广西柳州市2013年中考数学试卷答案
【真题】广西柳州市中考数学试题含答案解析()
广西柳州市中考数学试卷一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣202.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×1096.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=°.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是.15.(3.00分)不等式x+1≥0的解集是.16.(3.00分)一元二次方程x2﹣9=0的解是.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.22.(8.00分)解方程=.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B 在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y 轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.广西柳州市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共12小题,每题3分,共36分)1.(3.00分)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.【点评】此题主要考查了有理数的加法,正确掌握运算法则是解题关键.2.(3.00分)如图,这是一个机械模具,则它的主视图是()A.B.C. D.【分析】根据主视图的画法解答即可.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.【点评】本题考查几何体的三视图画法.根据主视图是从几何体正边看得到的图形解答是关键.3.(3.00分)下列图形中,是中心对称图形的是()A.正三角形B.圆C.正五边形D.等腰梯形【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3.00分)现有四张扑克牌:红桃A、黑桃A、梅花A和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A的概率为()A.1 B.C.D.【分析】利用概率公式计算即可得.【解答】解:∵从4张纸牌中任意抽取一张牌有4种等可能结果,其中抽到红桃A的只有1种结果,∴抽到红桃A的概率为,故选:B.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P (A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)世界人口约7000000000人,用科学记数法可表示为()A.9×107B.7×1010C.7×109D.0.7×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:7000000000=7×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3.00分)如图,图中直角三角形共有()A.1个 B.2个 C.3个 D.4个【分析】根据直角三角形的定义:有一个角是直角的三角形是直角三角形,可作判断.【解答】解:如图,图中直角三角形有Rt△ABD、Rt△BDC、Rt△ABC,共有3个,故选:C.【点评】本题考查了直角三角形的定义,比较简单,掌握直角三角形的定义是关键,要做到不重不漏.7.(3.00分)如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB==()A.B.C.D.【分析】首先利用勾股定理计算出AB长,再计算sinB即可.【解答】解:∵∠C=90°,BC=4,AC=3,∴AB=5,∴sinB==,故选:A.【点评】此题主要考查了锐角三角函数,关键是正确计算出AB的长.8.(3.00分)如图,A,B,C,D是⊙O上的四个点,∠A=60°,∠B=24°,则∠C 的度数为()A.84°B.60°C.36°D.24°【分析】直接利用圆周角定理即可得出答案.【解答】解:∵∠B与∠C所对的弧都是,∴∠C=∠B=24°,故选:D.【点评】本题主要考查圆周角定理,解题的关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.(3.00分)苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元B.0.2a元C.1.8a元D.(a+0.8)元【分析】根据“实际售价=原售价×”可得答案.【解答】解:根据题意知,买一斤需要付费0.8a元,故选:A.【点评】本题主要考查列代数式,解题的关键是掌握代数式的书写规范及实际问题中数量间的关系.10.(3.00分)如图是某年参加国际教育评估的15个国家学生的数学平均成绩(x)的扇形统计图,由图可知,学生的数学平均成绩在60≤x<70之间的国家占()A.6.7% B.13.3% C.26.7% D.53.3%【分析】根据扇形统计图直接反映部分占总体的百分比大小,可知学生成绩在60≤x<69之间的占53.3%.【解答】解:由图可知,学生的数学平均成绩在60≤x<70之间的国家占53.3%.故选:D.【点评】本题考查了扇形统计图的应用.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.(3.00分)计算:(2a)•(ab)=()A.2ab B.2a2b C.3ab D.3a2b【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:(2a)•(ab)=2a2b.故选:B.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.12.(3.00分)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2 B.a≠﹣2 C.a≠±2 D.a=±2【分析】根据反比例函数解析式中k是常数,不能等于0解答即可.【解答】解:由题意可得:|a|﹣2≠0,解得:a≠±2,故选:C.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k的取值范围解答.二、填空题(每题只有一个正确选项,本题共6小题,每题3分,共1836分)13.(3.00分)如图,a∥b,若∠1=46°,则∠2=46°.【分析】根据平行线的性质,得到∠1=∠2即可.【解答】解:∵a∥b,∠1=46°,∴∠2=∠1=46°,故答案为:46.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.14.(3.00分)如图,在平面直角坐标系中,点A的坐标是(﹣2,3).【分析】直接利用平面直角坐标系得出A点坐标.【解答】解:由坐标系可得:点A的坐标是(﹣2,3).故答案为:(﹣2,3).【点评】此题主要考查了点的坐标,正确利用平面坐标系是解题关键.15.(3.00分)不等式x+1≥0的解集是x≥﹣1.【分析】根据一元一次不等式的解法求解不等式.【解答】解:移项得:x≥﹣1.故答案为:x≥﹣1.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(3.00分)一元二次方程x2﹣9=0的解是x1=3,x2=﹣3.【分析】利用直接开平方法解方程得出即可.【解答】解:∵x2﹣9=0,∴x2=9,解得:x1=3,x2=﹣3.故答案为:x1=3,x2=﹣3.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.17.(3.00分)篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+负的场数=8;胜的积分+平的积分=14,把相关数值代入即可.【解答】解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.【点评】本题考查了列二元一次方程组,根据总场数和总分数得到相应的等量关系是解决本题的根据.18.(3.00分)如图,在Rt△ABC中,∠BCA=90°,∠DCA=30°,AC=,AD=,则BC的长为5.【分析】作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.【解答】解:过A作AE⊥CD于E,过D作DF⊥BC于F,Rt△AEC中,∠ACD=30°,AC=,∴AE=,CE=,Rt△AED中,ED===,∴CD=CE+DE==,∵DF⊥BC,AC⊥BC,∴DF∥AC,∴∠FDC=∠ACD=30°,∴CF=CD==,∴DF=,∵DF∥AC,∴△BFD∽△BCA,∴,∴=,∴BF=,∴BC=+=5,故答案为:5.【点评】本题考查了相似三角形的性质和判定、直角三角形30度角的性质及勾股定理,熟练运用勾股定理计算线段的长是关键.三、解答题(每题只有一个正确选项,本题共8小题,共66分)19.(6.00分)计算:2+3.【分析】先化简,再计算加法即可求解.【解答】解:2+3=4+3=7.【点评】考查了二次根式的加减法,关键是熟练掌握二次根式的加减法法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.20.(6.00分)如图,AE和BD相交于点C,∠A=∠E,AC=EC.求证:△ABC≌△EDC.【分析】依据两角及其夹边分别对应相等的两个三角形全等进行判断.【解答】证明:∵在△ABC和△EDC中,,∴△ABC≌△EDC(ASA).【点评】本题主要考查了全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.21.(8.00分)一位同学进行五次投实心球的练习,每次投出的成绩如表:12345投实心球序次成绩(m)10.510.210.310.610.4求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.22.(8.00分)解方程=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=x,解得:x=4,经检验x=4是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.(8.00分)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.【分析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出BO的长,进而解答即可.【解答】解:(1)∵四边形ABCD是菱形,AB=2,∴菱形ABCD的周长=2×4=8;(2)∵四边形ABCD是菱形,AC=2,AB=2∴AC⊥BD,AO=1,∴BO=,∴BD=2【点评】本题主要考查菱形的性质,能够利用勾股定理求出BO的长是解题关键.24.(10.00分)如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A (3,1),B(﹣,n)两点.(1)求该反比例函数的解析式;(2)求n的值及该一次函数的解析式.【分析】(1)根据反比例函数y=的图象经过A(3,1),即可得到反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得n=﹣6,把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得一次函数的解析式为y=2x﹣5.【解答】解:(1)∵反比例函数y=的图象经过A(3,1),∴k=3×1=3,∴反比例函数的解析式为y=;(2)把B(﹣,n)代入反比例函数解析式,可得﹣n=3,解得n=﹣6,∴B(﹣,﹣6),把A(3,1),B(﹣,﹣6)代入一次函数y=mx+b,可得,解得,∴一次函数的解析式为y=2x﹣5.【点评】本题考查了利用图象解决一次函数和反比例函数的问题.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.25.(10.00分)如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,过点A 作⊙O的切线交BC的延长线于点D.(1)求证:△DAC∽△DBA;(2)过点C作⊙O的切线CE交AD于点E,求证:CE=AD;(3)若点F为直径AB下方半圆的中点,连接CF交AB于点G,且AD=6,AB=3,求CG的长.【分析】(1)利用AB是⊙O的直径和AD是⊙O的切线判断出∠ACD=∠DAB=90°,即可得出结论;(2)利用切线长定理判断出AE=CE,进而得出∠DAC=∠EAC,再用等角的余角相等判断出∠D=∠DCE,得出DE=CE,即可得出结论;(3)先求出tan∠ABD值,进而得出GH=2CH,进而得出BC=3BH,再求出BC建立方程求出BH,进而得出GH,即可得出结论.【解答】解:(1)∵AB是⊙O直径,∴∠ACD=∠ACB=90°,∵AD是⊙O的切线,∴∠BAD=90°,∴∠ACD=∠DAB=90°,∵∠D=∠D,∴△DAC∽△DBA;(2)∵EA,EC是⊙O的切线,∴AE=CE(切线长定理),∴∠DAC=∠ECA,∵∠ACD=90°,∴∠ACE+∠DCE=90°,∠DAC+∠D=90°,∴∠D=∠DCE,∴DE=CE,∴AD=AE+DE=CE+CE=2CE,∴CE=AD;(3)如图,在Rt△ABD中,AD=6,AB=3,∴tan∠ABD==2,过点G作GH⊥BD于H,∴tan∠ABD==2,∴GH=2BH,∵点F是直径AB下方半圆的中点,∴∠BCF=45°,∴∠CGH=∠CHG﹣∠BCF=45°,∴CH=GH=2BH,∴BC=BH+CH=3BH,在Rt△ABC中,tan∠ABC==2,∴AC=2BC,根据勾股定理得,AC2+BC2=AB2,∴4BC2+BC2=9,∴BC=,∴3BH=,∴BH=,∴GH=2BH=,在Rt△CHG中,∠BCF=45°,∴CG=GH=.【点评】此题是圆的综合题,主要考查了切线的性质,切线长定理,锐角三角函数,相似三角形的判定和性质,勾股定理,求出tan∠ABD的值是解本题的关键.26.(10.00分)如图,抛物线y=ax2+bx+c与x轴交于A(,0),B两点(点B 在点A的左侧),与y轴交于点C,且OB=3OA=OC,∠OAC的平分线AD交y 轴于点D,过点A且垂直于AD的直线l交y轴于点E,点P是x轴下方抛物线上的一个动点,过点P作PF⊥x轴,垂足为F,交直线AD于点H.(1)求抛物线的解析式;(2)设点P的横坐标为m,当FH=HP时,求m的值;(3)当直线PF为抛物线的对称轴时,以点H为圆心,HC为半径作⊙H,点Q 为⊙H上的一个动点,求AQ+EQ的最小值.【分析】(1)求出A、B、C的坐标,利用两根式求出抛物线的解析式即可;(2)求出直线AH的解析式,根据方程即可解决问题;(3)首先求出⊙H的半径,在HA上取一点K,使得HK=,此时K(﹣,﹣),由HQ2=HK•HA,可得△QHK∽△AHQ,推出==,可得KQ=AQ,推出AQ+QE=KQ+EQ,可得当E、Q、K共线时,AQ+QE的值最小,由此求出点E 坐标,点K坐标即可解决问题;【解答】解:(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x﹣),把C(0,﹣3)代入得到a=,∴抛物线的解析式为y=x2+x﹣3.(2)在Rt△AOC中,tan∠OAC==,∴∠OAC=60°,∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为y=x﹣1,由题意P(m,m2+m﹣3),H(m,m﹣1),F(m,0),∵FH=PH,∴1﹣m=m﹣1﹣(m2+m﹣3)解得m=﹣或(舍弃),∴当FH=HP时,m的值为﹣.(3)如图,∵PF是对称轴,∴F(﹣,0),H(﹣,﹣2),∵AH⊥AE,∴∠EAO=60°,∴EO=OA=3,∴E(0,3),∵C(0,﹣3),∴HC==2,AH=2FH=4,∴QH=CH=1,在HA上取一点K,使得HK=,此时K(﹣,﹣),∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,可得△QHK∽△AHQ,∴==,∴KQ=AQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值==.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、圆的有关知识、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
2013年广西柳州中考数学试卷及答案(word解析版)
2013年柳州市初中毕业升学考试试卷数 学(考试时间共120分钟,全卷满分120分)一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每个小题选对3分,选错、不选或多选均得0分) 1.(2013广西柳州,1,3分)如某几何体的三视图如图所示,则该几何体是A .正方体B .长方体C .三棱柱D .三棱锥【答案】CA .B .C .D . 2.(2013广西柳州,2,3分)计算-10-8所得的结果是A .-2B .2C .18D .-18 【答案】D3.(2013广西柳州,3,3分)在-3,0,4,6这四个数中,最大的数是A .-3B .0C . 4.D .6 【答案】C 4.(2013广西柳州,4,3分)右图是经过轴对称变换后所得到的图形,与原图形相比 A .形状没有改变,大小没有改变 B .形状没有改变,大小有改变 C .形状有改变,大小没有改变D .形状有改变,大小有改变【答案】A 5.(2013广西柳州,5,3分)下列计算正确的是A .3a ·2a =5aB .3 a ·2a =5a 2C .3a ·2a =6aD .3a ·2a =6 a 2 【答案】D(第4题图) 主视图 左视图 俯视图(第1题图)6.(2013广西柳州,6,3分)在下列所给出的坐标的点中,在第二象限的是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 【答案】B 7.(2013广西柳州,7,3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是A . 35B . 36C .37D .38 【答案】B8.(2013广西柳州,8,3分)下列四个图中,∠x 是圆周角的是【答案】C 9.(2013广西柳州,9,3分)下列式子是因式分解的是A .x (x -1)=x 2 -1B .x 2 -x = x (x +1)C .x 2+x =x (x +1)D .x 2-x =(x +1)(x -1) 【答案】C10.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为A .10米B .12米C .15米D .22.5米【答案】D11.(2013广西柳州,11,3分)如图,P 点(a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P 为端点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A . 3B . 4C .33412- D .33824- OyB xAP(第11题图)ABC(第12题图)O OO Ox x xxABD(第8题图)【答案】D 12.(2013广西柳州,12,3分)在△ABC 中,∠BAC =90°,AB =3,AC =4,AD 平分∠BAC 交BC 于D ,则BD 的长为A .715 B .512 C .720 D .512【答案】A二、填空题(本大题共6小题,每小题3分,满分18分,请你将答案直接写在大题卡中相应的横线上,在草稿...纸上、试卷上答题无效..........) 13.(2013广西柳州,13,3分)不等式4x >8的解集是____________ 【答案】x >214.(2013广西柳州,14,3分)若分式23-+x x 有意义,则x ≠________ 【答案】x ≠2 15.(2013广西柳州,15,3分)一个袋子中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是103,则袋中有________个白球. 【答案】7 16.(2013广西柳州,16,3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉以个最低分、一个最高分后的平均分.7位评委给小红打的分数是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是_______ 【答案】9.5 17.(2013广西柳州,17,3分)如图△ABC ≌△DEF ,请根据图中提供的信息,写出x =_____【答案】2018.(2013广西柳州,18,3分)有下列4个命题:①方程06)32(2=++-x x 的根是2和3.②在△ABC 中,∠ACB =,90°,CD ⊥AB 于D .若AD =4,BD =49,则CD =3. ABC D FE1850°60° 70°20x(第17题图)AB DC(第12题图)③点P (x ,y )的坐标x ,y 满足022222=+-++y x y x ,若点P 也在xky =的图象上,则k =-1. ④若实数b 、c 满足1+b +c >0,1-b +c <0,则关于x 的方程02=++c bx x 一定有两个不相等的实数根,且较大的实数根,满足-1<x 0<1.上述4个命题中,真命题的序号是____________ 【答案】①②③④三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、演算步骤或推理过程,请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑,在草稿纸、.....试卷上答题无效.......) 19.(2013广西柳州,19,6分)(本题满分6分)计算:02)3()2(--【答案】解:原式=4-1=3 20.(2013广西柳州,20,6分)(本题满分6分) 解方程:3(x +4)=x【答案】解:x x =+123 123-=-x x 122-=x 6-=x 21.(2013广西柳州,21,6分)(本题满分6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀. (1) 请用列表法或树状图表示所有可能出现的游戏结果: (2) 求韦玲胜出的概率.【答案】 (1)(2)31P 22.(2013广西柳州,22,8分)(本题满分8分)如图,将小旗ACDB 放于平面直角坐标系 ,得到各顶点的坐标为A (-6,12),B (-6,0),C (0,6),D (-6,6).以点..B.为旋转中心.....,在平面直角坐标系内将小旗顺时针...旋转90°. (1)画出旋转后的小旗A ′C ′D ′B ′; (2)写出A ′,C ′,D ′的坐标;(3)求出线段BA 旋转到B ′A ′时所扫过的扇形的面积.【答案】 (1)A DBCO xy(第22题图)剪刀石头布韦玲剪刀 剪刀剪刀石头 石头 石头 布 布 布覃静(2)A ′(6,0),C ′(0,-6),D ′(0,0)(3)ππ3636012902=⨯⨯=S 23.(2013广西柳州,23,8分)(本题满分8分)某游泳池有水4000m 3,现放水清洗池子.同时,工作人员记录放水的时间x (单位:分钟)与池内水量y (单位:m 3)的对应变化的情况, 如下表: 时间x (分钟) … 10 20 30 40 … 水量y (m 3)…3750350032503000…(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m 3? (2)请你用函数解析式表示y 与x 的关系,并写出自变量x 的取值范围. 【答案】(1)4000-25×80=2000( m 3) (2)y =-25x +4000(0≤x ≤160)(本题:一采用待定系数法,二利用解应用题的思路求解) 24.(2013广西柳州,24,10分)(本题满分10分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,连结AC 、BD .在平面内将△DBC 沿BC 翻折得到△EBC . (1) 四边形ABEC 一定是什么四边形? (2) 证明你在(1)中所得出的结论.【答案】(1) 平行四边形(2) ∵四边形ABCD 为等腰梯形,∴AB =CD ,AC =BD .∵△DBC 沿BC 翻折得到△EBC ,BECDA (第17题图)A ′xyC ′B ′D ′O∴DC =CE ,BD =BE . ∴AB =CE ,AC =BE .∴四边形ABEC 是四平行边形. 25.(2013广西柳州,25,10分)(本题满分10分)如图,⊙O 的直径AB =6,AD 、BC 是⊙O 的两条切线,AD =2,BC =29. (1)求OD 、OC 的长;(2)求证:△DOC ∽△OBC ; (3)求证:CD 是⊙O 的切线.【答案】(1) 解:∵AD 、BC 是⊙O 的两条切线, ∴∠A =90°,∠B =90°. 根据勾股定理:13232222=+=+=OA AD OD1323)29(32222=+=+=BC OB OC(2)过点D 做DH ⊥BC ,则213)229(622=-+=DC ,B AOC D(第25题图)HB A OC D(第25题图)∵313===OC DC BC OC OB DO ∴△DOC ∽△OBC. (3)过点G 做OG ⊥DC 于点G ,∵△DOC ∽△OBC , ∴∠OCB =∠OCG .∴O C 为∠BCD 的角平分线. ∵OG ⊥DC ,OB ⊥BC , ∴OB =OG .∴CD 是⊙O 的切线 26.(2013广西柳州,26,12分)(本题满分12分) 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,0),(5,0),(3,-4). (1)求该二次函数的解析式;(2)当y >-3时,写出x 的取值范围;(3)A 、B 为直线y =-2x -6上两动点,且距离为2,点C 为二次函数图象上的动点,当点C 运动到何处时△ABC 的面积最小?求出此时点C 的坐标及△ABC 面积的最小值.B A OCD(第25题图)G【答案】(1) 设y =a (x -1)(x -5),把(3,-4)代入得a =1, y =x 2-6x +5 (2) x <2,或x >4. (3)设直线l′的解析式b x y +-=2,当直线l′与抛物线相切时,点C 距离直线y =-2x -6最近.5622+-=+-x x b x , 0542=-+-b x x0)5(14)4(422=-⨯⨯--=-=∆b ac byxO(第26题图)D F CEG A Bl ′MyxO(第26题图)1=b⎩⎨⎧+-=+-=56122x x y x y 解得:⎩⎨⎧-==32y x∴点C (2,-3). 容易求出点D (-3,0),E (21,0),M (0,-6), 易证△DFE ∽△DOM , OM EF DM DE =,6535.3EF =,557=EF ,557557221=⨯⨯=∆ABC S .。
广西柳州市2013年初中毕业升学模拟考试数学试卷
广西柳州市2013年初中毕业升学模拟考试数学试卷(考试时间120分钟,满分120分)注意事项:1.答题前,考生先将自己的学校、姓名、考号(准考证号)填写在试卷及答题卡指定位置,将条形码准确粘贴在答题卡的条形码区域内。
2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3.请按照题号顺序在各题目的答题卡区域内作答,超出答题区域书写的答案无效。
4.在草稿纸、试卷上答题无效。
第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,满分36分。
在每个小题给出的四个选项中,只有一个选项是正确的,每小题选对得3分,错选、不选或多选均得零分) 1.4的平方根是A .±2B .2C .±4D .42.下列等式中不是方程的是A .x 2+2x-3=0 B.x+2y=12 C.x+1=3x D. 5+8=133.函数y =x 的取值范围是A .x 2>B .x 2≥C .x 2≤D .x 2< 4.下列说法正确的是A .-2xy 与4yx 是同类项B .单项式-x 的系数是-1C .多项式2x-3的次数是1D .1.8和1.80的精确度相同 5. 抛物线2(2)3y x =-+的对称轴是A.直线 x =2 B. 直线x = -2 C.直线x = -3 D.直线x =36.一元二次方程x 2+2x +1=0根的情况是A.有两个不相等的实数根;B.有两个相等的实数根;C.有一个实数根;D.无实数根.7. 下列四个函数图象中,当x >0时,y 随x 的增大而增大的是8.一个正多边形,它的每一个外角都等于45°,则该正多边形是 A .六边形 B .七边形 C .正八边形 D .正九边形 9.如图,点A ,B ,C 在⊙O 上,若40C ∠=︒,则∠AOB 的度数为 A. 20︒B. 40︒C. 80︒D. 100︒10.如图所示,∠AOB 的两边OA 、OB 均为平面反光镜,∠AOB =35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是A .35°B .70°C .110°D .120°11.如图,△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE =2cm ,则AC 的长为(A )(B )4cm (C )(D )12. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为H ,点P 是弧AC 上的一点(点P 不与A ,C 重合),连结PC ,PD ,PA ,AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论: ①CH 2=AH²BH;②弧AD=弧AC ;③AD 2=DF²DP;④∠EPC=∠APD . 其中正确的个数有A .1个B .2个C .3个D .4个第11题图第9题图第10题图 AB DEF G(第12题)第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,满分18分.请将答案直接填写在答题卡中相应的横线上.)13.如果向东走20m 记作+20m ,那么向西走10m 记作 . 14.一次函数y =6x +1的图象不经过第 象限.15. 为了参加2013年的体育中考,小李同学进行了刻苦训练,在投掷实心球时,测得5次投掷的成绩(单位:米)分别为8,8.5,8.8,8.5,9.2.则这组数据的众数是 ,中位数是 ,方差是 .16.在四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,如果四边形EFGH为菱形,那么四边形ABCD 是 (只要写出一种即可).17.如图,圆锥的底面半径OB 为10cm ,它的展开图扇形的半径AB 为30cm ,则这个扇形圆心角α的度数是_ _.18.如图,将矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上点P 处,已知︒=∠90MPN ,PM=3,PN=4,,那么矩形纸片ABCD 的面积为 .三、解答题(本大题共8小题,满分66分.解答应写出必要的文字说明、演算步骤或推理过程.请将解答写在答题卡中相应的区域内,画图或作辅助线时先使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑.) 19.(本题满分8分,每小题4分)(1)计算:101()2)3---4sin60°+12 (2)化简:121)11(22++-÷-+a a a a a20. (本题满分6分)如图,在矩形ABCD 中,E 为AD 的中点,求证∠EBC =∠ECB .21.(本题满分6分)在平面直角坐标系中,△AOB 的位置如图。
2013柳州市初中毕业升学考试试卷数学试题
一、选择题1-6 CDCAD B 7-12 BCCADA二、填空题13、x>214、 215、716、9.417、2018、①②③④三、解答题解答:解:原式=4﹣1=3.解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.解答:解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.=解答:解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得,所以,y=﹣250+4000.解答:(1)解:四边形ABEC一定是平行四边形;(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD,由折叠的性质可得:EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.,OD=,=BE=在Rt△EDC中,根据勾股定理得:DC==,∵===,∴△DOC∽△OBC;(3)证明:过O作OF⊥DC,交DC于点F,∵△DOC∽△OBC,∴∠BCO=∠FCO,∵在△BCO和△FCO中,,∴△BCO≌△FCO(AAS),∴OB=OF,则CD是⊙O切线.∴,解得MN=3∴tan∠MNO==,sin∠MNO==.设点C坐标为(x,y),则y=x2﹣6x+5.过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,在Rt△CDF中,DF=CD•tan∠MNO=x,CF====x.∴FN=DN﹣DF=6+y﹣x.在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x).∴CE=CF+EF=x+(6+y﹣x),∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:CE=(x2﹣4x+11)=(x﹣2)2+,∴当x=2时,CE有最小值,最小值为.当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).△ABC的最小面积为:AB•CE=×2×=.∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。
广西柳州市2013年中考数学试卷答案-(5824)
广西柳州市2013年中考数学试卷答案一、选择题1-6 CDCAD B 7-12 BCCADA二、填空题13、x>214、215、716、9.417、2018、①②③④三、解答题19、解答:解:原式=4﹣1=3.20、解答:解:去括号得:3x+12=x,移项合并得:2x=﹣12,解得:x=﹣6.21、解答:解:(1)画树状图得:则有9种等可能的结果;(2)∵韦玲胜出的可能性有3种,故韦玲胜出的概率为:.22、解答:解:(1)小旗A′C′D′B′如图所示;(2)点A′(6,0),C′(0,﹣6),D′(0,0);(3)∵A(﹣6,12),B(﹣6,0),∴AB=12,∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.23、解答:解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得,所以,y=﹣250+4000.24、解答:(1)解:四边形ABEC一定是平行四边形;(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD,由折叠的性质可得:EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.25、解答:(1)解:∵AD、BC是⊙O的两条切线,∴∠OAD=∠OBC=90°,在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,根据勾股定理得:OD==,OC==;(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,∴四边形ABED为矩形,∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,在Rt△EDC中,根据勾股定理得:DC==,∵===,∴△DOC∽△OBC;(3)证明:过O作OF⊥DC,交DC于点F,∵△DOC∽△OBC,∴∠BCO=∠FCO,∵在△BCO和△FCO中,,∴△BCO≌△FCO(AAS),∴OB=OF,则CD是⊙O切线.26、解答:解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上,∴,解得.∴二次函数的解析式为:y=x2﹣6x+5.(2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3,整理得:x2﹣6x+8=0,解得x1=2,x2=4.结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,令x=0,得y=﹣6;令y=0,得x=﹣2.∴M(﹣3,0),N(0,﹣6),∴OM=3,ON=6,由勾股定理得:MN=3,∴tan∠MNO==,sin∠MNO==.设点C坐标为(x,y),则y=x2﹣6x+5.过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,在Rt△CDF中,DF=CD?tan∠MNO=x,C F====x.∴FN=DN﹣DF=6+y﹣x.在Rt△EFN中,EF=FN?sin∠MNO=(6+y﹣x).∴CE=CF+EF=x+(6+y﹣x),∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:CE=(x 2﹣4x+11)=(x﹣2)2+,∴当x=2时,CE有最小值,最小值为.当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).△ABC的最小面积为:AB?CE=×2×=.∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。
广西柳州市中考数学试卷(含答案解析)
广西柳州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的.每小题选对得3分,选错,不选或多选均得0分)1.(3分)(2015•柳州)如图是小李书桌上放的一本书,则这本书的俯视图是()考点:简单几何体的三视图.分析:根据几何体的俯视图的概念:俯视图是从上向下看得到的图形进行解答即可得到答案.解答:解:根据俯视图的概念可知,几何体的俯视图是A图形,故选:A.点评:本题考查的是几何体的三视图,掌握主视图、左视图和俯视图分别是从前向后、从左向右和从上向下看所得的图形是解题的关键,2.(3分)(2015•柳州)如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到()A.147.40元B.143.17元C.144.23元D.136.83元考点:有理数的加减混合运算;有理数大小比较.专题:应用题.分析:根据存折中的数据进行解答.解答:解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.点评:本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.3.(3分)(2015•柳州)某学校小组5名同学的身高(单位:cm)分别为:147,151,152,156,159,则这组数据的中位数是()A.147 B.151 C.152 D.156考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:由于此数据已经按照从小到大的顺序排列了,发现152处在第3位.所以这组数据的中位数是152,故选C.点评:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.4.(3分)(2015•柳州)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°考点:对顶角、邻补角.分析:根据邻补角互补解答即可.解答:解:∠α的度数=180°﹣45°=135°.故选A.点评:此题考查邻补角定义,关键是根据邻补角互补分析.5.(3分)(2015•柳州)下列图象中是反比例函数y=﹣图象的是()考点:反比例函数的图象.分析:利用反比例函数图象是双曲线进而判断得出即可.解答:解:反比例函数y=﹣图象的是C.故选:C.点评:此题主要考查了反比例函数的图象,正确掌握反比例函数图象的形状是解题关键.6.(3分)(2015•柳州)如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A.60°B.70°C.80°D.90°考点:圆周角定理.专题:计算题.分析:利用直径所对的圆周角为直角判断即可.解答:解:∵BC是⊙O的直径,∴∠A=90°.故选D.点评:此题考查了圆周角定理,熟练掌握圆周角定理是解本题的关键.7.(3分)(2015•柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25% B.50% C.75% D.85%考点:可能性的大小.分析:抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案.解答:解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.故选:B.点评:本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(3分)(2015•柳州)如图,点A(﹣2,1)到y轴的距离为()A.﹣2 B.1C.2D.考点:点的坐标.分析:根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:点A的坐标为(﹣2,1),则点A到y轴的距离为2.故选C.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.9.(3分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.x y D.4x考点:同类项.分析:根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.解答:解:与2xy是同类项的是xy.故选C.点评:此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.10.(3分)(2015•柳州)如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.点评:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,是基础题,熟记性质是解题的关键.11.(3分)(2015•柳州)如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0D.x>4考点:抛物线与x轴的交点.分析:利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.解答:解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.点评:此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.12.(3分)(2015•柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.解答:解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.点评:本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2015•柳州)计算:a×a=a2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:a×a=a2.故答案为:a2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.14.(3分)(2015•柳州)如图,△ABC≌△DEF,则EF=5.考点:全等三角形的性质.分析:利用全等三角形的性质得出BC=EF,进而求出即可.解答:解:∵△ABC≌△DEF,∴BC=EF则EF=5.故答案为:5.点评:此题主要考查了全等三角形的性质,得出对应边是解题关键.15.(3分)(2015•柳州)直线y=2x+1经过点(0,a),则a=1.考点:一次函数图象上点的坐标特征.分析:根据一次函数图象上的点的坐标特征,将点(0,a)代入直线方程,然后解关于a的方程即可.解答:解:∵直线y=2x+1经过点(0,a),∴a=2×0+1,∴a=1.故答案为:1.点评:本题考查了一次函数图象上的点的坐标特征:经过函数的某点一定在函数的图象上,并且一定满足该函数的解析式方程.16.(3分)(2015•柳州)如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sinB=.考点:锐角三角函数的定义;勾股定理.分析:根据锐角三角函数定义直接进行解答.解答:解:∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sinB==.故答案是:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.17.(3分)(2015•柳州)若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为﹣3.考点:一元二次方程的解.分析:将x=1代入方程得到关于m的方程,从而可求得m的值.解答:解:将x=1代入得:1+2+m=0,解得:m=﹣3.故答案为:﹣3.点评:本题主要考查的是方程的解(根)的定义,将方程的解(根)代入方程得到关于m的方程是解题的关键.18.(3分)(2015•柳州)如图,矩形EFGH内接于△ABC,且边FG落在BC上.若BC=3,AD=2,EF=EH,那么EH的长为.考点:相似三角形的判定与性质;矩形的性质.专题:应用题.分析:设EH=3x,表示出EF,由AD﹣EF表示出三角形AEH的边EH上的高,根据三角形AEH与三角形ABC相似,利用相似三角形对应边上的高之比等于相似比求出x的值,即为EH的长.解答:解:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴=,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴=,解得:x=,则EH=.故答案为:.点评:此题考查了相似三角形的判定与性质,以及矩形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.三、解答题(本大题共8小题,满分66分)19.(6分)(2015•柳州)计算:+.考点:分式的加减法.分析:根据分式的加法计算即可.解答:解:+==1.点评:此题考查分式的加减法,关键是根据同分母的分式相加减的运算分析.20.(6分)(2015•柳州)如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿直线匀速爬向B点的过程中,到达C点时用了6分钟,那么还需要多长时间才能到达B点?考点:一元一次方程的应用;数轴.分析:设蜗牛还需要x分钟到达B点.根据路程=速度×时间列出方程并解答.解答:解:设蜗牛还需要x分钟到达B点.则(6+x)×=5,解得x=4.答:蜗牛还需要4分钟到达B点.点评:本题考查了数轴和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(6分)(2015•柳州)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.考点:勾股定理;三角形中位线定理.分析:(1)直接利用勾股定理得出BD的长即可;(2)利用平行线分线段成比例定理得出BD=AE,进而求出即可.解答:解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3;(2)延长CB,过点A作AE⊥CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=AE,∴AE=6,即BC边上高的长为6.点评:此题主要考查了勾股定理以及平行线分线段成比例定理,得出BD=AE是解题关键.22.(8分)(2015•柳州)如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人生.(1)请你求出图中的x值;(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?考点:扇形统计图;用样本估计总体.分析:(1)根据有理数的减法,可得答案;(2)根据喜爱跳绳的同学除以跳绳的圆心角所占的比例,可得答案.解答:解:(1)x=360°﹣70°﹣65°﹣50°﹣96°=79°;(2)这个年级共有144÷=570人.点评:本题考查的是扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(8分)(2015•柳州)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?考点:待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征;二次函数的最值.分析:(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.解答:解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.S最大值=.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.24.(10分)(2015•柳州)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C 出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当P Q⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.25.(10分)(2015•柳州)如图,已知四边形ABCD是平行四边形,AD与△ABC的外接圆⊙O恰好相切于点A,边CD与⊙O相交于点E,连接AE,BE.(1)求证:AB=AC;(2)若过点A作AH⊥BE于H,求证:BH=CE+EH.考点:切线的性质;平行四边形的性质.分析:(1)根据弦切角定理和圆周角定理证明∠ABC=∠ACB,得到答案;(2)作AF⊥CD于F,证明△AEH≌△AEF,得到EH=EF,根据△ABH≌△ACF,得到答案.解答:证明:(1)∵AD与△ABC的外接圆⊙O恰好相切于点A,∴∠ABE=∠DAE,又∠EAC=∠EBC,∴∠DAC=∠ABC,∵AD∥BC,∴∠DAC=∠ACB,∴∠ABC=∠ACB,∴AB=AC;(2)作AF⊥CD于F,∵四边形ABCE是圆内接四边形,∴∠ABC=∠AEF,又∠ABC=∠ACB,∴∠AEF=∠ACB,又∠AEB=∠ACB,∴∠AEH=∠AEF,在△AEH和△AEF中,,∴△AEH≌△AEF,∴EH=EF,∴CE+EH=CF,在△ABH和△ACF中,,∴△ABH≌△ACF,∴BH=CF=CE+EH.点评:本题考查的是切线的性质和平行四边形的性质以及全等三角形的判定和性质,运用性质证明相关的三角形全等是解题的关键,注意圆周角定理和圆内接四边形的性质的运用.26.(12分)(2015•柳州)如图,已知抛物线y=﹣(x2﹣7x+6)的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.(1)用配方法将抛物线的解析式化为顶点式:y=a(x﹣h)2+k(a≠0),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.考点:二次函数综合题.专题:综合题.分析:(1)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,﹣x2+x﹣3).根据NP=AB=列出方程(x﹣)2+(﹣x2+x﹣3)2=()2,解方程得到点P坐标,再计算得出PM2+PN2=MN2,根据勾股定理的逆定理得出∠MPN=90°,然后利用切线的判定定理即可证明直线MP是⊙N的切线.解答:(1)解:∵y=﹣(x2﹣7x+6)=﹣(x2﹣7x)﹣3=﹣(x﹣)2+,∴抛物线的解析式化为顶点式为:y=﹣(x﹣)2+,顶点M的坐标是(,);(2)解:∵y=﹣(x2﹣7x+6),∴当y=0时,﹣(x2﹣7x+6)=0,解得x=1或6,∴A(1,0),B(6,0),∵x=0时,y=﹣3,∴C(0,﹣3).连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC==3.设直线BC的解析式为y=kx+b,∵B(6,0),C(0,﹣3),∴,解得,∴直线BC的解析式为:y=x﹣3,令x=,得y=×﹣3=﹣,∴R点坐标为(,﹣);(3)证明:设点P坐标为(x,﹣x2+x﹣3).∵A(1,0),B(6,0),∴N(,0),∴以AB为直径的⊙N的半径为AB=,∴NP=,即(x﹣)2+(﹣x2+x﹣3)2=()2,化简整理得,x4﹣14x3+65x2﹣112x+60=0,(x﹣1)(x﹣2)(x﹣5)(x﹣6)=0,解得x1=1(与A重合,舍去),x2=2,x3=5(在对称轴的右侧,舍去),x4=6(与B重合,舍去),∴点P坐标为(2,2).∵M(,),N(,0),∴PM2=(2﹣)2+(2﹣)2=,PN2=(2﹣)2+22==,MN2=()2=,∴PM2+PN2=MN2,∴∠MPN=90°,∵点P在⊙N上,∴直线MP是⊙N的切线.点评:本题是二次函数的综合题,其中涉及到二次函数的图象与性质、待定系数法求一次函数的解析式、轴对称﹣最短路线问题以及切线的判定等知识,综合性较强,难度适中.第(3)问求出点P 的坐标是解题的关键.。
广西柳州市2013年中考数学试卷答案
解:(1)画树状图得:
则有9种等可能的结果;
(2)∵韦玲胜出的可能性有3种,
故韦玲胜出的概率为: .
22、
解答:
解:(1)小旗A′C′D′B′如图所示;
(2)点A′(6,0),C′(0,﹣6),D′(0 ,0);
(3)∵A(﹣6,12),B(﹣6,0),
∴AB=12,
∴线段BA旋转到B′A′时所扫过的扇形的面积= =36π.
广西柳州市2013年中考数学试卷答案
一、选择题
1-6 CDCAD B 7-12 BCCADA
二、填空题
13、x>2
14、2
15、7
16、9.4
17、20
18、①②③④
三、解答题
19、
解答:
解:原式=4﹣1
=3.
20、
解答:
解:去括号得:3x+12=x,
移项合并得:2x=﹣12,
解得:x=﹣6.
21、
23、
解答:
解:(1)由图表可知,每10分钟放水250m3,
所以,第80分钟时,池内有水4000﹣8×250=2000m3;
(2)设函数关系式为y=kx+b,
∵x=20时,y=3500,
x=40时,y=3000,
∴ ,
解得 ,
所以,y=﹣250+4000.
24、
解答:
(1)解:四边形ABEC一定是平行四边形;
整理得:x2﹣6x+8=0,解得x1=2,x2=4.
结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.
(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,
令x=0,得y=﹣6;令y=0,得x=﹣2.
广西柳州市2013年中考数学二模试卷(解析版) 新人教版
某某某某市2013年中考数学二模试卷一.选择题(每小题3分,共36分)1.(3分)(2013•某某二模)0的相反数是()A.0B.1C.﹣1 D.±1考点:相反数分析:根据0的相反数是0解答.解答:解:0的相反数是0.故选A.点评:本题考查了相反数,规定0的相反数是0需熟记.2.(3分)(2013•某某二模)不等式x+1<2的解集是()A.x>﹣2 B.x<3 C.x≤2D.x<1 考点:解一元一次不等式专题:计算题.分析:先移项,再合并同类项即可.解答:解:移项得,x<2﹣1,合并同类项得,x<1.故选D.点本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的评:关键.3.(3分)(2013•某某二模)在第一象限的点是()A.(2,﹣1)B.(2,1)C.(﹣2,1)D.(﹣2,﹣1)考点:点的坐标.分析:根据各象限内的点的坐标特对各选项分析判断后利用排除法求解.解答:解:A、(2,﹣1)在第四象限,故本选项错误;B、(2,1)在第一象限,故本选项正确;C、(﹣2,1)在第二象限,故本选项错误;D、(﹣2,﹣1)在第三象限,故本选项错误.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)(2013•某某二模)如图,已知圆心角∠BOC=100°,则圆周角∠BAC的大小是()A.50°B.100°C.130°D.200°考点:圆周角定理分析:根据圆周角定理可直接求出答案.解答:解:根据圆周角定理,可得:∠A=∠BOC=50°.故选A.点评:本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)(2013•某某二模)某校初三(1)班有同学50人,他们对球类运动的喜欢用如图所示的统计图来表示,那么喜欢足球的人数是()A.40人B.30人C.20人D.10人考点:扇形统计图分析:先用整体1减去乒乓球、排球、篮球所占的百分比,求出喜欢足球的人数所占的百分比,再乘以50,即可得出答案.解答:解:根据题意得;喜欢足球的人数所占的百分比是:1﹣25%﹣15%﹣20%=40%,那么喜欢足球的人数是50×40%=20(人);故选C.点评:此题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.6.(3分)(2013•某某二模)在下列的计算中,不正确的是()A.(﹣2)+(﹣3)=﹣5 B.(a+1)(a﹣1)=a2﹣1C.a(1+b)=a+ab D.(x﹣2)2=x2﹣4考点:完全平方公式;有理数的加法;单项式乘多项式;平方差公式分析:根据有理数的加法,平方差公式,单项式乘单项式,以及完全平方公式对各选项分析判断后利用排除法求解.解答:解:A、(﹣2)+(﹣3)=﹣5正确,故本选项错误;B、(a+1)(a﹣1)=a2﹣1正确,故本选项错误;C、a(1+b)=a+ab正确,故本选项错误;D、应为(x﹣2)2=x2﹣4x+4,故本选项正确.故选D.点评:本题考查了有理数的加法,平方差公式,单项式乘多项式,以及完全平方公式,熟记运算法则与公式结构是解题的关键.7.(3分)(2013•某某二模)在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是()A.从口袋中任意取出1个,这是一个红色球B.从口袋中一次任取出5个,全是蓝色球C.从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球D.从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐考点:可能性的大小分析:根据不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,即可得出任摸一次可能得到三种小球的任意一个,分别分析即可得出答案.解答:解:∵根据口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,A.从口袋中任意取出1个,这是一个红色球,∵袋中有三种颜色的小球,故任取一球可以得出三种可能;故此选项错误;B.从口袋中一次任取出5个,全是蓝色球,∵袋中有三种颜色的小球,故任取5球可以得出三种可能;故此选项错误;C.从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球,∵袋中有三种颜色的小球,故任取7球可以得出三种可能;∴故此选项错误;D.从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐,∴从口袋中一次任取出10个,至少有白球1个,∴恰好红,蓝,白色球三种颜色的球都齐,故D正确.故选D.点评:此题主要考查了概率问题,根据袋中小球个数得出得到小球的可能性是解决问题的关键.8.(3分)(2013•某某二模)把一X形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是()A.720°B.540°C.360°D.180°考点:多边形内角与外角分析:把一X形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,再根据多边形的内角和定理判断即可.解答:解:把一X形状是矩形的纸片剪去其中某一个角,剩下的部分的形状可能是三角形或四边形或五边形,所以这个多边形的内角和可能是180°或360°或540°,不可能是720°.故选A.点本题考查了多边形的内角和定理及剪去一个角的方法,得出剩下的部分的形状可能评:是三角形或四边形或五边形是解题的关键.9.(3分)(2013•某某二模)若∠AOB=90°,∠BOC=40°,则∠AOB的平分线与∠BOC的平分线的夹角等于()A.65°B .25°C.65°或25°D.60°或20°考点:三角形的外角性质;角平分线的定义;三角形内角和定理专题:分类讨论.分析:本题分两种情况讨论:(1)当OC在三角形内部;(2)当OC在三角形外部.根据三角形的角平分线及角的和差关系求解.解答:解:本题分两种情况讨论:(1)当OC在三角形内部时,如图1,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB﹣∠EOB=45°﹣20°=25°;(2)当OC在三角形外部时,如图2,∵∠AOB=90°,∠BOC=40°,OD,OE是∠AOB的与∠BOC的平分线,∴∠AOD=∠DOB=∠AOB=×90°=45°,∠BOE=∠EOC=∠BOC=×40°=20°,∴∠DOE=∠DOB+∠EOB=45°+20°=65°.故选C.点评:本题较简单,考查的是三角形的角平分线及角的和差关系,在解答此题时要注意分两种情况讨论,不要漏解.10.(3分)(2013•某某二模)如图,直角三角形ABC的两直角边BC=12,AC=16,则△ABC 的斜边AB上的高CD 的长是()A.20 B.10 C.D.8考点:勾股定理;三角形的面积分析:先根据勾股定理求出AB的长度,然后根据三角形的面积公式求出CD的长度即可.解答:解:在直角△ABC 中,AB===20,则CD===9.6.故选C.点评:本题考查了勾股定理和三角形的面积,解答本题的关键是利用勾股定理求出AB的长度,要求同学们掌握三角形的面积公式.11.(3分)(2013•某某二模)如图是一个包装盒的三视图,则这个包装盒的体积是()A.1000πcm3B.1500πcm3C.2000πcm3D.4000πcm3考点:由三视图判断几何体分析:根据三视图,易判断出该几何体是圆柱.已知底面半径和高,根据圆柱的体积公式可求.解答:解:综合三视图,可以得出这个几何体应该是个圆柱体,且底面半径为10cm,高为20cm.因此它的体积应该是:π×10×10×20=2000πcm3,故选C.点评:本题主要考查了由三视图确定几何体的形状以及圆柱的体积的求法.12.(3分)(2013•某某二模)已知:如图所示的一X矩形纸片ABCD,(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE,若AE=8cm,△ABF的面积为33cm,则△ABF的周长等于()A.24cm B.22cm C.20cm D.18cm考点:翻折变换(折叠问题)分析:首先证明四边形AECF是菱形,进而得到AF=AE=8,然后再设AB=x,BF=y,在直角三角形ABF中利用勾股定理可得x2+y2=64,根据三角形的面积可得xy=66,然后配方可得(x+y)2=196,进而得到△ABF的周长.解答:解:由题意可知OA=OC,AE=EC,AF=CF,∵AE=EC,AF=CF,∴EF是AC的垂直平分线,∴四边形AECF是菱形;∴AF=AE=8;设AB=x,BF=y,∵∠B=90°,在直角三角形ABF中,根据勾股定理得:AB2+BF2=AF2,即x2+y2=64,又∵S△ABF=33,∴xy=33,则xy=66;∴(x+y)2=196,∴x+y=14或x+y=﹣14(不合题意,舍去);∴△ABF的周长为14+8=22.故选B.点评:此题主要考查了线段垂直平分线的性质、菱形的判定以及勾股定理等知识的综合应用,在求三角形周长时,要注意整体思想的运用.二.填空题(每小题3分,共18分)13.(3分)(2013•某某二模)一副三角板叠在一起如图放置,那么∠AOB为105 度.考点:角的计算分析:根据图形得出∠AOB=45°+60°,求出即可.解答:解:根据图形可知:∠AOB=45°+60°=105°,故答案为:105.点评:本题考查了角的有关计算的应用,主要考查学生的计算能力.14.(3分)(2013•某某二模)分解因式:x3﹣x= x(x+1)(x﹣1).考点:提公因式法与公式法的综合运用专题:压轴题.分析:本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.解答:解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).点评:本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.15.(3分)(2013•某某二模)分式有意义的条件是x≠1.考点:分式有意义的条件专题:存在型.分根据分式有意义的条件列出关于x的不等式,求出x的取值X围即可.析:解答:解:∵分式有意义,∴x﹣1≠0,即x≠1.故答案为:x≠1.点评:本题考查的是分式有意义的条件,即分式的分母不等于零.16.(3分)(2013•某某二模)已知△ABC∽△DEF,AB=6cm,DE=12cm,且△ABC的周长为24cm,则△DEF的周长为48cm .考点:相似三角形的性质分析:根据相似三角形周长的比等于相似比列式计算即可得解.解答:解:设△DEF的周长为xcm,∵△ABC∽△DEF,∴==,解得x=48.故答案为:48cm.点评:本题考查了相似三角形的性质,熟练掌握相似三角形周长的比等于相似比是解题的关键.17.(3分)(2013•某某二模)如果y2﹣my+9是一个完全平方式,那么m的值是±6.考点:完全平方式专题:常规题型.分析:先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.解答:解:y2﹣my+9=y2﹣my+32,∴﹣my=±2×3y,解得m=±6.故答案为:±6.点评:本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.18.(3分)(2013•某某二模)在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点A2013的纵坐标是.考点:一次函数综合题专题:探究型.分析:利用待定系数法求一次函数解析式求出直线的解析式,再求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到各点的纵坐标的规律.解答:解:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得,∴直线解析式为y=x+,如图,设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点A n的纵坐标是()n﹣1.∴点A2013的纵坐标是()2012.故答案为:()2012.点评:本题是对一次函数的综合考查,主要利用了待定系数法求函数解析式,等腰直角三角形斜边上的高线就是斜边上的中线,直角三角形斜边上的中线等于斜边的一半,以及正切的定义,规律性较强,注意指数与点的脚码相差1.三.解答题(本大题共8题,满分66分)19.(6分)(2013•某某二模)计算:.考点:实数的运算;特殊角的三角函数值专题:计算题.分析:原式第一项利用负数的绝对值等于它的相反数,第二项利用﹣1的奇次幂为﹣1计算,第三项利用平方根的定义化简,最后一项利用特殊角的三角函数值计算,即可得到结果.解答:解:原式=4﹣1﹣3+2×=.点评:此题考查了实数的运算,涉及的知识有:平方根的定义,二次根式的化简,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.20.(6分)(2013•某某二模)已知Rt△ABC中,∠B=90°,AD平分∠A,交BC边于点D.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)作线段AD的垂直平分线交AB 于E,交AC于F,垂足为H;连接DE.(2)在(1)所作的图形中证明:△DHE≌△AHF.考点:作图—复杂作图;全等三角形的判定分析:(1)根据线段垂直平分线的作法作图即可;(2)首先根据线段垂直平分线的性质可得AH=EH,EA=ED,进而得到∠BAD=∠ADE,再根据角平分线的性质可得∠BAD=∠CAD,进而得到∠BAD=∠CAD,再加上对顶角∠AHF=∠DHE,可利用ASA证明△DHE≌△AHF.解答:(1)解:如图所示;(2)证明:连接ED,∵AD平分∠A,∴∠BAD=∠CAD,∵EF垂直平分AD,∴AH=EH,EA=ED,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵在△DHE和△AHF中,,∴△DHE≌△AHF(ASA).点评:此题主要考查了基本作图,以及全等三角形的判定与线段垂直平分线的性质,关键是掌握全等三角形的判定定理SSS、SAS、ASA、AAS.21.(6分)(2013•某某二模)已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数和直线BC的解析式.(2)请直接写出当反比例函数值大于一次函数值时自变量x的取值X围.考点:反比例函数与一次函数的交点问题分析:(1)首先求出反比例函数解析式进而得出B点坐标,即可利用待定系数法求一次函数解析式;(2)利用函数图象以及交点坐标得出反比例函数值大于一次函数值时自变量x的取值X围即可.解答:解:(1)设反比例函数的解析式为y=∵反比例函数的图象过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=,∵点B的纵坐标为1,点B在反比例函数的图象上,∴1=∴解得:x=3;∴B (3,1);设直线BC 的解析式为y=kx+b,∴解得:∴直线BC的解析式为:y=x﹣2;(2)当反比例函数值大于一次例函数值的自变量的取值X围是:x<﹣1或0<x<3.点评:此题主要考查了反比例函数与一次函数交点问题以及利用图象比较函数值大小关系,利用数形结合得出是解题关键.22.(8分)(2013•某某二模)如图,一个钢结构支柱AB被钢缆CD固定于地面,已知DC=5米,sin∠DCB=.(1)求C、B两地距离;(2)若AD=2米,钢结构的顶端E距离A处2.6米,且∠EAB=120°,则钢结构的顶端E距离地面多少米?考点:解直角三角形的应用分析:(1)在Rt△DCB中,利用三角函数的定义与勾股定理可求得CB;(2)过点E作EF⊥AB于点F.由∠EAB=120°,得∠EAF=60°,再根据三角函数求得AF,从而得出答案.解答:解:(1)在Rt△DCB 中,∵sin∠DCB==,设DB=3x,则DC=5x,由勾股定理,得CB=4x,∵DC=5x=5,∴x=1.∴CB=4.∴C、B两点的距离是4米;(2)如图,过点E作EF⊥AB于点F.∵∠EAB=120°,∴∠EAF=60°,∴AF=AE•cos∠EAF=2.6×=1.3(米),∴FB=AF+AD+DB=1.3+2+3=6.3(米),∴钢结构的顶端E距离地面6.3米.点评:本题考查了解直角三角形的应用,运用三角函数可得出答案,难度适中.23.(8分)(2013•某某二模)某商店准备从批发市场购进甲、乙两种钢笔进行销售,若每支甲种钢笔的进价比每支乙种钢笔的进价少3元,且用80元购进甲种钢笔的数量与用120元购进乙种钢笔的数量相同.(1)求甲、乙两种钢笔的进价每支分别为多少元?(2)若该商店本次购进甲种钢笔的数量比购进乙种钢笔的数量的2倍还多5支,购进两种钢笔的总数量不超过80支,该商店每支甲种钢笔的销售价格为10元.每支乙种钢笔的销售价格为14元,则将本次购进的甲、乙两种钢笔全部售出后,可使销售两种钢笔的总利润超过319元,通过计算求出该商店本次从批发市场购进甲、乙两种钢笔有几种方案?请你设计出来.考点:分式方程的应用;一元一次不等式组的应用分析:(1)甲种钢笔每支x元,则乙种钢笔每支x+3元,由用80元购进甲种钢笔的数量与用120元购进乙种钢笔的数量相同为等量关系建立方程求出其解即可;(2)设买乙种钢笔a支,则买甲种钢笔2a+5支,根据两种钢笔的总数量不超过80支,销售两种钢笔的总利润超过319元建立不等式组求出其解即可.解答:解:(1)设甲种钢笔每支x元,则乙种钢笔每支x+3元,依题意得:,解得:x=6,经检验,x=6是原方程的根,∴乙种钢笔每支6+3=9元.答:甲种钢笔每支6元,则乙种钢笔每支9元;(2)设买乙种钢笔a支,则买甲种钢笔2a+5支,依题意得:,解得 23<a≤25,∵a取整数,∴a取24、25共2种方案,∴有两种购买方案:方案一:买乙种钢笔24支,甲种钢笔53支;方案二:买乙种钢笔25支,甲种钢笔55支.点评:本题考查了列分式方程解实际问题的运用,列不等式组解设计方案的运用,解答时找到题意的等量关系和不相等关系建立方程和不等式是关键.24.(10分)(2013•某某二模)我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,X老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,X老师一共调査了20 名同学,其中C类女生有 2 名,D类男生有1 名;(2)将上面的条形统计图补充完整;(3)为了共同进步,X老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.考点:条形统计图;扇形统计图;列表法与树状图法分析:(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.解答:解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据X老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.点评:此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(10分)(2013•某某二模)如图,在⊙O中,弦CD垂直于直径AB于点F,OF=3,CD=8,M是OC的中点,AM的延长线交⊙O于点E,DE与BC交于点N,(1)求AB的长;(2)求证:BN=.考点:相似三角形的判定与性质;勾股定理;垂径定理;圆周角定理专题:探究型.分析:(1)先根据垂径定理求出CF的长,在Rt△OCF根据勾股定理可求出OC的长,故可得出AB的长;(2)连结AC,BD,根据弦CD垂直于直径AB可知BC=BD.∠BCD=∠BDC,再由OA=OC可知∠OCA=∠OAC,由相似三角形的判定定理可知△BCD∽△OCA,所以=,同理可得△CDN∽△CAM,所以=,==,故可得出结论.解答:解:(1)∵AB是⊙O直径,AB⊥CD,CD=8 ∴CF=4在Rt△OCF中,根据勾股定理,得OC2=OF2+CF2=32+42=25∴OC=5∴AB=2OC=2×5=10;(2)连结AC,BD∵CD⊥AB,∴BC=BD.∴∠BCD=∠BDC.∵OA=OC,∴∠OCA=∠OAC.∵∠BDC=∠OAC,∴∠BCD=∠OCA.∴△BCD∽△OCA,∴=,在△CDN和△CAM中,∵∠D=∠ACM,∠CDN=∠CAM,∴△CDN∽△CAM∴=,∴==,∴=CB,即BN=.点评:本题考查的是相似三角形的判定与性质,涉及到相似三角形的判定与性质、垂径定理、勾股定理及圆周角定理等知识,难度适中.26.(12分)(2013•某某二模)如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.(1)填空:A点坐标为(﹣2 ,0 ),D点坐标为(﹣2 , 3 );(2)若抛物线y=x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x 轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)考点:二次函数综合题专题:综合题;压轴题.分析:(1)A、D两坐标可由图象看出.(2)抛物线y=x2+bx+c经过C(1,0),D(﹣2,3),两点代入解析式,解得b、c.(3)当点M在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等,故知道EM不会与x轴平行,设抛物线向上平移H个单位能使EM∥x轴,写出平移后的解析式,根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴,将点M代入直线y=x+2,解得h.解答:解:(1)A(﹣2,0),D(﹣2,3)(2)∵抛物线y=x2+bx+c经过C(1,0),D(﹣2,3)代入,解得:b=﹣,c=∴所求抛物线解析式为:y=x2﹣x+;(3)答:存在.∵当点M 在抛物线对称轴的左侧或在抛物线的顶点时,仅当M,E重合时,它们的纵坐标相等.∴EM不会与x轴平行,当点M在抛物线的右侧时,设抛物线向上平移H 个单位能使EM∥x轴,则平移后的抛物线的解析式为∵y=(x﹣1)2+h,∴抛物线与y轴交点E(0,+h),∵抛物线的对称轴为:x=1,根据抛物线的对称性,可知点M的坐标为(2,+h)时,直线EM∥x轴,将(2,+h)代入y=x+2得+h=2+2解得:h=.∴抛物线向上平移个单位能使EM∥x轴.点评:本题二次函数的综合题,要求会求二次函数的解析式,考查平移等知识点,本题步骤有点多,做题需要细心.。
柳州市中考数学试题及答案
柳州市中考数学试题及答案1. 单项选择题:1) 在平行四边形ABCD中,若∠ACD和∠ABC的度数之和等于130°,则∠DAC的度数为()。
A. 50°B. 60°C. 70°D. 80°2) 已知等差数列{a_n}的通项公式为an=3n-1,若a_m=35,则a_n=8时,n-m=()。
A. 3B. 4C. 5D. 63) 某商品原价为130元,现在打8.5折出售,则现价为()。
A. 80元B. 100元C. 110.5元D. 112.5元4) 若a.b表示将实数a和b连接成的数字,则2.75×6=()。
A. 134.5B. 16.5C. 225D. 24505) 若正方形的周长为40cm,则其面积为()。
A. 10 cm²B. 100 cm²C. 160 cm²D. 400 cm²2. 解答题:1) 某数的150%等于120,该数是多少?解:设该数为x,根据题意得方程1.5x=120,解得x=80,因此该数为80。
2) 已知等差数列{a_n}的前4项依次为-3,0,3,6,求数列的通项公式。
解:设该等差数列的首项为a,公差为d,根据题意可得方程组: a+d=-3a+2d=0a+3d=3解以上方程组可得a=3,d=3,因此该等差数列的通项公式为a_n=3n-6。
3. 计算题:1) 一块长方形地块,长为75m,宽为60m,面积是多少平方米?解:该长方形地块的面积为75m×60m=4500m²。
2) 小明去商场购买一件原价为200元的商品,打折后需要支付的价格是多少?解:打折后的价格为200元×0.85=170元。
4. 应用题:某校有2000名学生,其中男生占总人数的40%,女生占剩下的人数的60%。
已知男生中目前学习音乐的学生占男生的25%。
现在将一部分男生和一部分女生组成合唱团,为了增加女生的比例,计划从学习音乐的男生中选出60人,再从女生中选出n人,使合唱团男生和女生人数相等。
柳州市2013年中考数学二模题(带答案)
柳州市2013年中考数学二模题(带答案)(2)在(1)所作的图形中证明:△DHE≌△AHF。
21.(本题6分)已知:如图,反比例函数的图象经过点A、B,点A 的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).(1)求该反比例函数和直线BC的解析式.(2)请直接写出当反比例函数值大于一次函数值时自变量x的取值范围。
22.(本小题8分)如图,一个钢结构支柱AB被钢缆CD固定于地面,已知DC=5米,sin∠DCB==(1)求C、B两地距离;(2)若AD=2米,钢结构的顶端E距离A处2.6米,且∠EAB=120°,则钢结构的顶端E距离地面多少米?23.(本小题8分)某商店准备从批发市场购进甲、乙两种钢笔进行销售,若每支甲种钢笔的进价比每支乙种钢笔的进价少3元,且用80元购进甲种钢笔的数量与用120元购进乙种钢笔的数量相同。
(1)求甲、乙两种钢笔的进价每支分别为多少元?(2)若该商店本次购进甲种钢笔的数量比购进乙种钢笔的数量的2倍还多5支,购进两种钢笔的总数量不超过80支,该商店每支甲种钢笔的销售价格为10元。
每支乙种钢笔的销售价格为14元,则将本次购进的甲、乙两种钢笔全部售出后,可使销售两种钢笔的总利润超过319元,通过计算求出该商店本次从批发市场购进甲、乙两种钢笔有几种方案?请你设计出来。
24.(本小题10分)某校实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.,在⊙O中,弦CD垂直于直径AB于点F,OF=3,CD=8,M是OC的中点,AM的延长线交⊙O于点E,DE与BC交于点N,(1)求AB的长;(2)求证:BN=CN.26.(本题12分)如图1,已知点B(1,3)、C(1,0),直线y=x+k 经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD. (1)填空:A点坐标为(____,____),D点坐标为(____,____);(2)若抛物线y=13x2+bx+c经过C、D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.参考答案一.选择题:题号123456789101112答案ADBACDDACCCB二.填空题:13.105°14.x(x+1)(x-1)15.X≠116.48cm,17.±618.三.解答题:19.解:+=4-1-3+2×……………………4分=……………………6分20.证明:(1)正确作图(不写画法,保留作图痕迹)2分;(2)∵AD平分∠A∴∠BAD=∠CAD……………………3分∵EF垂直平分AD∴AH=EHEA=ED……………………4分∠BAD=∠ADE∴∠BAD=∠CAD……………………5分又∠AHF=∠HED△DHE≌△AHF……………………6分21.解:(1)设反比例函数的解析式为y=∵反比例函数的图象过点A(1,3),∴k=1×3=3,∴反比例函数的解析式为y=……………2分∵点B的纵坐标为1,点B在反比例函数的图象上,∴1=∴x=3;∴B(3,1);……………………3分设直线BC的解析式为y=kx+b,∴1=3k+b0=2k+b解得k=1,b=-2∴直线BC的解析式为y=x-2……………………5分(2)当反比例函数值大于一次例函数值的自变量的取值范围是:x<-1或0<x<3…………6分22.解:(1)在Rt△DCB中,sin∠DCB==,DC=5∴DB=4∵DB2+CB2=DC2∴42+CB2=52……………2分∴CB=3……………3分∴C、B两点的距离是3米.………………4分(2)如图,过点E作EF⊥AB于点F………………5分.∵∠EAB=120°,∴∠EAF=60°,∴AF=AE•cos∠EAF=2.6×=1.3(米).…………………7分,∴FB=AF+AD+DB=1.3+2+4=7.3(米),∴钢结构的顶端E距离地面7.3米.…………………8分23.解:(1)设甲种钢笔每支x元,则乙种钢笔每支x+3元,依题意得…………………2分解得=6…………………3分经检验,=6是原方程的根…………………4分∴乙种钢笔每支6+3=9元(2)设买乙种钢笔a支,则买甲种钢笔2a+5支,依题意得…………………6分解得23<a…………………7分∵a取整数∴a取24、25共2种方案方案一:买乙种钢笔24支,甲种钢笔53支方案二:买乙种钢笔25支,甲种钢笔55支…………………8分24.(1)20,2,1;……………3分(2)如下图;………………5分.(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率………10分.25.(1)AB是⊙O直径,AB⊥CD,CD=8∴CF=4…………………1分,在Rt△OCF中,根据勾股定理,得OC2=OF2+CF2…………………2分,=32+42=25∴AB=2OC=2×5=10…………………4分,(2)连结AC,BD∵弦CD垂直于直径AB,∴BC=BD.∴∠BCD=∠BDC…………………5分.∵OA=OC,∴∠OCA=∠OAC.∵∠BDC=∠OAC,∴∠BCD=∠OCA.∴△BCD∽△OCA…………………6分,.∴…………………7分,在△CDN和△CAM中,∵∠DCN=∠ACM,∠CDN=∠CAM,∴△CDN∽△CAM∴∴…………………9分,∴即BN=CN.…………………10分26.解:(1)A(-2,0),D(-2,3)……………………………2分,(2)∵抛物线y=13x2+bx+c经过C(1,0),D(-2,3)代入,解得:b=-23,c=13…………………5分,∴所求抛物线解析式为:y=13x2-23x+13……………6分,(3)存在设抛物线向上平移h个单位能使EM∥x轴,则平移后的解析式为:y=13x2-23x+13+h=(x-1)²+h………7分,此时抛物线与y轴交点E(0,+h)当点M在直线y=x+2上,且满足直线EM∥x轴时则点M的坐标为()又∵M在平移后的抛物线上,则有+h=(h--1)²+h,解得:h=或h=…………………10分,(і)当h=时,点E(0,2),点M的坐标为(0,2)此时,点E,M 重合,不合题意舍去。
柳州市二模2013中考数学复习题及答案
广西柳州市2013年第二次教学质量检测九年级数学试卷一.选择题(每小题3分,共36分)1.0的相反数是()。
A、0B、1C、-1D、±12.不等式x+1<2的解集是()。
A、x>-2B、x<3C、x≤2D、x<13.在第一象限的点是()。
A、(2,-1)B、(2,1)C、(-2,1)D、(-2,-1)4.如图,已知圆心角∠BOC=100°、则圆周角∠BAC的大小是()A.50°B.100°C.130°D.200°5.某校初三(1)班有同学50人,他们对球类运动的喜欢用图1所示的统计图来表示,那么喜欢足球的人数是()A、 40人B、30人C、 20人D、 10人6.在下列的计算中,不正确的是()。
A、(-2)+(-3)=-5B、(a+1)(a-1)=a2-1C、a(1+b)=a+abD、(x-2)2=x2-47.在一个不透明的口袋中装有大小,外形等一模一样的5个红球,4个蓝色球和3个白球,则下列事情中,是必然发生的是( )(A) 从口袋中任意取出1个,这是一个红色球(B) 从口袋中一次任取出5个,全是蓝色球(C) 从口袋中一次任取出7个,只有蓝色球和白色球,没有红色球(D) 从口袋中一次任取出10个,恰好红,蓝,白色球三种颜色的球都齐了图1 CDBA图2图38.把一张形状是矩形的纸片剪去其中某一个角,剩下的部分是一个多边形,则这个多边形的内角和不可能是( )。
A 、720°B 、540°C 、360°D 、180° 9.在同一平面内,若∠AOB =90º,∠BOC =40º,则∠AOB 的平分线与∠BOC 的平分线的夹角等于( )。
A 65ºB 25ºC 65º或25ºD 60º或20º10.如图2,直角三角形ABC 的两直角边BC=12,AC=16,则△ABC 的斜边AB 上的高CD 的长是( )。
广西柳州市2013年中考数学试卷(含解析)
广西柳州市2013年中考数学试卷一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分)1.(3分)(2013•柳州)某几何体的三视图如图所示,则该几何体是()A.正方体B.长方体C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由俯视图和左视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为三棱柱.解答:解:∵俯视图和左视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选C.点评:考查了由三视图判断几何体,用到的知识点为:由俯视图和左视图可得几何体是柱体,椎体还是球体,由主视图可确定几何体的具体形状.2.(3分)(2013•柳州)计算﹣10﹣8所得的结果是()A.﹣2B.2C.18D.﹣18考点:有理数的减法.分析:根据有理数的减法运算法则进行计算即可得解.解答:解:﹣10﹣8=﹣18.故选D.点评:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.3.(3分)(2013•柳州)在﹣3,0,4,这四个数中,最大的数是()A.﹣3B.0C.4D.考点:实数大小比较.分析:根据有理数大小比较的法则进行判断即可.解答:解:在﹣3,0,4,这四个数中,﹣3<0<<4,最大的数是4.故选C.点评:本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.4.(3分)(2013•柳州)如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变考点:轴对称的性质分析:根据轴对称不改变图形的形状与大小解答.解答:解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选A.点评:本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.5.(3分)(2013•柳州)下列计算正确的是()A.3a•2a=5a B.3a•2a=5a2C.3a•2a=6a D.3a•2a=6a2考点:单项式乘单项式专题:计算题.分析:利用单项式乘单项式法则计算得到结果,即可作出判断;解答:解:3a•2a=6a2,故选D点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.6.(3分)(2013•柳州)在下列所给出坐标的点中,在第二象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标分析:根据第二象限内点的坐标符号(﹣,+)进行判断即可.解答:解:根据每个象限内点的坐标符号可得在第二象限内的点是(﹣2,3),故选:B.点评:本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.(3分)(2013•柳州)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是()A.35B.36C.37D.38考点:众数分析:直接根据众数的定义求解.解答:解:数据中36出现了4次,出现次数最多,所以这组数据的众数为36.故选B.点评:本题考查了众数:在一组数据中出现次数最多的数据叫做众数.8.(3分)(2013•柳州)下列四个图中,∠x是圆周角的是()A.B.C.D.考点:圆周角定理分析:由圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角,即可求得答案.解答:解:根据圆周角定义:即可得∠x是圆周角的有:C,不是圆周角的有:A,B,D.故选C.点评:此题考查了圆周角定义.此题比较简单,解题的关键是理解圆周角的定义.9.(3分)(2013•柳州)下列式子是因式分解的是()A.x(x﹣1)=x2﹣1B.x2﹣x=x(x+1)C.x2+x=x(x+1)D.x2﹣x=x(x+1)(x﹣1)考点:因式分解的意义分析:根据因式分解的定义:就是把整式变形成整式的积的形式,即可作出判断.解答:解:A、x(x﹣1)=x2﹣1是整式的乘法,故不是分解因式,故本选项错误;B、x2﹣x=x(x+1)左边的式子≠右边的式子,故本选项错误;C、x2+x=x(x+1)是整式积的形式,故是分解因式,故本选项正确;D、x2﹣x=x(x+1)(x﹣1),左边的式子≠右边的式子,故本选项错误;故选C.点评:本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10.(3分)(2013•柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米考点:相似三角形的应用.专题:应用题.分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.解答:解:∵=即=,∴楼高=10米.故选A.点评:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.11.(3分)(2013•柳州)如图,点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是()A.3B.4C.D.考点:反比例函数系数k的几何意义;等边三角形的性质分析:如图,根据反比例函数系数k的几何意义求得点P的坐标,则易求PD=4.然后通过等边三角形的性质易求线段AD=,所以S△POA=OA•PD=××4=.解答:解:如图,∵点P(a,a)是反比例函数y=在第一象限内的图象上的一个点,∴16=a2,且a>0,解得,a=4,∴PD=4.∵△PAB是等边三角形,∴AD=.∴OA=4﹣AD=,∴S△POA=OA•PD=××4=.故选D.点评:本题考查了反比例函数系数k的几何意义,等边三角形的性质.等边三角形具有等腰三角形“三合一”的性质.12.(3分)(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.考点:角平分线的性质;三角形的面积;勾股定理分析:根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.解答:解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=×3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选A.点评:本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分,请将答案直接填写在答题卡中相应的横线上,在草稿纸上、试卷上答题无效)13.(3分)(2013•柳州)不等式4x>8的解集是x>2.考点:解一元一次不等式分析:已知不等式左右两边同时除以4后,即可求出解集.解答:解:4x>8,两边同时除以4得:x>2.故答案为:x>2.点评:此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.(3分)(2013•柳州)若分式有意义,则x≠2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西柳州市2013年中考数学试卷答案
一、选择题
1-6 CDCAD B 7-12 BCCADA
二、填空题
13、x>2
14、2
15、7
16、9.4
17、20
18、①②③④
三、解答题
19、
解答:解:原式=4﹣1
=3.
20、
解答:解:去括号得:3x+12=x,
移项合并得:2x=﹣12,
解得:x=﹣6.
21、
解答:解:(1)画树状图得:
则有9种等可能的结果;
(2)∵韦玲胜出的可能性有3种,
故韦玲胜出的概率为:.
22、
解答:解:(1)小旗A′C′D′B′如图所示;
(2)点A′(6,0),C′(0,﹣6),D′(0,0);
(3)∵A(﹣6,12),B(﹣6,0),
∴AB=12,
∴线段BA旋转到B′A′时所扫过的扇形的面积==36π.
23、
解答:解:(1)由图表可知,每10分钟放水250m3,
所以,第80分钟时,池内有水4000﹣8×250=2000m3;
(2)设函数关系式为y=kx+b,
∵x=20时,y=3500,
x=40时,y=3000,
∴,
解得,
所以,y=﹣250+4000.
24、
解答:(1)解:四边形ABEC一定是平行四边形;
(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,
∴AB=DC,AC=BD,
由折叠的性质可得:EC=DC,DB=BE,
∴EC=AB,BE=AC,
∴四边形ABEC是平行四边形.
25、
解答:(1)解:∵AD、BC是⊙O的两条切线,
∴∠OAD=∠OBC=90°,
在Rt△AOD与Rt△BOC中,OA=OB=3,AD=2,BC=,
根据勾股定理得:OD==,OC==;
(2)证明:过D作DE⊥BC,可得出∠DAB=∠ABE=∠BED=90°,
∴四边形ABED为矩形,
∴BE=AD=2,DE=AB=6,EC=BC﹣BE=,
在Rt△EDC中,根据勾股定理得:DC==,
∵===,
∴△DOC∽△OBC;
(3)证明:过O作OF⊥DC,交DC于点F,
∵△DOC∽△OBC,
∴∠BCO=∠FCO,
∵在△BCO和△FCO中,
,
∴△BCO≌△FCO(AAS),
∴OB=OF,
则CD是⊙O切线.
26、
解答:解:(1)∵点(1,0),(5,0),(3,﹣4)在抛物线上,∴,
解得.
∴二次函数的解析式为:y=x2﹣6x+5.
(2)在y=x2﹣6x+5中,令y=﹣3,即x2﹣6x+5=﹣3,
整理得:x2﹣6x+8=0,解得x1=2,x2=4.
结合函数图象,可知当y>﹣3时,x的取值范围是:x<2或x>4.
(3)设直线y=﹣2x﹣6与x轴,y轴分别交于点M,点N,
令x=0,得y=﹣6;令y=0,得x=﹣2.
∴M(﹣3,0),N(0,﹣6),
∴OM=3,ON=6,由勾股定理得:MN=3,
∴tan∠MNO==,sin∠MNO==.
设点C坐标为(x,y),则y=x2﹣6x+5.
过点C作CD⊥y轴于点D,则CD=x,OD=﹣y,DN=6+y.
过点C作直线y=﹣2x﹣6的垂线,垂足为E,交y轴于点F,
在Rt△CDF中,DF=CD•tan∠MNO=x,C F====x.∴FN=DN﹣DF=6+y﹣x.
在Rt△EFN中,EF=FN•sin∠MNO=(6+y﹣x).
∴CE=CF+EF=x+(6+y﹣x),
∵C(x,y)在抛物线上,∴y=x2﹣6x+5,代入上式整理得:
CE=(x2﹣4x+11)=(x﹣2)2+,
∴当x=2时,CE有最小值,最小值为.
当x=2时,y=x2﹣6x+5=﹣3,∴C(2,﹣3).
△ABC的最小面积为:AB•CE=×2×=.
∴当C点坐标为(2,﹣3)时,△ABC的面积最小,面积的最小值为.。