2017届中考数学一轮复习第10讲平面直角坐标系与函数教案
【中考数学考点复习】第一节平面直角坐标系及函数课件
的值为( B )
A.-1
B.0
C.1
D.2
拓展训练
10.点 P 的坐标为(3,5),点 G 到 P 的距离为 4 个单位长度,且 PG∥x
轴,则点 G 的坐标为( C )
A.(7,5)
B.(1,5)
C.(7,5)或(-1,5)
D.(3,9)或(3,1)
11.(2021丽水)四盏灯笼的位置如图.已知A,B,C,D的坐标分别是
A.x>2
B.x<2
C. x≠2
D.x≠-2
13.函数 y= x-5中,自变量 x 的取值范围是( C )
A.x≥-5
B.x≤-5
C.x≥5
D.x≤5
(-1,b),(1,b),(2,b),(3.5,b),平移y轴右侧的一盏灯笼,使得y轴
两侧的灯笼对称,则平移的方法可以是( C )
A.将B向左平移4.5个单位
B.将C向左平移4个单位
C.将D向左平移5.5个单位 D.将C向左平移3.5个单位
第11题图
函数自变量的取值范围
12.函数 y=x-1 2中,自变量 x 的取值范围是( C )
坐标
系中
点的
坐标 特征 对称点的坐标特征,如图②
口诀:关于谁对称谁不变 关于原点对称都变号
1.P1(a,b) 关于x轴对称 P2(__a_,__-__b_) 2.P1(a,b) 关于y轴对称 P3(_-__a_,__b__) 3.P1(a,b)关于原点对称 P4(-__a_,__-__b_)
平面 直角 坐标 系中 点的 坐标 特征
平面 及原点的距 点P(a,b)到y轴的距离为___|a_|____
直角 坐标 系中 点的 坐标 特征
第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改
)
C.一、三、四
D.二、三、四
【详解】解:∵正比例函数 = ( ≠ 0)的函数值随的增大而减小,
∴ < 0,∴− > 0,2 < 0,
∴一次函数 = − + 2的图象所经过第一,三,四象限,故选:C.
【对点训练1】(2022·河南南阳·统考三模)若一元二次方程x2−4x+4m=0有两个相等的实数根,则
y=kx+b(k≠0)探索并理解k>0和k<0时图象的变
化情况.
➢ 会运用待定系数法确定一次函数的表达式.
稿定PPT
命题预测
一次函数的图象与性质是中考数学中比较重要
的一个考点,也是知识点牵涉比较多的考点.各
地对一次函数的图象与性质的考察也主要集中在
一次函数表达式与平移、图象的性质、图象与方
程不等式的关系以及一次函数图象与几何图形面
y=kx+b中b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数的一般形式:y=kx+b(k,b是常数,k≠0).
考点一 一次函数的相关概念
1. 一次函数一般形式的特征:1)k≠0; 2)x的次数为1; 3)常数b可以取任意实数.
2. 正比例函数是一次函数,但是一次函数不一定是正比例函数.
y随x的增大而减少
y
y
y
y
y
图象
x
O
经过象限
与y轴交点位置
x
O
x
x
O
O
b>0
b=0
b<0
b>0
一、二、三
一、三
一、三、四
一、二、四
y
x
O
b=0
第10讲 一次函数的图象与性质-中考数学一轮复习知识考点课件(35张)
A.y=- 1 x-5
2
C.y= 1 x-3
2
B.y=
1 2
x+3
D.y=-2x-8
上一页 下一页
9.(2020·内江)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,
已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且
只有4个整点,则t的取值范围是( D )
A. 1 ≤t<2
2
C.1<t≤2
B. 1 <t≤1
2
D. 1 ≤t≤2,且t≠1
2
上一页 下一页
10.(绵阳中考)在平面直角坐标系中,一条直线经过A(-1,5),P(-2,a),
B(3,-3)三点. (1)求a的值;
(2)设这条直线与y轴相交于点D,则△OPD的面积为_____3_______.
解:(1)设直线的解析式为y=kx+b.
上一页 下一页
2.(2019·荆门)若函数y=kx+b(k,b是常数)的图象不经过第二象限,则k,b
应满足的条件是( A ) A.k≥0,且b≤0
B.k>0,且b≤0
C.k≥0,且b<0
D.k>0,且b<0
上一页 下一页
3.(2020·天门)对于一次函数y=x+2,下列说法不正确的是( D ) A.图象经过点(1,3) B.图象与x轴交于点(-2,0) C.图象不经过第四象限 D.当x>2时,y<4
对点训练 1.(2020·荆州)在平面直角坐标系中,一次函数y=x+1的图象是( C )
A
B
C
D
上一页 下一页
2.(2020·泰州)点P(a,b)在函数y=3x+2的图象上,则代数式6a-2b+1的值
等于( C )Βιβλιοθήκη A.5B.3C.-3
中考复习——平面直角坐标系、一次函数、反比例函数及其图象 知识点汇总及典例分析
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
中考数学复习讲义课件 第3单元 第10讲 平面直角坐标系及函数
分析并判断函数图象 15.(2021·益阳)如图,已知□ABCD 的面积为 4,点 P 在 AB 边上从左向右运动(不含端点),设△APD 的 面积为 x,△BPC 的面积为 y,则 y 关于 x 的函数图 象大致是( B )
A
B
C
D
16.(2021·郴州)如图,在边长为 4 的菱形 ABCD 中, ∠A=60°,点 P 从点 A 出发,沿路线 A→B→C→D 运 动.设点 P 经过的路程为 x,以点 A,D,P 为顶点的 三角形的面积为 y,则下列图象能反映 y 与 x 的函数关 系的是( A )
图1
图2
18.(2019·永州)在一段长为 1000 米的笔直道路 AB 上,甲、乙两名运 动员均从 A 点出发进行往返跑训练.已知乙比甲先出发 30 秒钟,甲距 A 点的距离 y(米)与其出发的时间 x(分钟)的函数图象如图所示,乙的速度是 150 米/分钟,且当乙到达 B 点后立即按原速返回. (1)当 x 为何值时,两人第一次相遇? (2)当两人第二次相遇时,求甲的总路程.
A.(6,1)
B.(3,7)
C.(-6,-1)
D.(2,-1)
6.已知点 A 的坐标为(2,m),且点 A 在第二、四象限的角平分线上,则 m=__-_2___. 7.点 P(-3,4)关于 x 轴的对称点为__(_-__3_,_-__4_)__,关于 y 轴的对称点为 ___(3_,__4_)___,关于原点的对称点为__(_3_,_-__4_)___;点 P 到原点的距离为 __5___. 8.(2021·西宁)在平面直角坐标系 xOy 中,点 A 的坐标是(2,-1),若 AB∥y 轴,且 AB=9,则点 B 的坐标是___(2_,__8_)_或_(_2_,__-_1_0_)____.
2020年中考数学复习第10讲 函数与平面直角坐标系(测)(解析版)
第三单元函数第10讲函数与平面直角坐标系一、选择题1.(2018秋•萧山区期末)在直角坐标系中,已知点P(2,a)在第四象限,则()A.a<0 B.a≤0 C.a>0 D.a≥0【思路点拨】直接利用第四象限内点的坐标特点分析得出答案.【答案】解:∵点P(2,a)在第四象限,∴a<0.故选:A.【点睛】此题主要考查了点的坐标,正确掌握各象限内点的坐标特点是解题关键.2.(2019•义乌市一模)平面直角坐标系中点P(x,﹣x2﹣4x﹣3),则点P所在的象限不可能是()A.第一象限B.第二象限C.第三象限D.第四象限【思路点拨】由﹣x2﹣4x﹣3=﹣(x+2)2+1知当x>0时,﹣(x+2)2+1<﹣3<0,据此可得答案.【答案】解:∵﹣x2﹣4x﹣3=﹣(x+2)2+1,∴当x>0时,﹣(x+2)2+1<﹣3<0,∴点P所在象限不可能是第一象限,故选:A.【点睛】本题主要考查点的坐标,解题的关键是掌握各象限内点的坐标符号特点及配方法的应用.3.(2019•秀洲区一模)若点A(m,n)和点B(5,﹣7)关于x轴对称,则m+n的值是()A.2 B.﹣2 C.12 D.﹣12【思路点拨】直接利用关于x轴对称点的性质得出m,n的值,进而得出答案.【答案】解:∵点A(m,n)和点B(5,﹣7)关于x轴对称,∴m=5,n=7,则m+n的值是:12.故选:C.【点睛】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.4.(2019•嘉兴二模)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两条弧在第二象限交于点P,若点P 的坐标为(a,2b﹣1),则a,b的数量关系是()A.a=b B.a+2b=1 C.a﹣2b=1 D.a+2b=﹣1【思路点拨】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号可得a+2b﹣1=0,然后再整理可得答案.【答案】解:根据作图方法可得点P在第二象限角平分线上;点P到x轴、y轴的距离相等;点P的横纵坐标互为相反数,则P点横纵坐标的和为0,故a+2b﹣1=0,整理得:a+2b=1,故选:B.【点睛】此题主要考查了基本作图﹣角平分线的做法以及坐标与图形的性质:点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.5.(2018•北仑区模拟)已知函数y=,下列x的值在自变量的取值范围内的是()A.x=﹣2 B.x=0 C.x=1 D.x=4【思路点拨】根据分母不能为零,被开方数是非负数,可得答案.【答案】解:由题意,得x﹣≠0,且x≥0,解得x≥0且x≠0,1,故选:D.【点睛】本题考查了函数自变量的取值范围,利用分母不能为零,被开方数是非负数得出不等式是解题关键.6.(2019•义乌市模拟)在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位,再向下平移3个单位得到点A1;点A1关于y轴与A2对称,则A2的坐标为()A.(2,﹣1)B.(1,2)C.(﹣1,2)D.(﹣2,1)【思路点拨】根据左减右加,上加下减,可得A1,根据关于y轴对称点的纵坐标相等,横坐标互为相反数,可得答案.【答案】解:由题意,得A1(1,2),点A1关于y轴与A2对称,则A2的坐标为(﹣1,2),故选:C.【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()d5080100150b25405075A.b=d2B.b=2d C.b=D.b=d+25【思路点拨】这是一个用图表表示的函数,可以看出d是b的2倍,即可得关系式.【答案】解:由统计数据可知:d是b的2倍,所以,b=.故选:C.【点睛】此题主要考查了函数的表示方法,利用表格数据得出b,d关系是解题关键.8.(2019春•天台县期末)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5 或8.25 D.4.5 或8.5【思路点拨】根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【答案】解:由图2可得,当2<t<5时,小明的速度为:(680﹣200)÷(5﹣2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t﹣2)=600时,t=4.5,80(16﹣t)=600时,t=8.5,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2019•鄞州区一模)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(h)后,与乙港的距离为y(km),y与x的函数关系如图所示,则下列说法正确的是()A.甲港与丙港的距离是90km B.船在中途休息了0.5小时C.船的行驶速度是45km/h D.从乙港到达丙港共花了1.5小时【思路点拨】由船行驶的函数图象可以看出,船从甲港出发,0.5h后到达乙港,ah后到达丙港,进而解答即可.【答案】解:A、甲港与丙港的距离是30+90=120km,错误;B、船在中途没有休息,错误;C、船的行驶速度是km/h,错误;D、从乙港到达丙港共花了=1.5小时,正确;故选:D.【点睛】此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.10.(2018秋•慈溪市期末)我国国内平信邮资标准是:每封信的质量不超过20g,付邮资1.20元;质量超过20g后,每增加20g(不足20g按照20g计算)增加1.20元,如图表示的是质量q(g)与邮资p(元)的关系,下列表述正确的是()A.当q=40g时,p=3.60元B.当p=2.40元时,q=30gC.q是p的函数D.p是q的函数【思路点拨】根据图象,可得以x为自变量的函数y的解析式.【答案】解:由图象,则y=.故选:D.【点睛】本题考查分段函数的应用,考查函数的图象,考查学生分析解决问题的能力,属于中档题.11.(2019•衢州)如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C 移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.【思路点拨】根据题意分类讨论,随着点P位置的变化,△CPE的面积的变化趋势.【答案】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则其面积是x的一次函数,面积随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则其面积是x的一次函数,面积随x增大而减小,最小面积为0;故选:C.【点睛】本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.12.(2018春•温州期末)如图,△ABO,△A1B1C1,△A2B2C2,…都是正三角形,边长分别为2,22,23,…,且BO,B1C1,B2C2,…都在x轴上,点A,A1,A2,…从左至右依次排列在x轴上方,若点B1是BO 中点,点B2是B1C1中点,…,且B为(﹣2,0),则点A6的坐标是()A.(61,32)B.(64,32)C.(125,64)D.(128,64)【思路点拨】根据图形,依次表示各个点A的坐标,可以分别发现横、纵坐标的变化规律,则问题可解.【答案】解:根据题意点A在边长为2的等边三角形顶点,则由图形可知点A坐标为(﹣1,)由于等边三角形△A1B1C1,的顶点A1在BO中点,则点A到A1的水平距离为边长2,则点A1坐标为(1,2)以此类推,点A2坐标为(5,4),点A3坐标为(13,8),各点横坐标从﹣1基础上一次增加2,22,23,…,纵坐标依次是前一个点纵坐标的2倍则点A6的横坐标是:﹣1+2+22+23+24+25+26=125,纵坐标为:26×=64则点A6坐标是(125,64)故选:C.【点睛】本题是平面直角坐标系下的点坐标规律探究题,考查了等边三角形的性质,应用了数形结合思想.二、填空题13.(2017秋•萧山区期末)如图,规定列号写在前面,行号写在后面,如用数对的方法,棋盘中“帅”与“卒”的位置可分别表示为(e,4)和(g,3),则“炮”的位置可表示为(h,4).【思路点拨】根据已知点的坐标即可确定原点位置,进而得出答案.【答案】解:根据题意知“炮”的位置可表示为(h,4),故答案为:(h,4).【点睛】此题主要考查了坐标确定位置,正确得出行列表示的数据的顺序是解题关键.14.(2017秋•临安市期末)已知点M(4﹣2t,t﹣5),若点M在x轴的下方、y轴的右侧,则t的取值范围是t<2.【思路点拨】直接利用点的位置得出关于t的不等式组进而得出答案.【答案】解:由题意可得:∵点M(4﹣2t,t﹣5),点M在x轴的下方、y轴的右侧,∴,解得:t<2.故答案为:t<2.【点睛】此题主要考查了点的坐标,正确得出横纵坐标的符号是解题关键.15.(2019•东阳市模拟)在函数中,自变量x的取值范围是x≥4.【思路点拨】根据被开方数为非负数及分母不能为0列不等式组求解可得.【答案】解:根据题意,知,解得:x≥4,故答案为:x≥4.【点睛】本题主要考查函数自变量的取值范围,自变量的取值范围必须使含有自变量的表达式都有意义:①当表达式的分母不含有自变量时,自变量取全体实数.例如y=2x+13中的x.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.例如y=x+2x﹣1.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.16.(2018•玉环市一模)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M(6,m)表示单车停放点,且满足M到A,B的“实际距离”相等,则m=0.若点N表示单车停放点,且满足N到A,B,C 的“实际距离”相等,则点N的坐标为(1,﹣2).【思路点拨】根据两点间的距离公式可求m的值,设N(x,y),构建方程组即可解决问题.【答案】解:依题意有(6﹣3)2+(m﹣1)2=(6﹣5)2+(m+3)2,解得m=0;设N(x,y),则由题目中对“实际距离”的定义可得方程组:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得x=1,y=﹣2,则N(1,﹣2).故答案为:0;(1,﹣2).【点睛】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题17.(2019秋•吴兴区期末)在平面直角坐标系中,已知点M(m﹣1,2m+3)(1)若点M在y轴上,求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.【思路点拨】(1)根据点在y轴上横坐标为0求解.(2)根据第一、三象限的角平分线上的横坐标,纵坐标相等求解.【答案】解:(1)由题意得:m﹣1=0,解得:m=1;(2)由题意得:m﹣1=2m+3,解得:m=﹣4.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.18.(2018•上城区二模)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为A(2,3),B(2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?【思路点拨】(1)据关于y轴对称的点的横坐标互为相反数确定出点C、D的位置,然后连接CD即可;(2)线段CD上所有点的横坐标都是﹣2;【答案】解:(1)如图线段CD;(2)P(﹣2,y)(﹣1≤y≤3).【点睛】考查了关于x轴、y轴对称的点的坐标.关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).19.(2018秋•慈溪市期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上(小正方形的顶点称为格点),请解答下列问题:(1)作出△ABC关于y轴对称的△A1B1C1,点A1与A、B1与B对应,并回答下列两个问题:①写出点C1的坐标:②已知点P是线段AA1上任意一点,用恰当的方式表示点P的坐标.(2)若△ABC平移后得△A2B2C2,A的对应点A2的坐标为(﹣1,﹣1),写出点B的对应点B2的坐标.【思路点拨】(1)根据点坐标关于y轴对称的特征,找到△ABC三个顶点的对称点,顺次连接即可得到关于y轴对称的三角形;线段AA1上点的纵坐标都是4,﹣2≤横坐标≤2,据此可求解;(2)根据A(2,4),A2(﹣1,﹣1)可知平移的方向和距离,从而求出B2的坐标.【答案】解:(1)如图所示:①图C1的坐标(﹣3,2);②点P的坐标(x,4)(﹣2≤x≤2);(2)点B2的坐标(﹣2,﹣4).【点睛】本题主要考查了点坐标关于坐标轴对称的特征,以及点的平移特征,掌握点的对称、平移后坐标的变化规律是解题的关键.20.(2018秋•市北区期中)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.【答案】解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).【点睛】本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.。
中考总复习数学10-第一部分 第10讲 平面直角坐标系与函数
返回题型清单
返回栏目导航ຫໍສະໝຸດ 3.(2022·石家庄国际学校模拟)如图,直线a⊥b,若以平行于a的直线为x轴,以
平行于b的直线为y轴,建立平面直角坐标系,若A(-3,2),B(2,-3),则坐标系的
原点最有可能是( B )
A.O1
B.O2
C.O3
D.O4
1
2
3
4
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
和分类讨论思想是解答本题的关键.尤其是实际背景下的
函数问题,如果涉及分段函数,需要根据自变量的不同取值
范围分类进行求解,还需要关注函数与方程(不等式)的联系.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
返回题型清单
返回栏目导航
3.(2022·石家庄新华区模拟)用max , 表示a,b两数中较大的数,如
标公式为
x +x y1+y2
,
(如图③).
第10讲
平面直角坐标系与函数— 考点梳理
返回思维导图
返回栏目导航
考点 2 函数及其自变量取值范围
1.函数的相关概念
(1)变量:在某一变化过程中可以取不同数值的量.
(2)常量:在某一变化过程中保持相同数值的量.
(3)函数:一般地,在一个变化过程中如果有两个变量x和y,并且对于x的每一
值范围,根据函数关系式的特点来确定正确的函数图象.
1
2
3
4
5
第10讲
平面直角坐标系与函数— 题型突破
拔高追问
返回题型清单
返回栏目导航
当x等于何值时,函数值y最大?
中考数学第一轮复习 第章第讲 平面直角坐标系ppt(共20张PPT)
技法点拨►在平面直角坐标系中,解决点所处的象限与坐标符号之间的关系问题,综合各象限的坐标特征,经常利用不等式(组)解答.
技法点拨C►.应(用2函0数1图1,象解2题)的三D步.骤:(2(10)找1:0,找清0图)象的横、纵坐标各自具有的含义;
典型例题运用 类型1 平面直角坐标系中点的坐标
(【3)思点路P(分x,析y【A】)到.根原例据点第每1的一】一距A段离函象等数若于图限⑤象点_的__A倾_(B斜a.程+度第,1反,二映b象了-水限面1上)升在速第度的二快慢象,限再观,察则容器点的粗B(细-,作a出,判断b.+2)在(
)
.第三象限 .第四象限 C D (2)点P(x,y)在第二、四象限角平分线上⇔x+y=0
提示
确定位置常用的方法一般有两种:(1)用有序实数对(a,b)表示;(2)用方向和 距离表示.
考点2 点的坐标特征
象限内的点 第一象限:x>0,y>0; 第二象限:x<0,y>0;
第三象限:x<0,y<0; 第四象限:x>0,y<0
(1)点P(x,y)在x轴上⇔y=0,x为任意实数;
坐标轴上的点
(2)点P(x,y)在y轴上⇔x=0,y为任意实数; (3)点P(x,y)既在x轴上,又在y轴上⇔x=y=0,即点
B 以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1), P2(2,0),P3(3,-1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n +1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,-1).∵2017= 504×4+1,∴第2017秒时,点P的坐标为(2017,1).
中考数学一轮复习第一部分数与代数第三章函数第10讲一次函数课件
A
B
C
D
3.(2020 临沂)点
1
- 2 ,m
大小关系是 m<n .
和点(2,n)在直线 y=2x+b 上,则 m 与 n 的
求一次函数的解析式
4.(2020南通)如图,直线l1:y=x+3与过点A(3,0)的直线l2交于点
C(1,m),与x轴交于点B.
(1)求直线l2的解析式;
(2)点M在直线l1上,MN∥y轴,交直线l2于
点N,若MN=AB,求点M的坐标.
解:(1)在 y=x+3 中,令 y=0,得 x=-3,∴B(-3,0),
把 x=1 代入 y=x+3 得 y=4,∴C(1,4),
设直线 l2 的解析式为 y=kx+b,
k+b=4
k=-2
∴
,解得
,
3k+b=0
b=6
∴直线 l2 的解析式为 y=-2x+6.
(2)AB=3-(-3)=6,
(3,0),(0,2),则这个函数的解析式
为
y=-x+2
.
课堂精讲
一次函数的图象和性质
1.(2020镇江)一次函数y=kx+3(k≠0)的函数值y随x的增大而增
大,它的图象不经过的象限是( D )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.(2020荆州)在平面直角坐标系中,一次函数y=x+1的图象是
内,经过点(0, 0 )与点(1, -5 ),y随x的
增大而 减小 ;
(2)一次函数y=2x-2的图象经过第
一、三、四 象限,y随x的增大而
专题11 平面直角坐标系(课件)2023年中考数学一轮复习(全国通用)
知识点2:点的坐标在不同位置的特征
知识点梳理
5. 关于x轴、y轴或原点对称的点的坐标的特征:
点P与点P′关于x轴对称 横坐标相等,纵坐标互为相反数. 点P与点P′关于y轴对称 纵坐标相等,横坐标互为相反数. 点P与点P′关于原点对称 横、纵坐标均互为相反数.
坐标为
.
知识点2:点的坐标在不同位置的特征
典型例题
【考点】规律型:点的坐标;坐标与图形变化—旋 转;坐标与图形变化—平移;关于x轴、y轴对称的 点的坐标 【分析】根据变换的定义解决问题即可. 【解答】解:点(0,1)经过011变换得到点(-1,-1), 点(-1,-1)经过011变换得到点(0,1),点(0,1)经 过011变换得到点(-1,-1), 故答案为:(-1,-1).
知识点2:点的坐标在不同位置的特征
知识点梳理
1. 各象限内点的坐标的特征:
点P(x,y)在第一象限 x>0,y>0. 点P(x,y)在第二象限 x<0,y>0. 点P(x,y)在第三象限 x<0,y<0. 点P(x,y)在第四象限 x>0,y<0.
知识点2:点的坐标在不同位置的特征
知识点梳理
A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )
A.(2,2)
B.(1,2)
C.(1,1)
D.(2,Leabharlann )知识点1:平面直角坐标系及点的坐标
典型例题
【解答】解:如图所示:
点C的坐标为(2,1). 故选:D. 【点评】此题主要考查了点的坐标,正确得出原点位置是解题的关键.
知识点1:平面直角坐标系及点的坐标
中考第一轮复习 第10课时一次函数的图像与性质
因在一次函数 y=kx+b(k≠0)中有两个未知系数 k 和 b,所以,要确定其关系式,一般需要两个条件,常见的 是 已 知 两 点 P1(a1 , b1) , P2(a2 , b2) , 将 其 坐 标 代 入 得
b1=a1k+b, b2=a2k+b,
求出 k,b 的值即可,这种方法叫做
等式kx+b>0 从函数图象的角度看,由于一次函数的图象在x
﹝针对训练 ﹞一次函数y=kx+b(k,b是常数,k≠0)的图 象如图所示,则不等式 kx+b>0的解是( A ) y A.x>-2 B.x>0 C.x<-2 D.x<0
2
•2 -
0
x
(3)一次函数与二元一次方程组 一次函数与 方程组 两个一次函数图象的交点坐标就是它们的解 析式所组成的二元一次方程组的解;二元一次 方程组的解即为这两个两个二元一次方程所对 应的两个一次函数图象的交点标.
4 x y 3, x , 3 的解, ﹝针对训练 ﹞已知 是方程组 x y 1 y 5 2 3
4 5 x —— —— 3 , 3 ) . 那么一次函数y=3-x和y= +1的交点是_(________ 2
中考预测
1.一次函数y=kx-k(k < 0)的大致图像是( A )
y随x增 大而增大
y随x增 大而减小
规律总结:
b的符号规律:正上,负下,0原点.
k和b的符号作用:k的符号决定函数的增减性,k>0时,y随x 的增大而增大,k<0时,y随x的增大而减小;b的符号决定图象与 y轴交点的位置在原点的上方还是下方.
考向探究 知识点配题
探究2 一次函数的图象和性质 ﹝例2﹞(2017•桐城) 如图所示,一次函数y=(m-2)x-1的
专题三函数 3.1平面直角坐标系、函数图象-2021年中考数学一轮复习课件
求真 至善
1. 平面直角坐标系、函数图象
知识梳理
一.平面直角坐标系及其相关概念: 1.定义:在平面内,两条互相垂直且有公共原点的数轴组成 平面直角坐标系.
平面直角坐标系内的点和有序实数对成一 一对应关系. 2.坐标轴、原点、象限: 水平的数轴称为x 轴或横轴; 竖直的数轴称为y 轴或纵轴; x 轴和y 轴统称为坐标轴; 两坐标轴的交点为坐标原点; 两条坐标轴把坐标平面分成四个部分, 分别称第 一 、二 、三 、四象限 , 坐标轴上的点不属于任何象限.
D. (-4,3)
(2)在平面直角坐标系中,将点A(1,-2)向上平移3个单位长
度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( A).
A. (-1, 1) B. (-1,-2) C. (-1, 2) D. (1, 2)
知识梳理
七.函数: 1.常量和变量: 在某一变化过程中, 可以取不同数值的量叫 做变量;保持数值不变的量叫做常量. 2. 函数、自变量、函数值:一般地,设在某一变化过程中有 两个变量x和y,若对于x的每一个确定的值,y 都有唯一确定 的值与其对应,则y是x的函数,x 是自变量.这个唯一确定的 值叫做函数值
(5)点A(-3,4)到x轴的距离为 4 , 到y轴的距离为 3 .
(6)已知坐标平面内的点 A (2 ,6 ) ,B (2 ,- 2 ) , 则 AB的长
等于 8 ;
若点M在直线AB上 , 且BM=6,则点M的坐标为
.
(2,4)和(2,-8)
知识梳理
六.对称点的坐标特征: P1(a,b)关于x轴对称的点为P2(a,-b),
3.函数的表示法与图象: (1)解析法;(2)列表法;(3)图像法.
由函数的解析式作函数的图象, 一般步骤是 :
平面直角坐标系与函数-中考数学第一轮总复习课件(全国通用)
中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第三单元 函数及其图象专题3.1 平面直角坐标系与函数知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例1】已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是( )知识点一典例精讲点的坐标特征A 0.51A0.51B 0.501C0.51D名师点拨象限点:第一象限_____,第二象限_____,第三象限_____,第四象限_____,特殊位置点:x轴上_____, y轴上______. 平行x轴:______相同,_______为不相等的实数; 平行y轴:_______相同,_______为不相等的实数.P(x,y)在一、三象限角的平分线上,则____, P(x,y)在二、四象限角的平分线上,则______.(+,+) (-,+)(+,-) (-,-)(x,0)(0,y)横坐标纵坐标横坐标纵坐标x=yx=-y1.在平面直角坐标系中,若点P(m-2,m+1)在第二象限,则m的取值范围是( ) A.m<-1 B.m>2 C.-1<m<2 D.m>-12.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,污渍盖住的点的坐标可能是( ) A.(a,b) B.(-a,b) C.(-a,-b) D.(a,-b)3.在平面直角坐标系中,点P(m-3,4-2m)不可能在第_____象限.4.已知点A(m,-2),B(3,m-1),且直线AB∥x轴,则m的值是_____.一-1知识点一强化训练点的坐标特征C B yxO知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( ) A.O 1B.O 2C.O 3D.O4A O 3O 4mnO 1BO 2A知识点二典例精讲坐标的几何意义考点聚集1.P(a,b)到x轴的距离____,到y轴的距离____,到原点的距离________.2.A(x 1,y 1),B(x 2,y 2)为坐标系中的点,则AB=_____________________.3.表示地理位置的方法|b ||a |①平面直角坐标系法②方位角+距离③经纬度1.在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的直线为y 轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则这时C点的坐标可能是( ) A.(1,3) B.(2,-1) C.(2,1) D.(3,1)2.在平面直角坐标系中,A,B,C,D,M,N的位置如图所示,若点M、N的坐标分别为(-2,0),(2,0)则在第二象限内的点时_____.BA ADNCBMO知识点二强化训练坐标的几何意义BCAN知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练04【例3-1】(1)下列各式中y是x的函数关系的是( ) A .y 2=x+1 B .x 2+y 2=4 C .|y|=x D .y=|x| (2)在函数y= 中,自变量x的取值范围是( ) A.x<4 B. x≥4且x≠-3 C. x>4 D.x≤4且x≠-3DD【例3-2】新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头,骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来,当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S 1,S 2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是( ) C OStBOStCOStDS 1S 1S 1OStAS 1S 2S 2S 2S 2【例3-3】如图,在矩形ABCD中,AB=4,BC=8.点P从点B出发,沿BC方向运动,到点C停止,速度为1单位/秒;点Q同时从点C出发,沿CD-DA-AB的路线运动,到点B停止,速度为2单位/秒.连接BQ,PQ,设△QBP的面积为y平方单位,运动时间为x秒,则表示y与x的函数关系的大致图象为( )DA C D QB P Oyx A O y x D O y x C O y x B 268268268268知识点三典例精讲函数及其图象1.凡凡和可可在才子大桥两端同时出发,相向而行,凡凡的速度是可可的1.5倍,下图是两人之间的距离S(单位:m)与可可行走的时间x(单位:min)的函数图象,根据这些信息判断,下列说法正确的是( ) A.凡凡的速度是60 m/min B.才子大桥长400 mC.点M表示的意义是两人相遇D.a=10/3D yO x200a b 4/3M2.如图①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚.在这个过程中,小球的运动速度v 与运动时间t 的函数图象如图②,则该小球的运动路程y 与运动时间t 之间的函数图象大致是( )C 图①O vt 图②O y t A O y t B O y t C O y t D 3.如图,全等的等腰直角△ABC和△DEF,∠B=∠DEF=90º,点B,C,E,F在直线l上.△ABC从左图的位置出发向右作匀速运动,而△DEF不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数图象大致是( )C O y x A O y x B O y x C O y xD A F D C(E)B l知识点点的坐标特征01坐标系的几何意义02函数及其图象03拓展训练041.著名画家达·芬奇不仅画艺超群,同时还是一个数学家,发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为____cm.2.如图1,长2米的梯子AB竖直放在墙角,在沿着墙角缓慢下滑直至水平地面过程中,梯子AB的中点P的移动轨迹长度为_______.10 APB OA P B0.5π3.一电工沿着如图的梯子NL往上爬,当他爬到中点M处时,由于地面太滑,梯子沿墙面与地面滑下,以地面为x轴,墙面为y轴建立平面直角坐标系,设点M 的坐标为(x,y)(x>0),则y与x之间的函数关系用图象表示大致是( )CLMN LMNyO xAyO xByO xCyO xD4.如图,AC经过圆心O,交⊙O于点的D,AB与⊙O相切于点B.若∠A=x(0º<x <90º),∠C=y,则y与x之间的函数关系图象是( )AABCD O OyxA45º90ºOyxB90º90ºOyxC45º45ºOyxD90º45º5.如图,在边长为6厘米的正方形ABCD中,点M,N同时从点A出发,均以1厘米/秒的速度分别沿折线A-D-C与折线A-B-C运动至点C.设阴影部分△AMN的面积为S,运动时间为t,则S关于t的函数图象大致为( )DAMN B C D O yx D O y x C O y x A O y x B 6.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()B7.如图,在菱形ABCD中,∠B=60º,AB=2cm,动点P从点B出发,以1cm/秒的速度沿折线BA→AC运动,同时动点Q从点A出发,以相同速度沿折线AC→CD运动,当一个点停止运动时,另一个点也随之停止.设△APQ的面积为y,运动时间B为x秒,则下列图象能大致反映y与x之间函数关系的是( )8.如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD-DA方向运动,与点P同时出发,同时停止.这两点的运动速度均为每秒1个单位.若设他们的运动时间为x(秒),△EPQ 的面积为y,则y与x之间的函数关系的图象大致是( )A9.如图1,点P从△ABC的顶点B出发,沿B→C→A 匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是_____.12提升能力拓展训练平面直角坐标系与函数10.如图,等边△ABC中,边长AB=3,点D在线段BC上,点E在射线AC上,点D沿BC方向从B点以每秒1个单位的速度向终点C运动,点E沿AC方向从A点以每秒2个单位的速度运动,当D点停止时E点也停止运动,设运动时间为t秒,若D、E、C三点围成的图形的面积用S来表示,则S与t的图象是( )C A E D C B O S t A 1234321O S t D 1234321O S t C 1234321O S t B123432111.如图,爸爸从家(点O)出发,沿着扇形AOB上OA→AB→BO的路径去匀速散步,设爸爸距家(点O)的距离为S,散步的时间为t,则下列图形中能大致刻画S与t之间函数关系的图象是( )C 提升能力拓展训练平面直角坐标系与函数12.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是( ) A.①B.④C.②或④D.①或③D13.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示的方向,每次移动1个单位,依次得到点1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P 6(2,0),…,则点P2017的坐标是_________.14.如图,在平面直角坐标系中,等腰直角△OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2021的坐标是__________.(672,1)yxOP1P13P11P10P8P7P5P4P2P12P9P6P3yxOA2A1AA7A6A5A4A3(21010,21010)16.如图,正六边形ABCDEF的边长为2,现要建立平面直角坐标系,使点A,B分别在x的正半轴、y的正半轴上,且点C,D,E,F第一象限或坐标轴上.当OA=OB时,点E的坐标为____________.A F EDCBOH。
湖南省中考数学总复习第三单元函数及其图象课时10平面直角坐标系与函数课件
中考对接
命题点一 平面直角坐标系中点的坐标特征
1. [2016· 衡阳] 点P(x-2,x+3)在第一象限,则x的 取值范围是 . 【答案】x>2 【解析】 ∵点P(x-2,x+3)在第一象
限,∴解得x>2.故答案为x>2.
课前考点过关
命题点二 图形与坐标
2. [2016· 常德] 平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为 M,N的“和点”. 若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和 点四边形”. 现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标 (1,8)或 是 . (-3,-2)或(3,2)
边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中
“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1), P5(-1,-1),P6(-1,2),…,根据这个规律,点P2016的坐标为
图10-2
课前考点过关
命题点五 与坐标有关的创新题
6. [2017· 湘潭] 阅读材料:设a=(x1,y1),b=(x2,y2),a∥b,则 x1· y2=x2· y1. 根据该材料填空:已知a=(2,3),b=(4,m),且a∥b,则 m= .
轴和y轴构成一个平面斜坐标系. 规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点
B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标. 在某平 面斜坐标系中,已知θ=60°,点M的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 .
2020年中考数学一轮复习第课时11平面直角坐标系和函数初步 练习题(无答案)
初三中考第一轮复习课题11:平面直角坐标系与函数初步【课前练习】1.(2018·扬州)在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,4)2.(2018·沈阳)在平面直角坐标系中,点B 的坐标是(4,-1),点A 与点B 关于x 轴对称,则点A 的坐标是A .(4,1)B .(-1,4)C .(-4,-1)D .(-1,-4)3.(2018海南)如图1,在平面直角坐标系中,△ABC 位于第一象限,点A 的坐标是(4, 3),把△ABC 向左平移 6个单位长度,得到△A 1B 1C 1,则点B 1的坐标是A .(-2,3)B .( 3,-1)C .(-3,1)D .(-5, 2) xy–1–2–3–4–512345–11234OA CB A1B1C14.(2018·宿迁)函数11-=x y 中,自变量x 的取值范围是 A .0≠x B .1<x C .1>xD .1≠x5.(2019•南岸区)在平面直角坐标系中,将点A (2,﹣3)向右平移3个单位后得到点B ,则点B 的坐标为 .6.(2018秋•高邮市期末)已知点A (m ﹣1,﹣5)和点B (2,m +1),若直线AB ∥x 轴,则线段AB 的长为 .7.(2018•资阳)如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是 .【知识点回顾】(1)平面上的点与一对有序实数对一一对应(2) 坐标的意义:1.位置 2.距离 3.平移(3) 各个位置上的点的特征:第一象限(+,+);第二象限(—,+);第三象限(—,—);第四象限(+,—);x 轴上的点纵坐标=0;y 轴上的点横坐标=0;一三象限的角平分线(直线y=x )横坐标=纵坐标;二四象限的角平分线(直线y=-x )横坐标、纵坐标互为相反数(4)点的位置变换:a) 平移:左右平移变化横坐标,左减右加,上下平移变化纵坐标,上加下减b) 轴对称:关于x 轴对称,横坐标不变,纵坐标互为相反数;关于y 轴对称,纵坐标不变,横坐标互为相反数 c) 中心对称:关于O 点对称,横纵坐标都互为相反数d) 位似:相似比为k ,则横纵坐标都乘以k 或﹣k(1)变量,函数的概念(2)函数的自变量a) 整式中的自变量取值为任意实数。
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)
中考总复习:平面直角坐标系与一次函数、反比例函数--知识讲解(基础)【考纲要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想;⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题.【知识网络】【考点梳理】考点一、平面直角坐标系 1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点 点P(x,y)在第一象限0,0>>⇔y x ;点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.要点诠释:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标. 考点二、函数 1.函数的概念设在某个变化过程中有两个变量x 、y,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y 是x 的函数,x 叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法. 4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来. 要点诠释:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量; (2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质) 1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k 是常数,k ≠0),那么y 叫做x 的正比例函数. (2)正比例函数y=kx ( k ≠0)的图象: 过(0,0),(1,K )两点的一条直线.(3)正比例函数y=kx (k ≠0)的性质①当k >0时,图象经过第一、三象限,y 随x 的增大而增大; ②当k <0时,图象经过第二、四象限,y 随x 的增大而减小 . 2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数. (2)一次函数y=kx+b (k ≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb点的一条直线.①当k>0时,y 随x 的增大而增大; ②当k<0时,y 随x 的增大而减小.要点诠释:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k.确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法.3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:ky x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序); 连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点). ④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xky = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k .(4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x的取值范围是x≠0,y的取值范围是y≠0;②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y随x 的增大而减小.①x的取值范围是x≠0,y的取值范围是y≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k)(6)“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数xky=中的两个变量必成反比例关系. 要点诠释:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1.已知点A(a,-5),B(8,b),根据下列要求确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点都在一、三象限的角平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数;(2)关于原点对称,x变为相反数,y变为相反数;(3)AB∥x轴,即两点的纵坐标不变即可;(4)在一、三象限两坐标轴夹角的平分线上的点的横纵坐标相等,即可得出a,b.【答案与解析】(1)点A(a,-5),B(8,b)两点关于y轴对称,则a=-8且b=-5.(2)点A(a,-5),B(8,b)两点关于原点对称,则a=-8且b=5.(3)AB∥x轴,则a≠8且b=-5.(4)A,B两点都在一、三象限的角平分线上,则a=-5且b=8.【总结升华】运用对称点的坐标之间的关系是解答本题的关键.在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.举一反三:【变式】已知点A的坐标为(-2,-1).(1)如果B为x轴上一点,且10AB=,求B点的坐标;(2)如果C为y轴上的一点,并且C到原点的距离为3,求线段AC的长;(3)如果D为函数y=2x-1图象上一点,5AD=,求D点的坐标.【答案】(1)设B (x ,0),由勾股定理得22(2)(01)10AB x =+++=.解得x 1=-5,x 2=1. 经检验x 1=-5,x 2=1均为原方程的解.∴ B 点的坐标为(-5,0)或(1,0).(2)设C (0,y ),∵ OC =3,∴ C 点的坐标为(0,3)或(0,-3). ∴ 由勾股定理得22(2)(31)25AC =-++=;或22AC =.(3)设D (x ,2x -1),AD =5,由勾股定理得22(2)(211)5x x ++-+=.解得115x =,21x =-. 经检验,115x =,21x =-均为原方程的解. ∴ D 点的坐标为(15,35-)或(-1,-3).2.已知某一函数图象如图所示.(1)求自变量x 的取值范围和函数y 的取值范围;(2)求当x =0时,y 的对应值; (3)求当y =0时,x 的对应值; (4)当x 为何值时,函数值最大; (5)当x 为何值时,函数值最小;(6)当y 随x 的增大而增大时,求x 的取值范围; (7)当y 随x 的增大而减小时,求x 的取值范围. 【思路点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 【答案与解析】(1)x 的取值范围是-4≤x ≤4,y 的取值范围是-2≤y ≤4; (2)当x =0时,y =3;(3)当y =0时,x =-3或-1或4; (4)当x =1时,y 的最大值为4; (5)当x =-2时,y 的最小值为-2;(6)当-2≤x ≤1时,y 随x 的增大而增大;(7)当-4≤x ≤-2或1≤x ≤4时,y 随x 的增大而减小. 【总结升华】本题主要是培养学生的识图能力. 举一反三:【变式1】下图是韩老师早晨出门散步时,离家的距离y 与时间x 的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是( )【答案】理解题意,读图获取信息是关键,由图可知某段时间内韩老师离家距离是常数,联想到韩老师是在家为圆心的弧上散步,分析四个选项知D项符合题意.答案:D【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例1】【变式2】下列图形中的曲线不表示y是x的函数的是( ).【答案】C.类型二、一次函数3.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y (km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.【思路点拨】观察图形理解每一段图象的内涵.【答案与解析】解:(1)由图象,得:小明骑车速度:10÷0.5=20(km/ h).在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)如图,设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10.∴直线BC解析式为y=20x﹣10 ①.设直线DE解析式为y=60x+b2,把点D(43,0)代入得b2=﹣80.∴直线DE解析式为y=60x﹣80②.联立①②,得x=1.75,y=25.∴交点F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).【总结升华】考查一次函数图象和应用,直线上点的坐标与方程的关系.举一反三:【高清课程名称:平面直角坐标系与一次函数高清ID号:406069关联的位置名称(播放点名称):例6】【变式1】(1)直线y=2x+1向下平移2个单位,再向右平移2个单位后的直线的解析式是_____ ___.(2)直线y=2x+1关于x轴对称的直线的解析式是___ _____;直线y=2x+l关于y轴对称的直线的解析式是___ ______;直线y=2x+1关于原点对称的直线的解析式是____ _____.(3)如图所示,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB平移后经过(3,4)点,则平移后的直线的解析式是__ ______.【答案】(1)y=2x-5;(2)y=-2x-1,y=-2x+1,y=2x-1;(3)y=2x-2.【变式2】某地夏天旱情严重.该地10号、15号的人日均用水量的变化情况如图所示.若该地10号、15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A.23 B.24 C.25 D.26【答案】解析:设图中直线解析式为y =kx+b , 将(10,18),(15,15)代入解析式得1018,1515,k b k b +=⎧⎨+=⎩解得 3,524,k b ⎧=-⎪⎨⎪=⎩∴3245y x =-+.由题意知,324105x -+<,解得1233x >,∴送水号数应为24. 答案:B类型三、反比例函数4.已知函数2y x=和y =kx+1(k ≠0). (1)若这两个函数的图象都经过点(1,a),求a 和k 的值; (2)当k 取何值时,这两个函数的图象总有公共点? 【思路点拨】(1)因为这两个函数的图象都经过点(1,a ),所以x=1,y=a 是方程组 21y xy kx ⎧=⎪⎨⎪=+⎩的解,代入可得a 和k 的值;(2)要使这两个函数的图象总有公共点,须方程组 21y xy kx ⎧=⎪⎨⎪=+⎩有解,即 21kx x =+有解, 根据判别式△即可求出K 的取值范围.【答案与解析】(1)∵ 两函数的图象都经过点(1,a),∴ 2,11,a a k ⎧=⎪⎨⎪=+⎩ ∴ 2,1.a k =⎧⎨=⎩ (2)将2y x=代入1y kx =+,消去y ,得 220kx x +-=,∵ k ≠0,∴ 要使得两函数的图象总有公共点, 只要△≥0即可.∴ 1+8k ≥0,解得18k ≥-.∴ 18k ≥-且k ≠0.【总结升华】判断反比例函数与一次函数交点问题,要把反比例函数与一次函数联立转化成一元二次方程,再通过根的判别式来判断. 举一反三:【变式】已知正比例函数y kx =(k 为常数,0k ≠)的图象与反比例函数5ky x-=(k 为常数,0k ≠)的图象有一个交点的横坐标是2. (1)求两个函数图象的交点坐标;(2)若点11()A x y ,,22()B x y ,是反比例函数5ky x-=图象上的两点,且12x x <,试比较12y y ,的大小. 【答案】(1)由题意,得522kk -=, 解得1k =.所以正比例函数的表达式为y x =,反比例函数的表达式为4y x=. 解4x x=,得2x =±.由y x =,得2y =±.所以两函数图象交点的坐标为(2,2),(22)--,.(2)因为反比例函数4y x=的图象分别在第一、三象限内, y 的值随x 值的增大而减小,所以当120x x <<时,12y y >. 当120x x <<时,12y y >.当120x x <<时,因为1140y x =<,2240y x =>,所以12y y <.类型四、函数综合应用5.如图,直线b x y +-=(b >0)与双曲线xky =(k >0)在第一象限的一支相交于A 、B 两点,与坐标轴交于C 、D 两点,P 是双曲线上一点,且PD PO =.(1)试用k 、b 表示C 、P 两点的坐标;(2)若△POD 的面积等于1,试求双曲线在第一象限的一支的函数解析式; (3)若△OAB 的面积等于34,试求△COA 与△BOD 的面积之和.【思路点拨】(1)根据直线的解析式求得点D 的坐标,再根据等腰三角形的性质即可求得点P 的横坐标,进而根据双曲线的解析式求得点P 的纵坐标;(2)①要求双曲线的解析式,只需求得xy 值,显然根据△POD 的面积等于1,即可求解;②由①中的解析式可以进一步求得点B 的纵坐标,从而求得直线的解析式,然后求得点B 的坐标,即可计算△COA 与△BOD 的面积之和. 【答案与解析】(1)C (0,b ),D (b ,0) ∵PO =PD∴22b OD x P ==,b ky P 2=∴P (2b ,bk2)(2)∵1=∆POD S ,有1221=⋅⋅bkb ,化简得:k =1∴xy 1=(x >0)(3)设A (1x ,1y ),B (2x ,2y ),由AOB COD BOD COA S S S S ∆∆∆∆-=+得:34212121221-=+b by bx ,又b x y +-=22得38)(221-=+-+b b x b bx , 即38)(12=-x x b 得,再由⎪⎩⎪⎨⎧=+-=x y bx y 1得012=+-bx x ,从而b x x =+21,121=x x ,从而推出0)12)(4)(4(2=++-b b b ,所以4=b . 故348-=+∆∆BOD COA S S【总结升华】利用面积建立方程求解析式中的字母参数是常用方法.求两函数图像的交点坐标,即解由它们的解析式组成的方程组. 举一反三:【变式1】如图所示是一次函数y 1=kx+b 和反比例函数2my x=的图象,观察图象写出y 1>y 2时x 的取值范围________.【答案】利用图象比较函数值大小时,要看对于同一个自变量的取值,哪个函数图象在上面,哪个函数的函数值就大,当y 1>y 2时,-2<x <0或x >3. 答案:-2<x <0或x >3 【变式2】已知函数232(21)my m x -=-,m 为何值时,(1)y 是x 的正比例函数,且y 随x 的增大而增大? (2)函数的图象是位于第二、四象限的双曲线? 【答案】(1)要符合题意,m 需满足2210,32 1.m m ->⎧⎨-=⎩ 解得1,21.m m ⎧>⎪⎨⎪=±⎩ ∴ m =1.(2)欲符合题意,m 需满足2210,32 1.m m -<⎧⎨-=-⎩ 解得1,23.3m m ⎧<⎪⎪⎨⎪=±⎪⎩∴ 33m =-.6.已知直线11:n n l y x n n+=-+(n 是不为零的自然数).当n =1时,直线1:21l y x =-+与x 轴和y 轴分别交于点A 1和B 1,设△A 1OB 1(其中O 是平面直角坐标系的原点)的面积为S 1;当n =2时,直线231:22l y x =-+与x 轴和y 轴分别交于点A 2和B 2,设△A 2OB 2的面积为S 2,…,依此类推,直线n l 与x轴和y 轴分别交于点A n 和B n ,设△A n OB n 的面积为S n .(1)求11A OB △的面积S 1;(2)求S 1+S 2+S 3+…+S 6的面积.【思路点拨】此题是一道规律探索性题目,先根据函数解析式的通项公式得出每一个函数解析式,画出图象,总结出规律,便可解答. 【答案与解析】解:直线1:21l y x =-+,∴ 11OB =,112OA =.(1)111111112224S OB OA =⨯⨯=⨯⨯=. (2)由11n y x n n +=-+得,A 12123611A (0),(0,).n+1n11,,n+1n 1111,2n n+12(1)11,,212223111121222323426711111()21223346711(1)273.7n n n n n n OB B OA OB S n n S S S S S S ===⨯⨯=+==⨯⨯⨯⨯++++=++++⨯⨯⨯⨯⨯⨯⨯⨯=++++⨯⨯⨯⨯=-=△,【总结升华】借助直觉思维或对问题的整体把握运用归纳、概括、推理等思想获得合理的猜测.。
(新课标)2014届中考数学查漏补缺第一轮基础复习_第10讲_平面直角坐标系与函数课件
第10讲┃ 考点聚焦 考点7 函数图象的概念及画法
概念 画法步 骤
一般地,对于一个函数,如果以自变量与因变量的 每对对应值分别作为点的横坐标、纵坐标,那么平 面直角坐标系内由这些点组成的图形,就是这个函 数的图象 (1)列表;(2)描点;(3)连线
第10讲┃ 归类示例
归类示例
► 类型之一 坐标平面内点的坐标特征
命题角度: 1. 关于x轴对称的点的坐标特征; 2. 关于y轴对称的点的坐标特征; 3. 关于原点对称的点的坐标特征.
已知点 M(1-2m,m-1)关于 x 轴的对称点在第一象 限,则 m 的取值范围在数轴上表示正确的是 ( ) A 图 10-2
第10讲┃ 归类示例
[解析] 由题意得,点 M 关于 x 轴对称的点的坐标为(1- 2m,1-m). ∵M(1-2m,m-1)关于 x 轴的对称点在第一象限, 1 m< , 1-2m>0, 2 ∴ 解得 1-m>0, m<1. 在数轴上表示为: .
第10讲┃ 归类示例
[解析] 由 A(-2,3)平移后点 A1 的坐标为(3,1),可知 A 点横坐标加 5,纵坐标减 2, 则点 C 的坐标变化与 A 点的坐标变化相同, 故 C1(2+5, 0-2),即(7,-2).
第10讲┃ 归类示例
求一个图形旋转、平移后的图形上对应点的坐标,一般 要把握三点:一是根据图形变换的性质;二是利用图形的全 等关系;三是确定变换前后点所在的象限.
到x轴 点P(a,b)到x轴的距离等于点 P 的距离 的________________ 纵坐标的绝对值 ,即 b 到y轴 点P(a,b)到y轴的距离等于点P a 横坐标的绝对值 ,即 的距离 的________________
初中数学_《平面直角坐标系》复习课教学设计学情分析教材分析课后反思
《平面直角坐标系》学情分析只有掌握学生的基本情况才能更好的因材施教。
从年龄特点来看,七年级学生已经能够建立初步的抽象思维去思考问题,对数字与图形已有一定的认识,是本课学习数与形结合的平面直角坐标系的良好基础。
七年级学生积极性高,乐于思考且好表现,活跃的课堂气氛对于新课的教学会起到事半功倍的作用。
本节课的设计充分彰显学生的主观能动性,自己设计本章知识点,以思维导图的形式进行展示,充分调动的学生的学习积极性。
好的教学方法是实现教学目标、提高教学质量的关键所在。
教法:1、演练结合法;2、提问法;学法:1、小组合作探究法;2、动手操作法这种学习方法的灵活运用,能劳逸结合,让学生在快乐中学习。
效果分析自主检测部分的题目,五个题目,五个类型。
出现错误较多的是第四题和第五题,第四题是有的学生忽略多解,由距离转化为实际“数”的时候,应该有两种考虑,从而横纵坐标衍生出一共四种情况;第五题作为解答题,学生有的步骤不规范,还有的师典型错误,就是知道AB∥ x轴,所以其纵坐标相等,但是要同时保证横坐标不相等,这是学生忽略的地方。
中考链接的题目,德州这部分多以综合题的形式出现,所以列举的是其他省市的中考题,这三个题目出现错误的很少,主要是第三题的方法,用本节课所拓宽的知识,用左右平移与坐标的关系解决更为简单。
中考预备所设置的这个阅读理解题,是为了以后初三学习中的抛物线中的平行四边形存在性问题做的铺垫,需要记住其中的中点公式。
学生在解决这个问题的时候,看似简单,却忽略了应该说明AB∥ x 轴,否则即使说明DE∥ x轴,,也无法说明EF∥ AB,所以学会审题是关键!学为主体教为主导全面促进宁要改革的微词,不要僵化的危机。
恰逢本学期我们学校进行“五三制”教学改革,我对于传统的复习课如何转为新型的展示课和检测课,如何提高单元复习课的有效性,做了初步的探索。
传统的复习课多以老师对本章知识进行汇总罗列,然后做题巩固,整个过程学生的参与的太少,主动性太差,收效甚微,久而久之会消磨学生的学习积极性。
【中考一轮复习】平面直角坐标系与函数课件
A.(1,3) C.(2,1)
B.(2,-1) D.(3,1)
N A
C
B M
拓展提升------坐标的几何意义
1.在平面直角坐标系中,A,B,C,D,M,N的位置 M A
B
如图所示,若点M的坐标为(-2,0),点N的坐标
为(2,0)则在第二象限内的点时__A___.
O
2.如图,在平面直角坐标系中,一动点从原点O C
解:由题意得,x+3≠0,4-x≥0,解得x≤4且x≠-3,故选:D
归纳拓展
(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数.
当堂训练---函数的有关概念
1.函数 y =
x+3 x -1
中自变量的取值范围是(
地理位置的 ①平面直角坐标系法;②方位角+距离;③经纬度。
表示方法
典型例题---坐标的几何意义
【例2-1】在平面直角坐标系中,点P(4,-3)到x轴的距离是( B )
A.4
B.3
C.5
D.-3
解:在平面直角坐标系中,点P(4,-3)到x轴的距离为3.
故选:B.
典型例题---坐标的几何意义
【例2-2】如图,直线m⊥n,在某直角坐标系中,x轴∥m,y轴∥n,点
A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( A )
A.O1 B.O2 C.O3 D.O4
A n
O1 O2 在如图的方格纸中,每个小正方形的边长为1,如果以MN所在的
直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,
使A点与B点关于原点对称,则这时C点的坐标可能是( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届中考数学一轮复习第10讲平面直角坐标系与函数教案
第10讲平面直角坐标系与函数
一、复习目标
(1)掌握点与坐标的一一对应关系,能在坐标系中根据坐标找到点,由点得坐标,掌握各象限的和坐标上的点的坐标符号规律。
(2)建立适当的坐标系,描述物体的位置,在同一平面直角坐标系中,能用坐标表示平移变换。
(3)函数的基本概念、函数自变量的取值范围、函数之间的变化规律及其图象的应用。
二、课时安排1课时
三、复习重难点
函数的基本概念、函数自变量的取值范围、函数之间的变化规律及其图象的应用。
四、教学过程
(一)知识梳理
平面直角坐标系
坐标轴上的点
x轴、y轴上的点不属于任何象限
对应关系
坐标平面内的点与有序实数对是________对应的
平面内(1)各象限内点的坐标的特征
点 P(x,y) 的坐标
的特征
点P(x, y)在第一象限
⇔__________
点P(x, y)在第二象限
⇔__________
点P(x, y)在第三象限
⇔__________
点P(x, y)在第四象限
⇔__________
(2)坐标轴上点的坐标的特征
点P(x, y)在x轴上
⇔________________
点P(x, y)在y轴上
⇔________________
点P(x, y)既在x轴上,又在y轴上⇔x、y同时为零,即点P的坐标为(0, 0)
平面直角坐标系内点的坐标特征
平行于坐标轴(1)平行于x轴
平行于x轴(或垂直于y轴)的直线
的直线上的点的坐标的特征上的点的纵坐标,横坐标为不相等的实数
(2)平行于y轴
平行于y轴(或垂直于x轴)的直线上的点的横坐标,纵坐标为不相等的实数
各象限的平分线上的点的坐标特征
(1)第一、三象限的平分线上的点
第一、三象限的平分线上的点的横、纵坐标________
(2)第二、四象限的平分线上的点
第二、四象限的平分线上的点的横、纵坐标________
点到坐标轴的距离
到x轴的距离
点P (a,b)到x轴的距离等于点P的________________即________
到y轴的距离
点P (a,b)到y轴的距离等于点P的________________即________
平面直角坐标系中的平移与对称点的坐标
用坐标表示平移点的平
移
在平面直角坐标系中,将点(x,y)向右(或向左)平移a个单
位长度,可以得到对应点
______(或______);将点(x,y)
向上(或下)平移b个单位长度,
可以得到对应点______或
(______)
图形的
平移
对于一个图形的平移,这个图形上所有点的坐标都要发生相
应的变化,反过来,从图形上点
的坐标的某种变化也可以看出对
这个图形进行了怎样的平移
某点的对称点的关于x
轴
点P (x,y)关于x轴对称
的点P
1
的坐标为________
规律
可简
记为:
谁对
称谁
不变,
另一关于y
轴
点P(x,y)关于y轴对称的
点P
2
的坐标为________
关于原
点
点P(x,y)关于原点对称的
用坐标表示地理位置
函数的有关概念
函数的概念函数
定义
一般地,在某个变化过程中,如果有两个变量x与y,对于x
的每一个确定的值,y都有唯一
确定的值与之对应,我们称x是
自变量,y是x的函数
函数
值
对于一个函数,如果当自变量x=a 时,因变量y=b,那么
b 叫做自变量的值为a 时的函数
值
函数的表示方法
表示方法
(1)列表法(2)图象法(3)解析法
使用指导
表示函数时,要根据具体情况选择适当的方法,有时为了全面认识问题,可同时使用几种方法
函数图象的概念及画法
(二)题型、方法归纳
考点1与平面直角坐标系有关的问题
技巧归纳:利用1.平面直角坐标系的概念2.求坐标系中点的坐标
考点2坐标平面内点的坐标特征
技巧归纳:1. 四个象限内点的坐标特征;2. 坐标轴上的点的坐标特征;3. 平行于x轴,平行于y 轴的直线上的点的坐标特征;4. 第一、三,第二、四象限的平分线上的点的坐标特征.
考点3关于x轴,y轴及原点对称的点的坐标特征
技巧归纳:平面直角坐标系中,与点有关的对称关系常用的有3种:①关于x轴成轴对称的两点的坐
标特点:横坐标相同,纵坐标互为相反数;②关于y 轴成轴对称的两点的坐标特点:横坐标互为相反数,纵坐标相同;③关于原点成中心对称的两点的坐标特点:横坐标和纵坐标都互为相反数.
考点4坐标系中的图形的平移与旋转
技巧归纳:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在的象限.
考点5函数的概念及函数自变量的取值范围
技巧归纳:函数自变量的取值范围一般从三个方面考虑:
(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.
(三)典例精讲
例1 如图10-1,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA与x轴正半轴的夹角为30°,OC=2,则点B的坐标是________.(2,
23)
[解析] 过点B 作BE ⊥OE 于E ,由OC =2,边OA 与x 轴正半轴的夹角为30°,可求出 AC 的长=4,根据矩形的性质可得OB 的长=4,进而求出BE =23,OE =2,从而求出点B 的坐标是(2,23).
例2 在平面直角坐标系中,点P (m ,m -2)在第一象限,则m 的取值范围是________.
[解析] 由第一象限内点的坐标的特点可得:
020m m >⎧⎨->⎩ 解得m >2.
例3平面直角坐标系中,点(-3, 4)关于y 轴对称的点的坐标是________.
[解析] 因为要求的点与点(-3, 4)关于y 轴对称,所以它的横坐标是已知点的相反数,即3;而纵坐标不变,所以要求点的坐标是(3,4).
点析:平面直角坐标系中,与点有关的对称关系常用的有3种:①关于x轴成轴对称的两点的坐标特点:横坐标相同,纵坐标互为相反数;②关于y轴成轴对称的两点的坐标特点:横坐标互为相反数,纵坐标相同;③关于原点成中心对称的两点的坐标特点:横坐标和纵坐标都互为相反数.
例4 在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1
次变换.如图10-2,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1)、(-3,-1),把△ABC 经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是________.
点析:求一个图形旋转、平移后的图形上对应点的坐标,一般要把握三点:一是根据图形变换的性质,二是利用图形的全等关系;三是确定变换前后点所在
的象限.
例5、函数y=1+2x-4中自变量x的取值范围是__
[解析] 由题意,得2x-4≥0,解得x≥2.
点析:函数自变量的取值范围一般从三个方面考虑:
(1)当函数关系式是整式时,自变量可取全体实数;(2)当函数关系式是分式时,考虑分式的分母不能为0;(3)当函数关系式是二次根式时,被开方数为非负数.此题就是第三种情形,考虑被开方数必须大于等于0.
(四)归纳小结
本部分内容要求熟练掌握平面直角坐标系内点的坐标特征、点到坐标轴的距离、平面直角坐标系中的平移与对称点的坐标的特点及平面直角坐标系与函数的关系。
(五)随堂检测
1.点P在第二象限内,P点到x轴的距离为3,到y轴的距离为4,则P点坐标为________.2.平面上的点与______________是一一对应的.3.点(-3,-4)与坐标为________的点关于x轴对称,点(-5,
1)与坐标为________的点关
2
于y轴对称.
a<0,则A(a,b)在第______象限内;
4.若
b
a>0时,则点B(-2a,3b)在第______象限内;若
b
点C(-2b,-a)在第______象限内.
5.过点(-3,2)且平行于y轴的直线上的点
A.横坐标都是-3 B.纵坐标都是2
C.横坐标都是2 D.纵坐标都是-3
6.点A(-3,2)关于y轴的对称点的坐标是
A.(-3,-2)B.(3,2)
C.(3,-2)D.(2,-3)
7、看图说故事.
请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:①指出变量x 和y的含义;②利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.
五、板书设计
坐标特点
六、作业布置
平面直角坐标系与函数课时作业
七、教学反思
借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
采用启发、诱思、讲解和讨论相结合的方法使学生充分掌握知识。
进行多种题型的训练,使同学们能灵活运用本节重点知识。