福建省漳平2016届高三高考围题理科数学试卷及答案
2016全国高考理科数学试题与答案-全国卷3
![2016全国高考理科数学试题与答案-全国卷3](https://img.taocdn.com/s3/m/6c4f5db1e009581b6bd9eb61.png)
绝密★启封并使用完毕前试题类型:2016年普通高等学校招生全国统一考试理科数学注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞) (C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(2BA = ,31(),2BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B,BC 边上的高等于13BC ,则cos A(A )310 (B )10(C )10(D )310(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )185+(B )54185+ (C )90 (D )81 (10)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个(B )16个(C )14个(D )12个第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.(14)函数的图像可由函数的图像至少向右平移_____________个单位长度得到。
2016全国三卷理科数学高考真题及答案
![2016全国三卷理科数学高考真题及答案](https://img.taocdn.com/s3/m/19d02f340740be1e640e9a02.png)
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S= S x P(x 2)(x 3) 0 ,T x x 0 ,则S I T=(A) [2 ,3] (B) (- ,2] U [3,+ )(C) [3,+ )(D) (0,2] U [3,+ )(2)若z=1+2i ,则 4izz1(A)1 (B) -1 (C) i (D)-i(3)已知向量u uvBA1 2( , )2 2,u u u vBC3 1( , ),2 2则ABC=(A)30 0(B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C,B 点表示四月的平均最低气温约为50C。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有 5 个(5)若tan 34,则 2cos 2sin 2(A) 6425(B)4825(C) 1 (D)16254 3 1(6)已知 3a 2 ,4b 4 ,3c 25 ,则(A )b a c (B)a b c(C)b c a(D)c a b(7)执行下图的程序框图,如果输入的a=4,b=6,那么输出的n=(A )3(B)4(C)5(D)61(8)在△ABC 中,πB = ,BC 边上的高等于4 13BC ,则cos A =(A)31010(B)1010(C)10- (D)10-3 1010(9) 如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18 36 5(B)54 18 5(C)90(D)81(10) 在封闭的直三棱柱ABC -A1B1C1 内有一个体积为V 的球,若AB BC,AB=6,BC=8,AA 1=3,则V 的最大值是(A )4π(B)92 ( C )6π(D)32 3(11)已知O 为坐标原点, F 是椭圆C:2 2x y2 2 1(a b 0)a b的左焦点,A,B 分别为 C 的左,右顶点.P 为C 上一点,且PF⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点 E.若直线BM 经过OE 的中点,则C 的离心率为(A )13(B)12(C)23(D)34(12)定义“规范01 数列”{a n} 如下:{a n} 共有2m 项,其中m 项为0,m 项为1,且对任意k 2m,a a a 1, 2, , k中0 的个数不少于 1 的个数.若m=4,则不同的“规范01 数列”共有(A )18 个(B)16 个(C)14 个(D)12 个二、填空题:本大题共 3 小题,每小题 5 分(13)若x,y 满足约束条件错误!未找到引用源。
2016福建高考理科数学试卷及答案(清晰版)福建高考理科数学试卷及答案
![2016福建高考理科数学试卷及答案(清晰版)福建高考理科数学试卷及答案](https://img.taocdn.com/s3/m/e5e2b755b94ae45c3b3567ec102de2bd9705de7e.png)
2016福建高考理科数学试卷及答案(清晰版)福建高考理科
数学试卷及答案
高考是人生的一道重要的关卡,它是对十年寒窗苦读的一次总结,同时也是决定你在打开这扇大门后迎来的是鸟语花香还是泥泞沼泽。
高考频道第一时间为您提供2016福建高考理科数学试卷及答案(清晰版),希望学子和家长们能密切关注本页,一旦真题及答案公布,本页头条将会显示,如果你想找的真题及答案没有显示可按Ctrl F5进行刷新!更多福建高考分数线、福建高考成绩查询、福建高考志愿填报、福建高考录取查询信息等信息请关注我们网站的更新!
2016福建高考理科数学试卷及答案(清晰版)。
2016全国三卷理科数学高考真题及答案
![2016全国三卷理科数学高考真题及答案](https://img.taocdn.com/s3/m/45bec7e08bd63186bcebbca4.png)
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量1(,22BA =uu v ,1),2BC =uu u v 则∠ABC=(A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =(A (B(C )-(D )- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。
2016年全国高考理科数学试题及答案
![2016年全国高考理科数学试题及答案](https://img.taocdn.com/s3/m/57fbde06ff00bed5b9f31d39.png)
2016年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共24题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3. 请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4. 作图可先使用铅笔画出,确定后必须用墨色笔迹的签字笔描黑。
5. 保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数m 的取值范围是(A ))1,3(-(B ))3,1(-(C )),1(+∞(D )(2)已知集合,,则(A )(B )(C )(D )(3)已知向量,且,则m =(A )-8 (B )-6 (C )6 (D )8 (4)圆的圆心到直线的距离为1,则a=(A )34-(B )43- (C )3 (D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π (7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 (A )x =62k ππ- (k ∈Z ) (B )x=62ππ+k (k ∈Z ) (C )x=122k ππ- (k ∈Z ) (D )x =122k ππ+ (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图,执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =(A )7 (B )12 (C )17 (D )34 (9)若cos(4π–α)= 53,则sin 2α= (A )257(B )51(C )51- (D )257- (10)从区间随机抽取2n 个数,,…,,,,…,,构成n 个数对,,…,,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率 的近似值为(A ) (B ) (C ) (D )(11)已知F 1,F 2是双曲线E 的左,右焦点,点M 在E 上,M F 1与 轴垂直,sin,则E 的离心率为(A ) (B ) (C ) (D )2(12)已知函数))((R x x f ∈满足)(2)(x f x f -=-,若函数xx y 1+=与)(x f y =图像的交点为)(1,1y x ,),(22y x ···,(m m y x ,),则=+∑=mi i iy x1)((A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分。
【福建省】2016届高考数学年(理科)计数原理、概率统计专题练习答案
![【福建省】2016届高考数学年(理科)计数原理、概率统计专题练习答案](https://img.taocdn.com/s3/m/a25e2415c850ad02df80415b.png)
C. 0.648
D . 0.792
(4)从 0,6 中选一个数字,从 5,7,9 中选两个数字,组成无重复数字的三位数,其中奇数的个数为(
)
A.6
B . 12
C. 18
D .24
(5)采用系统抽样方法从 960 人中抽取 32 人做问卷调查:首先将这 960 人随机编号为 1,2, ,960 并分组,
P 的值恰好等于与
(13)(本小题满分 15 分) 某工厂生产的甲、 乙两种产品都需经过两道工序加工而成,
且两道工序的加工结果均有 A, B 两个等级. 当两
道工序的加工结果都为 A 级时, 产品为一等品, 其余均为二等品. 已知两种不同的产品之间及其每一道工序
的加工结果都相互独立,且加工结果为 A 级的概率如表一所示.
C. 3 413
D. 4 772
(3)甲、乙二人进行一次乒乓球比赛,约定先胜
3 局者为胜方,比赛结束.假设在每一局比赛中,甲获胜
的概率为 0.6,乙获胜的概率为 0.4,且各局比赛结果相互独立,那么在前 2 局比赛中甲、乙各胜 1 局的情
况下,甲为比赛胜方的概率为(
)
A . 0.156
B . 0.504
福建省 2016 年高考数学(理科) -专题练习
计数原理、概率统计
一、选择题:本大题共 6 小题,每小题 6 分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)变量 x , y 的几组实验测量数据如下表所示:
x
0.50
0.99
2.01
2.98
y
1.42
1.99
3.98
8.00
则根据上表数据,在下列函数中,拟合变量
1
2016年福建高考理科数学试题及答案(Word版)
![2016年福建高考理科数学试题及答案(Word版)](https://img.taocdn.com/s3/m/c41ee5463b3567ec102d8a6b.png)
2016年福建高考理科数学试题及答案(满分150分,时间120分)第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y + (A )1 (B 2 (C 3(D )2(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )98 (B )99 (C )100 (D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )31 (B )21 (C )32 (D )43 (5)已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(0,3) (B )(–1,3) (C )(–1,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A )20π (B )18π(C )17π (D )28π(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C )(D )(8)若101a b c >><<,,则 (A )log log b a a c b c < (B )c c ab ba <(C )c ca b <(D )log log a b c c <(9)执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足(A )4y x =(B )3y x =(C )2y x =(D )5y x =(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=2|DE|=5C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A) 33 (B )22 (C) 32 (D)13 12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分(13) 设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=______. (14) 5(2)x x +的展开式中,x 3的系数是__________.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为___________。
2016全国三卷理科数学高考真题及答案
![2016全国三卷理科数学高考真题及答案](https://img.taocdn.com/s3/m/d30e3603453610661ed9f45f.png)
2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I > ,则ST =(A) [2,3] (B)(-∞ ,2] [3,+∞)(C) [3,+∞) (D)(0,2] [3,+∞)(2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量12(,)22BA = ,31(,),22BC = 则∠ABC= (A)300(B) 450(C) 600(D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B ,BC 边上的高等于13BC ,则cos A(A )31010 (B )1010 (C )1010(D )31010(9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+ (C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是(A )4π (B )92π(C )6π (D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,ka a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A)18个(B)16个(C)14个(D)12个二、填空题:本大题共3小题,每小题5分(13)若x,y满足约束条件错误!未找到引用源。
(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)
![(完整word版)2016年全国高考数学(理科)试题及答案-全国1卷(解析版)](https://img.taocdn.com/s3/m/8590979833d4b14e85246867.png)
范围是
(A) 1,3 (B) 1, 3 (C) 0,3 (D) 0, 3
【答案】A
考点:双曲线的性质 【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意 双曲线的焦距是 2c 不是 c,这一点易出错. (6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何
一. 选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目 要求的.
(1)设集合 A x x2 4x 3 0 , x 2x 3 0 ,则 A B
(A)
3,
3 2
【答案】D
(B)
3,
3 2
(C)
1,
3 2
(D)
3 2
,
3
考点:集合的交集运算 【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般 要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数 集之间的运算,常借助数轴进行运算.
(8)若 a b 1,0 c 1,则 (A) ac bc (B) abc bac (C) a logb c b loga c (D) loga c logb c
【答案】C 【解析】
试题分析:用特殊值法,令 a 3, b
2,c
1
1
得 32
1
22 ,选项
A
1
错误, 3 22
1
2 32 ,选项
2016 高考数学(理科)试卷(全国 1 卷)
绝密 ★ 启用前
2016 年普通高等学校招生全国统一考试(全国 1 卷)
数学(理科)
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 3 页,第Ⅱ卷 3 至 5 页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4. 考试结束后,将本试题和答题卡一并交回. 第Ⅰ卷
2016年高考全国Ⅲ理科数学试题及答案(word解析版)
![2016年高考全国Ⅲ理科数学试题及答案(word解析版)](https://img.taocdn.com/s3/m/3cba22f7cf84b9d529ea7a5a.png)
2016年普通高等学校招生全国统一考试(全国Ⅲ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2016年全国Ⅲ,理1,5分】设集合 ,则( )()(){}{}|230,|0S x x x T x x =--≥=>S T =(A ) (B ) (C )(D )[]2,3(][),23,-∞+∞ [)3,+∞(][)0,23,+∞ 【答案】D【解析】由解得或,,所以,故选()()230x x --≥3x ≥2x ≤{}23S x x ∴=≤≥或{}023S T x x x =<≤≥ 或D .【点评】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.(2)【2016年全国Ⅲ,理2,5分】若,则( )i 12z =+4i1zz =-(A )1 (B ) (C ) (D )1-i i -【答案】C【解析】,故选C .4i 4ii (12i)(12i)11zz ==+---【点评】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多i 项式的乘法相类似,只是在结果中把换成.复数除法可类比实数运算的分母有理化.复数加、减2i 1-法的几何意义可依平面向量的加、减法的几何意义进行理解.(3)【2016年全国Ⅲ,理3,5分】已知向量,,则( )1(2BA =u u v 1)2BC =u u u v ABC ∠=(A ) (B ) (C ) (D )30︒45︒60︒120︒【答案】A【解析】由题意,得,所以,故选A .cos BA BC ABC BA BC⋅∠=== 30ABC ∠=︒【点评】(1)平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值a b ·cos a b a b θ或θa b 范围:;(2)由向量的数量积的性质有,,因此,0180θ︒≤≤︒|a ·cos a ba bθ=·0a b a b ⇔⊥ 或利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.(4)【2016年全国Ⅲ,理4,5分】某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中点表示十月的平均最高气温约为A ,点表示四月的平均最低气温约为.下面叙述不正确的是( )15C ︒B 5C ︒(A )各月的平均最低气温都在以上 (B )七月的平均温差比一月的平均温差大 0C ︒(C )三月和十一月的平均最高气温基本相同(D )平均气温高于的月份有5个20C ︒【答案】D【解析】由图可知均在虚线框内,所以各月的平均最低气温都在以上,A 正确;由图0C ︒0C ︒可在七月的平均温差大于,而一月的平均温差小于,所以七月的平均7.5C ︒7.5C ︒温差比一月的平均温差大,B 正确;由图可知三月和十一月的平均最高气温都大约在,基本相同,5C ︒C 正确;由图可知平均最高气温高于的月份有3个或2个,所以不正确,故选D .20C ︒【点评】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.(5)【2016年全国Ⅲ,理5,5分】若,则()3tan4α=2cos2sin2αα+=(A)(B)(C)1 (D)642548251625【答案】A【解析】由,得或,所以,3tan4α=34sin,cos55αα==34sin,cos55αα=-=-2161264cos2sin24252525αα+=+⨯=故选A.【点评】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.(6)【2016年全国Ⅲ,理6,5分】已知,,,则()432a=254b=1325c=(A)(B)(C)(D)b a c<<a b c<<b c a<<c a b<<【答案】A【解析】因为,,所以,故选A.422335244a b==>=1223332554c a==>=b a c<<【点评】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决.(7)【2016年全国Ⅲ,理7,5分】执行下图的程序框图,如果输入的,那么输出的46a b==或()n=(A)3 (B)4 (C)5 (D)6【答案】B【解析】第一循环,得;第二循环,得;2,4,6,6,1a b a s n=====2,6,4,10,2a b a s n=-====第三循环,得;第四循环,得2,4,6,16,3a b a s n=====;2,6,4,2016,4a b a s n=-===>=退出循环,输出,故选B.4n=【点评】解决此类型时要注意:第一,要明确是当型循环结构,还是直到型循环结构.根据各自的特点执行循环体;第二,要明确图中的累计变量,明确每一次执行循环体前和执行循环体后,变量的值发生的变化;第三,要明确循环体终止的条件是什么,会判断什么时候终止循环体.(8)【2016年全国Ⅲ,理8,5分】在中,,边上的高等于,则 ( )ABCDπ4B=BC13BC cos A=(A(B(C)(D)--【答案】C【解析】设边上的高线为,则,所以,.由余弦定理,BC AD3BC AD=AC==AB=知,故选C.222cos2AB AC BCAAB AC+-===⋅【点评】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.(9)【2016年全国Ⅲ,理9,5分】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)(B)(C)90 (D)8118+54+【答案】B【解析】由三视图该集合体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.2362332354S=⨯⨯+⨯⨯+⨯⨯=+【点评】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.(10)【2016年全国Ⅲ,理10,5分】在封闭的直三棱柱内有一个体积为的球,若,111ABC A B C -V AB BC ⊥,,,则的最大值是( )6AB =8BC =13AA =V (A ) (B ) (C ) (D )4π92π6π323π【答案】B【解析】要使球的体积最大,必须球的半径最大.由题意知球的与直三棱柱的上下底面都相切时,球的半V R 径取得最大值,此时球的体积为,故选B .32334439(3322R πππ==【点评】立体几何是的最值问题通常有三种思考方向:(1)根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;(2)将几何体平面化,如利用展开图,在平面几何图中直观求解;(3)建立函数,通过求函数的最值来求解.(11)【2016年全国Ⅲ,理11,5分】已知为坐标原点,是椭圆的左焦点,分O F 2222:1(0)x y C a b a b+=>>,A B 别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于C P C PF x ⊥A l PF M y 点.若直线经过的中点,则的离心率为( )E BM OE C (A ) (B ) (C ) (D )13122334【答案】A【解析】由题意设直线的方程为,分别令与得点,,由l ()y k x a =+x c =-0x =()FM k a c =-OE ka=~OBE ∆,得,即,整理得,所以椭圆离心率为,故选A .CBM ∆12OE OB FM BC=()2ka ak a c a c=-+13c a =1e 3=【点评】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立,a c e 的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出.,,a b c ba e e (12)【2016年全国Ⅲ,理12,5分】定义“规范01数列”如下:共有项,其中项为0,项为{}n a {}n a 2m m m 1,且对任意,中0的个数不少于1的个数.若,则不同的“规范01数列”共有(2k m ≤12,,,k a a a 4m =)(A )18个 (B )16个 (C )14个 (D )12个【答案】C【解析】由题意,得必有,,则具体的排法列表如下:,故选C .10a =81a =011101101111001101011001110100110101100101010101【点评】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.第II 卷本卷包括必考题和选考题两部分。
2016全国三卷理科数学高考真题及答案
![2016全国三卷理科数学高考真题及答案](https://img.taocdn.com/s3/m/3da5997ced630b1c59eeb5a5.png)
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1(D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n = (A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个 二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件{x −y +1≥0x −2y?0x +2y −2?0则z=x+y 的最大值为_____________.(14)函数y =sin x −√3cos x 的图像可由函数 y =sin x +√3cos x 的图像至少向右平移_____________个单位长度得到。
(word完整版)2016全国三卷理科数学高考真题及答案,推荐文档
![(word完整版)2016全国三卷理科数学高考真题及答案,推荐文档](https://img.taocdn.com/s3/m/a83f8d2da45177232f60a25c.png)
2016年普通高等学校招生全国统一考试理科数学一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T =(A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则41izz =- (A)1 (B) -1 (C) i (D)-i(3)已知向量12(,)22BA =uu v ,31(,),22BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。
图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。
下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个(5)若3tan 4α=,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625(6)已知432a =,344b =,1325c =,则(A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3 (B )4 (C )5 (D )6(8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A = (A )310 (B )10(C )10-(D )310- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18365+ (B )54185+(C )90 (D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是 (A )4π (B )92π(C )6π(D )323π(11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a L 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有 (A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件错误!未找到引用源。
漳平高考数学试卷及答案
![漳平高考数学试卷及答案](https://img.taocdn.com/s3/m/9b8f199e09a1284ac850ad02de80d4d8d15a01e3.png)
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 0.1010010001……答案:D解析:有理数是可以表示为两个整数之比的数,而0.1010010001……是一个无限循环小数,可以表示为两个整数之比,因此是有理数。
2. 函数f(x) = 2x - 3在定义域内的()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A解析:函数f(x) = 2x - 3的导数为2,大于0,说明函数在整个定义域内单调递增。
3. 已知等差数列{an}的首项为2,公差为3,则第10项an等于()A. 29B. 30C. 31D. 32答案:A解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得an = 2 + (10 - 1) × 3 = 29。
4. 已知函数f(x) = x^2 - 4x + 4,其图象的对称轴为()A. x = 2B. x = -2C. y = 2D. y = -2答案:A解析:函数f(x) = x^2 - 4x + 4可以写成f(x) = (x - 2)^2,其图象的对称轴为x = 2。
5. 在三角形ABC中,∠A = 30°,∠B = 45°,则∠C等于()A. 105°B. 120°C. 135°D. 150°答案:B解析:三角形内角和为180°,所以∠C = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°。
6. 已知平行四边形ABCD的对角线相交于点E,若AB = 4,BE = 3,则AD的长度为()A. 6B. 7C. 8D. 9答案:A解析:平行四边形的对角线互相平分,所以BE = DE = 3,根据勾股定理,AD = √(AB^2 + BE^2) = √(4^2 + 3^2) = √(16 + 9) = √25 = 5。
漳平一中2016届高三考前围题数学理科试卷 含答案
![漳平一中2016届高三考前围题数学理科试卷 含答案](https://img.taocdn.com/s3/m/00a520dbcfc789eb162dc892.png)
绝密★启用前漳平一中2016年高考模拟卷理科数学试卷全卷满分150分 考试时间120分钟第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合{2,1,1,2,4}A =--,2{|log||1,}B y y x x A ==-∈,则A B =( )A .{2,1,1}-- B .{1,1,2}- C .{1,1}- D .{2,1}-- 2.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z=-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知函数(5)2()e 22()2x f x x f x a x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,若(2016)e f -=,则a =() A .2 B .1 C .- 1D .-24.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n +的值是( )A .10B .11C .12D .13 5.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( )A .2B .3C .2D .56.某几何体的三视图如图所示,则该几何体的体积为( )A .16163π- B .32163π-C .1683π- D .3283π-7.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为(A .1310B .3C .4D .21108.执行如图所示的程序,若输入的3x =则输出的所有x 的值的和为( ) A .243B .363C .729开始结束输入x x =x +1y 是整数p ?输出x否3log y x=x >1000?是 否D .10929.已知函数21()sin cos sin2f x a x x x =-+的一条对称轴方程为6x π=,则函数()f x 的最大值为( )A .1B .±1C .2D .2±10.已知数列{}na 满足12011++==+n n n a a a a,+1则=13a( )A .143B .156C .168D .19511.已知过双曲线22221(0,0)x y a b a b-=>>的右焦点2F 的直线交双曲线于,A B 两点,连结11,AF BF ,若1||||AB BF =,且190ABF ∠=︒,则双曲线的离心率为( )A .522-B .522-C .632-D .632-12.已知函数()esin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e]π-∞第Ⅱ卷(共90分)[]二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若6()mx y +展开式中33x y 的系数为160-,则m =__________.14.设变量y x ,满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则22(1)3(1)z a x a y =+-+的最小值是20-,则实数a =______.15.四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =___________.16.已知nS 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)函数)0,0)(sin(2)(πϕωϕω<<>+=x x f 的部分图象如图所示在⎥⎦⎤⎢⎣⎡412-ππ,(1)求)(x f 的解析式,并求函数)(x f 上的值域;(2)在ABC ∆中,,2,3==AC AB ,1)(=A f 求B 2sin 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第Ⅰ卷(选择题部分 共 50 分) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有 一项是符合题目要求的.
2 1. 已知 x1 , x 2 是方程 ( x 1)2 1 的两相异根,当 x1 1 i (i为虚数单位) 时,则 x 2 为(
)
A. 2i
B. 1 i
C. 2i
D. 1 i ( )
2.在 (1 x)6 (1 y) 4 的展开式中, xy 2 项的 系数为
A.45 B.36 C.60 D.120 3.已知等差数列{an},满足 a1+a5=2,a2+a14=12,则此数列的前 10 项和 S10=( ) (A)7 (B)14 (C)21 (D)35 0 x 2 4.已知平面直角坐标系 xoy 上的区域 D 由不等式 y 2 给定,若 M ( x, y ) 为 D 上任一点,点 y 2 x 2 OA 的最大值为 A 的坐标为 ( 2,1) ,则 z OM ( ) A.3 B.4 C. 3 2 D. 4 2
A. 四边形,侧(左)视图是一个长为 3 ,宽为 1 的矩形,俯视图为两个 边长为 1 的正方形拼成的矩形,则该几何体的体积 V 是( ) 3 (A)1 (B) (C) 3 (D)2 2 7.某程序框图如右图所示,该程序运行后输出 S 的值是( ) (A)25 (B)55 (C)72 (D)110 x2 y 2 8.点 F (c, 0) 为双曲线 2 2 1 (a 0, b 0) 的右焦点,点 P 为双曲线左支 a b c b2 上一点,线段 PF 与圆 ( x )2 y 2 相切于点 Q,且 PQ 2QF ,则双 3 9 曲线的离心率等于 ( ) A. 2 B. 3 C. 5
5.已知函数 f (x) sin( x ) 1(0 ) ,且 3 ( f ( x) 1) dx 0 ,则函数 f ( x) 的一个零点是 0 2 ( )
2
5 7 B. C. D. 6 3 6 12 6.一个几何体的三视图如图所示,已知正(主)视图是底边长为 1 的平行
3 2
)
( A)(,1]
1 ( B )( , ) 2
3 (C )(1, ) 2
3 (C )[1, ] 2
第Ⅱ卷(非选择题部分,共 100 分)
二.填空题:本大题共 5 小题,每小题 4 分.共 20 分 → → → → 11.设向量→ a 、 b 满足|→ a |=1,|→ a - b |= 3,→ a •(→ a - b )=0,则|2→ a + b |=______。 12.已知偶函数 f(x) ,当 x [0, 2) 时,f(x)=2sinx,当 x [2, ) 时, f x log2 x , 则 f
2 ,赌中后可获得 20 万元;规则乙的赌中率为 P 0 (0 P 0 1) ,赌中 3
后可获得 30 万元;未赌中则没有收获,每人有且只有一次赌石机会,每次赌中与否互不影响, 赌石结束后当场得到兑现金额. (1)收藏者张先生选择规则甲赌石,收藏者李先生选择规则乙赌石,记他们的累计获得金额 数为 X (单位:万元),若 X 30 的概率为
1
D.2
9.一种团体竞技比赛的积分规则是:每队胜、平、负分别得 2 分、1 分、0 分。已知甲球队已 赛 4 场,积 4 分,在这 4 场比赛中,甲球队胜、平、负(包括顺序)的情况共有( ) (A)7 种 (B)13 种 (C)18 种 (D)19 种 10.设曲线 y (ax 1)e x 在点 A( x0 , y0 ) 处的切线为 l1 ,曲线 y (1 x)e x 在点 B( x0 , y1 ) 处的 切线为 l 2 ,若存在 x0 [0, ] ,使得 l1 l2 ,则实数 a 的取值范围是(
f 4 3
a1=l , a2=2 , 且 an+2 - an=1+( - 1) 。
n
13. 在 数 列 { an } 中 , a1+a2+…+a5l=
x
( n∈ N),则
*
14.设过曲线 f x e x (e 为自然对数的底数)上任意一点处的切线为 l1 ,总存在过曲 线 g x ax 2cos x 上一点处的切线 l2 , 使得 l1 l2 , 则实数 a 的取值范围为 . 15.已知平面图形 ABCD 为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边 均在此直线的同侧) ,且 AB=2,BC=4,CD=5,DA=3,则四边形 ABCD 面积 S 的最大值为 . 三、解答题(本大题共 6 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤. ) 16. (本题满分13分) 已知点 A, B分别在射线 CM, CN(不 含端点 C)上运动,∠MCN=
2 ,在 △ ABC中, 3
角 A, B, C所对的边分别是 a, b, c (1)若 a, b, c依次成等差数列,且公差为 2,求 c 的值: (2)若 c= 3 ,∠ABC= ,试用 表示 △ ABC的周长,并求周长的最大值。
2
17.(本题满分 13 分)翡翠市场流行一种赌石“游戏规则” :翡翠在开采出来时有一层风化皮 包裹着,无法知道其内的好坏,需切割后方能知道翡翠的价值,参加者先缴纳一定金额后可得 到一块翡翠石并现场开石验证其具有的收藏价值, 其举办商在赌石游戏中设置了甲乙两种赌石 规则,规则甲的赌中率为
7 ,求 的大小; 9
(2)若收藏者张先生李先生都选择赌石规则甲或赌石规则乙进行赌石,问:他们选择何种规 则赌石,累积得到的金额的数学期望最大?
18.(本题满分 13 分)已知四边形 ABCD 满足 AD∥BC,BA=AD=DC= E 是 BC 的中点,将△ BAE 沿 AE 翻折成 △ B1 AE ,使面 B1 AE ⊥面 AECD, F 为 B1D 的中点. (1)求四棱锥 B1 - AECD 的体积; (2)证明: B1 E ∥面 ACF ; (3)求面 ADB1 与面 ECB1 所成锐二面角的余弦值.