高一数学知识点总结(15篇)
高一数学知识点全部总结
高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一数学知识点全总结归纳
高一数学知识点全总结归纳数学作为一门理科学科,对于高中生们来说无疑是一门重要的学科之一。
高一是数学学科的起点,是打下扎实数学基础的关键阶段。
为了帮助广大高一学生掌握和巩固数学知识,本文将全面总结和归纳高一数学知识点,帮助学生们更好地学习和理解。
一、代数1. 数与代数式2. 数的四则运算3. 一元一次方程与不等式4. 二元一次方程组与解法5. 平方差与完全平方公式6. 平方根与立方根7. 二次根式与整式的乘法8. 因式分解与最大公因数、最小公倍数9. 分式及其性质10. 一元二次方程与不等式11. 二次函数与一次函数二、几何1. 平面直角坐标系与二维坐标变换2. 向量及其运算3. 直线与线段的性质4. 角与角度的度量5. 三角函数与三角恒等式6. 圆的性质与相关定理7. 相似与全等三角形8. 数列与等差数列9. 数列与等比数列10. 空间坐标系与三维向量11. 空间中的直线与平面12. 空间中的平面与直线三、概率与统计1. 事件与概率的基本概念2. 概率的计算方法3. 条件概率与独立事件4. 随机变量与概率分布5. 二项分布与泊松分布6. 抽样与统计分布7. 统计图与直方图8. 统计数据的分析与应用四、数学建模与应用1. 数学建模的基本步骤与方法2. 函数模型与线性规划3. 排队论与图论4. 矩阵与运算5. 微分与微分方程6. 积分与应用问题以上是高一数学的主要知识点总结,涵盖了代数、几何、概率与统计以及数学建模与应用等重要内容。
在学习过程中,要注重基础知识的理解和掌握,应用数学解题的方法和技巧,并通过大量的练习和实际应用,不断提升数学能力。
希望本文对高一学生的数学学习有所帮助,让他们能够在数学领域取得优秀的成绩。
数学高一必修知识点(实用15篇)
数学高一必修知识点(实用15篇)数学高一必修知识点(1)一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合(3) 空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果A?B, B?C ,那么A?C④如果A?B 同时B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的`一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
高一数学所有知识点总结归纳
高一数学所有知识点总结归纳高一数学是学生在高中阶段学习数学的第一年,是基础扎实、知识积累的重要阶段。
在这一年里,学生将接触到许多数学的基本概念和方法,并逐渐拓展自己的数学思维。
为了让大家更好地复习和巩固基础知识,本文将对高一数学的所有知识点进行总结归纳。
一、集合与函数1. 集合的基本概念- 集合的定义、元素和特点- 空集、全集和子集- 并集、交集和差集的运算2. 函数与映射- 函数的定义和性质- 函数的分类及其表示法- 函数的运算、复合函数和反函数3. 集合与函数的应用- 关系与函数的区别与联系- 函数在实际问题中的应用二、数列与数列的极限1. 数列的概念与表示- 数列的定义和性质- 等差数列和等比数列2. 数列的通项与前n项和- 递推公式与通项公式- 前n项和的计算和性质3. 数列的极限- 数列极限的概念及性质- 数列极限的计算和判断三、平面向量与解析几何1. 平面向量的基本概念- 平面向量的定义和性质- 平面向量的线性运算和数量积2. 平面向量的应用- 向量的共线与垂直- 向量的模、夹角和投影- 平面向量在几何中的应用3. 解析几何- 平面直角坐标系与向量表示- 直线和圆的方程- 直线与圆的性质和判断条件四、三角函数与三角恒等变换1. 三角函数的定义和性质- 正弦、余弦、正切等基本概念- 三角函数的周期性和奇偶性2. 三角函数的运算- 三角函数的和差、倍角、半角公式 - 三角函数的积化和差化积3. 三角恒等变换- 三角函数的恒等变换及证明- 三角方程的解法和应用五、数系与方程1. 实数与复数- 实数的性质与运算- 复数的定义和运算2. 一次方程和二次方程- 一次方程和一元二次方程的概念- 一次方程和一元二次方程的解法和应用3. 不等式与绝对值- 不等式的性质和解法- 绝对值的定义和性质总结:高一数学涉及的知识点非常广泛,本文对集合与函数、数列与数列的极限、平面向量与解析几何、三角函数与三角恒等变换、数系与方程等方面进行了总结归纳。
高一数学知识点归纳
高一数学知识点归纳一、集合。
1. 集合的概念。
- 集合是由一些确定的、互不相同的对象所组成的整体。
这些对象称为集合的元素。
例如,全体自然数组成的集合,用N={0,1,2,3,·s}表示(注意:人教版中0∈N)。
- 元素与集合的关系:如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如A = {1,2,3}。
- 描述法:用集合所含元素的共同特征表示集合。
形式为{xp(x)},其中x是集合中的代表元素,p(x)是描述x的条件。
例如{xx是大于2的整数}。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A⊆ B。
如果A⊆ B且A≠ B,则A是B的真子集,记为A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集:不含任何元素的集合,记为varnothing。
空集是任何集合的子集,是任何非空集合的真子集。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)x∈ A}叫做函数的值域。
2. 函数的表示法。
- 解析法:用数学表达式表示两个变量之间的对应关系,如y = 2x+1。
- 图象法:用图象表示两个变量之间的对应关系。
- 列表法:列出表格来表示两个变量之间的对应关系,如函数y=x^2,当x = - 2,-1,0,1,2时,对应的y值分别为4,1,0,1,4,可以列成表格。
高一全部数学知识点归纳
高一全部数学知识点归纳在高一的学习过程中,数学是一门必修课程,学生们要掌握并理解各种数学知识点。
下面,我们将对高一全部数学知识点进行归纳和总结。
一、数与代数1.整数与有理数:自然数、整数、有理数的性质和运算法则,有理数的比较和大小。
2.代数基础:代数式、多项式的运算,配方法和有理系数多项式的因式分解。
3.一次函数与一次不等式:函数的概念,一次函数的性质、图象和应用,一次不等式的解集。
二、平面几何1.平面几何基础:点、线、面等基本概念,平面角的基本性质,角的平分线与垂直线的性质。
2.三角形与相似三角形:三角形的分类、性质和判定,相似三角形的性质和判定。
3.勾股定理与三角函数:勾股定理的应用,正弦定理和余弦定理的应用。
三、立体几何1.立体几何基础:直线、平面与空间的交点、直线和平面的位置关系,正交投影和平行投影。
2.平行与垂直:平行线与垂直线的性质与判定,平面与平面的位置关系与判定。
3.多面体与体积:四面体、六面体等多面体的性质、判定和体积计算。
四、函数与图像1.函数与方程:函数的概念与性质,函数的分类,函数方程的解集。
2.二次函数与二次方程:二次函数的性质、图像和应用,二次方程的性质、解集和根与系数间的关系。
3.指数与对数:指数函数与对数函数的性质、图像与应用。
五、数据与概率1.统计基础:数据的收集整理与图表制作,统计量的计算与解释。
2.概率基础:概率的概念与性质,基本事件与复合事件的计算。
六、导数与微分学1.函数的导数:导数的概念、性质与计算,导数的应用与几何意义。
2.函数的微分学:微分的概念与计算,微分的应用。
通过对高一全部数学知识点的归纳和总结,我们可以看到数学知识的层次性和逻辑性。
掌握这些知识点,不仅可以提高我们的数学水平,还可以培养我们的逻辑思维能力和问题解决能力。
在学习数学知识时,我们要注重理论与实践的结合,灵活运用各种解题方法和技巧。
同时,我们还应注重数学与现实问题的联系,深入理解数学在实际生活中的应用价值。
高一年级数学必修一重点知识点
高一年级数学必修一重点知识点1.高一年级数学必修一重点知识点篇一1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、正方体a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)2.高一年级数学必修一重点知识点篇二1.定义:用符号〉,=,〈号连接的式子叫不等式。
2.性质:①不等式的两边都加上或减去同一个整式,不等号方向不变。
高一数学全部知识点
高一数学全部知识点1.数与式•自然数、整数、有理数、实数、复数的概念和性质•数轴与绝对值•等式、方程、不等式的基本概念•映射、函数及函数表示法2.函数与图像•函数的定义、定义域、值域、图像和性质•常见函数的图像特征:常函数、一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等•函数的运算和复合3.直线和圆•直线的斜率和方程•直线的相关性质和判定方法:平行、垂直、重合•圆的定义、圆心、半径、圆的方程•直线与圆的位置关系:相切、相离、相交4.三角函数•弧度制与角度制的转换•三角函数的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数的图像、周期性和性质•三角函数的运算:加法、差法、倍角、半角公式5.平面向量•向量的概念、模长和方向角•向量的基本运算:加法、数乘、数量积、向量积•向量的共线和垂直关系•平面向量的应用:向量的投影、向量的夹角、平面向量的推导公式6.数列与数列的极限•数列的概念和性质•等差数列和等比数列:通项公式、前n项和公式•数列的极限概念和性质•常见数列的求和公式:等差数列求和、等比数列求和、等差数列求和公式、等比数列求和公式7.数与函数•幂函数、指数函数和对数函数:定义、图像、性质和运算•二次函数:定义、图像、性质和运算•理解指数函数和对数函数的反函数关系8.三角比与三角函数图像的特征•三角比的概念和性质:正弦、余弦、正切、余切、割、余割•三角函数图像的性质:振幅、周期、相位差、图像的平移和伸缩•三角函数的变换公式:倍角、半角、和差、积化和差9.立体几何基础•空间几何基本概念:点、直线、平面等•空间几何图形的性质和判断方法•立体几何的基本概念:体积、面积、曲面积•平行线与平面的关系:平面的平行、垂直和倾斜关系10.空间向量•空间向量的概念和性质•空间向量的坐标表示法和线性运算•空间向量的数量积和向量积•平面与空间的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线和直线的位置关系11.导数•导数的定义和性质•基本初等函数的导数•导数的运算:和、差、积、商、复合函数和参数函数的导数•导数的应用:函数的凹凸性、函数的最值和曲线的切线方程12.数列的概念和表示方法•数列的概念和性质•数列的递推公式和通项公式•等差数列和等比数列的判定方法和求和公式•数列极限的概念和极限性质13.概率与统计•随机事件的概念和性质•频率与概率的关系•排列与组合的概念和计算方法•统计的基本概念和统计方法以上是高一数学的全部知识点,希望对你的学习有所帮助。
高一数学的重点知识点总结
高一数学的重点知识点总结高一数学是数学学科中的重要一年,通过高一数学的学习,可以为高二数学的学习打下坚实的基础。
下面是高一数学的重点知识点总结:一、函数与方程1. 函数的概念及基本性质2. 一次函数及其图像、性质和应用3. 二次函数及其图像、性质和应用4. 幂函数、指数函数及其图像、性质和应用5. 对数函数及其图像、性质和应用6. 三角函数及其图像、性质和应用7. 方程及其解法(一次方程、二次方程、多项式方程、分式方程等)8. 不等式及其解法(一次不等式、二次不等式、分式不等式等)二、平面几何1. 直线与角(直线的方程、直线的性质、角的定义和性质等)2. 三角形及其性质(角的和、外角等)3. 四边形及其性质(平行四边形、矩形、菱形、正方形等)4. 圆及其性质(圆的定义、圆的方程、切线等)5. 投影与相似6. 勾股定理及其应用7. 相交线、弦、正多边形三、解析几何1. 坐标系与平面直角坐标系中点的坐标2. 点的表示、位置关系与距离公式3. 线段的长度和中点、延长线、两条线段的位置关系4. 直线的方程及其应用(一般式、斜截式、截距式、点斜式等)5. 圆的方程及其应用(一般式、标准式、一般方程式等)6. 二次曲线(抛物线、椭圆、双曲线)7. 过点作直线、直线相交四、数列与数学归纳法1. 数列及其概念2. 等差数列及其性质和应用3. 等比数列及其性质和应用4. 数学归纳法及其应用五、概率统计1. 随机事件及其概率2. 古典概型及其概率3. 条件概率及乘法定理4. 独立事件及其概率5. 随机变量及其数学期望、方差6. 分布函数及概率密度函数7. 正态分布及其应用8. 统计图与直方图六、立体几何1. 空间图形及其性质2. 旋转体、柱体、锥体、棱锥、棱台的体积和表面积3. 正多面体的体积和表面积4. 空间向量及其运算七、三角函数与三角恒等变换1. 任意角的概念及弧度制2. 三角函数的定义及正弦定理、余弦定理的应用3. 三角恒等变换的基本性质及应用以上是高一数学的重点知识点总结,但是每个学校或地区的教学进度和难度可能有所不同,还请根据教材和老师的教学要求进行学习。
高一数学知识点总结(15篇)
高一数学知识点总结(15篇)高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M 上是增函数。
高一的全部数学知识点总结归纳
高一的全部数学知识点总结归纳高一是学生们进入高中阶段的第一年,也是数学学科知识积累的起点。
在这一年里,学生们会学习到许多新的数学知识点,这些知识点对于后续的学习和考试都具有重要的作用。
下面将对高一数学的全部知识点进行总结归纳。
一、代数与函数1. 整式与分式:了解整式与分式的概念,学会进行整式与分式的化简操作。
2. 一次函数:掌握一次函数的定义、性质以及相关的方程、不等式。
3. 二次函数:了解二次函数的定义、图像、性质以及相关的方程、不等式。
4. 高次函数与分式函数:了解高次函数和分式函数的定义、性质以及相关的方程、不等式。
5. 幂指、对数函数:认识幂指函数和对数函数的定义、性质以及相关的方程、不等式。
二、三角函数与解三角形1. 三角函数的基本概念:掌握正弦、余弦、正切等三角函数的定义、性质以及相关的方程、不等式。
2. 任意角与弧度制:理解角度的概念,学会角度的换算和表示。
3. 解三角形:掌握解直角三角形和非直角三角形的方法与技巧,包括正弦定理、余弦定理、正弦定理的运用。
三、平面几何1. 向量和平面向量:了解向量的定义、基本运算以及相关的线性运算。
2. 二维坐标系与直线:掌握直线方程的一般形式、斜截式、点斜式等表达方式,并学会求解两直线的位置关系。
3. 二次曲线:了解抛物线、椭圆、双曲线的定义、性质以及相关的方程。
四、空间几何1. 点、直线和平面:了解空间中点、直线和平面的基本概念、性质以及相关的方程。
2. 空间几何关系:学会求解直线与平面的位置关系、平面与平面的位置关系、直线与直线的位置关系等。
五、概率与统计1. 概率的基本概念:了解事件、样本空间、概率的定义,并学会概率计算方法。
2. 统计与机率:掌握统计与机率的基本概念、数据的收集与整理、统计量的计算以及统计图的绘制。
这些是高一数学的主要知识点总结,而每个知识点下还包含了更加详细的分支知识点。
通过掌握这些知识点,学生们可以打下坚实的数学基础,为将来的学习打下良好的基础。
高一数学知识点归纳
高一数学知识点归纳一、集合与函数的概念1. 集合的基本概念- 集合的定义- 集合的表示方法:列举法、描述法- 集合之间的关系:子集、并集、交集、补集2. 函数的定义与性质- 函数的定义:从集合A到集合B的映射- 函数的表示方法:公式法、图像法、表格法 - 函数的基本概念:定义域、值域、映射规则3. 函数的运算- 函数的加法、减法、乘法、除法- 复合函数- 反函数4. 常见函数类型- 一次函数、二次函数- 指数函数、对数函数- 三角函数:正弦、余弦、正切二、数列1. 数列的概念- 数列的定义- 数列的表示方法:递推关系、通项公式2. 等差数列与等比数列- 等差数列的通项公式、求和公式- 等比数列的通项公式、求和公式3. 数列的性质与应用- 数列的极限- 数列的单调性- 数列的应用题三、解析几何1. 平面直角坐标系- 点的坐标- 距离公式、中点公式- 直线的方程:点斜式、两点式、一般式2. 圆的方程- 标准圆的方程- 圆的一般方程- 圆与直线、圆与圆的位置关系3. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积四、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义- 三角函数的图像与性质2. 三角恒等变换- 同角三角函数的关系- 三角函数的和差公式- 二倍角公式、半角公式3. 解三角形- 正弦定理、余弦定理- 三角形的面积公式五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 事件的关系与运算:并、交、补2. 概率的计算- 条件概率、独立事件的概率- 全概率公式、贝叶斯公式3. 统计初步- 数据的收集与整理:频数、频率- 统计量:平均数、中位数、众数- 方差、标准差的概念与计算六、数学归纳法1. 数学归纳法的原理- 归纳法的基本步骤:奠基步骤、归纳步骤 - 归纳法的应用2. 证明方法- 直接证明- 反证法以上是高一数学的主要知识点归纳,每个部分都需要通过大量的练习题来加深理解和应用。
高一数学知识点大全集
高一数学知识点大全集高一是学生们进入高中的第一年,也是数学学科中扎实基础知识的学习年份。
在这一年里,学生们将会接触到许多重要的数学知识点。
本篇文章将为大家整理高一数学知识点的大全集,帮助大家更好地准备和复习数学课程。
1. 代数运算1.1. 四则运算:加法、减法、乘法、除法1.2. 指数与根:乘方、开方、科学计数法1.3. 数列与数列运算:等差数列、等比数列、递归公式1.4. 多项式运算:多项式加减、乘法公式、整式除法2. 几何基础2.1. 几何图形:点、线、面、体2.2. 直线与角:直线的性质、平行线与垂直线、角的性质、角平分线2.3. 三角形:三角形的分类、三角形的性质、三角形的相似与全等2.4. 四边形:正方形、长方形、平行四边形、梯形、菱形2.5. 圆与圆的性质:圆的元素、圆的弧长、面积、扇形、切线、切圆问题3. 函数3.1. 函数的概念与性质:自变量与因变量、定义域与值域、奇偶性、周期性3.2. 一次函数:函数图像、求解一次方程与不等式、一次函数的斜率3.3. 二次函数:函数图像、求解二次方程与不等式、二次函数的顶点及其性质、最值问题3.4. 指数函数与对数函数:指数函数的性质、指数方程及不等式的解、对数函数的性质、换底公式4. 三角函数4.1. 三角比的概念与性质:正弦、余弦、正切、余切4.2. 三角函数的图像与性质:周期性、对称性、增减性4.3. 三角函数的运算:和差化积、积化和差、辅助角公式4.4. 三角恒等式与解三角方程:和差化积恒等式、积化和差恒等式、解三角方程5. 统计与概率5.1. 数据的收集与整理:数据的调查方法、数据的图表表示5.2. 数据的分析与解读:中心位置的测度、离散程度的测度、数据的解读与应用5.3. 概率的概念与性质:样本空间与事件、概率与它的性质5.4. 概率的计算与应用:古典概型、条件概率、排列组合6. 数学证明6.1. 数学归纳法:基本思想、结构与步骤6.2. 数学证明的基础:逻辑与推理、等价命题、逆否命题、充分必要条件6.3. 平面几何证明:点、线、角的结构与性质的证明6.4. 三角函数的证明:三角函数的恒等式证明、三角方程的证明以上是高一数学的主要知识点大全集。
高一数学知识点总结(集合15篇)
高一数学知识点总结高一数学知识点总结(集合15篇)总结就是对一个时期的学习、工作或其完成情况进行一次全面系统的回顾和分析的书面材料,它可以促使我们思考,让我们来为自己写一份总结吧。
你所见过的总结应该是什么样的?下面是小编为大家收集的高一数学知识点总结,仅供参考,欢迎大家阅读。
高一数学知识点总结11.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。
(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。
正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。
(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。
2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。
(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。
3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。
三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。
4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。
高一数学万能知识点总结
高一数学万能知识点总结一、代数与函数代数是数学的基础,涉及到各种算式、方程和函数。
在高一的数学学习中,我们需要掌握以下代数与函数的相关知识点:1.1 数的性质- 四则运算法则:加法交换律、乘法交换律、加法结合律、乘法结合律、加法逆元、乘法逆元等。
- 分配律:乘法对加法的分配律、乘法对减法的分配律等。
- 数的分类:自然数、整数、有理数、无理数等。
1.2 方程与不等式- 一元线性方程与一元一次不等式:包括解方程、解不等式以及应用等。
- 二元一次方程组:涉及到二元一次方程组的解法以及解的意义等。
- 幂次方程与根式方程:涉及到幂次方程和根式方程的解法、特殊情况以及应用等。
1.3 函数与图像- 函数概念:自变量、因变量、函数关系等。
- 一次函数:函数的定义、性质、图像特征以及相关应用等。
- 二次函数:函数的定义、性质、图像特征、最值问题等。
- 指数函数与对数函数:函数的定义、性质、图像特征以及相关应用等。
- 三角函数:包括正弦函数、余弦函数、正切函数等的定义、性质、图像特征以及相关应用等。
二、几何与图形几何与图形是高中数学的重要内容之一,涉及到平面几何和立体几何的知识点,以下是高一数学几何与图形的相关要点:2.1 二维几何- 角与三角形:角的分类、角的性质、三角形的分类、三角形的性质等。
- 直线与线段:直线的分类、直线的性质、线段的性质等。
- 圆与圆周角:圆的定义、圆的性质、圆周角的性质等。
- 几何变换:平移、旋转、翻转、倍数变换等的定义、性质以及变换后图形的性质等。
2.2 三维几何- 空间几何体:点、直线、平面、多面体等的定义、性质以及相关特征等。
- 空间坐标系:直角坐标系与空间直角坐标系等的定义、性质以及相关应用等。
三、概率与统计概率与统计是高一数学的另一个重要内容,掌握好以下相关知识点将有助于我们解决生活中的实际问题:3.1 概率- 随机事件:样本空间、事件、随机事件、必然事件、不可能事件等的定义与性质。
高一数学知识点总结汇编15篇
高一数学知识点总结汇编15篇高一数学知识点总结1数学是利用符号语言研究数量、结构、变化以及空间模型等概念的一门学科。
小编准备了高一数学必修1期末考知识点,希望你喜欢。
一.汇编关于概念1.汇编的含义:某些指定的对象集在一起就成为一个汇编,其中每一个对象叫元素.2.汇编的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的汇编,汇编中的元素是确定的,任何一个对象或者是或者不是这个给定的汇编的元素.(2)任何一个给定的汇编中,任何两个元素都是不同的对象,相同的对象归入一个汇编时,仅算一个元素.(3)汇编中的元素是平等的,没有先后顺序,因此判定两个汇编是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.(4)汇编元素的三个特性使汇编本身有了确定性和整体性.3.汇编的表示:{ } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示汇编:A={我校的篮球队员},B={1,2,3,4,5}2.汇编的表示方法:列举法与描述法.注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或N+ 整数集Z 有理数集Q 实数集R关于属于的概念汇编的元素通常用小写的拉丁字母表示,如:a是汇编A的元素,就说a属于汇编A 记作 aA ,相反,a不属于汇编A 记作 a?A列举法:把汇编中的元素一一列举出来,然后用一个大括号括上.描述法:将汇编中的元素的公共属性描述出来,写在大括号内表示汇编的方法.用确定的条件表示某些对象是否属于这个汇编的方法.①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}4.汇编的分类:1.有限集含有有限个元素的汇编2.无限集含有无限个元素的汇编3.空集不含任何元素的汇编例:{x|x2=-5}二.汇编间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一汇编.反之: 汇编A不包含于汇编B,或汇编B不包含汇编A,记作A B或B A2.相等关系(55,且55,则5=5)实例:设 A={x|x2-1=0} B={-1,1} 元素相同结论:对于两个汇编A与B,如果汇编A的任何一个元素都是汇编B的元素,同时,汇编B的任何一个元素都是汇编A的元素,我们就说汇编A等于汇编B,即:A=B①任何一个汇编是它本身的子集.AA②真子集:如果AB,且A1 B那就说汇编A是汇编B的真子集,记作A B(或B A)③如果 AB, BC ,那 AC④如果AB 同时 BA 那A=B3. 不含任何元素的汇编叫做空集,记为规定: 空集是任何汇编的子集, 空集是任何非空汇编的真子集.三.汇编的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的汇编,叫做A,B 的交集.记作AB(读作A交B),即AB={x|xA,且xB}.2.并集的定义:一般地,由所有属于汇编A或属于汇编B的元素所组成的汇编,叫做A,B的并集.记作:AB(读作A并B),即AB={x|xA,或xB}.3.交集与并集的性质:AA = A, A=, AB = BA,AA = A,A= A ,AB = BA.4.全集与补集(1)补集:设S是一个汇编,A是S的一个子集(即 ),由S中所有不属于A的元素组成的汇编,叫做S中子集A的补集(或余集)(2)全集:如果汇编S含有我们所要研究的各个汇编的全部元素,这个汇编就可以看作一个全集.通常用U来表示.(3)性质:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U高一数学知识点总结2高一数学汇编关于概念汇编的含义汇编的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HAPPY的字母组成的汇编{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个汇编3。
高一数学必修知识点总结15篇
高一数学必修知识点总结15篇高一数学必修知识点总结1高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上的山元素的互异性如:由HY的字母组成的集合{H,A,P,Y}元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合3。
集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:枚举和描述。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_N+整数集Z有理数集Q实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R|x—3>2},{x|x—3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:4、集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=—5}高一数学必修知识点总结2集合间的基本关系1.子集,A包含于B,记为:,有两种可能(1)A是B的一部分,(2)A与B是同一集合,A=B,A、B两集合中元素都相同。
反之:集合A不包含于集合B,记作。
如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。
A是C的子集,同时A也是C 的真子集。
2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)3、不含任何元素的集合叫做空集,记为Φ。
Φ是任何集合的子集。
4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。
如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。
示例:集合中有子集。
(13年高考第4题,简单)练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。
高一数学课本知识点总结
高一数学课本知识点总结【导语】下面是作者为大家整理的高一数学课本知识点总结(共20篇),欢迎大家借鉴与参考,希望对大家有所帮助。
篇1:高一数学课本知识点总结高一年级数学必修三知识点(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a 不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无_。
奇偶性定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
高一数学必修二重要知识点公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学知识点总结2本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.重难点知识归纳1、平面(1)平面概念的理解直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.(2)平面的表示法①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.②字母表示:常用等希腊字母表示平面.(3)涉及本部分内容的符号表示有:①点A在直线l内,记作;②点A不在直线l内,记作;③点A在平面内,记作;④点A不在平面内,记作;⑤直线l在平面内,记作;⑥直线l不在平面内,记作;注意:符号的使用与集合中这四个符号的使用的区别与联系.(4)平面的基本性质公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.符号表示为:.注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:直线AB存在唯一的平面,使得.注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:.注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.公理的推论:推论1:经过一条直线和直线外的一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.空间直线(1)空间两条直线的位置关系①相交直线:有且仅有一个公共点,可表示为;②平行直线:在同一个平面内,没有公共点,可表示为a//b;③异面直线:不同在任何一个平面内,没有公共点.(2)平行直线公理4:平行于同一条直线的两条直线互相平行.符号表示为:设a、b、c是三条直线,.定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.(3)两条异面直线所成的角注意:①两条异面直线a,b所成的角的范围是(0°,90°].②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:(i)在空间任取一点,这个点通常是线段的中点或端点.(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.3.空间直线与平面直线与平面位置关系有且只有三种:(1)直线在平面内:有无数个公共点;(2)直线与平面相交:有且只有一个公共点;(3)直线与平面平行:没有公共点.4.平面与平面两个平面之间的位置关系有且只有以下两种:(1)两个平面平行:没有公共点;(2)两个平面相交:有一条公共直线.高一数学知识点总结3一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.高一数学知识点总结4函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。
记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象可以是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
高一数学知识点总结5知识点1一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1、元素的确定性;2、元素的互异性;3、元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2、集合的表示方法:列举法与描述法。