
7x 9y 5
x y z 12 (2) x 2 y z 6
3x y z பைடு நூலகம்0
22.(本题满分 5 分)
作图与探究(不写作法,保留作图痕迹,并用
0.5 毫米黑色签字笔描深痕迹)
如图,∠ DBC和∠ ECB是△ ABC的两个外角°
(1) 用直尺和圆规分别作∠ DBC和∠ ECB的平分线,设它们相
A. 5 对
B
.6 对
C. 7 对
D
.8 对
二、填空题 (本大题共 10 小题,每小题 3 分,共 30 分)
9.若一个多边形的内角和是它外角和的 3 倍,则这个多边形是 10.分解因式: a4- 1= ▲ . 11.计算:(- 2a5)÷(- a) 2= ▲ .
▲ 边形.
12.如图, AB//CD ,∠ B= 75°,∠ D=35°,则∠ E 的度数为= ▲ .
24.(本题共 2 小题,每小题 5 分,满分 10 分)
-3-
y1
则 a+b= ▲ . 16.化简: (x + y) 2- 3( x2- 2y2)= ▲ . 17.如果 2x÷16y= 8,则 2x- 8y= ▲ . 18.三角形的两边长分别是 3 和 6,第三边长为偶数,则三角形的周长为
▲.
三、解答题 (本大题共 11 小题,共 76 分)
19.计算:(本题共 2 小题,每小题 4 分,满分 8 分)
D
. 50 °
5.学校为了了解 300 名初一学生的体重情况, 从中抽取 30 名学生进行测量, 下列说法正确
的是
A .总体是 300
B
.样本容量为 30
C .样本是 30 名学生
D
东台期末七年级下数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-1C. πD. 0.1010010001…2. 下列运算正确的是()A. (-3)² = 3B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 下列各式中,绝对值最小的是()A. |-3|B. |2|C. |0|D. |1.5|4. 如果a > b,那么下列不等式中一定成立的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a × 2 > b × 2D. a ÷ 2 > b ÷ 25. 下列函数中,一次函数的是()A. y = x² + 1B. y = 2x - 3C. y = √xD. y = log₂x6. 下列各图中,与函数y = x²的图像相似的图像是()A.B.C.D.7. 下列方程中,解为x = 2的是()A. 2x - 3 = 5B. 3x + 4 = 7C. 4x - 5 = 9D. 5x + 6 = 118. 下列各式中,等式成立的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³9. 下列各式中,与a² + b² = 1等价的方程是()A. (a + b)² = 1B. (a - b)² = 1C. a² + 2ab + b² = 1D. a² - 2ab + b² = 110. 下列各图中,能表示函数y = kx(k为常数)的图像是()A.B.C.D.二、填空题(每题3分,共30分)11. 5的平方根是________,-5的平方根是________。
盐城市东台市2014-2015学年七年级下期末数学试卷含答案解析
2014-2015学年江苏省盐城市东台市七年级(下)期末数学试卷一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4D.x5÷x=x53.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b| B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.15.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B. C. D.x2二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为米.10.分解因式:x2﹣4x+4=.11.命题“锐角与钝角互为补角”的逆命题是.12.一个n边形的内角和是540°,那么n=.13.如果等腰三角形的两边长分别为4和7,则三角形的周长为.14.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.15.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为元.三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.19.分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.20.解不等式组,并写出它的整数解.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD()∴∠AFE=∠ADC()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.2014-2015学年江苏省盐城市东台市七年级(下)期末数学试卷参考答案与试题解析一、选择题1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【考点】作图—基本作图;平行线的判定.【分析】由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.【点评】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.2.下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4D.x5÷x=x5【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别根据同底数幂的乘法法则、幂的乘方与积的乘方法则对各选项进行逐一分析即可.【解答】解:A、x3•x3=x6≠2x6,故本选项错误;B、(x3)2=x6,故本选项正确;C、(﹣2x2)2=4x4≠﹣4x4,故本选项错误;D、x5÷x=x4≠x5,故本选项错误.故选B.【点评】本题考查的是同底数幂的除法,熟知同底数幂的除法法则是解答此题的关键.3.下列命题中,是真命题的为()A.如果a>b,那么|a|>|b| B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余【考点】命题与定理.【分析】利用反例对A、B进行判断;根据平方根的定义对C进行判断;根据三角形内角和和互余的定义对D进行判断.【解答】解:A、当a=0,b=﹣1,则|a|<|b|,所以A选项错误;B、90度的补角为90度,所以B选项错误;C、平方后等于4的数是±2,所以C选项错误;D、直角三角形的两个锐角互余,所以D选项正确.故选D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.1【考点】合并同类项.【分析】根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.【解答】解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.【点评】本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.5.下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.【点评】本题考查了因式分解的意义,解答本题的关键是掌握因式分解后右边是整式积的形式.6.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【考点】实数与数轴.【分析】先由数轴观察a、b、c的大小关系,然后根据不等式的基本性质对各项作出正确判断.【解答】解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选B.【点评】此题主要考查了不等式的基本性质及实数和数轴的基本知识,比较简单.7.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE【考点】平移的性质.【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,C错误,故选C.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.8.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B. C. D.x2【考点】整式的混合运算.【分析】设长方形的宽为a,则长为(x+a),则正方形的边长为(x+a+a)=(x+2a);求出二者面积表达式相减即可.【解答】解:设长方形的宽为acm,则长为(x+a),则正方形的边长为(x+a+a)=(x+2a);正方形的面积为[(x+2a)]2,长方形的面积为a(x+a),二者面积之差为[(x+2a)]2﹣a(x+a)=x2.故选:D.【点评】本题考查了整式的混合运算,设出长方形的宽,据此表示出正方形和长方形的面积表达式是解题的关键.二、填空题9.人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为7.7×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0077=7.7×10﹣6;故答案为:7.7×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.分解因式:x2﹣4x+4=(x﹣2)2.【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.11.命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【考点】命题与定理.【分析】交换原命题的题设与结论部分即可得到原命题的逆命题.【解答】解:命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.故答案为如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.12.一个n边形的内角和是540°,那么n=5.【考点】多边形内角与外角.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.13.如果等腰三角形的两边长分别为4和7,则三角形的周长为15或18.【考点】等腰三角形的性质;三角形三边关系.【分析】本题没有明确说明已知的边长哪个是腰长,则有两种情况:①腰长为4;②腰长为7.再根据三角形的性质:三角形的任意两边的和>第三边,任意两边之差<第三边判断是否满足,再将满足的代入周长公式即可得出周长的值.【解答】解:①腰长为4时,符合三角形三边关系,则其周长=4+4+7=15;②腰长为7时,符合三角形三边关系,则其周长=7+7+4=18.所以三角形的周长为15或18.故填15或18.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【考点】不等式的解集.【分析】根据不等式的性质可得a﹣3<0,由此求出a的取值范围.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a﹣3小于0.15.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.【考点】二元一次方程组的解;因式分解-运用公式法.【专题】计算题.【分析】根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.16.七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为9元.【考点】二元一次方程组的应用.【分析】首先设5角的硬币x枚,1元硬币y枚,根据用尺量出它们的总厚度为22.6mm可得方程1.7x+1.8y=22.6,又用天平称出总质量为78.5g可得方程6x+6.1y=78.5,两立两个方程,解方程组即可.【解答】解:设5角的硬币x枚,1元硬币y枚,由题意得:,解得:,8×0.5+5×1=9(元),故答案为:9.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.三、解答题(本题共9题,共60分)17.计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算乘方、0指数幂与负指数幂,再算加减;(2)先算同底数的乘除与积的乘方,再算加减.【解答】解:(1)原式=﹣1+1+4=4;(2)原式=x8﹣4x8+x8=﹣2x8.【点评】此题考查整式的混合运算,掌握运算顺序与计算方法是解决问题的关键.18.已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.【考点】提公因式法与公式法的综合运用.【分析】(1)直接提取公因式2,进而利用平方差公式分解因式得出即可;(2)直接利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.20.解不等式组,并写出它的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】分别解不等式,然后找出不等式的解集,求出整数解.【解答】解:,解不等式①得:x<3,解不等式②得:x≥1,则不等式的解集为:1≤x<3,则整数解为:1,2.【点评】本题考查了解一元一次不等式组,注意要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AFE=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【考点】平行线的判定与性质;垂线.【专题】推理填空题.【分析】首先证明∠2=∠DCA,然后根据∠1=∠2,可得∠DCA=∠1,再根据同位角相等,两直线平行可判定出EF∥DC,然后根据∠AFE=∠ADC,∠AEF=90°,得出∠ADC=90°.【解答】证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD (两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)故答案为同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;两直线平行,同位角相等;垂直定义.【点评】此题主要考查了平行线的判定与性质定理,关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【考点】因式分解的应用.【专题】新定义.【分析】(1)根据“和谐数”的定义,只需看能否把28和2012这两个数写成两个连续偶数的平方差即可判断;(2)运用平方差公式进行计算.【解答】解:(1)∵28=82﹣62,∴28是“和谐数”∵2016不能表示成两个连续偶数的平方差∴2016不是“和谐数”;(2)(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.【点评】此题考查了因式分解的应用,它是一道新定义题目,主要是平方差公式的熟练运用.23.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.【考点】三角形内角和定理;平行线的性质;三角形的外角性质.【分析】(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.【解答】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.【点评】此题考查三角形的内角和定理,平行线的性质,外角的性质,解题的关键是利用角的和与差与等量代换解决问题.24.小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少决?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设彩色地砖的单价为x元/块,单色地砖的单价为y元/块,根据“购买彩色地砖40块和单色地砖60块则共需花费5600元”、“购买彩色地砖和单色地砖各50块,则需花费6000元”列出方程组;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据“购买地砖的费用不超过3400元”列出不等式并解答.【解答】解:(1)设彩色地砖的单价为x元/块,单色地砖的单价为y元/块,由题意,得,解得:,答:彩色地砖的单价为80元/块,单色地砖的单价为40元/块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3400,解得:a≤25.∴彩色地砖最多能采购25块.【点评】本题考查了二元一次不等式和一元二次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.25.Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质分三种情况讨论即可.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)如图,分三种情况:连接ED交BA的延长线于P点如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.【点评】本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练利用三角形外角的性质是解决问题的关键.。
盐城市盐都区2014-2015年七年级下期末考试数学试题及答案
2014/2015学年度第二学期期末质量检测七年级数学试卷(时间:100分钟;满分:120分)、选择题(本大题共8小题,每小题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表 相应的空格内,每小题 3分,共24分)6.若一个三角形的两边长分别为5cm , 7cm ,则第三边长可能是A . 2cmB . 10cmC . 12cmD . 14cm 7. 如图,将△ ABC 沿BC 方向平移3cm 得到△ DEF ,若△ ABC 的周长为14cm ,则四边形 ABFD 的周长 为 A . 14cmB . 17cmC . 20cmD . 23cm&下列命题中,①对顶角相等.②等角的余角相等.③若a =b ,则a =b .④同位角相等.其中真命 题的个数有A . 1个B . 2个C . 3个D . 4个二、填空题(本大题共10小题,每小题2分,共20分)9 .“ x 的2倍与5的和不小于10”用不等式表示为 ___________ . 10 .七边形的外角和为° .2 2 11.命题“若a 2 b 2,则a 二b .”的逆命题是—1.已知a b ,若c 是任意有理数,则下列不等式中总是成立的是 C . ac :: bc2. A . a -c b 「c B . a c :: b c把不等式x >-1在数轴上表示出来,正确的是D . ac be3.4. 5. -1AF 列四个多项式中,能因式分解的是 A . a 2+1 B . a 2 - 2a+1 F 列运算正确的是如图,直线 AB // CD, B . 2a a 1 ]=2a 1C . x 2+5y x 2- 5yC .2ab2b 26 3 2D . a ■■ a aEF 分别交 AB 、CD 于点M 、 N , 若/ AME=1,则/ CNF 的度数为 65 °D . 55 °第7题图-1 0 0 CD1502若代数式X 2 - 4x • b 可化为(x - a )2 -1,则b - a 的值是 2x 3y = 4”& 卄口 1 若方程组的解满足x y ,则m 的值为|3x 2y = 2m -35如图,把一根直尺与一块三角尺如图放置,若么/ 仁55 °,则/ 2的度数为 __________第17题图 如图,将△ ABC 的边AB 延长2倍至点A 1,边BC 延长2倍至点B 1,边CA 延长2倍至点0,顺次连 结A 1、B 1、C 1,得△ A 1B 1C 1,再分别延长△ A 1B 1C 1的各边2倍得△ A 2B 2C 2,……,依次这样下去,得△ A n B n C n ,若厶ABC 的面积为1,则△ A n B n C n 的面积为解答题(本大题共9小题,共76分,解答要求写出文字说明,证明过程或计算步骤 )(本题满分8分) nA 3计算:(1) -3+(2—⑴—匕); (2) (2a ) —a ,a 2+3a 6 + a 3(本题满分8分)解不等式组,并把解集在数轴上表示出来x -2 x -1 -11/ XT13. 14. 15.16. 17.18.三、19. 20.m+3的正方形之后,剩余部分可剪拼成一个长方形,m+3计算:第16题图第18题图如图,边长为2m+3的正方形纸片剪出一个边长为边长为21. (本题满分6分)先化简,再求值2 1 2x y _ x _2y x 2y _3x x _y ,其中-2 ,y=2 .22. (本题满分8分) 因式分解3(1) a _4a23. (本题满分6分如图,方格中有一条美丽可爱的小金鱼.⑴若方格的边长为1,则小鱼的面积为 _______________ .⑵画出小鱼向左平移 10格后的图形(不要求写作图步骤和过程 ).1 1一’□*4T—r/z二子L$7—24. (本题满分8分)如图,在厶ABC 中,/ B=54 ° AD 平分/ CAB ,交BC 于D ,E 为AC 边上一点,连结DE , / EAD = / EDA , EF 丄BC 于点F . 求/ FED 的度数.23(2) -12a18a 2a第24题图25. (本题满分10分)某服装店用10000元购进A , B 两种新式服装,按标价售出后可获得毛利润 5400元(毛利润=售价-进价),这两种服装的进价、标价如表所示:类型、价格 A 型 B 型进价(元/件) 80 100标价(元/件)120160(1) 这两种服装各购进的件 数; (2)如果A 种服装按标价的8折出售,要使这批服装全部售出后毛利润不低于 2000元,贝U B 种服装 至多按标价的几折出售?26. (本题满分10分)对x , y 定义一种新运算 T ,规定:T (x , y ) = ax • 2by -1 (其中a 、b 均为非零常数),这里等式右边 是通常的四则运算,例如:T ( 0, 1) = a 0 2b 1—1=2b-1.(1)已知 T (1,- 1) =- 2, T (4, 2) =3.①求a , b 的值;②若关于m 的Tmry 恰好有2个整数解,求实数p 的取值范围;(2) 若T (x, y) =T (y, x)对任意实数x, y都成立(这里T (x, y)和T (y, x)均有意义),则a, b应满足怎样的关系式?27. (本题满分12分)(1)AB // CD,如图1,点P在AB、CD外面时,由AB // CD,有/ B= / BOD,又因为/ BOD是厶POD的外角,故/ BOD = Z BPD+Z D,得/ BPD= / B-/ D .如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则/ BPD、/ B、Z D之间有何数量关系?请证明你的结论.(2)如图3,若AB、CD相交于点Q,则Z BPD、Z B、Z D、Z BQD之间有何数量关系(不需证明)?(3)根据(2)的结论求图4中Z A+ Z B+ Z C+ Z D+ Z E+ Z F的度数.(4)若平面内有点A i、A2、A3、A4、A5、A6、A7、A s,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7 A i、A s A2,如图5,则Z A什Z A2+ Z A3+ Z A4+ Z A5+ Z A6+ Z A7+ Z A s 的度数是多少(直接写出结果)?若平面内有n个点A2、A3、A4、A5、 .......... , A n,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7, ................... , A n-i A i、A n A2,则Z A1+ Z A2+ Z A3+ Z A4+ ................ +Z A n-i + Z A n的度数是多少(直接写出结果,用含n的代数式表示)?图4 图52014/2015学年度第二学期期末质量检测七年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误! )2 2 5 19. 2x+5 > 10 10. 36011.若 a=b ,贝U a =b .12. 5X10-13. —2n14. 1 15. 0 16. 145 17. 3m+618. 19三、 解答题19. ( 1) -4 (4分,其中每算对一个 1分) (2) 10a 3 (4分,其中每化简正确一个或一步1分)20. (1) x >1 x<2,所以1<x w 2,数轴上表示(略)(各2分,共8分)221. 原式= 7xy 5y (4分,其中每化简正确一部分1分)当 X =—2 , y=2 原式=13 (6 分)22. (1)a a 2 a-2 (提取公因式2分,平方差公式2分,共4分)2(2) 2a a-3 (提取公因式2分,用公式2分,共4分)23. (1) 16 (3 分)(2)画图略(6分) 24.证得 DE // AB (4 分)/ EDF=54 (6 分)/ FED =36 ° (8 分)25. (1)设购进A 种服装的件数为x 件,B 种的为y 件,根据题意得:80x 100y = 10000 40x 60y = 5400解得 x=75y=40(5 分)(2)设B 种服装打m 折出售,根据题意得:(3分)(120 >0.8-80)X75+ (160 k -100)X 40 > 2000 (8 分)10i a - 2b -1 - -2 26.( 1)W4a ・4b -仁3b 二2 (2 分)3所以 a-2bx-a-2b y=0a -2b x -y =0 所以a =2b (10分)27. (1 )Z BPD = / B+ / D (2 分)证明略(4 分)(2) Z BPD=Z B+ / D+ / BQD (6 分)(3) Z A+ / B+Z C+ / D+Z E+ / F= 360° 过程略(9 分)(4)ZA 1+ Z A 2+Z A 3+ Z A 4+ Z A 5+ Z A 6+ Z A 7+ Z A 8=720° (10 分)Z A 什Z A 2+ Z A 3+ Z A 4+ .......... + Z A n-1+ Z A n = (n-4) 180°( 12 分)答略(第(2)中学生设的m 折,但列方程时没除以(10分)10,但在答案中又写出了正确结果,扣(2) '2 m②3m !— +3 3 4(5 _ 4m ),,1 < 43 4(3-2m ), 一1 a p (3分) 59 - 3 p 解得 m :::-147因为原不等式组有 2个整数解 所以2 ::: 士丑<3 所以-4空p7(4分)5 3T (x ,y ) =ax 2by -1 T (y ,x ) = ay 2bx -1 所以 ax 2by —1= ay 2bx —1(6分)(1分)。
精品K12学习初中七年级数学下学期期末考试试题(含解析) 苏科版2
江苏省盐城市亭湖区2014-2015学年七年级数学下学期期末考试试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.如图,a∥b,∠1=130°,则∠2等于()A.130°B.50° C.60° D.120°2.计算(2a2b3)4的结果是()A.8a6b7 B.8a8b12C.16a8b12D.16a6b73.方程组的解为()A. B. C. D.4.下列计算正确的是()A.2x3•(﹣3x2)=﹣6x6B.2a2•4a2=8a2C.(a+b)(b﹣a)=a2﹣b2D.(2a2b3)2•3a2b=12a6b75.下列不等式中,属于一元一次不等式的是()A.2(1﹣y)+y<2y+3 B.x2﹣2x+1=0 C.a+b>c D.x+2y<y+46.如图,AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥AD交AB于点G,那么图中与∠F相等的角的个数有()A.3个B.4个C.2个D.1个7.如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A.240°B.120°C.230°D.200°8.已知xy=10,(x﹣2y)2=1,则(x+2y)2的值为()A.21 B.9 C.81 D.41二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请将答案直接写在答题纸相应位置上)9.四边形的内角和为.10.肥皂泡的泡壁厚度大约为0.0007mm,用科学记数法表示0.0007= .11.计算:()0+()﹣2= .12.已知x+y=2,x﹣y=﹣,则x2﹣y2= .13.不等式组的解集为.14.已知二元一次方程组,则x+y的值为.15.命题:“若x2=y2,则x=y”的逆命题为.16.若不等式组无解,则符合条件的自然数m的值有.三、解答题(本大题共有9小题,共72分,请在答题纸指定区域作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:(1)(﹣a3)2•(﹣a2)3(2)(﹣)2014•32015(3)2﹣1×(43×80)18.分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.19.(1)在单位正方形网格中,将△ABC先向右平移3格,再向下平移4格,得到△A′B′C′,请在网格中画出A′B′C′.(2)图中线段AB与A′B′之间存在的关系是.20.解方程组:(1)(2).21.解不等式组:(1)(2)﹣1≤5.22.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.23.拼图是一种数学实验,我们利用硬纸板拼图,不仅可以探索整式乘法与因式分解之间的内在联系,还可以利用同一图形不同的面积表示方法来探索新的结论.(1)观察下面图①的硬纸板拼图,写出一个表示相等关系的式子:.(2)用不同的方法表示图②中阴影部分的面积,可以得到的乘法公式为.(3)两个边长为a,b,c的直角三角形硬纸板和一个两条直角边都是c的直角三角形硬纸板拼成图③,用不同的方法计算这个图形的面积.你能发现a,b,c之间具有怎样的相等关系?(用最简形式表示)24.请将下列证明过程中的理由或步骤补充完整:如图,已知CF⊥AB于F,DE⊥AB于E,FG∥BC,求证:∠1=∠2.证明:∵CF⊥AB,DE⊥AB,(已知)∴∠BDE=90°,∠BFC=90°,(垂直的定义)∴∠BDE=∠BFC,(等量代换)∴,(同位角相等,两直线平行)∴∠1=∠BCF()∵FG∥BC,(已知)∴,(两直线平行,内错角相等)∴∠1=∠2.()25.【方法阅读】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如二元一次方程2x+3y=15的正整数解只有和两个.那么,我们如何寻找二元一次方程的正整数解呢?不妨以方程2x+3y=15为例,首先过程方程各项的特征,发现2x和15分别是偶数和奇数,可以确定3y必然是奇数,即y是奇数,再运用特值法代入尝试,即将y=1,3,5,…等奇数代入原方程一次求出相应的x的值,从而获得2x+3y=15的正整数解.同学们还可以尝试运用列表法来探索二元一次方程的正整数解.【理解运用】(1)盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x个红球和y个白球,共得34分,请你列出关于x、y的方程,并写出这个方程符合实际意义的所有的解.【灵活运用】(2)已知△ABC的三边m,n,p都是正整数,m,n,p,且△ABC的周长为15,则符合条件的三角形共有个.2014-2015学年江苏省盐城市亭湖区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.如图,a∥b,∠1=130°,则∠2等于()A.130°B.50° C.60° D.120°【考点】平行线的性质.【分析】先根据补角的定义求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=130°,∴∠2=180°﹣130°=50°.∵a∥b,∴∠2=∠3=50°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.2.计算(2a2b3)4的结果是()A.8a6b7 B.8a8b12C.16a8b12D.16a6b7【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则化简求出即可.【解答】解:(2a2b3)4=16a8b12.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.方程组的解为()A. B. C. D.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:y=2,把y=2代入①得:x=10,则方程组的解为.故选C.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.下列计算正确的是()A.2x3•(﹣3x2)=﹣6x6B.2a2•4a2=8a2C.(a+b)(b﹣a)=a2﹣b2D.(2a2b3)2•3a2b=12a6b7【考点】单项式乘单项式;平方差公式.【分析】分别利用单项式乘以单项式运算法则以及平方差公式计算判断即可.【解答】解:A、2x3•(﹣3x2)=﹣6x5,故此选项错误;B、2a2•4a2=8a4,故此选项错误;C、(a+b)(b﹣a)=b2﹣a2,故此选项错误;D、(2a2b3)2•3a2b=12a6b7,故此选项正确.故选:D.【点评】此题主要考查了单项式乘以单项式运算法则以及平方差公式,正确掌握运算法则是解题关键.5.下列不等式中,属于一元一次不等式的是()A.2(1﹣y)+y<2y+3 B.x2﹣2x+1=0 C.a+b>c D.x+2y<y+4【考点】一元一次不等式的定义.【分析】根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就是一元一次不等式.【解答】解:A、正确;B、含有等号,不是不等式,故选项错误;C、含有3个未知数,不是一元一次不等式,故选项错误;D、含有2个未知数,不是一元一次不等式,故选项错误.故选:A.【点评】本题考查一元一次不等式的定义中的未知数的最高次数为1次,解决本题的关键是熟记一元一次不等式的定义.6.如图,AD是∠BAC的平分线,点E在BC上,点F在CA的延长线上,EF∥AD交AB于点G,那么图中与∠F相等的角的个数有()A.3个B.4个C.2个D.1个【考点】平行线的性质.【分析】先根据角平分线的性质得出∠BAD=∠CAD,再由平行线的性质得出∠CAD=∠F,∠BAD=∠BGE,由∠BGE=∠AGF即可得出结论.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD.∵EF∥AD,∴∠CAD=∠F,∠BAD=∠BGE.∵∠BGE=∠AGF,∴∠F=∠BAD=∠CAD=∠BGE=∠AGF.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A.240°B.120°C.230°D.200°【考点】多边形内角与外角;三角形内角和定理;翻折变换(折叠问题).【分析】根据题意可得出∠B+∠A,再根据四边形的内角和定理可求出∠1+∠2.【解答】解:∵∠C=60°,∴∠B+∠A=120°,∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=240°,故选A.【点评】本题考查了三角形的内角和定理,四边形的内角和定理,三角形的内角和等于180°,解决本题的关键是求出∠B+∠A.8.已知xy=10,(x﹣2y)2=1,则(x+2y)2的值为()A.21 B.9 C.81 D.41【考点】完全平方公式.【分析】根据完全平分公式,即可解答.【解答】解:(x+2y)2=(x﹣2y)2+8xy=12+80=81,故选:C.【点评】本题考查了完全平分公式,解决本题的关键是熟记完全平分公式.二、填空题(本大题共有8小题,每小题3分,共24分.不需要写出解答过程,请将答案直接写在答题纸相应位置上)9.四边形的内角和为360°.【考点】多边形内角与外角.【分析】根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)×180°=360°.故四边形的内角和为360°.故答案为:360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.10.肥皂泡的泡壁厚度大约为0.0007mm,用科学记数法表示0.0007= 7×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故答案为:7×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.计算:()0+()﹣2= 26 .【考点】负整数指数幂;零指数幂.【分析】根据负整数指数为正整数指数的倒数;任何非0数的0次幂等于1进行解答即可.【解答】解:()0+()﹣2=1+52=26.故答案为:26.【点评】本题主要考查了零指数幂、负整数指数幂的运算,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.12.已知x+y=2,x﹣y=﹣,则x2﹣y2= ﹣1 .【考点】因式分解-运用公式法.【分析】直接利用平方差公式将已知代入求出即可.【解答】解:∵x+y=2,x﹣y=﹣,∴x2﹣y2=(x+y)(x﹣y)=2×(﹣)=﹣1.故答案为:﹣1.【点评】此题主要考查了公式法因式分解,正确应用平方差公式是解题关键.13.不等式组的解集为﹣4<≤2.【考点】不等式的解集.【分析】不等式组的解集就是两个不等式的交集.【解答】解:不等式组的解集是:﹣4<≤2.故答案是:﹣4<≤2.【点评】本题考查了不等式的解集.求不等式组的解集,应注意:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.已知二元一次方程组,则x+y的值为 5 .【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:x+y=5.故答案为:5.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.命题:“若x2=y2,则x=y”的逆命题为若x=y,则x2=y2.【考点】命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题:“若x2=y2,则x=y”的逆命题为若x=y,则x2=y2,故答案为:若x=y,则x2=y2.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.若不等式组无解,则符合条件的自然数m的值有0,1,2,3,4 .【考点】解一元一次不等式组.【分析】先求出不等式②的解集,再根据不等式①的解集合已知不等式组的解集即可得出关于m的不等式,求出不等式的解集即可.【解答】解:∵解不等式②得:x≤,又∵不等式组无解,∴≤2,∴m≤4,∴符合条件的自然数m的值有0,1,2,3,4,故答案为:0,1,2,3,4.【点评】本题考查了解一元一次不等式组的应用,能求出关于m的不等式组是解此题的关键.三、解答题(本大题共有9小题,共72分,请在答题纸指定区域作答,解答时应写出文字说明、推理过程或演算步骤)17.计算:(1)(﹣a3)2•(﹣a2)3(2)(﹣)2014•32015(3)2﹣1×(43×80)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算乘方,再算乘法;(2)先根据积的乘方进行计算,最后求出即可;(3)先算乘方,再算乘法.【解答】解:(1)原式=a6•(﹣a6)=﹣a12;(2)原式=[(﹣)×3]2004×3=(﹣1)2004×3=3;(3)原式=×64×1=32.【点评】本题考查了有理数的混合运算和整式的混合运算的应用,能正确运用运算法则进行计算是解此题的关键,注意运算顺序.18.分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式提取公因式即可得到结果;(2)原式利用完全平方公式分解即可;(3)原式利用平方差公式分解即可.【解答】解:(1)原式=4x2(1﹣3x);(2)原式=(a﹣b)2;(3)原式=(x2+9)(x2﹣9)=(x2+9)(x+3)(x﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(1)在单位正方形网格中,将△ABC先向右平移3格,再向下平移4格,得到△A′B′C′,请在网格中画出A′B′C′.(2)图中线段AB与A′B′之间存在的关系是平行且相等.【考点】作图-平移变换.【分析】(1)首先根据平移方法确定A、B、C三点的对称点,然后再连接即可;(2)根据平移的性质:平移后对应线段平行且相等可得答案.【解答】解:(1)如图所示:(2)线段AB与A′B′之间存在的关系是平行且相等.故答案为:平行且相等.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.20.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用代入消元法求出解即可.【解答】解:(1)方程组整理得:,①+②,得6x=18,即x=3,把x=3代入方程①,解得:y=2.则原方程组的解为;(2)方程组整理得:由①,得x=6﹣y,将x=6﹣y代入方程②,解得y=2,将y=2代入方程①,解得x=4,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.解不等式组:(1)(2)﹣1≤5.【考点】解一元一次不等式组.【分析】(1)求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(2)先转化成不等式组,再求出每个不等式的解集,最后根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1),由①,解得x>﹣1,由②,解得x≥﹣2,∴原不等式组的解集为x>﹣1;(2)﹣1<≤5,∵原不等式组可以化为,由①,解得x≤6,由②,解得x>﹣3,∴原不等式组的解集为:﹣3<x≤6.【点评】本题考查了解一元一次不等式组的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.22.今年,小丽和她爸爸年龄和是52岁,三年后的2018年,爸爸的年龄将比女儿年龄的2倍大10岁,请你算出小丽和她爸爸今年的年龄.【考点】二元一次方程组的应用.【分析】首先设小丽今年的年龄为x岁,爸爸的年龄为y岁,由题意得等量关系:①小丽和她爸爸年龄和是52岁;②2×(女儿的年龄+3)+10=爸爸三年后的年龄,根据等量关系列出方程组,再解即可.【解答】解:设小丽今年的年龄为x岁,爸爸的年龄为y岁.列出方程组,解得,答:小丽今年的年龄为13岁,爸爸的年龄为39岁.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程组.23.拼图是一种数学实验,我们利用硬纸板拼图,不仅可以探索整式乘法与因式分解之间的内在联系,还可以利用同一图形不同的面积表示方法来探索新的结论.(1)观察下面图①的硬纸板拼图,写出一个表示相等关系的式子:(2a+b)(a+b)=2a2+3ab+b2.(2)用不同的方法表示图②中阴影部分的面积,可以得到的乘法公式为(a+b)(a﹣b)=a2﹣b2.(3)两个边长为a,b,c的直角三角形硬纸板和一个两条直角边都是c的直角三角形硬纸板拼成图③,用不同的方法计算这个图形的面积.你能发现a,b,c之间具有怎样的相等关系?(用最简形式表示)【考点】因式分解的应用.【分析】(1)利用长方形的面积计算得出答案即可;(2)阴影部分拼接得到长为a+b,宽为a﹣b的长方形,面积就是两个正方形的面积差;(3)用梯形面积公式求出梯形面积;由三个三角形面积之和求出梯形面积;根据两种求法得出的面积相等列出关系式,化简即可得到结果.【解答】解:(1)(2a+b)(a+b)=2a2+3ab+b2.(2)(a+b)(a﹣b)=a2﹣b2.(3)梯形面积=ab×2+c2,或者梯形面积=(a+b)2,ab×2+c2=(a+b)2,化简,得a2+b2=c2.【点评】此题考查因式分解的实际运用,利用面积的和与差验证和解决问题.24.请将下列证明过程中的理由或步骤补充完整:如图,已知CF⊥AB于F,DE⊥AB于E,FG∥BC,求证:∠1=∠2.证明:∵CF⊥AB,DE⊥AB,(已知)∴∠BDE=90°,∠BFC=90°,(垂直的定义)∴∠BDE=∠BFC,(等量代换)∴DE∥CF,(同位角相等,两直线平行)∴∠1=∠BCF(两直线平行,同位角相等)∵FG∥BC,(已知)∴∠2=∠BCF,(两直线平行,内错角相等)∴∠1=∠2.(等量代换)【考点】平行线的判定与性质.【专题】推理填空题.【分析】根据垂直定义求出∠BDE=∠BFC,根据平行线的判定得出DE∥CF,根据平行线的性质得出∠1=∠BCF,∠2=∠BCF,即可得出答案.【解答】证明:∵CF⊥AB,DE⊥AB,(已知)∴∠BDE=90°,∠BFC=90°,(垂直的定义)∴∠BDE=∠BFC,(等量代换)∴DE∥CF,(同位角相等,两直线平行)∴∠1=∠BCF,(两直线平行,同位角相等)∵FG∥BC,(已知)∴∠2=∠BCF,(两直线平行,内错角相等)精品K12学习资料∴∠1=∠2.(等量代换)故答案为:DE∥CF,两直线平行,同位角相等,∠2=∠BCF,等量代换.【点评】本题考查了平行线的性质和判定,垂直定义的应用,能综合运用平行线的性质和判定进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.【方法阅读】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如二元一次方程2x+3y=15的正整数解只有和两个.那么,我们如何寻找二元一次方程的正整数解呢?不妨以方程2x+3y=15为例,首先过程方程各项的特征,发现2x和15分别是偶数和奇数,可以确定3y必然是奇数,即y是奇数,再运用特值法代入尝试,即将y=1,3,5,…等奇数代入原方程一次求出相应的x的值,从而获得2x+3y=15的正整数解.同学们还可以尝试运用列表法来探索二元一次方程的正整数解.【理解运用】(1)盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x个红球和y个白球,共得34分,请你列出关于x、y的方程,并写出这个方程符合实际意义的所有的解.【灵活运用】(2)已知△ABC的三边m,n,p都是正整数,m,n,p,且△ABC的周长为15,则符合条件的三角形共有7 个.【考点】二元一次方程的应用.【分析】(1)根据某人摸到x个红球,y个白球,共得34分,列出方程,然后求出合适的x、y的值;(2)设m≥n≥p,根据△ABC的周长为15列出方程m+n+p=1,则m≥5.由此求得符合条件的方程的解.【解答】解:(1)依题意得:3x+4y=34,有三个正整数解为,,;(2)设m≥n≥p,则由m+n+p=15,得m≥5.用试值法或者枚举法可得:,,,,,,.所以符合条件的三角形共有7个.故答案是:7.【点评】本题考查了二元一次方程的应用.解答本题的关键是根据题意列出方程,找出所有合适未知数的值精品K12学习资料。
盐城市七年级数学试卷七年级苏科下册期末专题练习(含答案)
盐城市七年级数学试卷七年级苏科下册期末专题练习(含答案)一、幂的运算易错压轴解答题1.(1)观察:,,我们发现________;(2)仿照(1),请你通过计算,判断与之间的关系;(3)我们可以发现: ________ ()m(ab≠0);(4)计算: .2.规定两数a,b之间的一种新运算※,如果a c=b,那么a※b=c.例如:因为52=25,所以5※25=2,因为50=1,所以5※1=0.(1)根据上述规定,填空:2※8=________2※=________.(2)在运算时,按以上规定:设4※5=x,4※6=y,请你说明下面这个等式成立:4※5+4※6=4※30.3.一般地,n个相同的因数a相乘a•a•…•a,记为a n,如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n 叫做以a为底b的对数,记为log n b(即log n b).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算下列各对数的值:log24=________;log216=________;log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义说明上述结论.二、平面图形的认识(二)压轴解答题4.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.5.如图1,已知点A,点D在BC上方,过点A,D分别作CD,AB的平行线,两条平行线交于点M(点M在BC下方),且与BC分别交于E,F两点,连结AD。
盐城市七年级下册数学期末试题及答案解答
盐城市七年级下册数学期末试题及答案解答一、选择题1.下列各式从左到右的变形中,是因式分解的是().A.x(a-b)=ax-bx B.x2-1+y2=(x-1)(x+1)+y2 C.y2-1=(y+1)(y-1)D.ax+bx+c=x(a+b)+c 2.已知,则a2-b2-2b的值为A.4 B.3 C.1 D.03.已知关于x,y的方程组3210ax byax by+=⎧⎨-=⎩的解为21xy=⎧⎨=-⎩,则a,b的值是()A.12ab=⎧⎨=⎩B.21ab=⎧⎨=⎩C.12ab=-⎧⎨=-⎩D.21ab=⎧⎨=-⎩4.若一个多边形的每个内角都为108°,则它的边数为( )A.5B.8C.6D.105.要使(4x﹣a)(x+1)的积中不含有x的一次项,则a等于()A.﹣4 B.2 C.3 D.46.已知4m=a,8n=b,其中m,n为正整数,则22m+6n=()A.ab2B.a+b2C.a2b3D.a2+b37.如图,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为点D、点E、点F,△ABC 中AC边上的高是()A.CF B.BE C.AD D.CD8.下列各式从左到右的变形中,是因式分解的为()A.ab+ac+d=a(b+c)+d B.(x+2)(x﹣2)=x2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)29.下列运算正确的是()A.a2·a3=a6B.a5+a3=a8C.(a3)2=a5D.a5÷a5=110.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B的度数为()A.75°B.72°C.78°D.82°二、填空题11.一个五边形所有内角都相等,它的每一个内角等于_______.12.积的乘方公式为:(ab)m=.(m是正整数).请写出这一公式的推理过程.13.已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.14.如果9-mx+x2是一个完全平方式,则m的值为__________.15.计算(﹣2xy)2的结果是_____.16.如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260°,求∠A的度数是______.17.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留mm.下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为__________218.将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、∠=︒,则21EFGN的位置上,若52∠-∠=_____________︒.19.已知:()521x x ++=,则x =______________.20.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.三、解答题21.若x ,y 为任意有理数,比较6xy 与229x y +的大小.22.要说明(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc 成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立;23.对于多项式x 3﹣5x 2+x +10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x +10的值为0,由此可以断定多项式x 3﹣5x 2+x +10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),分别求出m 、n 后再代入x 3﹣5x 2+x +10=(x ﹣2)(x 2+mx +n ),就可以把多项式x 3﹣5x 2+x +10因式分解.(1)求式子中m 、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x 3+5x 2+8x +4.24.先化简,再求值:(2x+2)(2﹣2x )+5x (x+1)﹣(x ﹣1)2,其中x =﹣2.25.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.26.如图,在边长为1个单位长度的小正方形网格中,ΔABC 经过平移后得到ΔA B C ''',图中标出了点B 的对应点B ',点A '、C '分别是A 、C 的对应点.''';(1)画出平移后的ΔA B C(2)连接BB'、CC',那么线段BB'与CC'的关系是_________;(3)四边形BCC B''的面积为_______.27.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.28.如图,点D、E、F分别是△ABC三边上的点,DF∥AC,∠BFD=∠CED,请写出∠B与∠CDE之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】A. 是整式的乘法,故A 错误;B. 没把一个多项式转化成几个整式积,故B 错误;C. 把一个多项式转化成几个整式积,故C 正确;D. 没把一个多项式转化成几个整式积,故D 错误;故选C.2.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 3.A解析:A【分析】把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得: 2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩, 故选A.【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.4.A解析:A【解析】已知多边形的每一个内角都等于108°,可得多边形的每一个外角都等于180°-108°=72°,所以多边形的边数n=360°÷72°=5.故选A.5.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.6.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2=ab2,故选:A.【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.7.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.8.D解析:D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.9.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.10.C解析:C【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数.【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①;根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ;在△CBD中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②;①-②,得:23∠B=52°,解得∠B=78°.故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B和∠CBD的倍数关系是解答此题的关键.二、填空题11.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.12.:ambm,见解析.【解析】【分析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab)m=ambm,理由:(ab)m=ab×ab×ab×ab×…×ab解析::a m b m,见解析.【解析】先写出题目中式子的结果,再写出推导过程即可解答本题.【详解】解:(ab )m =a m b m ,理由:(ab )m =ab ×ab ×ab ×ab ×…×ab=aa …abb …b=a m b m故答案为a m b m .【点睛】本题考查幂的乘方与积的乘方,解题的关键是明确它们的计算方法.13.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2, ∴1≤-13m <3, 解之得4<7m ≤.故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx+x2=0对应的判别式△=0,因此得到:m2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.15.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.16.80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC 的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC 的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.17.【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩∴小长方形的面积为:22515375xy mm【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程. 18.28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52解析:28°【分析】根据平行线的性质求出∠DEF的度数,然后根据折叠的性质算出∠GED的度数,根据补角的定义算出∠1的度数,然后求解计算即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFG=52°,∵EFNM是由EFCD折叠而来∴∠GEF=∠DEF=52°,即∠GED=104°,∴∠1=180°-104°=76°,∵∠2=∠GED=104°,∴∠2-∠1=104°-76°=28°.故答案为28°.【点睛】本题考查了平行线的性质和折叠的性质,解决本题的关键是正确理解题意,熟练掌握平行线的性质和折叠的性质,能够根据折叠的性质找到相等的角.19.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.20.a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b=﹣4①,3a+2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解析:a >﹣1【分析】根据新运算法则可得关于a 、b 的方程与不等式:2a ﹣b =﹣4①,3a +2b >1②,于是由①可用含a 的代数式表示出b ,所得的式子代入②即得关于a 的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a ﹣b =﹣4①,3a +2b >1②,由①得,b =2a +4③,把③代入②,得3a +2(2a +4)>1,解得:a >﹣1.故答案为:a >﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.三、解答题21.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.22.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)利用乘方的意义求解,即可;(2)将式子变形,利用完全平方公式计算,即可;(3)化成边长为a+b+c 的正方形,即可得出答案.【详解】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2(3)小丽:如图【点睛】本题考查了整式的运算法则的应用,能正确根据整式的运算法则进行化简是解此题的关键,也培养了学生的动手操作能力.23.(1)m=﹣3,n=﹣5;(2)x3+5x2+8x+4=(x+1)(x+2)2.【解析】【分析】(1)根据x3﹣5x2+x+10=(x﹣2)(x2+mx+n),得出有关m,n的方程组求出即可;(2)由把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,进而将多项式分解得出答案.【详解】(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n),中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4),=(x+1)(x+2)2.【点睛】本题主要考查了因式分解的应用,根据已知获取正确的信息,是近几年中考中热点题型同学们应熟练掌握获取正确信息的方法.x+;-1124.73【分析】根据整式的运算法则即可求出答案.【详解】解:2x x x x x2222511222445521x x x x x73x 当2x =-时,原式14311. 【点睛】本题考查整式化简求值,熟练运用运算法则是解题的关键.25.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =- 再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩, 解得12a =-. 故答案为12a =-. 【点睛】 本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.26.(1)见解析;(2)平行且相等;(3)28【分析】(1)根据平移的性质画出点A 、C 平移后的对应点A '、C '即可画出平移后的△A B C '''; (2)根据平移的性质解答即可;(3)根据平行四边形的面积解答即可.【详解】解:(1)如图,ΔA B C '''即为所求;(2)根据平移的性质可得:BB'与CC'的关系是平行且相等;故答案为:平行且相等;(3)四边形BCC B''的面积为4×7=28.故答案为:28.【点睛】本题主要考查了平移的性质和平移作图,属于常考题型,熟练掌握平移的性质是解题关键.27.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.28.见解析【分析】由DF∥AC,得到∠BFD=∠A,再结合∠BFD=∠CED,有等量代换得到∠A=∠CED,从而可得DE∥AB,则由平行线的性质即可得到∠B=∠CDE.【详解】解:∠B=∠CDE,理由如下:∵ DF∥AC,∴∠BFD=∠A.∵∠BFD=∠CED,∴∠A=∠CED.∴DE∥AB,∴∠B=∠CDE.【点睛】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省盐城市东台市七年级(下)期末数学试卷一、选择题(每小题3分,共24分)1.(3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等2.(3分)下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4 D.x5÷x=x53.(3分)下列命题中,是真命题的为()A.如果a>b,那么|a|>|b|B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余4.(3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.15.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)6.(3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<7.(3分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC 的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B.C.D.x2二、填空题(每小题2分,共16分)9.(2分)人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为米.10.(2分)分解因式:x2﹣4x+4=.11.(2分)命题“锐角与钝角互为补角”的逆命题是.12.(2分)一个n边形的内角和是540°,那么n=.13.(2分)如果等腰三角形的两边长分别为4和7,则三角形的周长为.14.(2分)若不等式(a﹣3)x>1的解集为x<,则a的取值范围是.15.(2分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.16.(2分)七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.0三、解答题(本题共9题,共60分)17.(8分)计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.18.(4分)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.19.(6分)分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.20.(4分)解不等式组,并写出它的整数解.21.(6分)已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC()∴∠2=()∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD()∴∠AFE=∠ADC()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)22.(8分)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?23.(8分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.24.(8分)小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少块?25.(8分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.2014-2015学年江苏省盐城市东台市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【解答】解:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.2.(3分)下列运算正确的是()A.x3•x3=2x6B.(x3)2=x6C.(﹣2x2)2=﹣4x4 D.x5÷x=x5【解答】解:A、x3•x3=x6≠2x6,故本选项错误;B、(x3)2=x6,故本选项正确;C、(﹣2x2)2=4x4≠﹣4x4,故本选项错误;D、x5÷x=x4≠x5,故本选项错误.故选:B.3.(3分)下列命题中,是真命题的为()A.如果a>b,那么|a|>|b|B.一个角的补角大于这个角C.平方后等于4的数是2 D.直角三角形的两个锐角互余【解答】解:A、当a=0,b=﹣1,则|a|<|b|,所以A选项错误;B、90度的补角为90度,所以B选项错误;C、平方后等于4的数是±2,所以C选项错误;D、直角三角形的两个锐角互余,所以D选项正确.故选:D.4.(3分)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A.2 B.0 C.﹣1 D.1【解答】解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.5.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.6.(3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣c B.a+c<b+c C.ac>bc D.<【解答】解:由数轴可以看出a<b<0<c.A、∵a<b,∴a﹣c<b﹣c,故选项错误;B、∵a<b,∴a+c<b+c,故选项正确;C、∵a<b,c>0,∴ac<bc,故选项错误;D、∵a<c,b<0,∴>,故选项错误.故选:B.7.(3分)如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC 的方向平移到△DEF的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE【解答】解:∵把△ABC沿BC的方向平移到△DEF的位置,BC=5,∠A=70°,∠B=75°,∴CF=BE=3,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,AB∥DE,∴A、B、D正确,C错误,故选:C.8.(3分)如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多x,则正方形的面积与长方形的面积的差为()A.x2B.C.D.x2【解答】解:设长方形的宽为acm,则长为(x+a),则正方形的边长为(x+a+a)=(x+2a);正方形的面积为[(x+2a)]2,长方形的面积为a(x+a),二者面积之差为[(x+2a)]2﹣a(x+a)=x2.故选:D.二、填空题(每小题2分,共16分)9.(2分)人体中成熟的红细胞的平均直径为0.000 0077米,用科学记数法表示为7.7×10﹣6米.【解答】解:0.000 0077=7.7×10﹣6;故答案为:7.7×10﹣6.10.(2分)分解因式:x2﹣4x+4=(x﹣2)2.【解答】解:x2﹣4x+4=(x﹣2)2.11.(2分)命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.【解答】解:命题“锐角与钝角互为补角”的逆命题是如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.故答案为如果两个角互为补角,那么这两个角一个是锐角另一个是钝角.12.(2分)一个n边形的内角和是540°,那么n=5.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.13.(2分)如果等腰三角形的两边长分别为4和7,则三角形的周长为15或18.【解答】解:①腰长为4时,符合三角形三边关系,则其周长=4+4+7=15;②腰长为7时,符合三角形三边关系,则其周长=7+7+4=18.所以三角形的周长为15或18.故填15或18.14.(2分)若不等式(a﹣3)x>1的解集为x<,则a的取值范围是a<3.【解答】解:∵(a﹣3)x>1的解集为x<,∴不等式两边同时除以(a﹣3)时不等号的方向改变,∴a﹣3<0,∴a<3.故答案为:a<3.15.(2分)已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.16.(2分)七(1)班小明同学通过《测量硬币的厚度与质量》实验得到了每枚硬币的厚度和质量,数据如下表.他从储蓄罐取出一把5角和1元硬币,为了知道总的金额,他把这些硬币叠起来,用尺量出它们的总厚度为22.6mm,又用天平称出总质量为78.5g,请你帮助小明同学算出这把硬币的总金额为9元.1元硬币5角硬币每枚厚度(单位:mm) 1.8 1.7每枚质量(单位:g) 6.1 6.0【解答】解:设5角的硬币x枚,1元硬币y枚,由题意得:,解得:,8×0.5+5×1=9(元),故答案为:9.三、解答题(本题共9题,共60分)17.(8分)计算:(1)(﹣1)2015+(π﹣3.14)0+(﹣)﹣2(2)x3•x5﹣(2x4)2+x10÷x2.【解答】解:(1)原式=﹣1+1+4=4;(2)原式=x8﹣4x8+x8=﹣2x8.18.(4分)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.【解答】解:∵x2﹣4x﹣1=0,即x2﹣4x=1,∴原式=4x2﹣12x+9﹣x2+y2﹣y2=3x2﹣12x+9=3()+9=12.19.(6分)分解因式:(1)2a2﹣50(2)x4﹣8x2y2+16y4.【解答】解:(1)原式=2(a2﹣25)=2(a+5)(a﹣5);(2)原式=(x2﹣4y2)2=[(x+2y)(x﹣2y)]2=(x+2y)2(x﹣2y)2.20.(4分)解不等式组,并写出它的整数解.【解答】解:,解不等式①得:x<3,解不等式②得:x≥1,则不等式的解集为:1≤x<3,则整数解为:1,2.21.(6分)已知,如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AFE=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)【解答】证明:∵DG⊥BC,AC⊥BC,(已知)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD (两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠DCA(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∴∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义)故答案为同位角相等,两直线平行;∠ACD;两直线平行,内错角相等;两直线平行,同位角相等;垂直定义.22.(8分)如果一个正整数能表示为两个连续偶数的平方差,那么我们称这个正整数为“和谐数”,如4=22﹣02,12=42﹣22,20=62﹣42,因此,4,12,20这三个数都是“和谐数”.(1)28和2016这两个数是“和谐数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构成的“和谐数”是4的倍数吗?为什么?【解答】解:(1)∵28=82﹣62,∴28是“和谐数”∵2016不能表示成两个连续偶数的平方差∴2016不是“和谐数”;(2)(2k+2)2﹣(2k)2=(2k+2+2k)(2k+2﹣2k)=2(4k+2)=4(2k+1),∵k为非负整数,∴2k+1一定为正整数,∴4(2k+1)一定能被4整除,即由这两个连续偶数构成的“和谐数”是4的倍数.23.(8分)已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.(1)求证:∠F+∠FEC=2∠A;(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.【解答】(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,∴∠F+∠FEC=∠F+∠A+∠ADE,∵∠ADE=∠BDF,∴∠F+∠FEC=∠A+∠ABC,∵∠A=∠ABC,∴∠F+∠FEC=∠A+∠ABC=2∠A.(2)∠MBC=∠F+∠FEC.证明:∵BM∥AC,∴∠MBA=∠A,、∵∠A=∠ABC,∴∠MBC=∠MBA+∠ABC=2∠A,又∵∠F+∠FEC=2∠A,∴∠MBC=∠F+∠FEC.24.(8分)小李家装修,客厅共需某种型号的地砖100块,经市场调查发现,如果购买彩色地砖40块和单色地砖60块则共需花费5600元,如果购买彩色地砖和单色地砖各50块,则需花费6000元.(1)求两种型号的地砖的单价各是多少元/块?(2)如果厨房也要铺设这两种型号的地砖共60块,且购买地砖的费用不超过3400元,那么彩色地砖最多能采购多少块?【解答】解:(1)设彩色地砖的单价为x元/块,单色地砖的单价为y元/块,由题意,得,解得:,答:彩色地砖的单价为80元/块,单色地砖的单价为40元/块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3400,解得:a≤25.∴彩色地砖最多能采购25块.25.(8分)Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点,令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图①所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图②所示,则∠α、∠1、∠2之间的关系为∠1+∠2=90°+α;(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请写出∠α、∠1、∠2之间的关系式,并说明理由.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α.(3)如图,分三种情况:连接ED交BA的延长线于P点如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,∴∠2﹣∠1=90°+∠α;如图2,∠α=0°,∠2=∠1+90°;如图3,∠2=∠1﹣∠α+∠C,∴∠1﹣∠2=∠α﹣90°.初中数学几何模型【模型二】半角型:图形特征:45°4321A1FB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:a+bb x-aa 45°D Ba +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.DE2.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,求△AMN 的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF ,BE ,DF 之间的数量关系.ABFEDCF。