原子物理学课后习题答案
《原子物理学》杨福家第四版课后答案
② m1 为α粒子, m2 为静止的 He 核,则
( L )max 90
1-9)解:根据 1-7)的计算,靶核将入射粒子散射到大于 的散射几率是
P( ) nt
4
a 2ctg 2
2
当靶中含有两种不同的原子时,则散射几率为
0.71 0.32
将数据代入得:
-5-
0
2
2
d a 1 181 4 103 tg 2100 c ( ) d 4 sin 4 4 2 10 2 6.02 10 23 sin 4 300 依题: 2 28 2 24 10 m / sr 24b / sr
1-10)解: ① 金核的质量远大于质子质量,所以,忽略金核的反冲,入射粒子被靶核散时 则: 之间得几率可用的几率可用下式求出:
nt ( )2
a 4
2 sin sin
4
t a
( )2 A 4
2 sin sin 4
2
2
a
Z1Z 2e2 1 79 1.44Mev fm 94.8 fm 4 ER 1.2Mev
1 2 1 1 2 2 Mv mve Mv 2 2 2 Mv Mv mve
m v v ve M v 2 v2 m v 2 e M
(1)
p m v p = em v p= m vee,其大小:
180
2 3 ,即为所求 1 d sin 2 sin 3
3
90
2
1-7)解
P ( 0 1800 )
1800
最新原子物理学答案(杨福家-高教第四版)(第一章)无水印-打印版
原子物理学课后答案(第四版)杨福家著高等教育出版社第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第七章:原子核物理概论第八章:超精细相互作用原子物理学——学习辅导书吕华平刘莉主编(7.3元定价)高等教育出版社第一章习题答案1-1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为410-rad.解:设碰撞以后α粒子的散射角为θ,碰撞参数b 与散射角的关系为2cot 2θa b =(式中Ee Z Z a 02214πε=)碰撞参数b 越小,则散射角θ越大。
也就是说,当α粒子和自由电子对头碰时,θ取得极大值。
此时粒子由于散射引起的动量变化如图所示,粒子的质量远大于自由电子的质量,则对头碰撞后粒子的速度近似不变,仍为,而电子的速度变为,则粒子的动量变化为v m p e 2=∆散射角为410*7.21836*422-=≈≈∆≈v m v m p p e αθ 即最大偏离角约为410-rad.1-2 (1)动能为5.00MeV 的α粒子被金核以︒90散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚为1.0um ,则入射α粒子束以大于︒90散射(称为背散射)的粒子是全部入射粒子的百分之几? 解:(1)碰撞参数与散射角关系为:2cot 2θa b =(式中Ee Z Z a 02214πε=)库伦散射因子为:Ee Z Z a 02214πε==fm MeV MeV fm 5.45579*2**44.1= 瞄准距离为: fm fm a b 8.2245cot *5.45*212cot 2===︒θ(2)根据碰撞参数与散射角的关系式2cot 2θa b =,可知当︒≥90θ时,)90()(︒≤b b θ,即对于每一个靶核,散射角大于︒90的入射粒子位于)90(︒<b b 的圆盘截面内,该截面面积为)90(2︒=b c πσ,则α粒子束以大于︒90散射的粒子数为:π2Nntb N =' 大于︒90散射的粒子数与全部入射粒子的比为526232210*4.98.22*142.3*10*0.1*19788.18*10*02.6--===='πρπtb M N ntb N N A 1—3 试问:4.5Mev 的α粒子与金核对心碰撞时的最小距离是多少?若把金核改为Li 7核,则结果如何? 解:(1)由式4—2知α粒子与金核对心碰撞的最小距离为=m r Ee Z Z a 02214πε==fm MeV MeV fm 6.505.479*2**44.1=(2)若改为Li 7核,靶核的质量m '不再远大于入射粒子的质量m ,这时动能k E 要用质心系的能量c E ,由式3—10,3—11知,质心系的能量为:)(212mm mm m v m E u u c +''==式中 得k k k Li He Li k u c E E E A A A E m m m v m E 117747212=+=+≈+''==α粒子与Li 7核对心碰撞的最小距离为:=m r Ee Z Z a 02214πε==fm MeV MeV fm 0.37*5.411*3*2**44.1=1—4 (1)假定金核半径为7.0fm ,试问:入射质子需要多少能量,才能在对头碰撞时刚好到达金核的表面?(2)若金核改为铝核,使质子在对头碰撞时刚好到达铝核的表面,那么,入射质子的能量应为多少?设铝核半径为4.0fm 。
原子物理学习题标准答案(褚圣麟)很详细
1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mvctgb bZeZea qpepe ==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg bK oqape p ---´´===´´´´´´米式中212K Mv a =是a 粒子的功能。
1.2已知散射角为q 的a 粒子与散射核的最短距离为222121()(1)4sinm Ze r Mvqpe =+,试问上题a 粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 22121()(1)4sinZe r Mvqpe =+1929619479(1.6010)1910(1)7.6810 1.6010sin 75o --´´´=´´´+´´´143.0210-=´米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180o。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min 124p ZeMv K r pe ==,故有:2min 04pZe r K pe =19291361979(1.6010)910 1.141010 1.6010---´´=´´=´´´米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-´米。
1.7能量为3.5兆电子伏特的细a 粒子束射到单位面积上质量为22/1005.1米公斤-´的银箔上,a 粒解:设靶厚度为't 。
原子物理学习题解答
原子物理学习题解答1.1 电子和光子各具有波长0.20nm,它们的动量和总能量各是多少? 解:由德布罗意公式p h /=λ,得:m/s kg 10315.3m 1020.0sJ 1063.624934⋅⨯=⨯⋅⨯===---λhp p 光电 )J (109.94510310315.316-824⨯=⨯⨯⨯====-c p hch E 光光λν21623116222442022)103101.9(103)10315.3(⨯⨯⨯+⨯⨯⨯=+=--c m c p E 电电)J (1019.8107076.61089.9142731---⨯=⨯+⨯=1.2 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必须使用多大波长的光照射? 解:(1) 由爱因斯坦光电效应公式w h mv -=ν2021知,铯的光电效应阈频率为: Hz)(10585.41063.6106.19.11434190⨯=⨯⨯⨯==--h w ν 阈值波长: m)(1054.610585.4103714800-⨯=⨯⨯==νλc (2) J 101.63.4eV 4.3eV 5.1eV 9.12119-20⨯⨯==+=+=mv w h ν故: m)(10656.3106.14.31031063.6719834---⨯=⨯⨯⨯⨯⨯===ννλh hc c 1.3 室温(300K)下的中子称为热中子.求热中子的德布罗意波长?解:中子与周围处于热平衡时,平均动能为:0.038eV J 1021.63001038.123232123≈⨯=⨯⨯⨯==--kT ε 其方均根速率: m/s 27001067.11021.6222721≈⨯⨯⨯==--nm v ε由德布罗意公式得:)nm (15.027001067.11063.62734=⨯⨯⨯===--v m h p h n n λ 1.4 若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解:(1)由题意知,20202c m c m mc E k =-=,所以20222022/1c m c v c m mc =-=23cv =⇒ (2)由德布罗意公式得: )m (104.1103101.931063.632128313400---⨯=⨯⨯⨯⨯⨯=====c m h v m h mv h p h λ 1.5 (1)试证明: 一个粒子的康普顿波长与其德布罗意波长之比等于2/120]1)/[(-E E ,式中0E 和E 分别是粒子的静止能量和运动粒子的总能量.(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长? (1)证明:粒子的康普顿波长:c m h c 0/=λ德布罗意波长: 1)/(1)/(2020204202-=-=-===E E E E c m hcc m E hc mv h p h c λλ所以,2/120]1)/[(/-=E E c λλ(2)解:当c λλ=时,有11)/(20=-E E ,即:2/0=E E 02E E =⇒故电子的动能为:2000)12()12(c m E E E E k -=-=-=)J (1019.8)12(109101.9)12(141631--⨯⨯-=⨯⨯⨯⨯-= MeV 21.0eV 1051.0)12(6=⨯⨯-=1.6 一原子的激发态发射波长为600nm 的光谱线,测得波长的精度为710/-=∆λλ,试问该原子态的寿命为多长?解: 778342101061031063.6)(---⨯⨯⨯⨯⨯=∆⋅=∆-=∆=∆λλλλλνhc ch h E )J (10315.326-⨯= 由海森伯不确定关系2/ ≥∆∆t E 得:)s (1059.110315.32100546.1292634---⨯=⨯⨯⨯=∆≥=∆E t τ 1.7 一个光子的波长为300nm,如果测定此波长精确度为610-.试求此光子位置的不确定量.解: λλλλλλλλ∆⋅=∆≈∆+-=∆h h h h p 2,或: λλλλλνννν∆⋅=∆=∆-=∆+-=∆h c c h c h c h c h p 2)( m/s)kg (1021.2101031063.6336734⋅⨯=⨯⨯⨯=---- 由海森伯不确定关系2/ ≥∆∆p x 得:)m (10386.21021.22100546.1223334---⨯=⨯⨯⨯=∆≥∆p x 2.1 按汤姆逊的原子模型,正电荷以均匀密度ρ分布在半径为R 的球体内。
原子物理学习题答案
1. 一强度为I的粒子束垂直射向一金箔,并为该金箔所散射。
若 =90°对应的瞄准距离为b,则这种能量的粒子与金核可能达到的最短距离为: B (A) b(B) 2b(C) 4b(D) 0.5b2. 在同一粒子源和散射靶的条件下观察到粒子被散射在90°和60°角方向上单位立体角内的粒子数之比为: C(A) 4:1 ( B) 1:2 (C) 1:4 (D) 1:83. 一次电离的氦离子(H e+)处于n=2的激发态,根据波尔理论,能量E为 C(A) -3.4eV ( B) -6.8eV (C) -13.6eV (D) -27.2eV4.夫兰克—赫兹实验证明了B(A) 原子内部能量连续变化(B) 原子内存在能级(C) 原子有确定的大小(D) 原子有核心5. 下列原子状态中哪一个是氦原子的基态?DA. 1P1B. 3P1C. 3S1D. 1S06. 若某原子的两个价电子处于2s2p组态,利用L-S耦合可得到其原子态个数:CA. 1B. 3C. 4D. 67. 一个p电子与一个 s电子在L-S耦合下可能有原子态为:CA. 3P0,1,2, 3S1B. 3P0,1,2 , 1S0C. 1P1 ,3P0,1,2D. 3S1 ,1P18. 设原子的两个价电子是p电子和d电子,在L-S耦合下可能的原子态有:CA. 4个B. 9个C. 12个D. 15个9. 氦原子有单态和三重态,但1s1s 3S1并不存在,其原因是: BA. 因为自旋为1/2, 1=2=0 故J=1/20B. 泡利不相容原理限制了1s1s 3S1的存在C. 因为三重态能量最低的是1s2s 3S1D. 因为1s1s 3S1和1s2s 3S1是简并态。
10. 泡利不相容原理说: DA.自旋为整数的粒子不能处于同一量子态中B.自旋为整数的粒子能处于同一量子态中C.自旋为半整数的粒子能处于同一量子态中D.自旋为半整数的粒子不能处于同一量子态中11. 硼(Z=5)的B+离子若处于第一激发态,则电子组态为:AA. 2s2pB. 2s2sC. 1s2sD. 2p3s12. 铍(Be)原子若处于第一激发态,则其电子组态:DA. 2s2sB. 2s3pC. 1s2pD. 2s2p13. 若镁原子处于基态,它的电子组态应为:CA.2s2s B. 2s2p C. 3s3s D. 3s3p14. 氦原子由状态1s2p 3P2,1,0向1s2s 3S1跃迁,可产生的谱线条数为:CA. 0B. 2C. 3D. 115. 氦原子由状态1s3d 3D3,2,1向1s2p 3P2,1,0跃迁时可产生的谱线条数为: CA. 3B. 4C. 6D. 516. 以下电子排布式是基态原子的电子排布的是 D12s1② 1s22s12p1① 1s22s22p63s2 ④ 1s22s22p63s23p1③ 1sA.①②B.①③C.②③D.③④17.在原子的第n层电子层中,当它为最外电子层时,最多容纳的电子数与(n-1)层相同,当它为次外层时,最多容纳的电子数比(n+1)层多容纳10个电子,则此电子层为 CA.K层B.L层C.M层D.N层18. 碱金属原子能级的双重结构是由于下面的原因产生: DA) 相对论效应B) 原子实极化C) 价电子的轨道贯穿D) 价电子自旋与轨道角动量相互作用19. 处于L=3, S=2原子态的原子,其总角动量量子数J的可能取值为: B(A) 3, 2, 1 (B) 5, 4, 3, 2, 1(C) 6, 5, 4, 3 (D) 5/2, 4/2, 3/2, 2/2, 1/220. 在LS耦合下,两个同科p电子能形成的原子态是:C(A) 1D,3D (B) 1P,1D,3P,3D(C) 1D,3P,1S (D) 1D,3D,1P,3P,1S,3S21.氩(Z=18)原子基态的电子组态及原子态是:A22s22p63s23p6 1S0 B. 1s22s22p62p63d8 3P0A. 1s22s22p63p8 1S0 D. 1s22s22p63p43d2 2D1/2C. 1s22. 满壳层或满次壳层电子组态相应的原子态是: B(A) 3S0(B)1S0(C) 3P0(D) 1P123. 由状态2p3p 3P到2s2p 3P的辐射跃迁:C(A) 可产生9条谱线( B) 可产生7条谱线(C) 可产生6条谱线( D) 不能发生24. 某原子的两个等效d电子组成原子态1G4、1D2、1S0、3F4,3,2和3P2,1,0,则该原子基态为: C(A) 1S0(B) 1G4(C) 3F2(D) 3F425.原子发射伦琴射线标识谱的条件是: CA. 原子外层电子被激发B. 原子外层电子被电离C. 原子内层电子被移走D. 原子中电子的自旋—轨道作用很强26. 用电压V加速的高速电子与金属靶碰撞而产生X射线,若电子的电量为- e,光速为c,普朗克常量为h,则所产生的X射线的短波限为:C(A) hc2/eV(B) eV/2hc(C) hc/eV(D) 2hc/eV27. X射线的连续谱有一定的短波极限,这个极限 A(A)只取决定于加在射线管上的电压, 与靶材料无关.(B)取决于加在射线管上的电压,并和靶材料有关(C)只取决于靶材料,与加在射线管上的电压无关(D)取决于靶材料原子的电离能.28. 利用莫塞莱定律,试求波长0.1935nm的K 线是属于哪种元素所产生的?B(A) Al(Z=13)(B) Fe(Z=26)(C) Ni(Z=28)(D) Zn(Z=30)。
原子物理学 课后答案
目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。
第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。
1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。
难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。
2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。
3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。
第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。
第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。
第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。
原子物理学课后答案(褚圣麟)第3章第4章第6章
第三章 量子力学初步3.1 波长为οA 1的X 光光子的动量和能量各为多少? 解:根据德布罗意关系式,得:动量为:12410341063.6101063.6----∙∙⨯=⨯==秒米千克λhp 能量为:λ/hc hv E ==焦耳151083410986.110/1031063.6---⨯=⨯⨯⨯=。
3.2 经过10000伏特电势差加速的电子束的德布罗意波长?=λ 用上述电压加速的质子束的德布罗意波长是多少?解:德布罗意波长与加速电压之间有如下关系:meVh 2/=λ 对于电子:库仑公斤,19311060.11011.9--⨯=⨯=e m把上述二量及h 的值代入波长的表示式,可得:οοολA A A V 1225.01000025.1225.12===对于质子,库仑公斤,19271060.11067.1--⨯=⨯=e m ,代入波长的表示式,得:ολA 319273410862.2100001060.11067.1210626.6----⨯=⨯⨯⨯⨯⨯⨯=3.3 电子被加速后的速度很大,必须考虑相对论修正。
因而原来ολA V25.12=的电子德布罗意波长与加速电压的关系式应改为:ολA V V)10489.01(25.126-⨯-=其中V 是以伏特为单位的电子加速电压。
试证明之。
证明:德布罗意波长:p h /=λ对高速粒子在考虑相对论效应时,其动能K 与其动量p 之间有如下关系:222022c p c Km K =+而被电压V 加速的电子的动能为:eV K =2200222/)(22)(c eV eV m p eV m ceV p +=+=∴因此有:2002112/c m eV eVm h p h +⋅==λ一般情况下,等式右边根式中202/c m eV 一项的值都是很小的。
所以,可以将上式的根式作泰勒展开。
只取前两项,得:)10489.01(2)41(260200V eVm h cm eVeVm h -⨯-=-=λ由于上式中οA VeV m h 25.122/0≈,其中V 以伏特为单位,代回原式得:ολA V V)10489.01(25.126-⨯-=由此可见,随着加速电压逐渐升高,电子的速度增大,由于相对论效应引起的德布罗意波长变短。
原子物理学前三章课后习题答案
第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:222cot42Mv b Zeθπε= 而动能212k E mv =则20222cot442k E Mv b b Ze Zeθπεπε== 由此,瞄准距离为20cot 24kZe b E θπε=其中:79Z =12-1-108.854210A s V m ε-=⨯⋅⋅⋅191.6021910e C -=⨯0150θ=, 0cotcot 750.26802θ==3.14159π=6197.687.6810 1.6021910k E MeV J -==⨯⨯⨯得到:219215022126190cot 79(1.6021910)cot 4(4 3.141598.854210)(7.6810 1.6021910)k Ze b m E οθπε---⨯⨯==⨯⨯⨯⨯⨯⨯⨯153.969710m -=⨯2.已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:2min202121()(1)4sin Ze r Mv θπε=+ 2min0211()(1)4sin k Ze r E θπε=+ 其中,0150θ=, 0sinsin 750.965932θ==把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.6810 1.60219100.96593r m ---⨯⨯=⨯⨯+⨯⨯⨯⨯⨯⨯143.014710m -=⨯4. 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
(整理)原子物理学杨福家1-6章 课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学杨福家16章_课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1、1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad 、要点分析: 碰撞应考虑入射粒子与电子方向改变、并不就是像教材中的入射粒子与靶核的碰撞(靶核不动)、注意这里电子要动、证明:设α粒子的质量为Mα,碰撞前速度为V,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v,)(sin sin )(sin sin 22222222ϕθθϕθϕααα+++=V m M V M V M e 化简上式,得θϕϕθα222sin sin )(sin em M +=+ (6)若记αμM m e=,可将(6)式改写为θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有)](2sin 2sin [)]sin(2[sin ϕθϕμϕθμθϕθ++-=+-d d令 0=ϕθd d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ222)(90si nsi nsi n+=-θ≈10-4弧度(极大)此题得证。
《原子物理学》杨福家第四版课后答案
《原子物理学》杨福家第四版课后答案目录第一章原子的位形 ...................................... - 1 - 第二章原子的量子态:波尔模型 ............................ - 7 - 第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋 ............................ 16 第五章多电子原理:泡利原理 (23)第六章 X 射线 ............................................. 28 第七章原子核物理概论 ................... 没有错误!未定义书签。
第一章原子的位形 1-1)解:α粒子与电子碰撞,能量守恒,动量守恒,故有:+'='+=e e v m v M v M v M mv Mv ρρρ222212121='-='-?222e e v M m v v v Mm v v ρρρ e v m p ρρ=?e p=mv p=mv ∴??,其大小: (1) 222(')(')(')e m v v v v v v v M-≈+-=近似认为:(');'p M v v v v ?≈-≈22e m v v v M∴??=有 212e p p Mmv ??=亦即: (2)(1)2/(2)得22422210e e m v m p Mmv M-?===p亦即:()ptg rad pθθ?≈=-4~10 1-2) 解:① 22a b ctg Eθπε=228e ;库仑散射因子:a=4)2)(4(420202E Z e E Ze a πεπε==22279()() 1.44()45.545eZ a fmMev fm E Mev πε?=== 当901θθ=?=时,ctg2122.752b a fm ∴== 亦即:1522.7510b m -=?② 解:金的原子量为197A =;密度:731.8910/g m ρ=? 依公式,λ射α粒子被散射到θ方向,d Ω立体角的内的几率: nt d a dP 2sin16)(42θθΩ=(1)式中,n 为原子核数密度,()AA m n n N ρ∴=?= 即:A V n Aρ=(2)由(1)式得:在90o→180 o范围内找到α粒子得几率为:(θP 18022490a nt 2sin ()164sin 2d a nt πθθπρθθ?==?将所有数据代入得)(θP 5()9.410ρθ-=?这就是α粒子被散射到大于90o范围的粒子数占全部粒子数得百分比。
原子物理学三章课后习题答案
第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:2022cot42MvbZe而动能212kEmv则20222cot442k E Mv b bZeZe由此,瞄准距离为2cot24kZe bE其中:79Z12-1-18.854210A s Vm191.6021910e C150, 0cotcot750.268023.141596197.687.68101.6021910kE MeVJ得到:21921502212619cot 79(1.6021910)cot4(4 3.141598.854210)(7.68101.6021910)kZe bmE 153.969710m2.已知散射角为的粒子与散射核的最短距离为222121()(1)4sinm Ze r Mv,试问上题粒子与散射的金原子核之间的最短距离m r 多大?解:2min22121()(1)4sin Ze r Mv2min211()(1)4sinkZe r E 其中,150, 0sinsin750.965932把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.68101.60219100.96593r m143.014710m4. 钋放射的一种粒子的速度为71.59710米/秒,正面垂直入射于厚度为710米、密度为41.932103/公斤米的金箔。
试求所有散射在90的粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在和d 之间的粒子数dn 与入射到箔上的总粒子数n 的比是:dn Ntdn其中,N 为金箔单位体积内原子个数,t 金箔的厚度,d 有效散射截面.单个原子的质量为:32523197103.2713106.0221710Aum kg kgN 为金箔单位体积内原子数:43283251.93210/ 5.905910/3.271310Aukg mNmm kg而散射角大于090的粒子数'dn 为:2'dndnnNtd所以有:2'dn Ntdn2221802903cos 122()()4sin2Ze Nt dMv积分:180180909033cos sin 2221sinsin22d d 故'222212()()4dn Ze Nt nMvα粒子的质量为4倍氢原子的质量272744 1.6736710 6.694710HMM kg kg已知α粒子的速度为:71.59710/vm s取12-1-18.854210A s Vm191.602210eC3.1416则'222212()()4dn Ze Nt nMu192287212227721279(1.602210)5.905910103.1416[](4 3.14168.854210)6.694710(1.59710)648.4570108.457010%即速度为71.59710/米秒的粒子在金箔上散射,散射角大于90以上的粒子数占总粒子数的408.457010.1.7能量为 3.5兆电子伏特的细粒子束射到单位面积上质量为221.0510/公斤米的银箔上,粒子与银箔表面成60角. 在离入射线成20的方向上,离银箔散射区距离L=0.12米处放一窗口面积为25100.6米的计数器. 测得散射进此窗口的粒子是全部入射粒子的百万分之29. 若已知银的原子量为107.9。
原子物理学三章课后习题答案
第一章.原子的基本状况1. 若卢瑟福散射用的α粒子是放射性物质镭C'放射的,其动能为7.68×106电子伏特.散射物质是原子序数Z=79的金箔.试问散射角θ=1500所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:222cot42Mv b Zeθπε= 而动能212k E mv =则20222cot442k E Mv b b Ze Zeθπεπε== 由此,瞄准距离为20cot 24kZe b E θπε=其中:79Z =12-1-108.854210A s V m ε-=⨯⋅⋅⋅191.6021910e C -=⨯0150θ=, 0cotcot 750.26802θ==3.14159π=6197.687.6810 1.6021910k E MeV J -==⨯⨯⨯得到:219215022126190cot 79(1.6021910)cot 4(4 3.141598.854210)(7.6810 1.6021910)k Ze b m E οθπε---⨯⨯==⨯⨯⨯⨯⨯⨯⨯153.969710m -=⨯2.已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:2min202121()(1)4sin Ze r Mv θπε=+ 2min0211()(1)4sin k Ze r E θπε=+ 其中,0150θ=, 0sinsin 750.965932θ==把上题各参数代入,得到192min12619179(1.6021910)1(1)4 3.141598.8542107.6810 1.60219100.96593r m ---⨯⨯=⨯⨯+⨯⨯⨯⨯⨯⨯143.014710m -=⨯4. 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
原子物理学杨福家1-6章_课后习题答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理学习题解答
原子物理学习题解答第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mvα=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+ 之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au Nm N A ρρ==而散射角大于090的粒子数为:2'dndn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180180909033cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Mu ρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
原子物理学杨福家1-6章-课后习题标准答案
原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
原子物理课后习题答案 褚圣麟
原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13m氕核情况结论相同----------------------------------------------------------------------------------------------- 21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。
试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。
金的原子量为197。
解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028个/m 3入射粒子能量 E = 1/2 MV 2= 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n (90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin145sin14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。
《原子物理学》杨福家 部分课后答案
`第三章题解3-1电子的能量分别为10eV ,100 eV ,1000 eV 时,试计算相应的德布罗意波长。
解:依计算电子能量和电子波长对应的公式3-2 设光子和电子的波长均为0.4nm ,试问:(1)光子的动量与电子的动量之比是多少?(2 解:(1p 光子:p 电子=1:13-3 若一个电子的动能等于它的静止能量,试求:(1)该电子的速度为多大?(2)其相应的德布罗意波长是多少?解: (1)依题意,相对论给出的运动物体的动能表达式是:2mc E = 2c m E E k += 2022c m mc = 02m m = 022021m cv m m =-= 41122=-c v 22141cv -= 2243c v =所以0.866c c 43v ≈= (2) 根据电子波长的计算公式:0.001715nm eV 105111.226nm)(1.226nm 3=⨯==eV E kλ3-4 把热中子窄束射到晶体上,由布喇格衍射图样可以求得热中子的能量.若晶体的两相邻布喇格面间距为0.18nm ,一级布喇格掠射角(入射束与布喇格面之间的夹角)为30°,试求这些热中子的能量.解:根据布喇格衍射公式 nλ=d sin θ λ=d sin θ=0.18×sin30°nm =0.09 nm1.226nmλ=221.226nm ()13.622eV 185.56eV kE λ===3-5 电子显微镜中所用加速电压一般都很高,电子被加速后的速度很大,因而必须考虑相对论修正.试证明:电子的德布罗意波长与加速电压的关系应为:式中V r=V(1+0.978×10-6V),称为相对论修正电压,其中电子加速电压V的单位是伏特.分析:考虑德布罗意波长,考虑相对论情况质量能量修正,联系德布罗意关系式和相对论能量关系式,求出相对论下P即可解.证明:根据相对论质量公式将其平方整理乘c2,得其能量动量关系式题意得证.3-6 (1)试证明:一个粒子的康普顿波长与其德布罗意波长之比等于-⎪⎭⎫E式中E o 和E 分别是粒子的静止能量和运动粒子的总能量.(康普顿波长λc =h /m 0c ,m 0为粒子静止质量,其意义在第六章中讨论)(2)当电子的动能为何值时,它的德布罗意波长等于它的康普顿波长? 证明:根据相对论能量公式将其平方整理乘c 2(1)相对论下粒子的德布罗意波长为:粒子的康普顿波长为(2)若粒子的德布罗意波长等于它的康顿波长则电子的动能为211.55KeV. 则电子的动能为211.55KeV注意变换:1. ΔP 转化为Δλ表示; 2.ΔE 转化为Δν表示;600nm 的光谱线,测得波长的精度为?解: 依 h t E ≥∆∆ 求Δt≥∆∆E t3-8 一个电子被禁闭在线度为10fm 的区域中,这正是原子核线度的 解:粒子被束缚在线度为r 的范围内,即Δx = r 那么粒子的动量必定有一个不确定度,它至少为:x2∆≥∆ x p ∵∴∴ 电子的最小平均动能为3-9 已知粒子波函数⎭⎬⎫⎩⎨⎧---=c z b y a x N 2||2||2||exp ψ,试求:(1)归一化常数N ;(2)粒子的x 坐标在0到a 之间的几率;(3)粒子的y 坐标和z 坐标分别在-b →+b 和-c →+c.之间的几率.解: (1)因粒子在整个空间出现的几率必定是一,所以归一化条件是:⎰+∞∞-ψdv = 1即:dz edy edx eN dv cz by ax ⎰⎰⎰⎰⎰⎰∞+∞--∞+∞--∞+∞--∞+∞-=22222222ψ=18222202==⎰⎰⎰∞-∞-∞-abc N d ec d eb d e a N cz cz by by ax ax所以 N abc81=(2) 粒子的x坐标在a →0区域内几率为:dz edy edx eN cz by a ax ⎰⎰⎰∞+∞--∞+∞---2222222()[])11(211412ee abc N -=--=-(3) 粒子的),(),,(c c z b b y -∈-∈区域内的几率为:dz edy edx eNc ccz b bby ax ⎰⎰⎰+--+--∞+∞--222222222)11(8-=e abc N 2)11(-=e3-10 若一个体系由一个质子和一个电子组成,设它的归一化空间波函数为ψ(x 1,y 1,z 1;x 2,y 2,z 2),其中足标1,2分别代表质子和电子,试写出:(1)在同一时刻发现质子处于(1,0,0)处,电子处于(0,1,1)处的几率密度;(2)发现电子处于(0,0,0),而不管质子在何处的几率密度; (3)发现两粒子都处于半径为1、中心在坐标原点的球内的几率大小3-11 对于在阱宽为a 的一维无限深阱中运动的粒子,计算在任意本征态ψn 中的平均值x 及)(x x -,并证明:当n →∞时,上述结果与经典结果相一致.3-12 求氢原子1s 态和2P 态径向电荷密度的最大位置. 第三章习题13,143-13 设氢原子处在波函数为1),,(ar ear -⋅=ππϕθψ的基态,a 1为第一玻尔半径,试求势能r e rU 41)(πε-= 的平均值.3-14 证明下列对易关系:i p y =],[ 0=],[y p x0],[x =L xz L xi ],[y = 0=],[x x L pz P L pi ],[y x = 第三章习题15解3-15 设质量为m 的粒子在半壁无限高的一维方阱中运动,此方阱的表达式为:V (x)=⎪⎩⎪⎨⎧>≤≤<∞ax a x 000x 0V 试求: (1)粒子能级表达式; (2)证明在此阱内至少存在一个束缚态的条件是,阱深0V 和阱宽a 之间满足关系式:ma V 32220 ≥解: (1) 在x<0时,由薛定谔方程可得:ψψE V m r =⎥⎦⎤⎢⎣⎡+∇-)(222因为 -∞=)(x V 所以 0)(1=ψx (1)a x ≤≤0, V(x)=0,体系满足的薛定谔方程为:222222ψψE dxd m =- (2) 整理后得:0222222=+ψψ mE dx d 令 /2mE k = 则: 022222=+ψψk dxd因为0)0(2=ψ所以波函数的正弦函数:)sin(2kx A =ψ (3)x>a , 0)(V x V = 薛定谔方程为: 33023222ψψψE V dxd m =+- (4)整理后得: 0)(2320232=--ψψ E V m dx d 令 /)(20E V m k -= 则: 0'32232=-ψψk dxd 方程的解为:x k Be '3-=ψ (5)式中A,B 为待定系数,根据标准化条件ψψ'的连续性,有)()(')()('3322a a a a ψψψψ=将(3),(5)式代人得: 'k k kctg =α (6) (2):证明: 令 ka u =k v '= 则(6)式可改为:v uctgu -=(7)同时, u 和v 还必须满足下列关系式:22022222/2)'(h a mv a k k v u =+=+ (8) 联立(7) (8)可得粒子的能级的值..用图解法求解:在以v 为纵轴u 为横轴的直角坐标系中(7) (8) 两式分别表示超越曲线和圆,其交点即为解.因k k ’ 都不是负数,故u 和v 不能取负值,因此只能取第一象限. 由图可知(7) (8)两式至少有一解得条件为:2202a mv 2π≥ 即 m a V 32220 ≥。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。
散射物质是原子序数79Z =的金箔。
试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。
1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。
问质子与金箔。
问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。
当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。
根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。
1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。
试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。
已知金的原子量为197。
解:散射角在d θθθ+ 之间的α粒子数dn 与入射到箔上的总粒子数n 的比是:dnNtd nσ=其中单位体积中的金原子数:0//Au Au N m N A ρρ==而散射角大于090的粒子数为:2'dn dn nNt d ππσ=⎰=⎰所以有:2'dn Nt d nππσ=⎰22218002903cos122()()4sin 2AuN Ze t d A Mu οοθρπθθπε=⋅⋅⎰ 等式右边的积分:180********3cos sin 2221sin sin 22d I d οοοοθθθθθ=⎰=⎰=故'22202012()()4Au N dn Ze t n A Muρππε=⋅⋅ 648.5108.510--≈⨯=⨯即速度为71.59710/⨯米秒的α粒子在金箔上散射,散射角大于90ο以上的粒子数大约是4008.510-⨯。
1.5α粒子散射实验的数据在散射角很小15οθ≤()时与理论值差得较远,时什么原因? 答:α粒子散射的理论值是在“一次散射“的假定下得出的。
而α粒子通过金属箔,经过好多原子核的附近,实际上经过多次散射。
至于实际观察到较小的θ角,那是多次小角散射合成的结果。
既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。
所以,α粒子散射的实验数据在散射角很小时与理论值差得较远。
1.6 已知α粒子质量比电子质量大7300倍。
试利用中性粒子碰撞来证明:α粒子散射“受电子的影响是微不足道的”。
证明:设碰撞前、后α粒子与电子的速度分别为:',',0,e v v v。
根据动量守恒定律,得:''e v m v M v M +=αα由此得:'''73001ee v v M m v v ==-αα …… (1) 又根据能量守恒定律,得:2'2'2212121emv Mv Mv +=αα 2'2'2e v Mm v v +=αα ……(2) 将(1)式代入(2)式,得:整理,得:0cos 73002)17300()17300('2'2=⨯-++-θααααv v v v0)730017300'2'=-∴=-∴≥ααααv v v v (上式可写为: 即α粒子散射“受电子的影响是微不足道的”。
1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒子与银箔表面成ο60角。
在离L=0.12米处放一窗口面积为25100.6米-⨯的计数器。
测得散射进此窗口的α粒子是全部入射α粒子的百万分之29。
若已知银的原子量为107.9。
试求银的核电荷数Z 。
解:设靶厚度为't 。
非垂直入射时引起α't ,而是ο60sin /'t t =,如图1-1所示。
因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1)而σd 为:2sin)()41(422220πεσΩ=d Mvze d (把(2)式代入(1)式,得:2sin )()41(422220πεΩ=d Mvze Nt n dn ……(3) 式中立体角元0''220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。
'Nt 为单位面上的原子数,10')/(/-==N A m Nt Ag Ag ηη,其中η是单位面积式上的质量;Ag m 是银原子的质量;Ag A 是银原子的原子量;0N 是阿佛加德罗常数。
将各量代入(3)式,得:2'2'2)(7300ααααv v v v -+=2sin )()41(32422220θπεηΩ=d Mv ze A N n dn Ag 由此,得:Z=471.8 设想铅(Z=82)原子的正电荷不是集中在很小的核上,而是均匀分布在半径约为1010-米的球形原子内,如果有能量为610电子伏特的α粒子射向这样一个“原子”,试通过计算论证这样的α粒子不可能被具有上述设想结构的原子产生散射角大于090的散射。
这个结论与卢瑟福实验结果差的很远,这说明原子的汤姆逊模型是不能成立的(原子中电子的影响可以忽略)。
解:设α粒子和铅原子对心碰撞,则α粒子到达原子边界而不进入原子内部时的能量有下式决定:电子伏特焦耳3160221036.21078.34/221⨯≈⨯==-R Ze Mv πε 由此可见,具有610电子伏特能量的α粒子能够很容易的穿过铅原子球。
α粒子在到达原子表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:3022024/24/2R r Ze F R Ze F πεπε==和。
可见,原子表面处α粒子所受的斥力最大,越靠近原子的中心α粒子所受的斥力越小,而且瞄准距离越小,使α粒子发生散射最强的垂直入射方向的分力越小。
我们考虑粒子散射最强的情形。
设α粒子擦原子表面而过。
此时受力为2024/2R Ze F πε=。
可以认为α粒子只在原子大小的范围内受到原子中正电荷的作用,即作用距离为原子的直径D 。
并且在作用范围D 之内,力的方向始终与入射方向垂直,大小不变。
这是一种受力最大的情形。
根据上述分析,力的作用时间为t=D/v,α粒子的动能为K Mv =221,因此,M K v /2=,所以,K M D v D t 2//==根据动量定理:00-=-=⊥⊥⊥⎰Mv p p Fdt t而2022024/24/2R t Ze dt RZeFdt ttπεπε==⎰⎰所以有:⊥=Mv R t Ze 2024/2πε 由此可得:M R t Ze v 2024/2πε=⊥α粒子所受的平行于入射方向的合力近似为0,入射方向上速度不变。
据此,有:32202202104.24/24/2-⊥⨯====Mv R D Ze Mv R t Ze vv tg πεπεθ 这时。
弧度,大约是很小,因此‘2.8104.23-⨯=≈θθθtg这就是说,按题中假设,能量为1兆电子伏特的α 粒子被铅原子散射,不可能产生散射角090>θ的散射。
但是在卢瑟福的原子有核模型的情况下,当α粒子无限靠近原子核时,会受到原子核的无限大的排斥力,所以可以产生090>θ的散射,甚至会产生0180≈θ的散射,这与实验相符合。
因此,原子的汤姆逊模型是不成立的。
第二章 原子的能级和辐射2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。
解:电子在第一玻尔轨道上即年n=1。
根据量子化条件,πφ2h nmvr p ==可得:频率 21211222ma hma nh a v πππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a vνπ米/秒加速度:222122/10046.9//秒米⨯===a v r v w2.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
解:电离能为1E E E i -=∞,把氢原子的能级公式2/n Rhc E n -=代入,得:Rhc hc R E H i =∞-=)111(2=13.60电子伏特。
电离电势:60.13==eE V ii 伏特 第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特 第一激发电势:20.1011==eE V 伏特 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:)111(22nhcR E H -= 其中6.13=H hcR 电子伏特2.10)211(6.1321=-⨯=E 电子伏特1.12)311(6.1322=-⨯=E 电子伏特8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于12.5电子伏特,3E 大于12.5电子伏特。
可见,具有12.5电子伏特能量的电子不足以把基态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。
跃迁时可能发出的光谱线的波长为:οοολλλλλλAR R AR R A R R H H H H H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=2.4 试估算一次电离的氦离子+e H 、二次电离的锂离子+i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。