抽样技术课后习题答案
应用抽样技术课后习题答案
=(0.0907,0.4433)
N1的95%的置信区间为: (159,776) 95%的置信区间为 (159, 的置信区间为:
(3)N=1750,n=30, (3)N=1750,n=30,n1=8, t=1.96, p=0.267, q=1q=1-0.267=0.733 由此可计算得: t 2q 1.962 × 0.733 n0 = 2 = =1054.64 r p 0.01× 0.267 n = n0/[1+(n0—1)/N] = 1054.64/[1+1053.64/1750]=658.2942 = 659 计算结果说明,至少应抽取一个样本量为659的简单随机 样本,才能满足95%置信度条件下相对误差不超过10%的精度 要求。
t=1.96 (2)易知,N=1750,n=30, n = 8 1 n 8 N − n 1750 − 30 1− f p= 1 = = 0.267 = = = 0.03389 n −1 (n −1)N 29 ×1750 n 30
pq = p(1 − p) = 0.267 × 0.733 = 0.1957
5.5 证明:由(5.6)得:
V ( yR ) ≈ 1− f n (Yi − RX i )2 ∑
i =1 N
N −n 2 令 Sd = V , Nn
2 d
N −1
=
N −n 2 Sd Nn
则n(NV + S ) = NS ,
2 d
S 2 NSd 从而n = = V 2 2 NV + Sd Sd 1+ NV
第五章 比率估计与回归估计
5.2 N=2000, n=36, 1-α=0.95, t=1.96, ˆ f = n/N=0.018, v(R) = 0.000015359, ˆ se(R) =0.00392 置信区间为[40.93%,42.47%]。 置信区间为[40.93%,42.47%]。
抽样技术课后习题_参考答案_金勇进
抽样技术课后习题_参考答案_金勇进第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r,r处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y的定义和性质有哪些不同?2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值y?9.5(千瓦时),s2?206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,?9.5,s2?2062?)?v(N)?N21?fs2?50000V(Yn1?300*206?1706366666 300v(??41308.19 该市居民用电量的95%置信区间为[[Ny?z?(y)]=[475000±1.96*41308.19]2即为(394035.95,555964.05)由相对误差公式u?2v()≤10%可得1.96*?n*206?9.5*10% n即n≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
《抽样技术》习题答案(答案参考)
第2章项目相同之处不同之处定义都是根据从一个总体中抽样得到的样本,然后定义样本均值为_11ni i y y n ==∑。
抽样理论中样本是从有限总体中按放回的抽样方法得到的,样本中的样本点不会重复;而数理统计中的样本是从无限总体中利用有放回的抽样方法得到的,样本点有可能是重复的。
性质(1) 样本均值的期望都等于总体均值,也就是抽样理论和数理统计中的样本均值都是无偏估计。
(2) 不论总体原来是何种分布,在样本量足够大的条件下,样本均值近似服从正态分布。
(1) 抽样理论中,各个样本之间是不独立的;而数理统计中的各个样本之间是相互独立的。
(2) 抽样理论中的样本均值的方差为()21f V y S n -=,其中2_211i S Y Y N ⎛⎫=- ⎪-⎝⎭∑。
在数理统计中,()21V y nσ=,其中2σ为总体的方差。
2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下,()()_y E y y V y V y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为()()()(), 1.96, 1.96y z V y y z V y y V y y V y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为111.96, 1.96f fy s y s n n ⎡⎤---+⎢⎥⎣⎦由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知()()______11y Y P y Y r Y P V y V y αα⎧⎫-⎪⎪⎧⎫⎪-≤≥-⇒≤≥-⎨⎬⎨⎩⎭⎪⎪根据正态分布的分位数可以知道()__1y Y P Z V y αα⎫-⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。
《抽样技术》第四版习题答案
第2章2.1 解:()1 这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2rY V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
应用抽样技术课后习题答案.
第二章 抽样技术基本概念
2.7(1)抽样分布: 3 3.67 4.33 5 5.67 6.33 7
1/10 1/10 2/10 2/10 2/10 1/10 1/10 (2)期望为5,方差为4/3 (3)抽样标准误1.155 (4)抽样极限误差2.263 (5)置信区间(3.407,7.933)
第三章 简单随机抽样
3.3为调查某中学学生的每月购书支出水平,在全校 名学生中,用不放回简单随机抽样的方法抽得一 个的样本。对每个抽中的学生调查其上个月的购 书支出金额 (如表1所示)。
(1)在95%的置信度下估计该校学生该月平均购书支 出额;
(2)试估计该校学生该月购书支出超出70元的人数;
(3)如果要求相对误差限不超过10%,以95%的置信 度估计该校学生该月购书支出超出70元的人数比 例,样本量至少应为多少。
故 n ≈ 92.26 ≈93
4.8 解 已知W1=0.7,W2=0.3,p1=1/43,p2=2/57 (1)简单随机抽样 (1+2)/100=0.03 V(P)(1)=0.03*0.97/99=0.0002937 (2)事后分层 Σ0.7*1/43+0.3*2/57=0.0268 V() =Σ2[(1—)/(—1)] =0.72*[1/42](1/43)(42/43)+0.32*[1/56](2/57)(55/57) =0.00031942
由此可计算得:
n0
t2q r2 p
1.962 0.733 0.01 0.267
1054.64
n = n0/[1+(n0—1)] = 1054.64/[1+1053.64/1750]=658.2942 = 659
计算结果说明,至少应抽取一个样本量为659的简单随机样本,才能 满足95%置信度条件下相对误差不超过10%的精度要求。
抽样技术 第三版 全部课后答案 金勇进共28页
第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+20199作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由已知得:10000=N 200=n 35.0=p 02.0==Nnf又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代入数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估计该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
《抽样技术》第四版习题答案
第2章2.1解:()1这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1 100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1 100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.2解:2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下_y E yy -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/21111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
抽样技术_第三版_全部课后答案
第二章习题判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同?为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y (千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV 19.413081706366666(==)y v 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±*]即为(,) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,则样本量至少应为862某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=,是估计该大学所有本科生中暑假参加培训班的比例的95%置信区间。
《抽样技术》第四版习题答案
第2章2.1解:()1这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1 100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1 100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.2解:2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下_y E yy -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/21111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
金勇进:《抽样技术(第2版)》课后习题参考答案(精品pdf)
第一章1.1 答:理论上,若要根据调查数据进行统计推断,则需使用概率抽样。
在实际情形中,对概率抽样与非概率抽样的选择基于对调查目的与调查条件的权衡。
按照L. Kish 的说法,适用概率抽样的场合:(1)“当随机化〖即概率抽样〗既简单又重要时,忽视它就等于轻率和无知”;(2)“只有在某一具体研究领域中由于观察到抽选偏差,发现随机性的假设系错误后〖即随机性假设不成立〗,某些研究人员才显示出对概率抽样发生兴趣……在大多数物理学和化学实验中,样本的选择看来并不需要特别注意,在生物学里,随机与不随机兼而有之。
另一个极端是社会科学,事物特征的分布往往与随机分布相去甚远,也正是在这些领域,概率抽样最为需要,也是最为发展的”;(3)“随机化的概率抽样并不是一个教条而是一种策略,特别是对抽样数目大的场合更是如此”。
〖请再次注意由个人随意写下一些数字的例子〗适用非概率抽样的场合:(1)“比较大的挑战是在很多场合实行随机化的花费很大,这时它的价值必须与它的高费用相权衡,而且常常还要与减少对测量和实验变量的控制相权衡〖指调查方法与试验方法的选择〗。
因此,在很多现场操作中作业人员在下列三种情况下,尽量避免使用概率抽样: 第一,如果元素是一致的,那抽样就不重要了,例如,所有重量为一个单位的氢原子都可以认为是一样的;第二,虽然缺乏一致性,但如果预测的变量是可以度量且能够控制的话,抽样仍然可以避免,例如,在对个人进行抽选时对性别的控制是容易的;第三,如果不能控制的变量在总体中是随机分布的,那么对于任何选样设计,都可以提供一个随机样本。
”(2)“很多卓有成就的科学(天文学、物理学和化学)的巨大进步过去和现在都没有用概率抽样,在这些科学的研究里,统计推断是根据对总体有着适当的、自动的和自然的随机化这一主观判断而作出的……科学研究里充满了根据总体天然随机化的假定而获得成功的例子。
”1.2 答(1)(2)(3)皆否。
理由:判断一抽样是否为概率抽样,乃判断其是否为一给定之(),,S P U ,即:是否有确定之有限总体U ,所有可能样本的集合{}S s =是否确定,每个样本的选取概率{}P p =是否确定。
抽样技术 第三版 第二章课后部分答案 R语言
抽样技术作业一(2.5——2.10)袁闪闪 21205021192.5 解:这里N =200,n =20,由表中的数据可得:2011221211144.5201()826.052611()- 6.097n i i i i n i i y y y n s y y n nv y s n N=======-=-=⨯=∑∑∑(1) 因而该小区平均的文化支出Y 的95%的近似置信区间为:22/2/211[-,-][144.5 1.96 6.097][132.5503,156.4497]n n y z s y z s n N n Nαα-⨯+⨯=±⨯=(1)(1) 所以该小区平均的文化支出Y 的估计为144.5元,其95%的置信区间为 (132.55元,156.45元)。
2.6解:有题意可得:N =350,n =50, y =1120,2s =25600, 所以粮食总产量为:3501120392000()Y N y ∧==⨯=元 代入数据得:22/2/211[-,-][392000 1.967332.12][377629,406371]n n y z Ns y z N s n N n Nαα-⨯+⨯=±⨯=(1)(1) 所以总产值的95%的置信区间为:(377629吨,406371吨)。
2.7解:由题意可得:N =1000,d =2,α=0.05,2S =68,r=70%, 带入公式,可得初始样本量:222/2022222/2/21161.362Nz S d n N z S Nd z S ααα⎛⎫=+==≈ ⎪+⎝⎭ 由于有效回答率为r=70%,,对样本容量进行再调整:0070%87.5788nn n r===≈所以样本最终确定为88。
2.8解:由题意已知:N =100,n =10, X =2135,y =25,x =22, 方法一:简单随机估计:100252500()Y N y ∧==⨯=吨方法二:比估计:由经验可知去年的化肥总产量和今年的总产量之间存在较强的相关性,引入去年的化肥总产量作为辅助变量。
《抽样技术》第四版习题答案
第2章2.1 解:()1 这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为2y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得 _21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/221111r Y r Y S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
抽样技术第五章课后答案
抽样技术第五章课后答案抽样是统计过程中的一个重要环节,它能提供更有效的统计息。
为了获得更加精确的结果,必须使用适当的抽样方法。
抽样方法包括()。
正确地使用()是指()式中所有抽样变量均可视为相同量。
每一组()个变量与某一组()个变量之间有()种相关性。
A:无关系变量; B:线性关联变量; C:关系-线性关联变量; D:线性相似性; E:线性相关性; F:相关性:对数关系。
一、问题定义给定样本,求所需数量。
分析数据求与所需数量对应的样本。
用多组样本重复抽取一组样本。
问题定义二、问题特征问题1:随机选择一个个体,要求其按照一定的方式计算一下,该个体与被抽到的抽样组的数量相等。
问题2:问题1中要得到的抽样组的数量为:从任意数量个样本的统计意义上(单位为 k)或从任意数量个样本的统计意义上(n、 n)去推断出有多少个样本属于随机选取一种方法计算出来的数量与原问题1中随机抽取一个总样本相等的数量与原问题1中随机抽取一个总样本相等的数量之间有着相关关系。
从该角度出发考虑这种相关性,即可以得出如下结果:本题的基本思路与前面两题类似。
从已知条件出发考虑这个问题中不同群体中所占比例之间的相关性:对于某群体内所有个体来说,个体数量都是相同的比例是这样形成的: a.对于随机变量 N; b.每个个体所占比例=群体人数 b+个体人数 c= B; c.群体人数 a=(1- M) b+个体人数c=(1- N) b+个人人数 c=(1- M) c= C; d、 e、 f三种形式均不是随机变量: a.对于该群体中所有个体来说,个体总数与群体总人数之间呈现线性相关关系: b.对于该群体中所有个体来说唯一没有显著线性关系的就是 a。
三、抽样的基本原理抽样的基本原理是将所有变量用等比例形式分组,然后对每个分组进行统计,以发现该分组与总体之间的相互关系,以及分析样本中的差异。
1所示。
抽样方法分为正向抽样法和反向抽样法。
正向抽样是指将所有变量都作为等值统计量进行正比例随机抽样。
[实用参考]《抽样技术》第四版习题答案
第2章2.1解:()1这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100。
()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100。
()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20PP0~21000中的每个单元的入样概率都是11000,所以这种抽样是等概率的。
2.2解:2.3解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在大样本的条件下,_y E y y -=近似服从标准正态分布,_Y 的195%α-=的区间为y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n -=中总体的方差2S是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦。
由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=。
将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量。
绝对误差限d 和相对误差限r 的关系为_d rY =。
根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≥-⎨⎬⎩⎭⎪⎭ 根据正态分布的分位数可21α⎫⎪⎪≥-⎬⎪⎪⎭,所以()2_r Y V yz α⎛⎫ ⎪= ⎪⎝⎭。
也就是2_2_222/2211r Y r Y S n z S n N z αα⎤⎛⎫⎥⎛⎫ ⎪⎛⎫⎝⎭ ⎪⎥-=⇒ ⎪ ⎪⎥⎝⎭⎝⎭⎥⎦。
把_29.5,206,10%,50000y s r N ====861.75862≈。
抽样技术第二章参考答案1
第二章习题2.1判断下列抽样方法是否是等概的:(1)总体编号1~64,在0~99中产生随机数r ,若r=0或r>64则舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,若余数为0则抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原则抽取样本。
第二,每个单元被抽中的概率是已知的,或者是可以计算的。
第三,当用样本对总体目标进行估计时,要考虑到该样本被抽中的概率。
因此(1)中只有1~64是可能被抽中的,故不是等概的。
(2)不是等概的【原因】(3)是等概的。
2.2抽样理论和数理统计中关于样本均值y 的定义和性质有哪些不同? 解析:抽样理论和数理统计中关于样本均值的定义和性质的不同抽样理论概率统计定义 ∑==ni i y n y 11=y性质1.期望()()()()Y C P E NNC N C ===∑∑==n n 1i n i 1i i i 1y y y2.方差()()()[]()iC i iiP y E y y V n N21∑=-==()()[]n NC i iiCy E y n N121∑=-()21S nf -=1.期望()⎪⎭⎫ ⎝⎛=∑=n i i y n E y E 11()∑==ni y E 1i n 1[]μμ==n n12.方差()[]2μ-=i y E y V211⎥⎦⎤⎢⎣⎡-=∑=n i i y n E μ()ny n 122i σμ=-=E2.3为了合理调配电力资源,某市欲了解50000户居民的日用电量,从中简单随机抽取了300户进行,现得到其日用电平均值=y 9.5(千瓦时),=2s 206.试估计该市居民用电量的95%置信区间。
如果希望相对误差限不超过10%,则样本量至少应为多少?解:由已知可得,N=50000,n=300,5.9y =,2062=s1706366666206*300500003001500001)()ˆ(222=-=-==s nf N y N v YV19.413081706366666(==)y v该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为(394035.95,555964.05) 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤-即n ≥862欲使相对误差限不超过10%,则样本量至少应为8622.4某大学10000名本科生,现欲估计爱暑假期间参加了各类英语培训的学生所占的比例。
《抽样技术》第四版习题答案
第2章2.1 解:()1 这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1~64的这些单元中每一个单元被抽到的概率都是1100. ()2这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中的编号为1~35以及编号为64的这36个单元中每个单元的入样概率都是2100,而尚未被抽中的编号为36~63的每个单元的入样概率都是1100. ()3这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为20 000~21 000中的每个单元的入样概率都是11000,所以这种抽样是等概率的.2.3 解:首先估计该市居民日用电量的95%的置信区间。
根据中心极限定理可知,在_y E y y -=近似服从标准正态分布, _Y 的195%α-=的置信区间为y z y z y y αα⎡⎡-+=-+⎣⎣。
而()21f V y S n-=中总体的方差2S 是未知的,用样本方差2s 来代替,置信区间为,y y ⎡⎤-+⎢⎥⎣⎦. 由题意知道,_29.5,206y s ==,而且样本量为300,50000n N ==,代入可以求得_21130050000()2060.6825300f v y s n --==⨯=.将它们代入上面的式子可得该市居民日用电量的95%置信区间为7.8808,11.1192⎡⎤⎣⎦。
下一步计算样本量.绝对误差限d 和相对误差限r 的关系为_d r Y =. 根据置信区间的求解方法可知____11P y Y r Y P αα⎫⎪⎧⎫-≤≥-⇒≤≥-⎨⎬⎩⎭根据正态分布的分位数可以知道1P Z αα⎫⎪⎪≤≥-⎬⎪⎪⎭,所以()2_2r Y V y z α⎛⎫⎪= ⎪⎝⎭。
也就是2_2_222/21111rY rY S n N z S n N z αα⎡⎤⎛⎫⎢⎥⎛⎫⎪⎛⎫⎝⎭ ⎪⎢⎥-=⇒=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦。
把_29.5,206,10%,50000y s r N ====代入上式可得,861.75862n =≈。
最新《抽样技术》第四版习题答案
2.1解:(1)这种抽样方法是等概率的。
在每次抽取样本单元时,尚未被抽中的编号为1〜64的这些单元中每一个单元被抽到的概率都是一二0100(2)这种抽样方法不是等概率的。
利用这种方法,在每次抽取样本单元时,尚未被抽中2的编号为1〜35以及编号为64的这36个单元中每个单元的入样概率都是二,而尚未被 100抽中的编号为36〜63的每个单元的入样概率都是」匚,100(3)这种抽样方法是等概率的,在每次抽取样本单元时,尚未被抽中的编号为20 000〜21 000中的每个单元的入样概率都是一L,所以这种抽样是等概率的。
1 0002.3解:首先估计该市居民日用电量的95%的置信区间,根据中心极限定理可知,在大样本的条件下,二=三里!近似服从标准正态分布,『的1-。
=95%的置信区间为[了一2弟27^,? +4任7^]=[》- 1967^,9 + l-967v(y)" o而卜(方=?52中总体的方差T 是未知的,用样本方差『来代替,置信区间由题意知道,y = 95/=206,而且样本量为〃 = 300,N = 50 000,代入可以求得== 1()。
、()。
乂206 = 0682 5。
将它们代入上面的式子可得该市居民 n 300日用电量的95%置信区间为[7.880 8,11.119 2] °下一步计•算样本量。
绝对误差限4和相对误差限r 的关系为“=〃丫。
把 y = 9.5,s2 = 206/ = 10%,N = 50 000代入上式可得,n = 861.75 ^862 o 所以样 本量至少为86202.4 解:总体中参加培训班的比例为P ,那么这次简单随机抽样得到的P 的估计值p尸。
一夕),利用中心极限定理可得 L 在大样本的条件下近 似服从标准正态分布。
在本题中,样本量足够大,从而可得P 的1-2 = 95%的置信区间为 P 一Z R 2/ ( P),P + Z R 2 W ( P)]。
抽样技术第三版全部课后答案
第二章习题2.1判定以下抽样方法是否是等概的: (1)总体编号1~64,在0~99中产生随机数r ,假设r=0或r>64那么舍弃重抽。
(2)总体编号1~64,在0~99中产生随机数r ,r 处以64的余数作为抽中的数,假设余数为0那么抽中64.(3)总体20000~21000,从1~1000中产生随机数r 。
然后用r+19999作为被抽选的数。
解析:等概抽样属于概率抽样,概率抽样具有一些几个特点:第一,按照一定的概率以随机原那么抽取样本。
第二,每个单元被抽中的概率是的,或者是能够计算的。
第三,当用样本对总体目标进行估量时,要考虑到该样本被抽中的概率。
因此〔1〕中只有1~64是可能被抽中的,故不是等概的。
〔2〕不是等概的【缘故】〔3〕是等概的。
y 的定义和性质有哪些不同?机抽取了300户进行,现得到其日用电平均值=y 9.5〔千瓦时〕,=2s 206.试估量该市居民用电量的95%置信区间。
要是盼瞧相对误差限不超过10%,那么样本量至少应为多少?解:由可得,N=50000,n=300,5.9y =,2062=s 该市居民用电量的95%置信区间为[])(y [2y V z N α±=[475000±1.96*41308.19]即为〔394035.95,555964.05〕 由相对误差公式y)(v u 2y α≤10%可得%10*5.9206*n50000n 1*96.1≤- 即n ≥862欲使相对误差限不超过10%,那么样本量至少应为8622.4某大学10000名本科生,现欲估量爱暑假期间参加了各类英语培训的学生所占的比例。
随机抽取了两百名学生进行调查,得到P=0.35,是估量该大学所有本科生中暑假参加培训班的比例的95%置信区间。
解析:由得:10000=N 200=n 35.0=p 02.0==Nnf又有:35.0)()(===∧p p E p E 0012.0)1(11)(=---=∧p p n fp V该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:])()([2∧∧±P V Z P E α代进数据计算得:该区间为[0.2843,0.4157]2.5研究某小区家庭用于文化方面〔报刊、电视、网络、书籍等〕的支出,N=200,现抽取一个容量为20的样本,调查结果列于下表:编号 文化支出 编号 文化支出 1 200 11 150 2 150 12 160 3 170 13 180 4 150 14 130 5 160 15 100 6 130 16 180 7 140 17 100 8 100 18 180 9 110 19 170 1024020120估量该小区平均的文化支出Y ,并给出置信水平95%的置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
160
1700
3
170
2000
13
180
2000
4
150
1500
14
130
1400
5
160
1700
15
150
1600
6
130
1400
16
100
1200
7
140
1500
17
180
1900
8
100
1200
18
100
1100
9
110
1200
19
170
1800
10
140
1500
20
120
1300
20
试估计平均每户家庭订报份数及总的订报份数,以及估计量的方差。
解:由题意得到 , , ,
故 (份)
(份)
(份)
于是由以上的计算结果得到平均每户的订报份数为1.875,估计量方差为0.00391875。该辖区总的订阅份数为7500,估计量方差为62700。
4.2
某工业系统准备实行一项改革措施。该系统共有87个单位,现采用整群抽样,用简单随机抽样抽取15个单位做样本,征求入选单位中每个工人对政策改革措施的意见,结果如下:
1
42
6.2
11
60
6.3
2
51
5.8
12
52
6.7
3
49
6.7
13
61
5.9
4
55
4.9
14
49
6.1
5
47
5.2
15
57
6.0
6
58
6.9
16
63
4.9
7
43
4.3
17
45
5.3
8
59
5.2
18
46
6.7
9
48
5.7
19
62
6.1
10
41
6.1
20
58
7.0
估计整个林区树的平均高度及95%的置信区间。
则 的置信度为95%的置信区间为3532.8 1.96 269.7507,即[3004.089,4061.511].
4.4
为了便于管理,将某林区划分为386个小区域。现采用简单随机抽样方法,从中抽出20个小区域,测量树的高度,得到如下资料:
区域编号
数目株数
平均高度 (尺)
区域编号
数目株数
平均高度 (尺)
解析:简单随机抽样所需的样本量
由题意知:
代入并计算得:
故知:简单随机抽样所需的样本量为61,若预计有效回答率为70%,则样本量最终为87
2.8某地区对本地100家化肥生产企业的尿素产量进行调查,一直去年的总产量为2135吨,抽取10个企业调查今年的产量,得到 ,这些企业去年的平均产量为 。试估计今年该地区化肥总产量。
326分钟24060分钟由此得到1062763534410627610326188进一步计算opt由于总时间的限制480由关系式nm得到optopt2n10n240480计算方程得到20因而取20则最优的样本宿舍数为20间最优样本学生数为247某居委会欲了解居民健身活动情况如果一直该居委会有500名居民居住在10个单元中
又
V( )=53.8086
=7.3354
95%的置信区间为[60.63,90.95]。
7.解:(1)对
(2)错
(3)错
(4)错
(5)对
8.解:(1)差错率的估计值 = 70 300.027
估计的方差v( )= =3.1967
标准差为S( )=0.0179。
(2)用事后分层的公式计算差错率为 = =0.03
解析:由已知得:
又有:
该大学所有本科学生中暑假参加培训班的比例95%的置信区间为:
代入数据计算得:该区间为[0.2843,0.4157]
2.5研究某小区家庭用于文化方面(报刊、电视、网络、书籍等)的支出,200,现抽取一个容量为20的样本,调查结果列于下表:
编号
文化支出
编号
文化支出
1
200
11
150
解:由已知条件得到以下信息:
(元) (元) (分钟) (分钟) (分钟)
由此得到
, ,
因而取最优的 ,进一步计算
由于总时间的限制 ,由关系式
得到
计算方程得到 ,因而取
则最优的样本宿舍数为20间,最优样本学生数为2。
4.7
某居委会欲了解居民健身活动情况,如果一直该居委会有500名居民,居住在10个单元中。现先抽取4个单元,然后再样本单元中分别抽出若干居民,两个阶段的抽样都是简单随机抽样,调查了样本居民每天用于健身锻炼的时间结果如下(以10分钟为1个单位):
估计的方差为;v( )= - =2.5726
9.解:(1)所有可能的样本为:
第一层
第二层
3,5
0,3
8,15
6,9
3,10
0,6
8,25
6,15
5,10
3,6
15,25
9,15
(2)用分别比估计,有 =0.4, =0.65,所以用分别比估计可计算得 =6.4。
用联合比估计,有 =0.5, =0.625,所以用联合比估计可计算得 =6.5。
解:由已知得 , ,
整体的平均高度
方差估计值
标准方差
在置信度95%下,该林区的树木的平均高度的置信区间为
4.5
某高校学生会欲对全校女生拍摄过个人艺术照的比例进行调查。全校共有女生宿舍200间,每间6人。学生会的同学运用两阶段抽样法设计了抽样方案,从200间宿舍中抽取了10间样本宿舍,在每间样本宿舍中抽取3位同学进行访问,两个阶段的抽样都是简单随机抽样,调查结果如下表:
=
=1.097
而
=
=19.454
显然
所以,回归估计的结果要优于简单估
第三单元习题答案(仅供参考)
1解:(1)不合适
(2)不合适
(3)合适
(4)不合适
2.将800名同学平均分成8组,在每一级中抽取一名“幸运星”。
3.根据表中调查数据,经计算,可得下表:
h
1
10
256
0.3033
0.0391
11.2
2867.2
解析:由题可知 , ,
则,该地区化肥产量均值 的比率估计量为
该地区化肥产量总值Y的比率估计量为
所以,今年该地区化肥总产量的估计值为2426吨。
2.9如果在解决习题2.5的问题时可以得到这些家庭月总支出,得到如下表:
单位:元
编号
文化支出
总支出
编号
文化支出
总支出
1
200
2300
11
150
1600
2
150
全部家庭的总支出平均为1600元,利用比估计的方法估计平均文化支出,给出置信水平95%的置信区间,并比较比估计和简单估计的效率。
解析:由题可知
又
故平均文化支出的95%的置信区间为
代入数据得(146.329±1.96*1.892)
即为[142.621,150.037]
2.10某养牛场购进了120头肉牛,购进时平均体重100千克。现从中抽取10头,记录重量,3个月后再次测量,结果如下:
故估计该小区平均的文化支出 =144.5,置信水平95%的置信区间为[132.544 ,156.456]。
2.6某地区350个乡为了获得粮食总产量的估计,调查了50个乡当年的粮食产量,得到 =1120(吨), ,据此估计该地区今年的粮食总产量,并给出置信水平95%的置信区间。
解析:由题意知: =1120
第四章习题
4.1邮局欲估计每个家庭的平均订报份数,该辖区共有4000户,划分为400个群,每群10户,现随机抽取4个群,取得资料如下表所示:
群
各户订报数
1
1,2,1,3,3,2,1,4,1,1
19
2
1,3,2,2,3,1,4,1,1,2
20
3
2,1,1,1,1,3,2,1,3,1
16
4
1,1,3,2,1,5,1,2,3,1
置信水平95%的置信区间为: 代入数据得:
置信水平95%的置信区间为:[1079.872,1160.872]
2.7某次关于1000个家庭人均住房面积的调查中,委托方要求绝对误差限为2平方千米,置信水平95%,现根据以前的调查结果,认为总体方差 ,是确定简单随机抽样所需的样本量。若预计有效回答率为70%,则样本量最终为多少?
单位
总人数
赞成人数
1
51
42
2
62
53
3
49
40
4
73
45
5
101
63
6
48
31
7
65
38
8
49
30
9
73
54
10
61
45
11
58
51
12
52
29
13
65
46
14
49
37
15
55
42
(1)估计该系统同意这一改革人数的比例,并计算估计标准误差。
(2)在调查的基础上对方案作了修改,拟再一次征求意见,要求估计比例的允许误差不超过8%,则应抽取多少个单位做样本?
单元
居民人数
样本量
健身锻炼时间
1
32
4
4,2,3,6
94.4
2
10