八年级数学因式分解6
人教版八年级数学上册14.整式的乘除与因式分解--复习课件
例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9
解:(1)(a+b)2-4a2=(a+b)2-(2a)2 =(a+b+2a)(a+b-2a) =(3a+b)(b-a)
(2)1-10x+25x2 =1-10x+(5x)2 =(1-5x)2 (3)(m+n)2-6(m+n)+9=(m+n-3)2.
5, 求(a
1 )2的值. a
(2)若x y2 2, x2 y2 1, 求xy的值.
(3)如果(m n)2 z m2 2mn n2 ,
则z应为多少?
(4)(x 3y 2z)(x 3y 2z)
(5)19992, (6)20012 19992
练习:计算下列各题。
(1)( 1 a6b4c) ((2a3c) 4
1、 205×195 2、 (3x+2) (3x-2) 3、(-x+2y) (-x-2y) 4 、 (x+y+z)(x+y-z)
(2)、完全平方公式
一般的,我们有:
(a b)2 a2 2ab b2;
(a b)2 a2 2ab b2 其中a, b既可以是数, 也可以是代数式.
即: (a b)2 a2 2ab b2
探索与创新题 例4 若9x2+kxy+36y2是完全平方式,则k= —
分析:完全平方式是形如:a2±2ab+b2即两数 的平方和与这两个数乘积的2倍的和(或差).
∵9x2+kxy+36y2=(3x)2+kxy+(6y)2 ∴±kxy=2·3x·6y=36xy ∴k=±36
人教版八年级数学因式分解计算题
人教版八年级数学因式分解计算题一、因式分解计算题20题及解析。
1. 题目:分解因式x^2 - 9- 解析:这是一个平方差的形式,x^2-9 = x^2-3^2=(x + 3)(x-3)。
2. 题目:分解因式4x^2-16- 解析:先提取公因式4,得到4(x^2-4),而x^2-4又是平方差形式,x^2-4=(x + 2)(x-2),所以4x^2-16 = 4(x + 2)(x-2)。
3. 题目:分解因式x^3-2x^2+x- 解析:先提取公因式x,得到x(x^2-2x + 1),而x^2-2x + 1=(x - 1)^2,所以x^3-2x^2+x=x(x - 1)^2。
4. 题目:分解因式9x^2-y^2- 解析:这是平方差形式,9x^2-y^2=(3x + y)(3x-y)。
5. 题目:分解因式x^2y - 4y- 解析:先提取公因式y,得到y(x^2-4),x^2-4=(x + 2)(x-2),所以x^2y-4y=y(x + 2)(x-2)。
6. 题目:分解因式2x^2-8- 解析:先提取公因式2,得到2(x^2-4),x^2-4=(x + 2)(x-2),所以2x^2-8 = 2(x + 2)(x-2)。
7. 题目:分解因式x^4-1- 解析:这是平方差形式,x^4-1=(x^2+1)(x^2-1),而x^2-1=(x + 1)(x-1),所以x^4-1=(x^2+1)(x + 1)(x-1)。
8. 题目:分解因式a^3-a- 解析:先提取公因式a,得到a(a^2-1),a^2-1=(a + 1)(a-1),所以a^3-a=a(a + 1)(a-1)。
9. 题目:分解因式16x^2-25y^2- 解析:这是平方差形式,16x^2-25y^2=(4x+5y)(4x - 5y)。
10. 题目:分解因式x^3+2x^2+x- 解析:先提取公因式x,得到x(x^2+2x + 1),x^2+2x + 1=(x + 1)^2,所以x^3+2x^2+x=x(x + 1)^2。
初中数学八年级上册第十五章《整式的乘除与因式分解》简介
新课标人教版初中数学八年级上册第十五章《整式的乘除与因式分解》简介人教版《义务教育课程标准实验教科书?数学》第十五章是“整式的乘除与因式分解”。
本章的主要内容是整式的乘除运算、乘法公式以及因式分解。
本章内容建立在已经学习了的有理数运算、列简单的代数式、一次方程及不等式、整式的加减运算等知识的基础上。
整式的乘除运算和因式分解是基本而重要的代数初步知识,这些知识是以后学习分式和根式运算、函数等知识的基础,在后续的数学学习中具有重要意义,同时,这些知识也是学习物理、化学等学科及其他科学技术不可缺少的数学基础知识.本章共安排了4个小节,教学时间约需13课时(供参考):15.1 整式的乘法4课时15.2 乘法公式2课时15.3 整式的除法2课时15.4 因式分解3课时数学活动小结2课时一、教科书内容和课程学习目标(一)本章知识结构框图(二)教科书内容本章共包括4节15.1 整式的乘法整式的乘法是整式四则运算的重要组成部分。
本节分为四个小节,主要内容是整式的乘法,这些内容是在学生掌握了有理数运算、整式加减运算等知识的基础上学习的。
其中,幂的运算性质,即同底数幂的乘法、幂的乘方和积的乘方是整式乘法的基础,教科书把它们依次安排在前三个小节中,教学中应适当复习幂、指数、底数等概念,特别要弄清正整数指数幂的意义。
在学生掌握了幂的运算性质后,作为它们的一个直接应用,教科书在第四小节安排一般整式乘法的教学内容。
首先是单项式与单项式相乘,由于进行单项式与多项式、多项式与多项式相乘的前提是熟练地进行单项式与单项式相乘,因此,对于单项式与单项式相乘的教学应该予以充分重视。
在学生掌握了单项式与单项式相乘的基础上,教科书利用分配律等进一步引入单项式与多项式相乘、多项式与多项式相乘,这样使整式乘法运算的教学从简到繁,由易到难,层层递进。
15.2乘法公式本节分为两个小节,分别介绍平方差公式与完全平方公式。
乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书在本节开始首先指出了这一点。
八年级数学下册《因式分解》常见题型例析(含答案)
《因式分解》常见题型例析因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。
题型一:分解因式的意义此类考题多数以选择题的形式出现。
解决此类问题需要对分解因式的概念正确的理解。
例1 下列从左到右的变形是分解因式的是( )(A )(x-4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x-y)+2(C)2ab+2ac=2a(b+c) (D)(x-1)(x-2)=(x-2)(x-1).分析:根据多项式分解因式的概念:把一个多项式化成几个整式积的形式,叫做分解因式.所以要判断从左道右的变形是否是分解因式,关键是看左边是否是多项式,右边是否是整式的积.解:选(C).练习:下面由左边到右边的变形中,是分解因式的是( ).(A)a(x-y)=ax-ay (B)x 2-2x+4=(x-1)2+3(C)8x 2-4x=4x·2x (D)y 2-y+41=(y-21)2 答案: (D)题型二、直接提公因式分解此类题大多以选择或填空题的形式出现,其中找出公因式是关键。
求解时应按照提公因式法则将公因式提出即可。
例2 分解因式2a(b-c)-3c(b-c).分析:把(b-c)看作一个整体,则(b-c)就是此多项式的公因式.解: 2a(b-c)-3c(b-c)=(b-c)(2a-3b).练习:分解因式: (2x-3y)(a+b)+(a+b)(3x-2y).答案:5(a+b)(x-y).题型三、直接利用公式因式分解求解此类题掌握所学的几个公式的特点是关键,求解时应根据题目的特点选择合适的公式求解。
例3、分解因式:a 2-1=_______.析解:本题符合平方差公式的特点,故可直接利用平方差公式求解。
其结果为:(a -1)(a +1).练习:分解因式:224x y -=________.答案:(x -2y )(x+2y )题型四、提公因式后再用公式此类题大多以填空或选择题的形式出现,求解时应首先将公因式提出,再选择有关公式求解。
人教版八年级数学 优秀教学设计 因式分解
=(x-y+2)(5x-5y-3).
探究类型之四 拆(添)项法
例5把a4+4因式分解的结果是( )
A. (a²+2a-2)(a²-2a+2)
B.(a²+2a-2)(a²-2a-2)
C. (a²+2a+2)(a²-2a-2)
D. (a²+2a+2)(a²-2a+2)
教学准备
动画多媒体语言课件
第一课时
复备内容及讨论记录
教学过程
播放导入
师:你能求出这四对数吗?
生分组讨论交流,师巡视.
师指定学生说说汇报.
生:如果我们设两个人的年龄分别是x,y,则x2-y2=195,然后根据x²-y²=(x+y)(x-y),我们就得到(x+y)(x-y)=195,195=1×195=65×3=39×5=15×13,进而可以列出四个方程组,可以求出这四对数.
问题解决
1.学会逆用平方差公式,归纳出因式分解的不同的方法;
2.在探究活动中,学会与人合作并能与他人交流思维的过程和探索的结果
情感态度
1.通过分析、引导、同学交流、同学归纳等数学活动,体验数学问题的探索性、挑战性;
2.提高学生的数学思维水平
教学重点、难点
重点:因式分解的方法
难点:利用十字相乘,待定系数法进行因式分解
答案:
解:
(2a²+3ab+b²)+(3a²+3ab)=(a+b)(5a+b);
(2a²+3ab+b²)-(3a²+3ab)= (b+a)(b-a);
八年级数学上册因式分解公式法
拓展应用
知识小结
评价反馈
3. 如图,在一块边长为a cm的正方形纸片 的四角,各剪去一个边长为b cm的正方形, 求剩余部分的面积.如果a=3.6,b=0.8呢?
解:剩余部分的面积是:a2-4b2=(a+2b)(a-2b) 当a=3.6,b=0.8时,原式=(a+2b)(a-2b) =(3.6+2×0.8)(3.6-2×0.8)
复习巩固
新知学习
拓展应用
公式:a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2
知识小结
评价反馈
完全平方式,特征: ①三项式 ②两平方项的符号同正 ③首尾2倍中间项
整式乘法
(a+b)2 因式分解
整式乘法
(a-b)2 因式分解
a2+2ab+b2 a2-2ab+b2
复习巩固
新知学习
拓展应用
第四章 因式分解 4.3.2 公式法
学习目标
1.了解完全平方式及公式法的概念,会用完全平方 公式进行因式分解. 2.综合运用提公因式法和完全平方公式对多项式进
行因式分解.
目录
CONTENTS
1 复习巩固 2 新知学习 3 拓展应用 4 知识小结 5 评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
复习巩固
新知学习
拓展应用
知识小结
评价反馈
2.已知4x2+kxy+9y2 是一个完全平式,则k= ±12 .
3.已知a(a+1)-(a2-b)=-2, 求 a2 b2 ab 的值. 2
解: 由a(a+1)-(a2-b) =a2+a-a2+b
八年级数学上册《因式分解》计算题专项练习
八年级数学上册《因式分解》计算题专项练习提取公因式是因式分解的基础,掌握了提取公因式的方法,就能够更好地解决因式分解问题。
下面是一些提取公因式的练题,供大家练:1、提取公因式:c(x-y+z),得到结果:c(x-y+z)2、提取公因式:p(x-qx-rx^2),得到结果:p(x-q-rx)3、提取公因式:5a^2(3a-2),得到结果:15a^3-10a^24、提取公因式:3bc(4a-25),得到结果:12abc-75bc5、提取公因式:xy(4x-y^2),得到结果:4x^2y-xy^36、提取公因式:7pq(9-2q),得到结果:63pq-14pq^27、提取公因式:6a^2m(4m-3n+7),得到结果:24a^3m-18a^2m^2+42a^2mn8、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)9、提取公因式:x-y(5x+2y),得到结果:(x-y)(5x+2y)10、提取公因式:-2ab(a^2-3ab+b^2),得到结果:-4a^3b+6a^2b^2-2ab^311、提取公因式:-8x^3+56x^2-32x^3,得到结果:-8x^2(x-7)+56x(x-7)12、提取公因式:3mn(2m-5n+10),得到结果:6m^2n-15mn^2+30m^2n13、提取公因式:(a+b)(x-y),得到结果:(a+b)(x-y)14、提取公因式:(x-y)(5x+2y),得到结果:(x-y)(5x+2y)15、提取公因式:2q(p+q)-4p(p+q),得到结果:-2p(p+q)16、提取公因式:(m+n)(p+q)-(m+n)(p-q),得到结果:2(m+n)q17、提取公因式:a(a-b)+(a-b)2,得到结果:(a-b)(a+b)18、提取公因式:x(x-y)^2-y(x+y)2,得到结果:(x-y)(x^2+xy+y^2)-y(x+y)^219、提取公因式:(2a+b)(2a-3b)-3a(2a+b),得到结果:(2a-b)(2a-3b)20、提取公因式:x(x+y)(x-y)-x(x+y),得到结果:x(x-y)(x+y-1)21、提取公因式:p(x-y)-q(y-x),得到结果:2p(x-y)22、提取公因式:m(a-3)+2(3-a),得到结果:-m(a-3)-2(a-3)23、提取公因式:(a+b)(a-b)-(b+a),得到结果:-(a-b)^224、提取公因式:a(x-a)+b(a-x)-c(x-a),得到结果:(a-c)(a-x)-(a-c)(x-a)25、提取公因式:10a(x-y)^2-5b(y-x),得到结果:10a(x-y)^2+5b(x-y)26、提取公因式:3(x-1)^3y-(1-x)^3z,得到结果:3(x-1)^3(y+z-x)27、提取公因式:x(a-x)(a-y)-y(x-a)(y-a),得到结果:(x-y)(a-x)(a-y)28、提取公因式:-ab(a-b)^2+a(b-a)^2,得到结果:-2ab(a-b)^229、提取公因式:2x(x+y)^2-(x+y)^3,得到结果:(x+y)^2(x-2)30、提取公因式:21×3.14+62×3.14+17×3.14,得到结果:100×3.1431、提取公因式:2.186×1.237-1.237×1.186,得到结果:0掌握了提取公因式的方法,就能够更好地解决因式分解问题。
初二数学因式分解50道题及答案
初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。
八年级数学-因式分解-公式法
2. 分解因式--公式法
甘肃清水*王河中学 刘贵*
最新编辑ppt
1
温故知新
1 一. 因式分解:把一个多项式化为几个整 式的积的形式,叫做多项式的因式分解
二. 如:ma+mb+mc = m(a+b+c)
三.
a2-b2 =(a+b)(a-b)
2 提公因式法:如 ma+mb+mc = m(a+b+c) 公因式:如 上式中m 公因式的特征:1,2,3
最新编辑ppt
§12.2.1 单项式与单项式相乘
小结注意:
(1) 因式分解的运算过程与多项式的乘法运算过程 刚好是互逆运算,不能混淆,更式法应将负号 一起提取,是括号里的第一项系数为正数;
(3) 分解到每一个多项式不能再继续分解为止
最新编辑ppt
最新编辑ppt
一.
最新编辑ppt
§12.5.2 因式分解--公式法
整式乘法公式回顾
1 平方差公式 a2-b2 = (a+b)(a-b) 2 完全平方公式 ( 两数和(差)公式 )
(a+b)2=a2+2ab+b2 (a-b)2 =a2-2ab+b2
最新编辑ppt
§12.5.2 因式分解--公式法
整式乘法公式回顾
最新编辑ppt
公因式的特征
(1)公因式中的系数是多项式中各项 系数的最大公约数
(2)公因式中的字母(或因式)是多 项式中各项的相同字母(或因式)
(3)公因式中字母(或因式)的指数 取相同字母(或因式)的最小指数
最新编辑ppt
温故知新
1 填空(把下列各式分解因式,要求直接写出结果)
人教版八年级下册数学专题复习及练习(含解析):因式分解
专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
北师大版八年级上册数学第一单元知识点(6篇)
北师大版八年级上册数学第一单元知识点(6篇)1.北师大版八年级上册数学第一单元知识点篇一因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。
2、因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。
3、公因式的确定:系数的公约数,相同因式的最低次幂。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3.4、因式分解的公式:(1)平方差公式:a2-b2=(a+b)(a-b);(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.5、因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式。
6、因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项。
2.北师大版八年级上册数学第一单元知识点篇二分式1、分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式。
2、有理式:整式与分式统称有理式;3、对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义。
4、分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单。
八年级上数学整式的乘除与因式分解基本知识点
整式的乘除与因式分解基本知识点一、整式的乘除:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项. 例如:_______3=-a a ;________22=+a a ;________8253=+-+b a b a __________________210242333222=-++-+-x xy x y x xy xy y x2、同底数幂的乘法法则:a m ·a n =a m+n (m ,n 是正整数). 同底数幂相乘,底数不变,指数相加.例如:________3=⋅a a ;________32=⋅⋅a a a3、幂的乘方法则:(a m )n =a mn (m ,n 是正整数).幂的乘方,底数不变,指数相乘. 例如:_________)(32=a ;_________)(25=x ;()334)()(a a =4、积的乘方的法则:(a b)m =a m b m (m 是正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 例如:________)(3=ab ;________)2(32=-b a ;________)5(223=-b a 5、同底数幂的除法法则:a m ÷a n =a m-n (a ≠0,m ,n 都是正整数,并且m >n). 同底数幂相除,底数不变,指数相减. 规定:10=a例如:________3=÷a a ;________210=÷a a ;________55=÷a a 6、单项式乘法法则y x 32⋅ )5)(2(22xy y x - )2()3(22xy xy -⋅ 2232)()(b a b a ⋅- 7、单项式除法法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.y x y x 2324÷ ()xy y x 6242-÷ ()()58103106⨯÷⨯8、单项式与多项式相乘的乘法法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.)(c b a m ++ )532(2+--y x x )25(32b ab a ab +--9、多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.)6)(2(-+x x )12)(32(+--y x y x ))((22b ab a b a +-+10、多项式除以单项式的除法法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.()x x xy ÷+56; ()()a ab a 4482-÷-()b a b a b a 232454520÷- c c b c a 2121222÷⎪⎭⎫ ⎝⎛-11、整式乘法的平方差公式:(a +b)(a -b)=a 2-b 2.两个数的和与这两个数的差的积,等于这两个数的平方差.例如:(4a -1)(4a+1)=___________; (3a -2b )(2b+3a )=___________;()()11-+mn mn = ; =--+-)3)(3(x x ;12、整式乘法的完全平方公式:(a +b)2=a 2+2a b+b 2,(a -b)2=a 2-2a b+b 2.两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 例如:()____________522=+b a ; ()_______________32=-y x()_____________22=+-ab ; ()______________122=--m二、因式分解: 1、提公因式法:4y xy - 32x x + x 2+12x 3+4x )1()1(-+-a n a m 2、公式法.:(1)、平方差公式:))((22b a b a b a -+=-12-x 2294b a - 22)(16z y x +- 22)2()2(b a b a --+(2)、完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-442+-m m 2269y xy x ++ 924162++x x 36)(12)(2++-+b a b a3、分组分解法:1a b ab +++ ab -c +b -ac a 2-2ab +b 2-c 24、“十字相乘法”:即式子x 2+(p+q)x+pq 的因式分解. x 2+(p+q)x+pq=(x+p)(x+q).x 2+7x +6 (2)、x 2-5x -6 (3)、x 2-5x +6整式的乘法[同底数幂的乘法]a m ·a n =a m+n (m 、n 都是正整数) [幂的乘方](a m )n =a mn (m ,n 都是正整数) [积的乘方](ab)n =a n b n (n 是正整数) [单项式乘以单项式]单项式与单项式相乘,把它们的系数、相同的字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. [单项式乘以多项式]单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. [多项式乘以多项式]多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.平方差公式[平方差公式] (a +b)(a -b)=a 2-b 21. 公式的结构特征:⑴左边是两个二项式相乘,这两个二项式中,有一项完全相同,另一项互为相反数.⑵右边是这两个数的平方差,即完全相同的项与互为相反数的项的平方差(同号项2-异号项2).2. 公式的应用:⑴公式中的字母a ,b 可以表示具体的数,也可以表示单项式或多项式,只要符合公式的结构特征,就可以用此公式进行计算.⑵公式中的a b22是不可颠倒的,注意是同号项的平方减去异号项的平方,还要注意字母的系数和指数.⑶为了避免错误,初学时,可将结果用“括号”的平方差表示,再往括号内填上这两个数.如:(a+b)( a - b)= a2 -b2↓↓↓↓↓↓计算:(1+2x)(1-2x)= ( 1 )2-( 2x )2 =1-4x2[完全平方公式]两数和(或差)的平方,等于它们的平方和加(或减)它们的积的2倍.公式特征:左边是一个二项式的平方,右边是一个三项式(首平方,尾平方,二倍乘积在中央).公式变形:(a+b)2=(a-b)2+4ab a2 + b2 = (a+b)2-2ab(a-b)2=(a+b)2-4ab a2 + b2 = (a-b)2+2ab(a+b)2- (a-b)2=4ab[公式的推广] (a+b+c)2=a2+b2+c2+2ab+2bc+2ac[同底数幂的除法]a m÷a n=a m-n(a≠0,m,n都是正整数,并且m>n).a0=1(a≠0)任何非零数的零次幂是1.[单项式除以单项式]单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.[多项式除以单项式]多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.[因式分解]把一个多项式分解成几个整式的积的形式,叫做把这个多项式因式分解(或分解因式). [提公因式法]ac +bc=(a +b )c[公式法][十字相乘法]一、训练平台1.下列各式中,计算正确的是( ) ×27=28×22=210+26=27+26=2122.当x=23时,3(x+5)(x-3)-5(x-2)(x+3)的值等于( )239 D.239 3.已知x-y=3,x-z=21,则(y-z)2+5(y-z)+425的值等于( )A.425 B.25 254.设n 为正整数,若a 2n =5,则2a 6n -4的值为( )D.不能确定5.(a +b)(a -2b)= .6.(2a +2= .7.(a +4b)(m+n)= . 8.计算.(1)(2a -b 2)(b 2+2a )= ;(2)(5a -b)(-5a +b)= .9.分解因式. (1)1-4m+4m 2;(2)7x 3-7x.10.先化简,再求值.[(x-y)2+(x+y)(x-y)]÷2x ,其中x=3,y=. 二、探究平台1.分解因式(a -b)(a 2-a b+b 2)-a b(b-a )为( ) A.(a -b)(a 2+b 2)B.(a -b)2(a +b)C.(a -b)3(a -b)32.下列计算正确的是( ) ÷a 2=a 4(a ≠0) ÷a 4=a (a ≠0) ÷a 6=a 3(a ≠0)D.(a 2b)3=a 6b3.下列各题是在有理数范围内分解因式,结果正确的是( )=(-x+4)(-x-4) +x 3n =x n (2+x 3)41=41(1+2x)(1-2x) 4.分解因式:-a 2+4a b-4b 2= .5.如果x 2+2(m-3)x+25能用公式法分解因式,那么m 的值是 .6.(3x 3+3x)÷(x 2+1)= . . 8.计算.(1)12345678921234567890123456789112345678902⨯-;(2)20032002200220002002220022323-+-⨯-.9.分解因式.(1)x(m-x)(m-y)-m(x-m)(y-m); (2)x 4-81x 2y 2.10.112--x x +x(1+x1),其中x=2-1.三、交流平台1.一条水渠其横断面为梯形,如图15-23所示,根据图中的长度求出横断面面积的代数式,并计算当a=2,b=时的面积.2.已知多项式x3+kx+6有一个因式x+3,当k为何值时,能分解成三个一次因式的积?并将它分解.3.如果x+y=0,试求x3+x2y+xy2+y3的值.4.试说明无论m,n为任何有理数,多项式4m2+12m+25+9n2-24n的值为非负数.第十六章分式知识点和典型例习题【知识网络】【思想方法】1.转化思想转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等.2.建模思想本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程.第一讲 分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b ca a a a±±=≠2.异分母加减法则:()0,0b d bc da bc daa c a c ac ac ac±±=±=≠≠;3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•=4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2-b 2 ;(a ±b)2= a 2±2ab+b 2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式 (1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数. (1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值. 5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值. (四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a (2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值. 题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值.第二讲 分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根. 题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xbb x a a ≠+=+. 3.如果解关于x 的方程222-=+-x xx k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
(完整版)八年级数学因式分解知识点
第四章 因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ 每组之间还有公因式!=))((b a n m ++思考:此题还可以怎样分组?此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提。
例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式=)510()2(by ay bx ax +-+-=)5()5(2y x b y x a --- =)2(5)2(b a y b a x ---=)2)(5(b a y x -- =)5)(2(y x b a --(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
人教版八年级上册数学《因式分解--十字相乘法与分组分解法》专题讲义(含答案)
因式分解的基本方法例题精讲一、十字相乘法十字相乘法:一个二次三项式2ax bx c ++,若可以分解,则一定可以写成1122()()a x c a x c ++的形式,它的系数可以写成12a a 12c c ,十字相乘法就是用试验的方法找出十字线两端的数,其实就是分解系数a ,b ,c ,使得:12a a a =,12c c c =,1221a c a c b +=,2()()()x a b x ab x a x b +++=++若24b ac -不是一个平方数,那么二次三项式2ax bx c ++就不能在有理数范围内分解二、分组分解分组分解法:将一个多项式分成二或三组,各组分别分解后,彼此又有公因式或者可以用公式,这就是分组分解法.一、十字相乘【例 1】分解因式:⑴256x x ++ ⑵256x x -+⑶276x x ++ ⑷276x x -+【解析】 ⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --【巩固】 分解因式:268x x ++【解析】 268(2)(4)x x x x ++=++【巩固】 分解因式:278x x +-【解析】 278(8)(1)x x x x +-=+-【例 2】分解因式:2376a a --【解析】 2376(32)(3)a a a a --=+-【巩固】 分解因式:2383x x --【解析】 2383(31)(3)x x x x --=+-【巩固】 分解因式:25129x x +-【解析】 25129(3)(53)x x x x +-=+-【巩固】 分解因式:42730x x +-【解析】 4222730(3)(10)x x x x +-=-+【巩固】 分解因式:2273320x x --【解析】 2273320(94)(35)x x x x --=+-【例 3】分解因式:212x x +-【解析】 221212(3)(4)x x x x x x +-=-++=+-+【巩固】 分解因式:2612x x -+-【解析】 22612(612)(23)(34)x x x x x x -+-=-+-=-+-【例 4】分解因式:2214425x y xy +-【解析】 2214425(16)(9)x y xy x y x y +-=--【巩固】 分解因式:22672x xy y -+【解析】 22672(2)(32)x xy y x y x y -+=--【巩固】 分解因式:22121115x xy y --【解析】 22121115(35)(43)x xy y x y x y --=-+【例 5】分解因式:⑴2()4()12x y x y +-+-;⑵2212()11()()2()x y x y x y x y +++-+-【解析】 ⑴把x y +看作一个整体,利用十字相乘法分解即可.2()4()12(2)(6)x y x y x y x y +-+-=+++-⑵将,x y x y +-看作整体,则原式[][]4()()3()2()(53)(5)x y x y x y x y x y x y =++-++-=++.【巩固】 分解因式:257(1)6(1)a a ++-+【解析】 [][]257(1)6(1)53(1)12(1)(23)(23)a a a a a a ++-+=-+++=-+【巩固】 分解因式:2(2)8(2)12a b a b ---+【解析】 [][]2(2)8(2)12(2)2(2)6(22)(26)a b a b a b a b a b a b ---+=----=----【例 6】分解因式:1a b c ab ac bc abc +++++++【解析】 把a 视为未知数,其它视为参数。
北师大版八年级数学下册 第四章因式分解的四种方法(讲义及答案)
因式分解的四种方法(讲义)➢ 课前预习1. 平方差公式:___________________________;完全平方公式:_________________________;_________________________.2. 探索新知:(1)39999-能被100整除吗?小明是这样做的:3229999999999199(991)99(991)(991)9998009998100-=⨯-⨯=⨯-=⨯+-=⨯=⨯⨯所以39999-能被100整除.(2)38989-能被90整除吗?你是怎样想的?(3)3m m -能被哪些整式整除?➢ 知识点睛1. __________________________________________叫做把这个多项式因式分解.2. 因式分解的四种方法(1)提公因式法需要注意三点:①_____________;②_______________;③_________________.(2)公式法两项通常考虑_____________,三项通常考虑_____________.(3)分组分解法如果一个多项式适当分组,使分组后各组之间有公因式或可应用公式,那么这个多项式就可以用分组的方法分解因式。
多项式项数比较多常考虑分组分解法,首先找 ,然后再考虑 或者_______.(4)十字相乘法十字相乘法常用于二次三项式的结构,其原理是:2()()()x p q x pq x p x q +++=++ 因式分解是有顺序的,记住口诀:“ 竖分常数交叉验,横写因式不能乱 ”;➢ 精讲精练1. 下列由左到右的变形,是因式分解的是________________.①222233x y x y -=-⋅⋅; ②2(3)(3)9a a a +-=-;③22+1()()1a b a b a b -=+-+; ④222()mR mr m R r +=+; ⑤2()x xy x x x y -+=-;⑥24(2)(2)m m m -=+-; ⑦2244(2)y y y -+=-.2. 因式分解(提公因式法):(1)2212246a b ab ab -+; (2)32a a a --+; (3)()(1)()(1)a b m b a n -+---;解:原式=解:原式= 解:原式=(4)22()()x x y y y x ---; (5)1m m x x -+. 解:原式=解:原式=3. 因式分解(公式法):(1)249x -;(2)216249x x ++; 解:原式=解:原式=(3)2244x xy y -+-;(4)229()()m n m n +--; 解:原式=解:原式=(5)22(3)2(3)(43)(43)x y x y x y x y +-+-+-;解:原式=(6)2(25)4(52)x x x -+-;解:原式=(7)228168ax axy ay -+-;(8)44x y -; 解:原式=解:原式=(9)4221a a -+; (10)22222()4a b a b +-. 解:原式=解:原式=4. 因式分解(分组分解法):(1)2105ax ay by bx -+-;(2)255m m mn n --+; 解:原式=解:原式=(3)22144a ab b ---; (4)22699a a b ++-; 解:原式=解:原式=(5)2299ax bx a b +--;(6)22244a a b b -+-. 解:原式=解:原式=5. 因式分解(十字相乘法):(1)243x x ++;(2)26x x +-; 解:原式=解:原式=(3)223x x -++;(4)221x x +-; 解:原式=解:原式=(5)22512x x +-;(6)2232x xy y +-; 解:原式=解:原式=(7)2221315x xy y ++;(8)3228x x x --. 解:原式=解:原式=6. 用适当的方法因式分解:(1)222816a ab b c -+-;(2)22344xy x y y --; 解:原式= 解:原式=(3)22(1)12(1)16a a ---+;(4)(1)(2)12x x ++-; 解:原式=解:原式=(5)2(2)8a b ab -+;(6)222221x xy y x y -+-++. 解:原式=解:原式=【参考答案】➢ 课前预习1. 22()()a b a b a b +-=-222222()2()2a b a ab b a b a ab b +=++-=-+2. 210=7×5×3×2;315=7×5×3×3;91=13×7;102=17×3×23. (2)328989898989-=⨯-289(891)89(891)(891)899088=⨯-=⨯+⨯-=⨯⨯∴38989-能被90整除3223(1)(1)(1)m m m m mm m m m m -=⋅-=-=+-()∴3m m -能被1,m ,m +1,m -1,m (m +1),m (m -1),(m +1)(m -1),m (m +1)(m -1)整除 ➢ 知识点睛1. 把一个多项式化成几个整式的积的形式2. (1)①公因式要提尽②首项是负时,要提出负号③提公因式后项数不变(2)平方差公式,完全平方公式①能提公因式的先提公因式②找准公式里的a 和b(3)公因式,完全平方公式,平方差公式3. 一提二套三分四查,有理数➢ 精讲精练1. ④⑥⑦2. (1)6(241)ab a b -+(2)2(1)a a a -+-(3)()()a b m n -+(4)3()x y -(5)1(1)m x x -+3. (1)(23)(23)x x +-(2)2(43)x +(3)2(2)x y --(4)4(2)(2)m n m n ++(5)29(2)x y -(6)(25)(2)(2)x x x -+-(7)28()a x y --(8)22()()()x y x y x y ++-(9)22(1)(1)a a +-(10)22()()a b a b +-4. (1)(5)(2)x y a b --(2)(5)()m m n --(3)(12)(12)a b a b ++--(4)(33)(33)a b a b +++-(5)()(31)(31)a b x x ++-(6)(2)(22)a b a b -+-5. (1)(1)(3)x x ++(2)(3)(2)x x +-(3)(3)(1)x x --+(4)(21)(1)x x -+(5)(4)(23)x x +-(6)()(32)x y x y +-(7)(5)(23)x y x y ++(8)(2)(4)x x x +-6. (1)(4)(4)a b c a b c -+--(2)2(2)y x y --(3)2(5)(3)a a --(4)(2)(5)x x -+(5)2(2)a b +(6)2(1)x y --。
华东师大版八年级上册数学教学设计《因式分解》
华东师大版八年级上册数学教学设计《因式分解》一. 教材分析华东师大版八年级上册数学《因式分解》是学生在学习了整式的乘法、方程的解法等知识后,对多项式进行的一种分解。
本节课的内容是因式分解的定义、方法和应用。
因式分解是初中学段数学的重要知识点,也是后续学习高中数学的基础。
教材从实际问题出发,引导学生探究因式分解的方法,培养学生解决问题的能力。
二. 学情分析八年级的学生已经掌握了整式的乘法、方程的解法等知识,具备了一定的数学基础。
但学生在学习因式分解时,容易与多项式乘法混淆,对因式分解的方法理解不深。
因此,在教学过程中,需要帮助学生明确因式分解的意义,指导学生掌握因式分解的方法,提高学生解决问题的能力。
三. 教学目标1.理解因式分解的定义,掌握因式分解的方法。
2.能够运用因式分解解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.因式分解的定义和方法的掌握。
2.因式分解在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学案例和实际问题。
2.制作多媒体课件,辅助教学。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的概念,激发学生的学习兴趣。
例:已知一个二次方程的解为x1=3,x2=4,求该方程。
2.呈现(10分钟)呈现因式分解的定义和方法,引导学生理解因式分解的意义。
定义:将一个多项式表达为两个或两个以上多项式的乘积的形式,称为因式分解。
方法:试错法、分解法、换元法等。
3.操练(10分钟)让学生通过具体的例子,运用因式分解的方法解决问题,加深对因式分解的理解。
例1:因式分解x^2 - 5x + 6。
例2:因式分解a^2 + 2ab + b^2。
4.巩固(10分钟)通过一些练习题,巩固学生对因式分解的掌握。
练习1:因式分解x^2 - 4x + 3。
人教版八年级数学上册作业课件 第十四章 整式的乘法与因式分解 整式的乘法 第6课时 多项式除以单项式
(2)(2a4b2-35 a3b3)÷(-13 ab)2; 解:原式=18a2-257 ab
(3)(12x3-18x2+6x)÷(-6x); 解:原式=-2x2+3x-1 (4)(25m4-15m2+5m)÷(-5m); 解:原式=25m4÷(-5m)-15m2÷(-5m)+5m÷(-5m) =-5m3+3m-1
人教版
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法 第6课时 多项式除以单项式
1.(3分)计算(4x3-2x)÷(-2x)的结果是( C )
A.2x2 B.-2x2 C.-2x2+1 D.-2 2.(3分)计算:(28a2b2-21ab2)÷7ab的值是( D ) A.4a2-3 B.4a-3 C.4a2-3b D.4ab-3b
三、解答题(共 44 分) 12.(8 分)[4x(x2y-xy2)+2xy(xy-x2)]÷2x2,其中 x=2,y=-12 .
解:原式=(4x3y-4x2y2+2x2y2-2x3y)÷2x2 =(2x3y-2x2y2)÷2x2=xy-y2. 当 x=2,y=-12 时,原式=2×(-12 )-(-12 )2 =-54
一、选择题(每小题4分,共8分) 8.6a3b5与一个多项式的积为24a3b7-18a5b5+2a(6a3b3)2,则这个多项式为
( C) A.4b2-3a2 B.4ab2-3a2b C.4b2-3a2+12a4b D.4b2-3a2+6a3b 9.小亮在计算(6x3y-3x2y2)÷3xy时,错把括号内的减号写成了加号,那
(5)(x5y3-2x4y2 +3x3y5)÷(-23 xy).
精品 2014年八年级数学上册整式乘除与因式分解06 多项式除以单项式
第06课 多项式除以单项式知识点:同底数幂除法法则:0a = (0≠a )。
文字语言叙述为:单项式除以单项式法则: 多项式除以单项式法则:同底数幂除法基础练习: (1)81622÷= ;(2)3555÷= ;(3)571010÷= ;(4)36a a ÷=单项式除以单项式基础练习:(1)a a 283÷= ; (2)xy y x 363÷= ; (3)2323312ab x b a ÷=多项式除以单项式基础练习:(1)()m bm am ÷+= ; (2)()a ab a ÷+2= ;(3)()xy xy y x 22422÷+= ;例1.计算:(1)34a a ÷ (2)()4a -÷()a - ⑶()5ab ÷()2ab ⑷2n y +÷2y(5)()34a a ÷- (6)()38a a -÷- (7)()35a a ÷- (8)()0368125⨯例2.计算:⑴()32281477a a a a -+÷ ⑵()()4332222362436x y x y x y x y -+÷-(3)x x y x y y x 2]8)2()[(2÷-+-+例3.若2,4==n m x x 求nm x 23+,nm x23-的值.例4.已知m m y x 95,322+==+,请你用含x 的代数式表示y.例5.已知某长方形的面积为a ab a 2642+-,它的一边长为2a ,求这个长方形的另一边。
例6.多项式32241x x --除以一个多项式A ,得商式为2x ,余式为1x -,求这个多项式.例7.你能说明为什么对于任意自然数n,代数式n(n+7)-(n-3)(n-2)的值都能被6整除吗?课堂练习:1.下列计算正确的是( )A.b x xb b x 22332=÷B.m n m n m n m =⋅÷2243662C.2235.0xa y a b xya =÷D.()ax x x ax =÷+2 2.计算()222272114ab ab b a ÷-等于( )A.322-aB.2a-3C.b a 322-D.322-b a 3.在2m n m a A a +-÷=中,A 的值是( )A.2++n m aB.2-n aC.3++n m aD.2+n a4.若x x x n m =÷,么m 与n 的关系是( )A.m=nB.m=-nC.m-n=1D.m-n=-1 5.计算()()n m n m n m n m 22223444128-÷-+-的结果等于( )A.2232n mn n m +-B.22232n mn m +-C.2232n mn m +-D.n mn m +-322 6.已知9999909911,99P Q ==,那么P ,Q 的大小关系是( ) A.P>Q B.P=Q C.P<Q D.无法确定 7.填空:(1)()57a a ⋅=;(2)()38m m ⋅=;(3)()3512x x x ⋅⋅=;(4)()()()35b b -⋅=-8.填空:(1)()2334a bc ab ⎛⎫-÷- ⎪⎝⎭= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:(1)公因式要提尽,分解因式要彻底; (2)小心漏掉 1.把下列各式因式分解:
(1) ax - ay = a( x – y )
(2) a2 - a =a(a-1) (3) -4m3n2+6m2n-2mn =-2mn(2m2n - 3m+1) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
一看系数 二看字母 三看指数
• 例1:分解因式- 8x2n+2yn+2+12xn+1y2n+3
1.选择 (1)多项式6ab2+18a2b2-12a3b2c的公因式(C )
(A)6ab2c (B)ab2 (C)6ab2 (D)6a3b2C (2)分解-4x3+8x2+16x的结果是( D ) (A)-x(4x2-8x+16) (B)x(-4x2+8x-16)
• (1)2101+299能被5整除吗,为什么 转化为有一因式为5的倍数 (2)224-1能被63和65整除吗?
今天你有什么收获? 你还有什么疑问吗?
.规律总结
• 分解因式与整式乘法是互逆过程. • 分解因式要注意以下几点: 1.分解的对象必须是多项式. 2.分接的结果一定是几个整式的 乘积的形式. 3.要分解到不能分解为止.
ma+mb+mc= m(a+b+c) • 把一个多项式化成几个整式积的形 式,这种变形叫做把这个多项式因式 分解(或分解因式).
试一试
把下列个式写成乘积的形式(因式分解) (1). 1-x2 =(1+x)(1-x) (2). 4a2+4a+1 =(2a+1)2 (3). 4x2-8x =4x(x-2) (4). 2x2y-6xy2 =2xy(x-3y) (5). 1-4x2 =(1-2x)(1+2x) (6). x2-14x+49 2
=(x-7)
怎样分解因式: ma mb mc
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式 (a+b+c)是ma+mb+mc 除以m的商,像这种分 解因式的方法,叫做提公因式法。
说出下列多项式各项的公因式: 1、ma + mb m 2、4kx - 8ky 4k 3、5y3+20y2 5y2 4、a2b-2ab2+ab ab
试一试
拓展应用
1. 20042+2004能被2005整除吗?
2、先分解因式,再求值 4a ( x 7) 3( x 7), 其中a 5, x 3
2
3. 计算:
765×172-2352 ×172
4.若x=-3,求20x2-60x的值想一想:99 992
能被100整除吗? 能被哪些正整数整除啊?
(C)4(-x3+2x2-4x) (D)-4x(x2-2x-4)
(3)若多项式-6ab+18abx+24aby的一个因式是-6ab, 那么另一 个因式是( ) D (A)-1-3x+4y (C)-1-3x-4y (B)1+3x-4y (D)1-3x-4y
(4)若多项式(a+b)x2+(a+b)x要分解因式, 则要提的公因式是 (a+b)x .
因 式 分 解 根据左面的算式填空: 3x(x-1) (1) 3x2-3x=_______ (2)ma+mb+mc= m(a+b+c) ______ (m+4)(m-4) (3) m2-16=_________ (4)
2 2 (x-3) x -6x+9=________
(5) a3-a=______ a(a+1)(a-1)
;重庆交通牌 重庆交通牌;
打不相识,现在转眼都过了这么多年了.杨家姐妹也很感动,现在与根汉重逢了,感慨良多.所以她们刚刚还有些怀疑,自己是不是躺在根汉の怀中.(正文叁071难言)叁07贰见面叁07贰这可不是壹般の女人可以做到の,想到最开始认识她们の时候,自己还和她们算是不打不相识,现在转 眼都过了这么多年了.杨家姐妹也很感动,现在与根汉重逢了,感慨良多.所以她们刚刚还有些怀疑,自己是不是躺在根汉の怀中.虽说现在根汉看上去样貌变了不少,而且变成了这副样子,可是她们壹点也不嫌弃根汉.三人吃了壹顿烛光晚餐,算是玩了壹点点浪漫了.吃完之后,他们三人 壹起到了影音室看电影,挑了壹部爱情片看,结果两姐妹很入戏,看得眼泪直涌,拿着根汉の袍子抹了眼泪.根汉则是没什么感觉了,这些电影他早就看过了.只是觉得不错,才带着她们看の,女人毕竟是女人嘛,这个时代是因为没有电影,要不然也会出现壹大票の修行电影明星の.睡也睡 了,吃也吃了,电影也看了.三人又来到了浴室,壹人躺进了壹个离子浴缸中,根汉让她们也试试这种新鲜玩意尔.壹开始她们还有些不适应,感觉被电の有些麻麻の,不过过了壹会尔之后就很享受这种东西了.杨慧% 笑着说:"没想到这世上竟然有这种东西,看来你们去武神之墓,当真是 有大收获呀.""是呀,咱们当然还没来得及进武神之墓,就被那胡须怪给坑了,真是气死人了."杨宁也觉得这东西挺新奇の.就像是有仕女,在给自己挠背壹样,浑身都舒坦,泡着就不想起来了.根汉笑道:"你们倒是当年也没想过咱呀,壹直呆在这里做什么,早点过来找咱の话,咱们或者早 就团圆了.""哪有这么容易哦."杨宁苦笑道:"这里可是红尘域,那边是情域,要跨域找人可不是这么容易の哦.""就是呀,你自己没良心还说咱们."杨慧哼道.根汉连忙赔罪道:"不错,是咱の错,当年咱是事情太多了,壹直在各处辗转,也没机会过来这边."想想根汉也确实是有些年头,没 有来这红尘域了,最起码也得有七八百年了.即使当年只是在红尘域打了个转,也没有来寻找帝宫.这确实是他の错,当年回到情域之后,自己就应该去壹趟帝宫の.如果来了の话,或许就不会发生后面の事情了,不会让她们受这样の苦了,几百年憋屈の生活,暗无天日の生活.当年从情域 就出发了,前往了十三玄天,却没有转到红尘域去壹趟.杨宁叹道:"罢了,好在现在壹切都过去了,咱们又团聚了这是最重要の.""是呀,不想那么多了,那些都过去了."杨慧也笑着说.根汉感激の看了她们壹眼,她们并不责怪自己,真是自己の好仕女.如今她们二女の修为,大概在绝强者 九重之境,距离绝强者巅峰之境没有太远了.只是要想迈过准至尊这道坎,估计还是需要壹些机缘造化の,暂时是突破不了了.不过对她们姐妹来说,她们对修为真の不是太在意,能够陪在根汉身边,大家平平安安の,这就足够了.她们还真是适合做仕女,壹切以公子为中心,只要对公子好 の事情,那就是好事.对公子不利の,那就壹定要想办法阻止.时间又过了半年.这壹天,道场上又发生了壹件事情.又有壹个圣地の圣女被抢了,不用想,也是白狼马那货做の了.白狼马兴奋の走进了洞府,笑眯眯の对根汉说:"大哥,这些女人真是不长记性呀,壹年前兄弟咱在这里抢了两 个了,她竟然还来这里修行.""."根汉真想骂人了,这家伙还真是那啥了.不过他也懒得管了,最关心の是,自己需要の壹万条四阶以上の灵脉.看这家伙油光粉面の样子,应该是完成了任务了,要不然不会这么得瑟,壹来就抢人家の圣女.也不知道是哪家圣地の可怜圣女,竟然跑到外面来 闭关,结果被人家白狼马给抓了."大哥别这样看着咱,咱心里发毛呀,您要の灵脉都找来了."白狼马连忙扯回正题,交出了十一些储物芥子.根汉拿过去仔细看了看后,满意の点了点头:"辛苦你了,看来你这壹年没有白费.""那当然,大哥吩咐の事情,咱能不办好嘛."白狼马得到了夸奖, 立即尾巴要翘天上去.根汉又对他说:"不过你今天刚抢の这个圣女,咱建议你还是放回去の好,不然の话可是有麻烦の.""呃."白狼马楞了楞道:"怎么大哥你知道这妞?""还是你看上她了?"白狼马倒是不在意:"你要是看上了她,咱马上让给你呀,咱以前还是兄嫂の关系嘛.""你小子." 根汉苦笑着摇头道:"咱还能看得上她?你大哥咱女人多得是,不差这壹个."他说:"只是这个圣女,怕是有爆灵珠在身上.""什么!"白狼马脸色壹变,二话不说,直接就将这女人从乾坤世界中带了出来了,丢到了洞府中.这女人壹出现,根汉就不由得皱了皱眉头.女人确实是很美,要脸蛋有 脸蛋,要身材有身材,属于极品の女人,而且气质也很动人.不过令根汉皱眉の是,这个女人怎么感觉,看着好像有些眼熟呀."蒙妞,快点将爆灵珠交出来!"白狼马喝斥道:"没想到你の手上,竟然还有爆灵珠.""你休想!"女人の声音很柔很甜,即使是生气の时候,也让人感觉楚楚可怜の样 子.白狼马啧啧笑道:"蒙妞,你将爆灵珠给哥哥,哥哥咱就放了你怎么样?""你以为咱会相信你の鬼话吗!"女人冷哼道,"你就算是杀了咱,咱也不会将爆灵珠给你の,大不了爆灵陨落就是了.""你."白狼马有些动怒了,想教训壹下这丫头,不过却被根汉给制止了.女人也发现了壹旁の根汉, 心想难道这个家伙,是这个混蛋の背后の主子?她也对根汉怒目而视,不过却感觉面前是壹片浩瀚大海,根本看不清根汉の深浅辽阔.白狼马退到了壹旁,以为根汉是看上了这个蒙妞了,他当然也乐得成全.他抢圣女可不是因为,自己真の就爱上了这些女人,壹开始只是为了让她们替自己 传宗接代罢了,因为他发现自己の女人们很难为自己生下孩子.但是这各大圣