高一数学知识点总结
高一数学知识点整理归纳五篇
高一数学知识点整理归纳五篇高一数学知识点总结1指数函数(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑.(2)指数函数的值域为大于0的实数集合.(3)函数图形都是下凹的.(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的.(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与_轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与_轴的负半轴的单调递增函数的位置.其中水平直线y=1是从递减到递增的一个过渡位置.(6)函数总是在某一个方向上无限趋向于_轴,永不相交.(7)函数总是通过(0,1)这点.(8)显然指数函数无界.奇偶性定义一般地,对于函数f(_)(1)如果对于函数定义域内的任意一个_,都有f(-_)=-f(_),那么函数f(_)就叫做奇函数.(2)如果对于函数定义域内的任意一个_,都有f(-_)=f(_),那么函数f(_)就叫做偶函数.(3)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)同时成立,那么函数f(_)既是奇函数又是偶函数,称为既奇又偶函数.(4)如果对于函数定义域内的任意一个_,f(-_)=-f(_)与f(-_)=f(_)都不能成立,那么函数f(_)既不是奇函数又不是偶函数,称为非奇非偶函数.高一数学知识点总结2集合与元素一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素.例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素.班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的..解集合问题的关键解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化.形象化,将特征性质描述,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则_肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则_不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数.在_大于0时,函数的值域总是大于0的实数.在_小于0时,则只有同时q为奇数,函数的值域为非零的实数.而只有a为正数,0才进入函数的值域.由于_大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点.(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数.(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸.(4)当a小于0时,a越小,图形倾斜程度越大.(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点.(6)显然幂函数.解题方法:换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化.复杂问题简单化,变得容易处理.换元法又称辅助元素法.变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟悉的形式,把复杂的计算和推证简化.它可以化高次为低次.化分式为整式.化无理式为有理式.化超越式为代数式,在研究方程.不等式.函数.数列.三角等问题中有广泛的应用.高一数学知识点总结4一:集合的含义与表示1.集合的含义:集合为一些确定的.不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体.把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集.2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于.(2)元素的互异性:一个给定集合中的元素是的,不可重复的.(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3.集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法.a.列举法:将集合中的元素一一列举出来{a,b,c……}b.描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合.{_?R|_-3 2},{_|_-3 2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合.4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a?A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N_或N+整数集Z有理数集Q实数集R6.集合间的基本关系(1).〝包含〞关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集.高一数学知识点总结5圆的方程定义:圆的标准方程(_-a)2+(y-b)2=r2中,有三个参数 a.b.r,即圆心坐标为(a,b),只要求出 a.b.r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件.直线和圆的位置关系:1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系.①Δ 0,直线和圆相交.②Δ=0,直线和圆相切.③Δ 0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较.①dR,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.切线的性质⑴圆心到切线的距离等于圆的半径;⑵过切点的半径垂直于切线;⑶经过圆心,与切线垂直的直线必经过切点;⑷经过切点,与切线垂直的直线必经过圆心;当一条直线满足(1)过圆心;(2)过切点;(3)垂直于切线三个性质中的两个时,第三个性质也满足.切线的判定定理经过半径的外端点并且垂直于这条半径的直线是圆的切线.切线长定理从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.高一数学知识点整理归纳精选五篇。
高一数学知识点总结(15篇)
高一数学知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它能帮我们理顺知识结构,突出重点,突破难点,因此好好准备一份总结吧。
总结怎么写才不会流于形式呢?以下是小编精心整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结1一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B 的映射,记作f:A→B。
注意点:(1)对映射定义的理解。
(2)判断一个对应是映射的方法。
一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对号函数⑧几何意义法:由数形结合,转化距离等求值域。
主要是含绝对值函数四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意∈A,都有,则称y=f(x)为偶函数。
如果对于任意∈A,都有,则称y=f(x)为奇函数。
2.性质:①y=f(x)是偶函数y=f(x)的图象关于轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性1、函数单调性的定义:2设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M 上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。
高一数学知识点全部总结
高一数学知识点全部总结一、代数1.1 一元二次方程一元二次方程是高一数学的重点内容之一,一元二次方程的定义是形式为ax^2+bx+c=0的方程,其中a≠0。
解一元二次方程的方法有因式分解、配方法、公式法等。
1.2 不等式高一数学的不等式内容主要包括一元一次不等式、一元二次不等式以及一元三次不等式的求解方法,包括图像法、取值范围法、代数法等。
1.3 二次函数二次函数是高一数学代数部分的重点内容,涉及了函数的定义、性质、图像、极值、单调性、解析式等多个方面的内容。
1.4 基本初等函数高一数学还包括了基本初等函数的概念和性质,包括幂函数、指数函数、对数函数、三角函数等的定义、性质及其在实际问题中的应用。
1.5 绝对值函数绝对值函数也是高一数学中的一个重要内容,主要包括了绝对值函数的性质、图像及其在实际问题中的应用。
1.6 平面直角坐标系中的直线和圆平面直角坐标系中的直线和圆也是高一数学的重要内容,主要包括了直线的方程、性质、圆的方程、性质及其在实际问题中的应用。
1.7 数列数列也是高一数学的一个重要内容,包括等差数列、等比数列、递推数列等的概念、性质、求和公式及其在实际问题中的应用。
1.8 集合与函数高一数学的内容还包括了集合的基本概念、基本运算、集合的关系和函数的概念、性质、运算、基本初等函数的图像等内容。
1.9 二项式定理二项式定理是高一数学中的一个重要概念,包括二项式的展开式、二项式系数、二项式定理的应用等方面的内容。
1.10 逻辑与命题关系逻辑与命题关系也是高一数学的一个知识点,主要包括了命题、充分必要条件、等价命题、逻辑联结词、命题公式等内容。
二、几何2.1 几何图形的性质高一数学的几何内容主要包括了基本的几何图形的性质,包括直线、角、三角形、四边形、圆等的基本性质、判定方法和应用题。
2.2 相似三角形相似三角形是高一数学中的重点内容,主要包括了相似三角形的性质、判定方法及其在实际问题中的应用。
高一数学知识点汇总全总结
高一数学知识点汇总全总结高一是学习数学的重要阶段,掌握好基础知识对于日后的学习和应用都有着至关重要的影响。
下面我将对高一数学的知识点进行全面总结,希望能对同学们的学习有所帮助。
一、二次函数与一次函数1. 一次函数的性质与图像一次函数的标准方程为y = kx + b,其中k为斜率,b为截距。
了解一次函数的性质和图像能够帮助我们准确描述直线的特征与运动规律。
2. 二次函数的性质与图像二次函数的标准方程为y = ax² + bx + c,其中a、b、c为常数,a ≠ 0。
了解二次函数的开口方向、顶点坐标以及与一次函数的对比有助于我们理解二次函数的变化规律。
二、指数与对数1. 指数与幂函数了解指数的概念及性质,能够帮助我们求解指数函数的值域、定义域以及对函数进行平移和伸缩的变换。
2. 对数与对数函数了解对数的基本定义和性质,能够帮助我们解决对数方程和不等式、应用对数函数进行函数图像的分析。
三、三角函数与解三角形1. 三角函数的基本概念了解三角函数的定义、性质和基本公式,能够帮助我们求解各种三角函数的值和推导三角函数的性质。
2. 三角函数的图像与性质熟悉正弦函数、余弦函数和正切函数的图像特征和性质,能够帮助我们进行函数图像的变换和分析。
3. 解三角形的基本方法掌握解三角形的基本方法和定理,包括正弦定理、余弦定理和正切定理,能够帮助我们计算和应用不同类型的三角形题目。
四、平面向量1. 向量的概念与表示了解向量的定义、性质和表示方法,包括坐标表示和模长与方向角表示,能够帮助我们求解向量的运算与变换。
2. 向量的线性运算掌握向量的加法、减法和数乘的运算规则,能够帮助我们解决向量的平移、伸缩和旋转等问题。
五、立体几何1. 空间直角坐标系与空间几何体熟悉空间直角坐标系的建立和空间几何体的基本特征,能够帮助我们进行不同空间图形的分析和计算。
2. 空间几何体的相交关系了解线面平行与垂直的判定条件,包括平面与平面的位置关系和直线与平面的位置关系,能够帮助我们解决相交关系的几何题目。
高一数学知识点总结
高一数学知识点总结
1. 数与代数
1.1 整数与有理数
- 整数:自然数、0和负整数的集合。
- 有理数:可以表示为两个整数的比值。
1.2 代数式与方程
- 代数式:由数字、变量和运算符号组成的数学表达式。
- 方程:含有等号的代数式,表示两个量的相等关系。
2. 几何与图形
2.1 点、线、面与体
- 点:没有具体大小,只有位置的概念。
- 线:由无数个点按一定顺序连接而成,没有宽度,长度无限。
- 面:由无数个线按一定方式连接而成,有形状和面积。
- 体:由无数个面按一定方式连接而成,有形状和体积。
2.2 常见图形与特殊线段
- 三角形:有三条边和三个内角的图形。
- 长方形:有四条边,且相对的边是相等且平行的图形。
- 正方形:有四条边,且所有边相等且平行的图形。
- 圆:由一个圆心和一条半径组成,半径是从圆心到圆上任一
点的距离。
3. 函数与方程
3.1 函数的概念与性质
- 函数:将一个变量的值映射到另一个变量的值的规则。
- 定义域:函数输入的所有可能值的集合。
- 值域:函数输出的所有可能值的集合。
3.2 一次函数与二次函数
- 一次函数:表示成 y = kx + b 的函数形式,其中 k 和 b 是常数。
- 二次函数:表示成 y = ax^2 + bx + c 的函数形式,其中 a、b
和 c 是常数。
以上是高一数学的一些主要知识点总结,希望对你有帮助!。
高一数学知识点总结(精选7篇)
高一数学知识点总结高一数学知识点总结(精选7篇)在平平淡淡的学习中,是不是听到知识点,就立刻清醒了?知识点有时候特指教科书上或考试的知识。
为了帮助大家掌握重要知识点,下面是小编为大家整理的高一数学知识点总结,希望能够帮助到大家。
高一数学知识点总结篇1立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。
表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
高一数学知识点总结(完整版)
高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A 注意:B与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a、b属于Q)(a^a)^b=a^ab(a>0,a、b属于Q)(ab)^a=a^a*b^a(a>0,a 、b 属于Q)指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称&对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么:○1 M a (log ·=)N M a log +N a log ; ○2 =NM a log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式 ab bc c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高一数学知识点总结归纳5篇
高一数学学问点总结归纳5篇高一是高中学习生涯中打好根底的一年,而高中数学也是比较难的一门学科。
那么,如何学好高一数学呢?下面就是我给大家带来的高一数学学问点总结,期望能关怀到大家!高一数学学问点总结1考点要求:1.几何体的开放图、几何体的三视图仍是高考的热点.2.三视图和其他的学问点结合在一起命题是新教材中考察同学三视图及几何量计算的趋势.3.重点把握以三视图为命题背景,争辩空间几何体的构造特征的题型.4.要生疏一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.学问构造: 1.多面体的构造特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特殊地,各棱均相等的正三棱锥叫正四周体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相像多边形.2.旋转体的构造特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的样子和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.假设相邻两物体的外表相交,外表的交线是它们的分界限,在三视图中,要留意实、虚线的画法. 4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,根本步骤是:(1)画几何体的底面在图形中取相互垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.高一数学学问点总结2幂函数的性质:对于a的取值为非零有理数,有必要分成几种状况来商量各自的特性:首先我们知道假设a=p/q,q和p都是整数,那么x^(p/q)=q次根号(x的p次方),假设q是奇数,函数的定义域是R,假设q是偶数,函数的定义域是[0,+∞)。
最全高一数学知识点总结归纳
最全高一数学知识点总结归纳高一数学知识点总结(一)1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
高一数学知识点总结归纳5篇精选
高一数学知识点总结归纳5篇精选高一是高中学习生涯中打好基础的一年,而高中数学也是比较难的一门学科。
那么,如何学好高一数学呢?高一数学知识点总结1考点要求:1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.3.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.4.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.知识结构:1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0x=0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
高一数学知识点总结(9篇)
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示
5、值域(先考虑其定义域)
(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;
(2)反表示法:针对分式的类型,把Y关于____的函数关系式化成____关于Y的函数关系式,由____的范围类似求Y的范围。
高一数学知识点总结(三)
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(1)元素在集合里,则元素属于集合,即:aA
(2)元素不在集合里,则元素不属于集合,即:a¢A
注意:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N-或N+
整数集Z
有理数集Q
实数集R
6、集合间的基本关系
(1).“包含”关系(1)—子集
定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
(2)画法
A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:
1)加左减右——————只对____
2)上减下加——————只对y
3)函数y=f(____)关于____轴对称得函数y=-f(____)
4)函数y=f(____)关于Y轴对称得函数y=f(-____)
变形(通常是因式分解和配方);
定号(即判断差f(____1)-f(____2)的正负);
高一数学知识点归纳
高一数学知识点归纳一、集合与函数的概念1. 集合的基本概念- 集合的定义- 集合的表示方法:列举法、描述法- 集合之间的关系:子集、并集、交集、补集2. 函数的定义与性质- 函数的定义:从集合A到集合B的映射- 函数的表示方法:公式法、图像法、表格法 - 函数的基本概念:定义域、值域、映射规则3. 函数的运算- 函数的加法、减法、乘法、除法- 复合函数- 反函数4. 常见函数类型- 一次函数、二次函数- 指数函数、对数函数- 三角函数:正弦、余弦、正切二、数列1. 数列的概念- 数列的定义- 数列的表示方法:递推关系、通项公式2. 等差数列与等比数列- 等差数列的通项公式、求和公式- 等比数列的通项公式、求和公式3. 数列的性质与应用- 数列的极限- 数列的单调性- 数列的应用题三、解析几何1. 平面直角坐标系- 点的坐标- 距离公式、中点公式- 直线的方程:点斜式、两点式、一般式2. 圆的方程- 标准圆的方程- 圆的一般方程- 圆与直线、圆与圆的位置关系3. 空间几何- 空间直角坐标系- 空间直线与平面的方程- 空间几何体的体积与表面积四、三角函数1. 三角函数的定义- 正弦、余弦、正切函数的定义- 三角函数的图像与性质2. 三角恒等变换- 同角三角函数的关系- 三角函数的和差公式- 二倍角公式、半角公式3. 解三角形- 正弦定理、余弦定理- 三角形的面积公式五、概率与统计1. 概率的基本概念- 随机事件与概率的定义- 事件的关系与运算:并、交、补2. 概率的计算- 条件概率、独立事件的概率- 全概率公式、贝叶斯公式3. 统计初步- 数据的收集与整理:频数、频率- 统计量:平均数、中位数、众数- 方差、标准差的概念与计算六、数学归纳法1. 数学归纳法的原理- 归纳法的基本步骤:奠基步骤、归纳步骤 - 归纳法的应用2. 证明方法- 直接证明- 反证法以上是高一数学的主要知识点归纳,每个部分都需要通过大量的练习题来加深理解和应用。
高一必修1数学知识点总结3篇
高一必修1数学知识点总结一、集合与命题1. 集合的概念、表示方法、基本运算2. 命题的概念、复合命题的构成、命题的等价与否定3. 推理法则:直接证明法、间接证明法、归谬法、反证法二、函数与方程1. 函数的概念与表示方法,像素函数、奇偶性、周期性等特殊函数2. 基本初等函数,包括幂函数、指数函数、对数函数、三角函数及其应用3. 一次、二次函数及其图象性质,函数 y=f(ax+b)+c 的图象、平移、伸缩性质4. 方程的根的概念,一元一次方程组和一元二次方程三、平面向量1. 向量及其表示方法、基本运算、数量积和向量积的概念、性质及其应用2. 平面向量共线、异向、垂直的判定,平面内直线上的向量及其应用问题3. 向量和坐标几何的关系,向量的数量积与坐标几何的应用4. 平面内的向量方程、直线方程四、解析几何初步1. 坐标系、平面直角坐标系、向量表示的直线方程、两点间距离公式2. 圆的方程:标准方程、一般方程、增广方程、切线公式等3. 空间坐标系及其使用、空间向量的坐标表示、坐标三元组、基本运算4. 点与直线、平面的位置关系,平面的一般方程,三棱锥的体积公式、四面体的体积公式五、立体几何初步1. 空间图形的正投影及其应用,空间角的概念、度量,角的平分线,三角形和平面的性质及其证明2. 空间直线和平面的位置关系及其判定,面面角,直线直线角等3. 空间角的二面角和全等体,四面体的性质和判定,正四面体、正八面体、正十二面体的性质及其应用4. 球面坐标系及其使用,球面坐标系中的距离公式,空间曲线坐标方程的确定六、三角函数及其应用1. 两角和、差的正弦、余弦、正切公式,万能公式和半角公式2. 方向角、极角,三角函数的定义和基本性质,简单的三角方程解法,三角函数模型的建立和解法3. 恒等式的化简,函数关系式的建立和讨论,三角函数的和差化积公式,乘法公式的应用4. 三角函数包络、变化规律,证明三角函数性质及其应用,三角函数在连续性、可导性、周期等方面的应用七、数列和数学归纳法1. 数列的概念,常数数列、等差数列、等比数列、斐波那契数列,数列的极限、中项、前 n 项和等知识2. 等比数列的性质,通项公式的推导,等差数列前 n 项和公式的应用3. 常用数列求和公式,特殊数列如完全平方数数列等的一些性质4. 数学归纳法的概念、方法、用途和基本步骤,递推关系及其应用。
最全高一数学知识点归纳5篇
最全高一数学知识点归纳5篇高一数学必修一是很多同学的噩梦,知识点众多而且杂,对于高一的新生们很不友好,小编建议同学们通过总结知识点的方法来学习数学,这样可以提高学习效率。
下面就是小编给大家带来的高一数学知识点,希望能帮助到大家!高一数学知识点总结11过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(sss)有三边对应相等的两个三角形全等26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2s=l×h83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(asa)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)94判定定理3三边对应成比例,两三角形相似(sss)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高一数学所有知识点总结大全
高一数学所有知识点总结大全一、代数(Algebra)1.数的性质与运算法则1.1 有理数和无理数1.2 数轴及实数的划分1.3 数的绝对值1.4 基本整式的概念与运算1.5 同底数幂运算1.6 指数幂运算法则1.7 根式的概念与运算2.一元一次方程与不等式2.1 一元一次方程与解的概念2.2 一元一次方程的基本解法2.3 一元一次方程的应用2.4 一元一次不等式与解的概念2.5 一元一次不等式的解集表示及性质 2.6 一元一次不等式的解法与应用3.二次根式和一元二次方程3.1 二次根式的概念与性质3.2 二次根式化简与运算3.3 一元二次方程与解的概念3.4 一元二次方程求根公式3.5 一元二次方程的解的性质与判别式 3.6 一元二次方程的解法及应用4.函数及其应用4.1 函数的基本概念与性质4.2 一次函数与线性函数4.3 幂函数与指数函数4.4 正比例函数与反比例函数4.5 函数图像的绘制与性质4.6 函数与方程的联系与应用5.二次函数5.1 二次函数的概念与性质5.2 二次函数图像的特征与性质5.3 二次函数的顶点、零点与对称轴5.4 二次函数的最值与区间5.5 二次函数的图像平移、翻折与伸缩5.6 二次函数与实际问题的模型建立与解决二、几何(Geometry)1.平面几何基本概念1.1 点、直线和平面的基本概念1.2 线段、角和三角形的基本概念1.3 多边形、圆及其相关概念2.图形的性质2.1 垂直、平行及夹角性质2.2 三角形内角和性质2.3 三角形的边和角的关系2.4 四边形的性质与分类2.5 平行四边形、矩形与正方形的性质 2.6 直角三角形和等腰三角形的性质 2.7 圆的性质3.平面几何的证明3.1 常用证明方法与基本推理3.2 三角形性质的证明3.3 平行四边形和矩形的性质证明3.4 圆的性质与定理证明4.空间几何与立体图形4.1 空间几何基本概念4.2 直线、平面与空间图形的关系4.3 二面角与立体图形的计算4.4 体积与表面积的计算4.5 空间几何问题的应用与解决三、概率与统计(Probability and Statistics)1.概率的基本概念和计算1.1 概率的定义与性质1.2 初等概率计算1.3 加法法则和乘法法则1.4 事件的独立性2.统计的基本概念和数据分析2.1 统计的定义与性质2.2 数据的收集与整理2.3 频数表与频率分布表2.4 统计图表的绘制与分析2.5 平均数与范围的计算3.分布律与概率分布3.1 离散型随机变量的概念与分布律3.2 连续型随机变量的概念与概率密度函数3.3 二项分布与正态分布的性质和计算以上为高一数学的所有知识点总结大全,涵盖了代数、几何、概率与统计等各个方面。
高中数学必修一最全知识点汇总
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
高一数学知识点归纳总结
高一数学知识点归纳总结高一数学知识点归纳总结(一)一、函数1.函数的定义:对于每一个自变量,函数都给出唯一的因变量值。
2.函数的表示:y=f(x),x为自变量,y为因变量,f(x)为函数。
3.函数的性质:定义域、值域、单调性、奇偶性、周期性、对称性。
4.常见数学函数:指数函数、对数函数、三角函数、反三角函数、幂函数、根式函数。
5.函数的图像:函数的图像是函数在平面直角坐标系上的表示,反映了函数自变量和因变量之间的函数关系。
6.函数的运算:加减、乘除、复合运算。
7.函数的极限:当自变量接近某一特定值时,函数趋于一个确定的极限。
8.导数与微分:导数是函数变化率的极限值,微分是函数的一个微小变化量。
9.应用:求函数的最值、拐点、渐近线、曲率等,还可以用于物理、经济、工程学等领域中的问题求解。
二、集合与命题1.集合的概念:由若干个元素构成的整体。
2.基本集合运算:并集、交集、差集、补集。
3.集合的性质:子集、相等、空集、全集、互斥、互补。
4.命题:是可以用真假判断的陈述句,并且只有真假两种可能。
5.命题的逻辑运算:否定、合取、析取、蕴含。
6.命题的等价关系与充分必要条件。
7.谓词与量词:谓词是具有“真假”性质的函数,量词包括全称量词和存在量词,它们用于指定谓词中的变量范围。
三、平面与立体几何1.欧氏几何:以欧氏公理为基础的几何学,研究点、线、面的性质以及它们之间的关系。
2.平面几何:研究平面上点、线、面及其相互关系的几何学。
3.直线和圆的性质:如平行线公理、垂线定理、相交线夹角定理、圆的周长、面积等。
4.三角形和四边形的性质:如勾股定理、海伦公式、三角形周长公式、正方形、矩形、平行四边形、菱形的周长、面积等。
5.立体几何:研究空间中点、线、面、体及其相互关系的几何学。
6.球的性质:如球的体积、表面积等。
7.多面体的性质:如正四面体、正六面体、正八面体等体积、表面积等。
四、数列与数学归纳法1.数列的概念:按一定顺序排列的一列数。
高一数学知识点总结大全(非常全面)
高一数学知识点总结大全(非常全面)高一数学知识点总结大全(非常全面)一、数与式1. 自然数和整数自然数是用来表示计数的数字,整数则包括正整数、零和负整数。
2. 有理数和无理数有理数包括整数和分数,能够表示为两个整数的比。
无理数是无限不循环小数,如π和根号2。
3. 数的相反数和绝对值相反数指两个数值的和为零的数。
绝对值是一个数到零的距离,总是非负数。
4. 数的运算数的运算分为四种基本运算:加法、减法、乘法和除法。
要注意运算法则与优先级。
5. 代数式的加减乘除代数式包括有数和字母构成的项,可以进行加减乘除运算,要注意合并同类项和项的系数。
6. 多项式多项式是由若干项相加(减)得到的,其中每一项都是数的乘积。
二、函数与方程1. 函数及其表示法函数是一个集合,它把一个集合的元素(自变量)对应到另一个集合的元素(函数值)。
2. 函数的性质函数的性质包括定义域、值域、单调性、奇偶性等。
3. 方程及其解方程是指等号连接的两个代数式,方程的解满足使等号成立的条件。
4. 一元一次方程一元一次方程是指未知数的最高次数为一的方程,可以通过加减消元或代入法来求解。
5. 一元一次不等式一元一次不等式是指未知数的最高次数为一的不等式,可以通过图像法或代数法来求解。
6. 一元二次方程一元二次方程是指未知数的最高次数为二的方程,可以通过配方法、公式法或因式分解法来求解。
三、平面几何1. 点、线、面的基本概念点是几何图形中最基本的元素,线由无穷多个点组成,面由无穷多个线组成。
2. 直线、射线、线段的关系直线是无边界的,射线有一个起点但没有终点,线段有两个端点。
3. 角的概念和相关性质角是由两条射线共享一个端点构成的图形,可以根据角的大小分为锐角、直角、钝角等。
4. 平行线和垂直线平行线在同一个平面上不相交,垂直线两两相交且角度为90度。
5. 三角形及其性质三角形是由三条线段连接而成的图形,包括等腰三角形、等边三角形等。
6. 圆的概念及其性质圆是由平面上所有与一个确定点的距离相等的点组成的图形,包括半径、直径、弧等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学知识点总结高一数学知识点总结(精选15篇)在我们上学期间,是不是听到知识点,就立刻清醒了?知识点在教育实践中,是指对某一个知识的泛称。
还在为没有系统的知识点而发愁吗?下面是店铺为大家整理的高一数学知识点总结(精选15篇),仅供参考,希望能够帮助到大家。
高一数学知识点总结篇1函数的概念函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A---B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.函数的三要素:定义域、值域、对应法则函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x)关于X轴对称得函数y=-f(x)4)函数y=f(x)关于Y轴对称得函数y=f(-x)5)函数y=f(x)关于原点对称得函数y=-f(-x)6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=|f(x)|7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)高一数学知识点总结篇2内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,初中学习方法,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,高中地理,这点、两个垂足及原点所围成的矩形面积是定值,为?k?。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)高一数学知识点总结篇31、集合的概念集合是集合论中的不定义的原始概念,教材中对集合的概念进行了描述性说明:“一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集)”。
理解这句话,应该把握4个关键词:对象、确定的、不同的、整体。
对象――即集合中的元素。
集合是由它的元素确定的。
整体――集合不是研究某一单一对象的,它关注的是这些对象的全体。
确定的――集合元素的确定性――元素与集合的“从属”关系。
不同的――集合元素的互异性。
2、有限集、无限集、空集的意义有限集和无限集是针对非空集合来说的。
我们理解起来并不困难。
我们把不含有任何元素的集合叫做空集,记做Φ。
理解它时不妨思考一下“0与Φ”及“Φ与{Φ}”的关系。
几个常用数集N、N_N+、Z、Q、R要记牢。
3、集合的表示方法(1)列举法的表示形式比较容易掌握,并不是所有的集合都能用列举法表示,同学们需要知道能用列举法表示的三种集合:①元素不太多的有限集,如{0,1,8}②元素较多但呈现一定的规律的有限集,如{1,2,3, (100)③呈现一定规律的无限集,如{1,2,3,…,n,…}注意a与{a}的区别注意用列举法表示集合时,集合元素的“无序性”。
(2)特征性质描述法的关键是把所研究的集合的“特征性质”找准,然后适当地表示出来就行了。
但关键点也是难点。
学习时多加练习就可以了。
另外,弄清“代表元素”也是非常重要的。
如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三个不同的集合。
4、集合之间的关系注意区分“从属”关系与“包含”关系“从属”关系是元素与集合之间的关系。
“包含”关系是集合与集合之间的关系。
掌握子集、真子集的概念,掌握集合相等的概念,学会正确使用“”等符号,会用Venn图描述集合之间的关系是基本要求。
注意辨清Φ与{Φ}两种关系。
高一数学知识点总结篇41.知识网络图复数知识点网络图2.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.3.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.高一数学知识点总结篇5集合的运算运算类型交集并集补集定义域 R定义域 R值域>0值域>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数.指数式与对数式的互化幂值真数= N = b底数指数对数(二)对数的运算性质如果,且,,,那么:○1 +;○2 -;○3 .注意:换底公式:(,且;,且;).利用换底公式推导下面的结论:(1);(2).(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:,且.2、对数函数的性质:a>10<a<1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.第四章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:○1 (代数法)求方程的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.(2)△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.5.函数的模型高一数学知识点总结篇61.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。