A全等三角形之手拉手模型、倍长中线_截长补短法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

手拉手模型

要点一:手拉手模型

特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点

结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°

(3)OA 平分∠BOC 变形:

例1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明 (1)DBC ABE ∆≅∆

(2)DC AE =

(3)AE 与DC 之间的夹角为︒60

(4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //

变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与

CD ,

证明(1)DBC ABE ∆≅∆ (2)DC AE =

(3)AE 与DC 之间的夹角为︒60

(4)AE 与DC 的交点设为H ,BH 平分AHC ∠

变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD , 证明(1)DBC ABE ∆≅∆ (2)DC AE =

(3)AE 与DC 之间的夹角为︒60

(4)AE 与DC 的交点设为H ,BH 平分AHC ∠

例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H

(2)AG 是否与CE 相等?

(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?

例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H 问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?

(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?

例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,

(2)AE是否与CD相等?

(3)AE与CD之间的夹角为多少度?

∠?

(4)HB是否平分AHC

例5:如图,点A. B. C在同一条直线上,分别以AB、BC为边在直线AC的同侧作等边三角形△ABD、△BCE.连接AE、DC,AE与DC所在直线相交于F,连接FB.判断线段FB、FE与FC之间的数量关系,并证明你的结论。

【练1】如图,三角形ABC和三角形CDE都是等边三角形,点A,E,D,同在一条直线上,且角EBD=62°,求角AEB的度数

倍长与中点有关的线段

倍长中线类

☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的:将题中已知和未知条件集中在一对三角形中、构造全等三角形、平移线段。

【方法精讲】常用辅助线添加方法——倍长中线

△ABC 中 方式1: 延长AD 到E ,

AD 是BC 边中线 使DE=AD ,

连接BE

方式2:间接倍长

作CF ⊥AD 于F , 延长MD 到N , 作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CD

【例1】 已知:ABC ∆中,AM 是中线.求证:1

()2

AM AB AC <+.

M

C

B

A

【练1】在△ABC 中,59AB AC ==,

,则BC 边上的中线AD 的长的取值范围是什么?

【练2】如图所示,在ABC ∆的AB 边上取两点E 、F ,使AE BF =,连接CE 、CF ,求证:AC BC +>EC FC +.

D A B C

E

D A B C F E

D C B A N

D C B A M

F E C

B

A

【练3】如图,在等腰三角形ABC 中,AB=AC ,D 是AB 上一点,F 是AC 延长线上的一点,且BD=CF ,连结DF 交BC 于E .求证:DE=EF(倍长中线、截长补短)

【例2】 如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,AF EF =,

求证:AC BE =.

F

E

D

C B

A

【练1】如图,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于

F ,求证:AF EF =

F

E

D

C

B

A

【练2】如图,在△ABC 中,AB>AC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G . 求证:BF=CG .

【练3】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB 于点G ,若BG CF =,求证:AD 为ABC ∆的角平分线.

G

F

E

D

C

B

A

【练4】如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.

求证:EF ∥AB

F

A C

D E B

【例3】已知AM 为ABC ∆的中线,AMB ∠,AMC ∠的平分线分别交AB 于E 、交AC 于F .求证:BE CF EF +>.

F

E

M

C

B

A

【练1】在Rt ABC ∆中,F 是斜边AB 的中点,D 、E 分别在边CA 、CB 上,满足90DFE ∠=︒.若3AD =,4BE =,则线段DE 的长度为_________.

相关文档
最新文档