人教版高中数学必修三第二章第1节2.1.2 系统抽样 课件(共21张PPT)

合集下载

人教版高中数学必修三第二章第1节 2.1.3分层抽样 课件(共23张PPT)

人教版高中数学必修三第二章第1节 2.1.3分层抽样 课件(共23张PPT)

候选人
Roosevelt Landon
预测结果%
43 57
选举结果%
62 38
思考?
预测结果出错的原因是什么?
1、个体被抽取的机会不均等
2、选取的样本不能很好地反应总体 的情况
3、当个体的差异比较明显时,我们 应该先选用分层抽样的方法进行抽 样,再在每层进行随机抽样。
类别
简单 随机 抽样
共同点
小学
357
222
258
初中
226
134
11
高中
112
43
6
10
80
谢谢指导!
人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,心中都要怀着一粒信念的种子,有什么样的眼界和胸襟,就看到什么样的风景。你的心有多宽,你 局有多大,你的心就能有多宽。我很平凡,却不简单,只要我想要,就会通过自己的努力去得到。羡慕别人不如自己拥有,现在的努力奋斗成就未来的自己。人生要学 存了一次丰收;你若努力,就储存了一个希望;你若微笑,就储存了一份快乐。你能支取什么,取决于你储蓄了什么。没有储存友谊,就无法支取帮助;没有储存学识 储存汗水,就无法支取成长。想要取之不尽的幸福,要储蓄感恩和付出。人生之路并非只有坦途,也有不少崎岖与坎坷,甚至会有一时难以跨越的沟坎儿。在这样的紧要 再向前跨出一步!尽管可能非常艰难,但请相信:只要坚持下去,你的人生会无比绚丽!弯得下腰,才抬得起头。在人生路上,不是所有的门都很宽阔,有的门需要你弯 必要时要能够弯得下自己的腰,才可能在人生路上畅通无阻。跟着理智走,要有勇气;跟着感觉走,就要有倾其所有的决心。从不曾放弃追求,从不愿放弃自己的所有, 风景,领略太多的是是非非,才渐渐明白,人活着不只为了自己,而活着,却要活出自己你不会的东西,觉得难的东西,一定不要躲。先搞明白,后精湛,你就比别人 不舍得花力气去钻研,自动淘汰,所以你执着的努力,就占了大便宜。女生年轻时的奋斗不是为了嫁个好人,而是为了让自己找一份好工作,有一个在哪里都饿不死的 收入。因为:只有当你经济独立了,才能做到说走就走,才能灵魂独立,才能有资本选择自己想要伴侣和生活。成功没有快车道,幸福没有高速路,一份耕耘一份收获 的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。也许你要早上七点起床,晚上十二点睡觉,日复一日,踽踽独行。但只要笃定而动情地活着,即使生不逢时,你人 器晚成。无论遇到什么困难,受到什么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!无 么伤害,都不要放弃和抱怨。放弃,再也没有机会;抱怨,会让家人伤心;只要不放弃,扛下去,生活一定会给你想要的惊喜!行动力,是我们对平庸生活最好的回击。 就在于行动力。不行动,梦想就只是好高骛远;不执行,目标就只是海市蜃楼。想做一件事,最好的开始就是现在。每个人的心里,都藏着一个了不起的自己,只要你 悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方!每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着 着善良,只要在路上,就没有到达不了的远方!自己丰富才能感知世界丰富,自己善良才能感知社会美好,自己坦荡才能感受生活喜悦,自己成功才能感悟生命壮观! 退的理由却有一百个。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而 现在,勿忘初心。每条路都是孤独的,慢慢的你会相信没有什么事不可原谅,没有什么人会永驻身旁,也许现在的你很累,未来的路还很长,不要忘了当初为何而出发, 勿忘初心。人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别人欠你的, 好报;坚持,必有收获!人活一世,实属不易,做个善良的人,踏实,做个简单的人,轻松。不管以前受过什么伤害,遇到什么挫折,做人贵在善良,做事重在坚持!别 善良,终有好报;坚持,必有收获!不要凡事都依靠别人。在这个世界上,最能让你依靠的人是自己,最能拯救你的人也只能是自己。要想事情改变,首先要改变自己 终改变别人。有位哲人说得好:如果你不能成为大道,那就当一条小路;如果你不能成为太阳,那就当一颗星星。生活有一百种过法,别人的故事再好,始终容不下你 定。不要羡慕别人,你有更好的,只是你还不知道。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没 力,我就更没资格说,我无能为力。水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运。更何况比我差的人还没放弃,比我好的 格说,我无能为力。朝着一个目标不停的向前,不断努力的付出,哪怕你现在的人生是从零开始,你都可以做得到。早安!让梦想照进现实,才是当下最应该做的事情 钱的时候不磨叽, 生活不会因为你哭泣而对你温柔, 连孩子都知道,想要的东西,要踮起脚尖,自己伸手去拿,所以不要什么都不做,还什么都想要。但你可以通过努

《系统抽样》人教版高中数学必修三PPT课件(第2.1.2课时)

《系统抽样》人教版高中数学必修三PPT课件(第2.1.2课时)

新知探究
系统抽样:
1.定义: 当总体的个体数较多时,采用简单随机抽样太麻烦,这时将总体分成均衡的几个部分,然后按
照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法称为系统抽 样。有时也叫等距抽样或机械抽样.
新知探究
系统抽样的步骤:
(1)先将总体的N个个体编号。 (2)确定分段间隔k,对编号进行分段,当N/n(n是样本容量)是整数时,取k= N/n; (3)在第1段用简单随机确定第一个个体编号m(m≤k)
(4)按照一定的规则抽取样本。通常是将m加上间隔k得到第二个个体编号(m+k),再加k得到 第3个个体编号,依次进行下去,直到获得整个样本。
课堂练习
1 老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,
其最可能用到的抽样方法为
A.简单随机抽样
B.抽签法
C.随机数法
√D.系统抽样
课堂练习
思考7:系统抽样适合在哪种情况下使用?系统抽样公平吗? [注意]:①系统抽样适合于总体的个体数较多的情形.
②系统抽样也是等概率抽样,即每个个体被抽到的概率是相等的,其概率仍为P=n/N,从而 保证了抽样的公平性.
课堂练习
例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40
新知探究
用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体 编号怎样抽取?
用简单随机抽样抽取第1段的个体编号.在抽取第1段的号码之前,自定义规则确定以后各段的个 体编号,通常是将第1段抽取的号码依次累加间隔k.
新知探究
思考3:上述抽样方法称为系统抽样,一般地,怎样理解系统抽样的含义?

高中数学必修3课件:2.1.2系统抽样、2.1.3 分层抽样(共21张PPT)

高中数学必修3课件:2.1.2系统抽样、2.1.3 分层抽样(共21张PPT)

二、从容量为N的总体中抽取容量为n的样本,用系统抽 样的一般步骤为:
(1)将总体中的N个个体编号.有时可直接利用 个体自身所带的号码,如学号、准考证号、门牌号等;
(2)将编号按间隔k分段(k∈N). (3)在第一段用简单随机抽样确定起始个体的 编号L(L∈N,L≤k)。 (4)按照一定的规则抽取样本,通常是将起始 编号L加上间隔k得到第2个个体编号L+K,再加上K得到 第3个个体编号L+2K,这样继续下去,直到获取整个样 本.
具体过程如下: (1)将3万人分为5层,其中一个乡镇为一层. (2)按照样本容量的比例求得各乡镇应抽取的人数 分别为60人、40人、100人、40人、60 人. (3)按照各层抽取的人数随机抽取各乡镇应抽取的 样本. (4)将300人组到一起,即得到一个样本。
【能力提高】
1.某工厂生产A、B、C三种不同型号的产品, 产品数量之比为2:3:5,现用分层抽样方法抽取一 个容量为n的样本,样本中A型产品有16种,那么此
(4) 按照一定的规则抽取样本,通常是将L加上间隔k 得到第2个个体编号(L+k),再加k得到第3个个体标号 (L+2k),依次进行下去,直到获取整个样本
【情景导入】
假设某地区有高中生2400人,初中生 10900人,小学生11000人,此地 教育部门为了了解本地区中小学生的近视情 况及其形成原因,要从本地区的 中小学生中抽取1%的学生进行调查,你认为 应当怎样抽取样本?
P(任一个个体)
n N
样本容量 总体容量
系统抽样的步骤:
(1)先将总体的N个个体编号,按照随机抽样的方法编 号,有时也可直接利用个体自身所带的号码,如学号、准 考证号、门牌号等
(2)确定分段间隔k,对编号进行分段,当N/n(n是 样本容量)是整数时,取k=N/n;当N/n不是整数时, 从总体中剔除一些个体,使剩下的总体中个体的个数N΄ 能被n整除,这时K=N΄/n,并将剩下的总体进行重新 (编3号) 在第1段用简单随机抽样确定第一个个体编号L (L<=k)

2019人教版高中数学必修三:2.1.1-2简单随机抽样系统抽样(共64张PPT)教育精品.ppt

2019人教版高中数学必修三:2.1.1-2简单随机抽样系统抽样(共64张PPT)教育精品.ppt
6,18,29,30,41, 52,63,74,85,96.
小结
1、系统抽样也是等概率抽样,即每个个体被 抽到的概率是相等的,从而保证了抽样的公平性.
2、系统抽样适合于总体的个体数较多的情形.
3、系统抽样的步骤为: (1)采用随机的方法将总体中个体编号; (2)将整体编号进行分段,确定分段间隔k(k∈N); (3)在第一段内采用简单随机抽样的方法确 定起始个体编号L; (4)按照事先预定的规则抽取样本.
思考2:从6件产品中随机抽取一个容量为3的样 本,每次从中随机抽取一件,抽取的产品不放回,这 叫做逐个不放回抽取.在这个抽样中,某一件产品被 抽到的概率是多少?
思考3:一般地,从N个个体中随机抽取n个个体 作为样本,则每一个个体被抽到的概率是多少?
问题:简单随机抽样有哪些主要特点?
简单随机抽样主要特点: (1)被抽取的样本的总体个数N是有限的 ; (2)样本数n小于等于样本总体的个数N ; (3)随机样本是从总体中逐个抽取的 ; (4)是一种不放回的抽样 ; (5)每个个体被抽到的机会都相等,抽样具有公平性.
练习3: 某中学有高一学生323名,为了了解 学生的身体状况,要抽取一个容量为40的样本,用 系统抽样法如何抽样?
第一步,随机剔除3名学生,把余下的320名学 生编号为1,2,3,…320.
第二步,把总体分成40个部分,每个部分有8个 个体.
第三步,在第1部分用抽签法确定起始编号.
第四步,从该号码起,每间隔8个号码抽取1个号 码,就可得到一个容量为40的样本.
练习1:如果从100个个体中抽取一个容量为10的 样本,对这100个个体进行编号.
练习2:一般地,利用随机数表法从含有N个个体 的总体中抽取一个容量为n的样本,其抽样步骤如何?

人教版高中数学必修3第二章统计《2.1随机抽样:2.1.2 系统抽样》教学PPT

人教版高中数学必修3第二章统计《2.1随机抽样:2.1.2 系统抽样》教学PPT
n
l (3)在第一段中用简单随机抽样确定起始的个体编号 ;
(4)将编号为 l,l k,l 2k,...,l (n 1)k 的个体抽出。
简记为:编号;分段;在第一段确定起始号;加 间隔获取样本。
3、系统抽样的特点:
(1)用系统抽样抽取样本时,每个个体被抽 到的可能性是相等的,个体被抽取的概率等于
2、系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为K)分段,当
N
n (N为总体中的个体数,n为样本容量)是整数 时,k N ;当 N 不是整数时,从总体中剔除一些
nn 个体,使剩下的总体中个体的个数 N ' 能被n整除,这 时, k N ' ,并将剩下的总体重新编号;
知识回顾
1、简单随机抽样包括__抽__签__法__和__随__机__数__表__法__.
2、在简单随机抽样中,某一个个体被抽到的可
能性是( C )。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
2.1.2 系统抽样
教学目标: 1、知识与技能:(1)正确理解系统抽样的概念;(2) 掌握系统抽样的一般步骤;(3)正确理解系统抽样与 简单随机抽样的关系; 2、过程与方法:通过对实际问题的探究,归纳应用数 学知识解决实际问题的方法,理解分类讨论的数学方 法, 3、情感态度与价值观:通过数学活动,感受数学对实 际生活的需要,体会现实世界和数学知识的联系。 4、重点与难点:正确理解系统抽样的概念,能够灵活 应用系统抽样的方法解决统计问题。
问题:某校高一年级共有20个班,每班有

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件(共21张PPT)

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样  课件(共21张PPT)
分层抽样过程: (1)确定样本容量与总体的个体数之比 50 1
1000 20
(2) 利用抽样比例确定各年龄段应抽取的个体数,Biblioteka 依次为, 920. 1 46
20
, 80. 1 4 20
分层抽样适用情况: 总体由差异明显的几部分组成
分层抽样的抽取步骤:
(1)确定抽取的比例:
样本容量 总体
(2)确定各层抽取的样本数:
运动员有6人,则抽取的男运动员有___8_
变式: 一支田径运动队有98人.现用分层抽样的方法 抽取14人,若抽取的男运动员有8人,则运动队
中,男运动员有___5_ 6
某社区有500个家庭,其中高收入家庭125户,中等收入家庭 280户,低收入家庭 95户,为了调查社会购买力的某项指标,要 从中抽取1个容量为100的样本,记做(1);
思考:抽签法是否简单易行?
随机数表法
解决问题
第一步,先将800件产品编号(001,002…….800) 第二步,在随机数表(P103)中任选一个数作为 开始.
第三步,从选定的数开始向右读下去,得到一个三位 数字。(满足要求,则读取;不符合要求,则舍去)
总结:简单随机抽样:抽签法,随机数表法
1、简单随机抽样概念: 一般地,设一个总体的个体数为N, 如果通过逐个抽取的方法, 不放回地抽取一个样本(n≤N), 且每次抽取时各个个体被抽到的概率相等, 就称这样的抽样为简单随机抽样。
某学校高一年级有12名女排运动员,要从中选出3人调查学 习负担情况,记做(2).
那么完成上述2项调查应采用的抽样方法是( ) A (1)用随机抽样法, (2)用系统抽样法 B (1)用分层抽样法, (2)用随机抽样法 C (1)用系统抽样法, (2)用分层抽样法

人教版高中数学必修三第二章第1节2.1.2 系统抽样 课件共24张PP

人教版高中数学必修三第二章第1节2.1.2 系统抽样 课件共24张PP

(二)合作探究
探究2:总结系统抽样与简单的随机抽样的联系 与区别?
方法 类别
简单随 机抽样
系统 抽样
共同 特点
抽样过 程中每 个个体 被抽取 的概率 相等
抽样特征 相互联系
从总体中 逐个不放 回抽取
将总体分 成均衡几 部分,按 事先确定 的规则在 各部分抽 取
用简单随 机抽样抽 取起始号 码
适应范围
防错练习
(2)为了调查某路口一个月的交通流量情 况,王二采用系统抽样的方法,样本距 离为7,从每周中随机抽取一天,他抽取 的正好是星期一,这样他每个星期一对 这个路口的交通流量进行了统计,最后 做出调查报告,你认为王二这样的抽样 方法有什么问题?
防错练习
【解析】(2)由于星期一是周末休假 后第一天上班,交通情况与一周内 其他几天有明显的差异,因而王二 所统计的数据以及由此所推断出来 的结论,只能代表星期一的交通流 量,这一天的交通流量较大,不能 代表其他几天.
防错练习
【解析】(1)假设这个班的学生是这样编号的(这个 编号也代表他们的身高):
第一组:a1<a2<a3<a4<n5<n6<a7<a8; . 第二组:bl <b2 <b3 <b4 <b5 <b6 <b7 <b8; … 第三组:cl<c2 <c3 <c4 <c5<c6<c7<c8; 第四组:dl <d2 <d3 <d4 <d5 <d5 <d7 <d8; 第五组:e1 <e2 <e3<e4 <e5 <e6 <e7 <e8. 如果按照张三的抽样方法,比如在第一组抽取了8 号,也就是a8,那么所抽取的样本分别为a8,b8; ,c8,d8,e8,显然,这样的样本不具有代表性, 他们代表的身高偏高.

人教版高中数学必修3(课件)第二章《统计》2.1.2系统抽样

人教版高中数学必修3(课件)第二章《统计》2.1.2系统抽样
(3)系统抽样比简单随机抽样的应用范围更广.
例、从编号为1~50的50枚最新研制的 某种型号的导弹中随机抽取5枚来进行发射 实验,若采用每部分选取的号码间隔一样 的系统抽样方法,则所选取5枚导弹的编号 可能是( B ) A.5,10,15,20,25 B、3,13,23,33,43 C、1, 2, 3, 4, 5 D、2, 4, 6, 16,32
【小结】
1.系统抽样的定义;
2.系统抽样的一般步骤;
3.分段间隔的确定.
例:某学校为了了解高一年级学生对教师教 学的意见,打算从高一年级500名学生中抽取50 名进行调查,用简单随机抽样获取样本方便吗? 你能否设计其他抽取样本的方法?
我们按照下面的步骤进行抽样: 第一步:将这500名学生从1开始进行编号;
第二步:确定分段间隔k,对编号进行分段.由于 k=500/50=10,这个间隔可以定为10;
3.简单随机抽样的特点:
它的总体个数有限的;
它是逐个地进行抽取;
它是一种不放回抽样;
它是一种等概率抽样.
4、下面的抽样方法是简单随机抽样吗?为什么?
①某班45名同学,指定个子最高的5名学生参加 学校组织的某项活动; ②从20个零件中一次性抽取3个进行质量检查; ③一儿童从玩具箱中的20件玩具中随意拿出一件 来玩,玩后放回再拿一件,连续玩了5件。 判断的依据:简单随机抽样的特点 ①总体的个数有限;②从总体中逐个进行抽取; ③是不放回抽样;④是等可能抽样。
系统抽样与简单随机抽样比较,有何优、缺点? 点评:(1)系统抽样比简单随机抽样更容易实施, 可节约抽样成本;
(2) 如果编号的个体特征随编号的变化呈现一定 的周期性,可能会使系统抽样的代表性很差.例如学号 按照男生单号女生双号的方法编排,那么,用系统抽样 的方法抽取的样本就可能会是全部男生或全部女生.

高中数学人教A版必修3第二章2.1.1_2.1.3随机抽样、系统抽样、分层抽样课件(共26张PPT)

高中数学人教A版必修3第二章2.1.1_2.1.3随机抽样、系统抽样、分层抽样课件(共26张PPT)

通常利用l+k,l+2k,l+3k,... 这种不断添加分段间隔的方 式确定样本编号.本题最终选
取的编号为: 9,19,29,39,49,...,499
系统抽样的概念
• 将总体平均分成几部分,然后按照一定的规则,从每一部分抽 取一个个体作为样本,这种抽样的方法叫做系统抽样。
系统抽样,实质上是将转化思想.
将500名学生按 1,2,3,...,500进行编
号.
10人一组(即k=10), 将500名学生分为50组. 即:第1组10名学生的编 号为1~10,第2组学生的 编号为11~20,以此类推.
在第一组10名同学中,采 用简单随机抽样(抽签法 或随机数法),确定第一 个个体的编号l(l≤k).
假设抽到的是9.
明。
• 答:对于容量较大的总体,系统抽样更加便于操作。但系统抽样有时又会因为编号变化 的周期性,导致样本代表性差。例如:男生女生交替排成一路纵队进行编号,用系统抽 样,可能会导致抽到的全部为男生或全部为女生;如果将全班同学按体重顺序进行编号, 此时用系统抽样是合理的。另外,实际生产生活中,对生产线上的产品进行检测时,往 往也采用系统抽样,便于操作。
2.1 随机抽样
2.1.1 简单随机抽样 2.1.2 系统抽样 2.1.3 分层抽样
目录
CONTENTS
1
统计学的产生与发展
2 简单随机抽样
3 系统抽样
4 分层抽样
5
随机抽样的应用
统计学的产生与发展
背景知识--你了解统计学吗?
• 统计一词起源于国情调查,最早意为国情学。 • 统计:指对某一现象有关的数据的搜集、整理、计算、分析、解释、表述
开始
4、分层抽样的一般步骤:

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件共18张PP

人教版高中数学必修三第二章第1节 2.1.1简单随机抽样 课件共18张PP
我们只需要按一定的规则到随机数表中 选取号码就可以了,这种抽样方法叫做 随机数表法
随 机 数 表
教 材 105 页
例题: 要考察某公司生产的500克袋装牛奶的质量
是否达标,现从800袋牛奶中抽取60袋进行检验, 用随机数表法抽取的过程如下
第一步,先将800袋牛奶编号,可以编为000,001,…,799
没有调查,就没有发言权。 —毛泽东
2.1.1 简 单 随 机 抽 样
回顾(初中知识):总体、个体、样本、样本容 量的概念. 总体:所要考察对象的全体。
个体: 总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这 个总体的一个样本。
样本容量: 样本中个体的数目。
引例
1、当一锅汤的味道很淡时,我们需要 再加入一点盐,加完之后我们是怎么判断 出汤的味道咸淡适中的了呢?
一般地,设一个总体含有N个个体 ,从中逐个 不放回地抽取n个个体作为样本 (n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等,这种 抽样方法叫做简单随机抽样。注意以下四点: (源自)它要求被抽取样本的总体的个体数有限;
(2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等机会抽样(每个个体入样的可能性都是 n/N )。
左、向上、向下等),得到一个 三位数 785,由于785<
799,说明号码785在总体内,将它取出;继续向右读,得到
916,由于916>799,将它去掉,按照这种方法继续向右读,
又取出567,199,507,…,依次下去,直到样本的60个号码
全部取出,这样我们就得到一个容量为60的样本.
步 骤:
编号 巩固练习
87 35 20 96 43 84 26 34 91 64 21 76 33 50 25 83 92 12 06 76 12 86 73 58 07 44 39 52 38 79 15 51 00 13 42 99 66 02 79 54 90 52 84 77 27 08 02 73 43 28

精选-人教版必修三高中数学第二章统计2.1_2.1.2系统抽样课件

精选-人教版必修三高中数学第二章统计2.1_2.1.2系统抽样课件

规则,从每一部分抽取一个个体,得到所需要的样本,这 种抽样的方法就是系统抽样.
温馨提示:在系统抽样中,由于抽样的间隔相等,因 此,系统抽样也称等距抽样.
2.系统抽样的步骤 一般地,假设要从容量为 N 的总体中抽取容量为 的样本,我们可以按下列步骤进行系统抽样:
(1)编号:先将总体的 N 个个体编号.有时可直接利
2.某影院有 40 排座位,每排有 46 个座位,一个
告会上坐满了听众,会后留下座号为 20 的所有听众进 座谈,这是运用了( A.抽签法 C.系统抽样法 ) B.随机数表法 D.放回抽样法
解析: 此抽样方法将座位分成 40 组, 每组 46 个个体
会后留下座号为 20 的相当于第一组抽 20 号, 以后各组抽
[变式训练]
下列抽样不是系统抽样的是(
)
A.从标有 1~15 号的 15 个球中,任选 3 个作为
本,按从小号到大号排序,随机选起点 k,以后取 k+ k+10(超过 15 则从 1 再数起)号球入样
B.在一次有奖明信片的 100 000 个有机会中奖的
码(编号 00 000~99 999)中,邮政部门随机确定后两位 23 的编号作为中奖号码
4.为了对生产线上的产品质量进行检验,质检人
每 隔 5 分钟抽一件产品进行检验 , 这种抽样方法 ________. 解析:可看作是等距离的系统抽样. 答案:系统抽样
5.为了解 240 名学生对某项教改的意见,打算从 抽取 6 名学生调查,采用系统抽样法,则分段间隔 k ________. 240 解析:k= =40. 6 答案:40
类型 1 系统抽样的概念 [典例 1]
某市场想通过检查发票及销售记录的 2%
来快速估计每月的销量总额.采取如下方法:从某本发
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考2:你能用简单随机抽样对上述问题进行抽样吗? 具体如何操作?
思考3:联想到师大附中每学期选派学生评教评学时 的做法,你还有什么方法对上述问题进行抽样?你的 抽样方法有何优点?体现了代表性和公平性吗?
思考4:如果从600件产品中抽取60件进行质量检查, 按照上述思路抽样应如何操作?
第一步,将这600件产品编号为1,2,3,…,600. 第二步,将总体平均分成60部分,每一部分含10个个 体. 第三步,在第1部分中用简单随机抽样抽取一个号码 (如8号).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
思考1:用系统抽样从总体中抽取样本时,首先要做的 工作是什么?
将总体中的所有个体编号. 思考2:如果用系统抽样从605件产品中抽取60件进 行质量检查,由于605件产品不能均衡分成60部分,对 此应如何处理?
先从总体中随机剔除5个个体,再均衡分成60部分.
思考3:用系统抽样从含有N个个体的总体中抽取 一个容量为n的样本,要平均分成多少段,每段各有 多少个号码?
例2一个总体中有100个个体,随机编号为0,1,2,…, 99,依编号顺序平均分成10组,组号依次为1,2,3,…, 10,现用系统抽样抽取一个容量为10的样本,并规定:如 果在第一组随机抽取的号码为m,那么在第k(k=2,3,…, 10)组中抽取的号码的个位数字与m+k的个位数字相同.若 m=6,求该样本的全部号码.
理论迁移
例1 某中学有高一学生322名,为了了解学生的 身体状况,要抽取一个容量为40的样本,用系统抽 样法如何抽样?
第一步,随机剔除2名学生,把余下的320名学生编 号为1,2,3,…320. 第二步,把总体分成40个部分,每个部分有8个个体. 第三步,在第1部分用抽签法确定起始编号. 第四步,从该号码起,每间隔8个号码抽取1个号码, 就可得到一个容量为40的样本.
2.当总体中的个体数很多时,用简单随机抽样抽 取样本,操作上并不方便、快捷. 因此,在保证抽样 的公平性,不降低样本的代表性的前提下,我们还需 要进一步学习其它的抽样方法,以弥补简单随机抽样 的不足.
知识探究(一):简单随机抽样的基本思想
思考1:某中学高一年级有12个班,每班50人,为 了了解高一年级学生对老师教学的意见,教务处打算 从年级600名学生中抽取60名进行问卷调查,那么年 级每个同学被抽到的概率是多少?
第四步,从该号码起,每隔10个号码取一个号码,就得 到一个容量为60的样本. (如8,18,28,…,598)
思考5:上述抽样方法称为系统抽样,一般地,怎样 理解系统抽样的含义?
将总体分成均衡的n个部分,再按照预先定出的规则, 从每一部分中抽取1个个体,即得到容量为n的样本.
知识探究(二):系统抽样的操作步骤
6,18,29,30,41, 52,63,74,85,96.
例3 用简单随机抽样和系统抽样,设计一个调查 长沙市城区一年内空气质量状况的方案,并比较哪 一种方Байду номын сангаас更便于实施.
小结
1.系统抽样也是等概率抽样,即每个个体被抽到 的概率是相等的,从而保证了抽样的公平性.
2.系统抽样适合于总体的个体数较多的情形,操 作上分四个步骤进行,除了剔除余数个体和确定起 始号需要随机抽样外,其余样本号码由事先定下的 规则自动生成,从而使得系统抽样操作简单、方便.
相关文档
最新文档