2004年浙江省高考数学试卷(理科) (2)

合集下载

2004年高考.全国卷Ⅱ.理科数学试题及答案(四川、吉林、黑龙江、云南等地区)

2004年高考.全国卷Ⅱ.理科数学试题及答案(四川、吉林、黑龙江、云南等地区)
2004 年高考试题全国卷Ⅱ 理科数学(必修+选修Ⅱ)
(四川、吉林、黑龙江、云南等地区)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有 一个选项是符合题目要求的.
(1)已知集合 M={x|x2<4} ,N={x|x2-2x-3<0} ,则集合 M∩N=
3
(A)( , )
22
(B)( ,2 )
3
(C)(
, 5
)
22
3 )
(D)(2 ,
(11)函数 y=sin4x+cos2x 的最小正周期为
(A)
4
(B)
2
(C)
(D)2
(12)在由数字 1,2,3,4,5 组成的所有没有重复数字的 5 位数中,大于 23145 且小于
43521 的数共有
(A)56 个
(A){x|x<-2 }
(B){x|x>3}
(C){x|-1<x<2 }
(D){x|2<x<3 }
(2)
lim
n1
x2 x2
x2 4x 5

(A)
1 2
(B)1
(C)
2 5
(D)
1 4
(3)设复数ω=-
1 2

3 2
i,则
1+ω=
(A)–ω
(B)ω2
(C)
1
1 (D) 2
(4)已知圆 C 与圆(x-1)2+y2=1 关于直线 y=-x 对称,则圆 C 的方程为
(C)与 y=e-x 的图象关于 y 轴对称 (D)与 y=e-x 的图象关于坐标原点对称
(7)已知球 O 的半径为 1,A、B、C 三点都在球面上,且每两点间的球面距离为 ,则球

2004年高考数学(理科)真题及答案[全国卷I]

2004年高考数学(理科)真题及答案[全国卷I]

2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。

最新浙江省高考数学试卷(理科)

最新浙江省高考数学试卷(理科)

2004年浙江省高考数学试卷(理科)一.选择题:本大题共12小题,每小题5分,满分60分. 1. 若U ={1,2,3,4},M ={1,2}, N ={2,3}, 则C =)(N M U(A){1,2,3}(B){2}(C){1,3,4} (D){4}2. 点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动23π弧长到达Q 点,则Q 的坐标为 (A)(-21) (B) (,-21) (C)(-21,) (D)(,21)3. 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=(A)-4(B)-6 (C)-8 (D)-104. 曲线y 2=4x 关于直线x =2对称的曲线方程是(A)y 2=8-4x (B)y 2=4x -8 (C)y 2=16-4x (D)y 2=4x -165. 设z =x -y , 式中变量x 和y 满足条件3020x y x y +-≥⎧⎨-≥⎩, 则z 的最小值为(A)1(B)-1(C)3(D)-36. 已知复数z 1=3+4i , z 2=t +i , 且21z z ⋅是实数,则实数t =(A)43 (B)34 (C)-34 (D)-437. 若n 展开式中存在常数项,则n 的值可以是(A)8(B)9(C)10(D)128. 在△ABC 中,“︒>30A ”是“sin A >21”的 9. (A)充分而不必要条件 (B)必要而不充分条件 10. (C)充要条件 (D)既不充分也不必要条件11. 若椭圆12222=+by a x (a >b >0)的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3的两段,则此椭圆的离心率为 (A)1716 (B)17174 (C)54 (D)55212. 如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,若AD 与平面AA 1C 1C所成的角为α,则α= 13. (A)3π(B)4π (C) BCC1 1D14. 设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有可能的是 15.(A) (B) (C) (D)16. 若f (x )和g (x )都是定义在实数集R 上的函数,且方程x -f [g (x )]=0有实数解,则g [f (x )]不可能是 17. (A)x 2+x -51 (B)x 2+x +51 (C)x 2-51 (D)x 2+51二、填空题:本大题共4小题,每小题4分,满分16分。

2004年高考数学试题(全国2理)及答案

2004年高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列A'(II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=(-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴与G B 1的夹角θ等于所求二面角的平面角, cos .3311-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413||||-=∙OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

【高考试题】2004年浙江省高考数学试卷(理科)及答案

【高考试题】2004年浙江省高考数学试卷(理科)及答案

【高考试题】2004年浙江省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合{1U =,2,3,4},{1A =,2},{2B =,4},则()(U A B =U ð ) A .{2}B .{3}C .{1,2,4}D .{1,4}【解答】解:集合{1A B =U ,2,4},则(){3}U A B =U ð,故选:B . 2.(5分)点P 从(1,0)点出发,沿单位圆221x y +=按逆时针方向转动23π弧长到达Q 点,则Q 的坐标为( )A .1(2-B .(,1)2- C .1(2-,D .(1)2- 【解答】解:P 从(1,0)点出发,沿单位圆221x y +=按逆时针方向转动23π弧长到达Q 点时,OQ 的倾斜角等于23π,即P 点按逆时针方向转过的角为23πα=弧度,所以,Q 点的坐标为2(cos3π,2sin )3π,即1(2-.故选:A .3.(5分)已知等差数列{}n a 的公差为2,若1a ,3a ,4a 成等比数列,则2(a = ) A .4-B .6-C .8-D .10-【解答】解:416a a =+Q ,314a a =+,1a ,3a ,4a 成等比数列,2314a a a ∴=g , 即2111(4)(6)a a a +=⨯+,解得18a =-,2126a a ∴=+=-.故选:B . 4.(5分)曲线24y x =关于直线2x =对称的曲线方程是( ) A .284y x =-B .248y x =-C .2164y x =-D .2416y x =-【解答】解:设曲线24y x =关于直线2x =对称的曲线为C ,在曲线C 上任取一点(,)P x y , 则(,)P x y 关于直线2x =的对称点为(4,)Q x y -.因为(4,)Q x y -在曲线24y x =上, 所以24(4)y x =-,即2164y x =-.故选:C .5.(5分)设z x y =-,式中变量x 和y 满足条件3020x y x y +-⎧⎨-⎩……,则z 的最小值为( )A .1B .1-C .3D .3-【解答】解:先根据约束条件画出可行域,如图,当直线z x y =-过点(2,1)A 时,即当2x =,1y =时,1min z =.故选:A .6.(5分)已知复数134z i =+,2z t i =+,且12z z g 是实数,则实数t 等于( ) A .34B .43 C .43-D .34-【解答】解:Q 12(34)()34(34)z z i t i t t i =+-=++-+g 是实数,340t ∴-+=,34t =. 故选:A . 7.(5分)若3()n x x+的展开式中存在常数项,则n 的值可以是( ) A .10B .11C .12D .14【解答】3(nx x展开式的通项公式为35613()(n r r n rrr r nnT C x C xx--+==,令3506n r-= 有解,即350n r -=有解即35n r =有解,故n 是5的倍数,故选:A . 8.(5分)在ABC ∆中,“30A >︒”是“1sin 2A >”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件【解答】解:Q 在ABC ∆中,180A B C ∠+∠+∠=︒,30A >︒Q ,30180A ∴︒<<︒0sin ∴<1A <,∴可判读它是1sin 2A >的必要而不充分条件,故选:B . 9.(5分)若椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,线段12F F 被抛物线22y bx=的焦点分成5:3两段,则此椭圆的离心率为( ) A .1617B 417C .45D 25【解答】解:Q5232bc b c +=-,222a b c -=,22252545c c b c a e a =∴=∴===故选:D .10.(5分)如图,在正三棱柱111ABC A B C -中已知1AB =,D 在棱1BB 上,且1BD =,若AD 与平面11AA C C 所成的角为α,则(α= )A .3πB .4π C .10arcsinD .6arcsin【解答】解:如图作DE ⊥面11AA C C 于E ,连接AE ,Q 正三棱柱111ABC A B C -中已知1AB =,D 在棱1BB 上,且1BD =,2AD ∴=,3DE,362sin 2α∴==,6arcsin α= 故选:D .11.(5分)设()f x '是函数()f x 的导函数,()y f x ='的图象如图所示,则()y f x =的图象最有可能的是( )A .B .C .D .【解答】解:由()y f x '=的图象易得当0x <或2x >时,()0f x '>,故函数()y f x =在区间(,0)-∞和(2,)+∞上单调递增;当02x <<时,()0f x '<,故函数()y f x =在区间(0,2)上单调递减;故选:C .12.(5分)若()f x 和()g x 都是定义在实数集R 上的函数,且方程[()]0x f g x -=有实数解,则[()]g f x 不可能是( )A .215x x +-B .215x x ++C .215x -D .215x +【解答】解:[()]0x f g x -=Q 得[()]f g x x =,所以[(())]()g f g x g x =,得[()]g f x x =,所以[()]f g x x =与[()]g f x x =是等价的,即[()]f g x x =有解[()]g f x x =也有解,也就是说有解的都是可能的,题目要我们选不可能的,所以只能选无解的那个B .故选:B . 二、填空题(共4小题,每小题4分,满分16分) 13.(4分)已知1()10.x f x x ⎧=⎨-<⎩…则不等式(2)(2)5x x f x +++g „的解集是 . 【解答】解:①当20x +…,即2x -…时.(2)(2)5x x f x +++„,转化为:225x +„ 解得:32x „.322x ∴-剟.②当20x +<即2x <-时,(2)(2)5x x f x +++„ 转化为:(2)(1)5x x ++-g „,25∴-„,2x ∴<-.综上32x „.故答案为:(-∞,3]2 14.(4分)若平面上三点A 、B 、C 满足||3AB =u u u r ,||4BC =u u u r ,||5CA =u u u r,则AB BC BC CA CA AB ++u u u r u u u r u u u r u u u r u u u r u u u rg g g 的值等于 .【解答】解:由0AB BC CA ++=u u u r u u u r u u u r r可得2()0AB BC CA ++=u u u r u u u r u u u r ,||3AB =u u u r Q ,||4BC =u u u r ,||5CA =u u u r 222||||||2()0AB BC CA AB BC AB AC BC AC +++++=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g ,916252()0AB BC BC CA CA AB +++++=u u u r u u u r u u u r u u u r u u u r u u u r g g g ,∴25AB BC BC CA AB +=-u u u r u u u r u u u r u u u r u u u rg g g .故答案为:25-15.(4分)设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,若经过5次跳动质点落在点(3,0)处(允许重复过此点),则质点不同的运动方法共有 5 种(用数字作答);若经过20次跳动质点落在点(16,0)处(允许重复过此点),则质点不同的运动方法共有 种(用数字作答).【解答】解:记向左跳一次为1-,向右跳一次为1+,则只要5次和为3+,质点一定落在(3,0), 所以只需4个“1+”,1个“1-”即可,从5次中挑出一次取“1-”,结果数为5C =,故质点运动方法共有5种.经过20次跳动质点落在点(16,0)处,只需18个“1+”,2个“1-”即可,从20次中挑出2次取“1-”,结果数220190C =种,故答案为:5、190 16.(4分)已知平面α和平面β交于直线l ,P 是空间一点,PA α⊥,垂足为A ,PB β⊥,垂足B ,且1PA =,2PB =,若点A 在β内的射影与点B 在α内的射影重合,则点P 到l【解答】解Q 点A 在β内的射影与点B 在α内的射影重合,设射影为O ,则满足AO β⊥,BO α⊥,αβ∴⊥,设射影为点C ,点P 到l 的距离为PC 的长,而PC 为矩形PACB 的对角线,PC ∴.则点P 到l . 三、解答题(共6小题,满分74分)17.(12分)在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且1cos 3A =. (Ⅰ)求2sin cos22B CA ++的值;(Ⅱ)若a =bc 的最大值. 【解答】解:(Ⅰ)2sin cos22B CA ++ 21[1cos()](2cos 1)2B C A =-++- 21(1cos )(2cos 1)2A A =++- 112(1)(1)239=++- 19=-; (Ⅱ)根据余弦定理可知:2221cos 23b c a A bc +-==∴2222223bc b c a bc a =+--…,又Q a 2233bc bc -…,∴94bc ….当且仅当32b c ==时,94bc =,故bc 的最大值是94. 18.(12分)盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为ε.求随机变量ε的分布及期望E ε.【解答】解:由题意可得,随机变量ε的取值是2、3、4、6、7、10. 随机变量ε的概率分布如下 当2ε=,(2)0.09P ε== 当3ε=,(3)0.24P ε== 当4ε=,(4)0.16P ε== 当6ε=,(6)0.18P ε== 当7ε=,(7)0.24P ε== 当10ε=,(10)0.09P ε== 则随机变量ε的数学期望20.0930.2440.1360.1870.24100.09 5.2E ε=⨯+⨯+⨯+⨯+⨯+⨯=.19.(12分)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(Ⅰ)求证//AM 平面BDE ; (Ⅱ)求二面角A DF B --的大小.【解答】解:方法一(Ⅰ)记AC 与BD 的交点为O ,连接OE ,O Q 、M 分别是AC 、EF 的中点,ACEF 是矩形,∴四边形AOEM 是平行四边形,//AM OE ∴。

2004年高考理科数学全国卷(word版含答案)

2004年高考理科数学全国卷(word版含答案)

2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。

1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。

2004年普通高等学校招生全国统一考试浙江卷数学(理科)

2004年普通高等学校招生全国统一考试浙江卷数学(理科)

数学(理科)第Ⅰ卷 (选择题 共60分)一.选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则 (A) {1,2,3} (B) {2} (C) {1,3,4} (D) {4} (2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为 (A) )23,21(-(B) ()21,23-- (C) ()23,21--(D) ()21,23- (3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = (A) –4 (B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是(A) x y 482-= (B) 842-=x y (C) x y 4162-= (D) 1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为 (A) 1 (B) –1 (C) 3 (D) –3 (6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t= (A)43 (B) 34 (C) --34 (D) --43 (7) 若n xx )2(3+展开式中存在常数项,则n 的值可以是(A) 8 (B) 9 (C) 10 (D) 12 (8)在ΔABC 中,“A>30º”是“sinA>21”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也必要条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx的焦点分成5:3两段,则此椭圆的离心率为(A )1716(B )17174 (C )54 (D )552(10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α=(A )3π (B )4π(C )410arcsin(D )46arcsin(11)设)(x f '是函数f(x)的导函数,y=)(x f '的图象如图所示,则y= f(x)的图象最有可能的是(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可能...是 (A )512-+x x (B )512++x x (C )512-x (D )512+x 第Ⅱ卷 (非选择题 共90分)二.填空题:三大题共4小题,每小题4分,满分16分。

2004年高考数学试题(浙江理)及答案-精编解析版

2004年高考数学试题(浙江理)及答案-精编解析版

复兰高考名师在线,把全球名师带回家 k6kt_翻转课堂( )2004年浙江省高考数学卷(理科)在做试卷之前,给大家推荐一个视频学习网站,我之前很长时间一直是做试卷之后,再到这上面去找一些相关的学习视频再复习一遍,效果要比只做试题要好很多,真不是打广告。

如果你有上网的条件,建议你也去学习一下,全站所有的视频都是免费的。

◆高考语文类在线听课地址:/yuwen◆高考数学类在线听课地址:/shuxue◆高考英语类在线听课地址:/yingyu◆高考化学类在线听课地址:/huaxue◆高考物理类在线听课地址:/wuli 其他学科的大家自己去找吧!◆高考在线题库:/exams一、选择题:本大题共12小题,每小题5分,满分60分。

1. 若U ={1,2,3,4},M ={1,2}, N ={2,3}, 则Uð(M N )=(A){1,2,3} (B){2} (C){1,3,4} (D){4} 2.点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π弧长到达Q 点,则Q 的坐标为 (A)(-21 (B) (-21) (C)(-21,) (D)(,21)3.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=(A)-4 (B)-6 (C)-8 (D)-10 4. 曲线y 2=4x 关于直线x =2对称的曲线方程是(A)y 2=8-4x (B)y 2=4x -8 (C)y 2=16-4x (D)y 2=4x -165. 设z =x -y , 式中变量x 和y 满足条件3020x y x y +-≥⎧⎨-≥⎩, 则z 的最小值为(A)1 (B)-1 (C)3 (D)-36.已知复数z 1=3+4i, z 2=t +i , 且12z z 是实数,则实数t =(A)43 (B)34 (C)-34(D)-437.若n展开式中存在常数项,则n 的值可以是 (A)8 (B)9 (C)10 (D)128. 在△ABC 中,“A >30︒”是“sin A >21”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件9.若椭圆12222=+byax(a>b>0)的左、右焦点分别为F1、F2,线段F1F2被抛物线y2=2bx的焦点分成5∶3的两段,则此椭圆的离心率为(A)1617(C)4510.如图,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则α=(A)3π(B)4π(C)(D)11.设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是12.若f(x)和g(x)都是定义在实数集R上的函数,且方程x-f[g(x)]=0有实数解,则g[f(x)]不可能是(A)x2+x-51(B)x2+x+51(C)x2-51(D)x2+51二、填空题:本大题共4小题,每小题4分,满分16分。

2004年高考.全国卷Ⅱ.理科数学试题及答案(四川、吉林、黑龙江、云南等地区)

2004年高考.全国卷Ⅱ.理科数学试题及答案(四川、吉林、黑龙江、云南等地区)

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线L 的方向向量e =(-54,53),点O (0,0)和A (1,-2)在L 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511(C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 . (15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求 (Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求与夹角的大小;(Ⅱ)设=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 解题思路:1、 已知集合M={x|x 2<4},N={x|x 2-2x-3<0},则集合M ∩N=( C )A {x|x<-2}B {x|x>3}C {x|-1<x<2}D {x|2<x<3} 解法一:(直接求解)由M={x|x 2<4}={x|-2<x<2},N={x|x 2-2x-3<0}={x|-1<x<3} 则:M ∩N={x|-2<x<2}∩{x|-1<x<3}={x|-1<x<2}。

2004年高考数学浙江省试卷分析

2004年高考数学浙江省试卷分析

作者: 阮晓明 李世杰
作者机构: 上海市松江二中 浙江省衢州市教研室 324002
出版物刊名: 上海中学数学
页码: NULL-NULL页
主题词: NULL
摘要:20 0 4年高考数学浙江省卷共 2 2题 ,其中选择题 1 2题 (共 60分 ,占 40 % )、填空题4题 (共 1 6分 ,占 1 0 % )、解答题 6题 (74分 ,占 50 % ) ,严格保持了全国卷的结构、题型与分值配置 ,较好地体现了全国卷与浙江省卷平稳过渡的原则。

试卷考查范围为教育部考试大纲规定的全国新教材高中数学内容 ,突出了对数学基础知识、基本思想方法的考查 ,不同程度地体现了对数学三大能力、数学知识的综合应用、数学思维品质的重视。

试卷主要特点为 :(1 )试卷体现了知识与能力并重的设计原则 ,重视数学基础知识与基本能力的考查 ;重视数学知识的综合运用 ,注重三大能力的考查 ,但对应用能力、创新能力等的考查力度稍弱。

(2 )试题以学生熟悉的题型为主 ,明显降低了试卷起点 ,整卷的难度也有一定的下降 ,较为新颖的试题较少出现 ,试题创新稍感不足。

(3)作为使用新教材的第一年高考 ,试卷对教材新增内容安排了 43分 (约占 30 % )的考查力度 ,基本符合新增内容的课时数所占比例 ,考查要求与全国卷相当 ,知识、方法与综合性仍不高于教材内容要求。

一、试卷对知识、思想方法、能力的考查分析...。

2004高考数学试题(全国2理)及答案

2004高考数学试题(全国2理)及答案

2004年高考试题全国卷Ⅱ理科数学(必修+选修Ⅱ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. (1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21 (B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2 (C )ω1-(D )21ω (4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称 (7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条 (9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe ,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为ξ0 1 2 P(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 .(16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱,其中,真命题的编号是 (写出所有真命题的编号). 三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率. (19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2+S n (n =1,2,3,…).证明: (Ⅰ)数列{nS n}是等比数列; (Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.(21)(本小题满分12分) 给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求与夹角的大小;(Ⅱ)设=AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围. (22)(本小题满分14分)已知函数f (x )=ln(1+x )-x ,g (x )=x ln x .(1)求函数f (x )的最大值;(2)设0<a <b ,证明:0<g (a )+g (b )-2g (2ba +)<(b -a )ln2.2004年高考试题全国卷2 理科数学(必修+选修Ⅱ)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C 二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④ 17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+618.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…), 知a 2=112+S 1=3a 1,224212==a S , 111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n , 211=++nS n S n n (n=1,2,3,…).故数列{nSn }是首项为1,公比为2的等比数列 (II )解:由(I )知,)2(14111≥-∙=+-+n n Sn S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形,BA'C'又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1 又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM , 因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F , 则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF 是所求二面角的平面角 又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B F B FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =(0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角, cos .331-==θ 所以所求二面角的大小为π-arccos33 21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y xcos<,.41413-= 所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1) 当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤ 直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时, 'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln 2b a +=a ba bb b a a +++2ln 2ln .由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得021,02<-<->-bba a ab ,因此a a b a a b b a a 2)21l n (2ln-->-+-=+,bba b b a b a b 2)21ln(2ln -->-+-=+. 所以a b a b b b a a +++2ln 2ln >-022=---ba ab . 又,22b b a b a a +<+ a b a b b b a a +++2ln 2ln <a .2ln )(2ln )(2ln 2ln a b ba ba b b a b b b b a -<+-=+++ 综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2xa +),则.2ln ln )]'2([2)(')('xa x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数当x>a 时,0)('>x F 因此F(x)在(a,+∞)上为增函数从而,当x=a 时,F(x)有极小值F(a)因为F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2ba +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2ln ln )('x a x xa x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2ba +)<(b-a)ln2.。

浙江省高考数学试卷.doc

浙江省高考数学试卷.doc

(2004年浙江省理科15题)15、设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位, 若经过5次跳动质点落在点(3, 0)处(允许重复过此点),则质点不同的运动方法共有5 种(用数字作答);若经过20次跳动质点落在点(16, 0)处(允许重复过此点),则质点不同的运动方法共有190种.(2004 年浙江省理科18 题)Es=2x0.09+3x0.24+4x0.13+6x0.18+7x0.24+10x0.09=5.2. 18、盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个,第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同).记第一次与第二次取到球的标号之和为£.求随机变量£的分布及期望E E(2004年浙江省文科20题)1,伽尸3)=食=扁.2.伽尸(五)=^ = 端。

20、某地区有5个工厂,由于电力紧缺,规定每个工厂在一周内必须选择某一天停电(选哪一天是等可能的),假定工厂之间的选择互不影响.(1)求5个工厂均选择星期日停电的概率;(2)求至少有两个工厂选择同一天停电的概率(2005年浙江省理科14题)14、从集合{。

,P. Q. R, S}与{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O, Q和数字0至多只能出现一个的不同排法种数是8424.(用数字作答).(2005年浙江省理科19题)1,3.19、袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是1/3,从B中摸出一个红球的概率为p.(I )从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i)求恰好摸5次停止的概率;(ii)记5次之内(含5次)摸到红球的次数为&求随机变量&的分布率及数学期望Eg.(□)若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值(2005年浙江文科6题)0.536、从存放号码分别为1, 2, 10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码.统计结果如图,则取到号码为奇数的频率是()(2005年浙江文科14题)5832从集合{P, Q, R. S}与{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}中各任取2个元素排成一排(字白球的个数比黑球多,白球个数多于最少. 2-52红球的个数少于惟奖.故袋中红球个数母和数字均不能重复)、每排中字母Q和数字0至多只能出现一个的不同排法种数是.心=竺%Q = L(2006年浙江理科18题)必°? 6 10 60 , ?n=2.18、甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲,乙两袋中各任取2个球.(I )若n=3,求取到的4个球全是红球的概率;(口)若取到的4个球中至少有2个红球的概率为3/4,求n(2007年浙江理科14题)26614、某书店有11种杂志,2元1本的8种,1元1本的3种.小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是266(2007年浙江文科8题)0.6488、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是()(2008年浙江理科16题)4016、用1, 2, 3, 4, 5, 6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是(2008年浙江理科19题)「卸数学期望&[?][,] =志XO+^X1+岛X2+&X3 2 .19、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是7/9.(I )若袋中共有10个球,从袋中任意摸出3个球,记得到白球的个数为&,求随机变量&的数学期望E&(H )求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于7/10.并指出袋中哪种颜色的球个数最少尸(直)=£1=2.(2008年浙江文科19题)c?o 15 2.x=519、一个袋中装有大小相同的黑球、白球和红球,巳知袋中共有10个球,从中任意摸出1 个球,得到黑球的概率是2/5;从中任意摸出2个球,至少得到1个白球的概率是7/9.求:(I )从中任意摸出2个球,得到的数是黑球的概率;(n)袋中白球的个数.(2009年浙江理科6题)46、某程序框图如图所示,该程序运行后输出的k的值是((2009年浙江理科16题)33616、甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(2009 年浙江理科19 题)F(A)=马学=毋;•.襄I数学期望为&[?]而=0x3+lx*+ix由=1 .1. 2.19、在1, 2, 3..., 9,这9个自然数中,任取3个数.(I )求这3个数中,恰有一个是偶数的概率;(口)记&为这三个数中两数相邻的组数,(例如:若取出的数1、2、3,则有两组相邻的数1、2和2、3, 此时&的值是2).求随机变量&的分布列及其数学期望E&(2009年浙江文科17题)1/417、有20张卡片,每张卡片上分别标有两个连续的自然数k, k+1,其中k=0, 1, 2, .... 19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9, 10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A,则P (A)=(2010年浙江理科2题)K>42、某程序框图如图所示,若输出的S=57,则判断框内位()A=A+1S=2S+k(2010年浙江理科17题)26417、有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有()种(2011年浙江理科12题)712、某程序框图如图所示,则该程序运行后输出的k的值是()(2011年浙江理科15题)5/315、某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为2/3,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=l/12,则随机变量X的数学期望 E (X)=(2011年浙江文科8题)9/108、从已有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是。

2004高考数学全国卷及答案理

2004高考数学全国卷及答案理

2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共601.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( ) A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)(河南、河北、山东、山西、安徽、江西等地区)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=BC PB 于是有所以θ的夹角,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772cos -==θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k,所以a 2k+1-a 2k -1=3k +(-1)k,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。

评述2004年高考浙江卷理科立体几何解答题

评述2004年高考浙江卷理科立体几何解答题

评述2004年高考浙江卷理科立体几何解答题
郑日锋
【期刊名称】《中学教研:数学版》
【年(卷),期】2004(000)012
【摘要】2004年高考浙江卷理科立体几何解答题(第19题)为:如图1,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2^(1/2),AF=1,M是线段EF的中点.【总页数】2页(P37-38)
【作者】郑日锋
【作者单位】浙江杭州市学军中学310012
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.定性分析收获一类高考题的简捷解法——兼谈2010年高考数学浙江卷理科第21题的纰漏 [J], 计惠方;徐方英
2.对2013年高考浙江卷理科第7题的探解、溯源及推广 [J], 许丽
3.高考数学不分文理科的探索\r——基于2018年高考上海卷、浙江卷的分析 [J], 张远增
4.向量法解立体几何题的点坐标求法——2017年高考浙江卷立体几何解答题的方法总结 [J], 徐晓宇;屈黎明
5.由表及里枝分缕解——刍议高考语文浙江卷现代文阅读理解中语言特征考查题的答题攻略 [J], 蒋潇潇
因版权原因,仅展示原文概要,查看原文内容请购买。

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学及答案(必修+选修Ⅱ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)542lim 221-+-+→x x x x n =(A )21(B )1 (C )52 (D )41 (3)设复数ω=-21+23i ,则1+ω=(A )–ω (B )ω2(C )ω1-(D )21ω(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为 (A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是(A )-6π(B )6π(C )-12π(D )12π(6)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称 (C )与y =e -x 的图象关于y 轴对称 (D )与y =e -x 的图象关于坐标原点对称(7)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31(B )33 (C )32 (D )36(8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有(A )1条 (B )2条 (C )3条 (D )4条(9)已知平面上直线l 的方向向量)53,54(-=e,点O (0,0)和A (1,-2)在l 上的射影分别是O 1和A 1,则11A O =λe,其中λ= (A )511 (B )-511 (C )2 (D )-2 (10)函数y =x cos x -sin x 在下面哪个区间内是增函数(A )(2π,23π) (B )(π,2π) (C )(23π,25π) (D )(2π,3π)(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π(B )2π(C )π (D )2π(12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为(14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高.(18)(本小题满分12分)已知8个球队中有3个弱队,以抽签方式将这8个球队分为A 、B 两组,每组4个.求 (Ⅰ)A 、B 两组中有一组恰有两个弱队的概率; (Ⅱ)A 组中至少有两个弱队的概率.(19)(本小题满分12分)数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=nn 2 S n (n =1,2,3,…).证明:(Ⅰ)数列{nS n }是等比数列;(Ⅱ)S n +1=4a n .(20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.(Ⅰ)求证:CD⊥平面BDM;(Ⅱ)求面B1BD与面CBD所成二面角的大小.(21)(本小题满分12分)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点.(Ⅰ)设l的斜率为1,求OA与OB夹角的大小;(Ⅱ)设FB=AFλ,若λ∈[4,9],求l在y轴上截距的变化范围.(22)(本小题满分14分)已知函数f(x)=ln(1+x)-x,g(x)=x ln x.(1)求函数f(x)的最大值;(2)设0<a<b,证明:0<g(a)+g(b)-2g(2ba+)<(b-a)ln2.2004年高考试题全国卷2理科数学(必修+选修Ⅱ)(四川、吉林、黑龙江、云南等地区)答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)C (4)C (5)A (6)D (7)B (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)0.1,0.6,0.3 (14)5 (15)21x 2+y 2=1 (16)②④17.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan =设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CD BCDACD ,由AB=3得CD=2+6故AB 边上的高为2+18.(I) 解:有一组恰有两支弱队的概率2482523=CC C(II)解:A 组中至少有两支弱队的概率21481533482523=+CC C CC C19.(I )证: 由a 1=1,a n+1=nn 2+S n (n=1,2,3,…),知a 2=112+S 1=3a 1,224212==a S ,111=S ,∴21212=S S又a n+1=S n+1-S n (n=1,2,3,…),则S n+1-S n =nn 2+S n (n=1,2,3,…),∴nS n+1=2(n+1)S n ,211=++nS n S n n (n=1,2,3,…).故数列{n S n }是首项为1,公比为2的等比数列(II )解:由(I )知,)2(14111≥-∙=+-+n n S n S n n ,于是S n+1=4(n+1)·11--n S n =4a n (n 2≥)又a 2=3S 1=3,则S 2=a 1+a 2=4=4a 1,因此对于任意正整数n ≥1都有S n+1=4a n .20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2, ∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3,又BB 1=1,∴A 1B=2, ∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM (II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23,∴∠B 1GF又B 1F 2=B 1B 2+BF 2=1+(22)2=23.∴cos ∠B 1GF=32123223)21()23(222121221=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π解法二:如图以C 为原点建立坐标系 (I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21),M(22,1,0),=CD(22,21,21),=BA 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=GB 1),41,43,42(--∴01=∙GB BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,A'C'cos .3311-==θ所以所求二面角的大小为π21.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1.将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OBOA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3.41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,.41413-=所以OA 与OB 夹角的大小为π-arccos41413.解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1……………………………………(3) 联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0), 得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --22.(I)解:函数f(x)的定义域是(-1,∞),'f (x)=111-+x.令'f (x)=0,解得x=0,当-1<x<0时,'f (x)>0,当x>0时,'f (x)<0,又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值是0(II)证法一:g(a)+g(b)-2g(2b a +)=alna+blnb-(a+b)ln2b a +=a ba b b ba a +++2ln2ln.由(I)的结论知ln(1+x)-x<0(x>-1,且x ≠0),由题设0<a<b,得21,02<-<->-bb a aab ,因此a ab aa b ba a 2)21l n (2ln-->-+-=+,bb a bb a b a b 2)21ln(2ln-->-+-=+.所以a b a b b b a a +++2ln 2ln >-22=---b a ab .又,22bba ba a +<+a ba b b ba a +++2ln2ln<a .2ln )(2ln)(2ln2lna b ba b a b ba b b bba -<+-=+++综上0<g(a)+g(b)-2g(2ba +)<(b-a)ln2.(II)证法二:g(x)=xlnx,1ln )('+=x x g ,设F(x)= g(a)+g(x)-2g(2x a +),则.2lnln )]'2([2)(')('x a x x a g x g x F +==+-=当0<x<a 时,0)('<x F 因此F(x)在(0,a)内为减函数x>a 时,0)('>x F 因此F(x)在(a,+∞)从而,当x=a 时,F(x)有极小值F(a)=0,b>a,所以F(b)>0,即0<g(a)+g(b)-2g(2b a +).设G(x)=F(x)-(x-a)ln2,则).ln(ln 2ln 2lnln )('x a x x a x x G +-=-+-=当x>0时,0)('<x G ,因此G(x)在(0,+∞)上为减函数,因为G(a)=0,b>a,所以G(b)<0.即g(a)+g(b)-2g(2b a +)<(b-a)ln2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年浙江省高考数学试卷(理科)
一.选择题:本大题共12小题,每小题5分,满分60分. 1. 若U ={1,2,3,4},M ={1,2}, N ={2,3}, 则C =)(N M U
(A){1,2,3}
(B){2}
(C){1,3,4}
(D){4}
2. 点P 从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动
23
π
弧长到达Q 点,则Q 的坐标为 (A)(-21
) (B) (
-21) (C)(-2
1
,
) (D)(
21)
3. 已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=
(A)-4
(B)-6
(C)-8
(D)-10
4. 曲线y 2=4x 关于直线x =2对称的曲线方程是
(A)y 2=8-4x
(B)y 2=4x -8
(C)y 2=16-4x (D)y 2=4x -16
5. 设z =x -y , 式中变量x 和y 满足条件30
20x y x y +-≥⎧⎨-≥⎩
, 则z 的最小值为
(A)1
(B)-1
(C)3
(D)-3
6. 已知复数z 1=3+4i , z 2=t +i , 且21z z ⋅是实数,则实数t =
(A)
43 (B)34 (C)-34 (D)-4
3
7.
若n 展开式中存在常数项,则n 的值可以是
(A)8
(B)9
(C)10
(D)12
8. 在△ABC 中,“︒>30A ”是“sin A >
2
1
”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件
9. 若椭圆122
22=+b
y a x (a >b >0)的左、右焦点分别为F 1、F 2,线段
F 1F 2被抛物线y 2=2bx 的焦点
分成5∶3的两段,则此椭圆的离心率为 (A)
1716 (B)17174 (C)5
4 (D)552
10. 如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,
且BD =1,若AD 与平面
AA 1C 1C 所成的角为α,则α= (A)

(B)4
π
(C)
(D)
11. 设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则
y =f (x )的图象最有可能的是
(A) (B) (C) (D)
12. 若f (x )和g (x )都是定义在实数集R
上的函数,且方程x -f [g (x )]=0有
B
C
C
1 1
D
实数解,则g [f (x )]不可能是 (A)x 2+x -
51 (B)x 2+x +51 (C)x 2-51 (D)x 2+5
1 二、填空题:本大题共4小题,每小题4分,满分16分。

把答案填在题中横线上。

13. 已知f (x )=1,0,
1,0,
x x ≥⎧⎨-<⎩,则不等式x +(x +2)·f (x +2)≤5的解集是__________.
14. 已知平面上三点A 、B 、C 满足|AB |=3, ||BC
=4, |CA |=5,则AB CA CA BC BC AB ⋅+⋅+⋅的值等于________.
15. 设坐标平面内有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)
(允许重复过此点)处,则质点不同的运动方法共有__________种(用数字作答).
16. 已知平面α与平面β交于直线l ,P 是空间一点,P A ⊥α,垂足为A ,PB ⊥β,垂足为B ,且P A =1,PB =2,若点A 在β内
的射影与点B 在α内的射影重合,则点P 到l 的距离为________.
三、解答题:本大题共6小题,满分74分。

解答应写出文字说明证明过程或演算步骤。

17. (本题满分12分)
在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,且cos A =31
(Ⅰ)求sin 2
2
B C
++cos2A 的值;(Ⅱ)若a =3,求bc 的最大值。

18.
(本题满分12分)
盒子中有大小相同的球10个,其中标号为1的球3个,标号为2的球4个,标号为5的球3个。

第一次从盒子中任取1个球,放回后第二次再任取1个球(假设取到每个球的可能性都相同),记第一次与第二次取到球的标号之和为ξ。

(1)求随机变量ξ的分布列;(2)求随机变量ξ的期望E ξ。

19. 如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点。

(1)求证AM //平面BDE ; (2)求二面角A -DF -B 的大小;
(3)试在线段AC 上确定一点
P ,使得PF 与BC 所成的角是︒60.
20. 设曲线y =e -x (x ≥0)在点M (t ,e -t )处的切线l 与x 轴、y 轴围成的三角形面积为S (t ).
(1)求切线l 的方程;(2)求S (t )的最大值。

21. 已知双曲线的中心在原点,右顶点为A (1,0),点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1,
(1)若直线AP 的斜率为k ,且|k |∈
求实数m 的取值范围;
(2)当m =2+1时,△APQ 的内心恰好是点M ,求此双曲线的方程。

22. 如图,△OBC 的三个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 1为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的
中点,对于每一个正整数n ,P n +3为线段P n P n +1的中点,令P n
的坐标为(x n ,y n ),
a n =
2
1
y n +y n +1+y n +2. (1)求a 1,a 2,a 3及a n ; (2)证明4
14
n n y
y +=-,n ∈N *;
(3)若记b n =y 4n +4-y 4n ,n ∈N *,
证明{b n }是等比数列。

相关文档
最新文档