2012年数学试考
2012全国高考山东卷数学及答案
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i(2)已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为(A){1,2,4} (B){2,3,4} (C){0,2,4} (D){0,2,3,4}(3)函数1()ln(1)f x x =++ (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2- (7)执行右面的程序框图,如果输入a =4,那么输出的n 的值为(A)2 (B)3 (C)4 (D)5(8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1(D)1-(9)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A)内切 (B)相交 (C)外切 (D)相离(10)函数cos622x xx y -=-的图象大致为(11)已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y = (B) 2x y = (C)28x y = (D)216x y = (12)设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是(A)12120,0x x y y +>+> (B)12120,0x x y y +>+<(C)12120,0x x y y +<+> (D)12120,0x x y y +<+<第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为_____.(14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.(15)若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____.(16)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .(18)(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(19) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC .(20) (本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .(21) (本小题满分13分)如图,椭圆2222:1(0)x y M a b a b+=>>x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ) 设直线:()l y x m m =+∈R 与椭圆M 有两个不同的交点,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值.(22) (本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e=2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.参考答案:一、选择题:(1)A (2)C (3)B (4)D (5)C (6)A (7)B (8)A (9)B (10)D (11)D (12)B(12)解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b =.所以21()()()F x x x x =-,比较系数得1x -,故1x =120x x +=,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 二、填空题 (13)16 以△1ADD 为底面,则易知三棱锥的高为1,故111111326V =⋅⋅⋅⋅=. (14)9 最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9. (15)14 当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =题意.若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意. (16)(2sin 2,1cos2)--三、解答题(17)(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==, ∴2223cos 24a cb B ac +-==,sin C =,∴△ABC的面积11sin 1222S ac B ==⨯⨯=(18)(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =. (19)(I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥, 所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .(20)(I)由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,所以通项公式为7(1)77n a n n =+-⋅=.(II)由277m n a n =≤,得217m n -≤,即217m m b -=. ∵211217497m k m k b b ++-==, ∴{}m b 是公比为49的等比数列, ∴7(149)7(491)14948m m m S -==--. (21)(I)22234c a b e a a -==⇒=……① 矩形ABCD 面积为8,即228a b ⋅=……②由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=. (II)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩, 设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.||PQ =当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,||||PQ ST =其中3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .②由对称性,可知若1m <53m =时,||||PQ ST .③当11m -≤≤时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .综上可知,当53m =±和0时,||||PQ ST (22)(I)1ln ()e xx k x f x --'=, 由已知,1(1)0ek f -'==,∴1k =. (II)由(I)知,1ln 1()e xx x f x --'=. 设1()ln 1k x x x =--,则211()0k x x x '=--<,即()k x 在(0,)+∞上是减函数, 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>, 当1x >时()0k x <,从而()0f x '<. 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(III)由(II)可知,当1x ≥时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x <<时成立.当01x <<时,e x >1,且()0g x >,∴1ln ()1ln e x x x x g x x x x --=<--. 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+, 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, 所以当2e x -=时,()F x 取得最大值22()1e F e --=+. 所以2()()1e g x F x -<≤+.综上,对任意0x >,2()1e g x -<+.。
2012年考研数学试题详解及评分参考
P{X < Y} =
(A)
1 5
(B)
1 3
(C)
2 3
(D)
4 5
【答】 应选 (A) .
【解】 由题设,知 X 与Y 的概率密度分别为
f
X
(
x)
=
ìe- x
í î
0,
,
x > 0, x£0
fY
(
y)
=
ì4e-4
í î
0,
y
,
又 X 与Y 相互独立,所以 X 与 Y 的联合密度函数为
y >0, y£0
æ1 0 0ö
(A)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
æ1 0 0ö
(B)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(C)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(D)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
【答】 应选 (B) .
【解法一】 显然 Q 是将 P 的第 2 列加到第 1 列得到的,所以有 Q = PE(1)+(2) ,因而
(A) a1,a2 ,a3
(B) a1,a2 ,a4
(C) a1,a3,a4
(D) a2 ,a3,a4
【答】 应选 (C) .
【解】 由 a1,a2 ,a3 = - c1 ,知 c1 ¹ 0 时,a1,a2 ,a3 线性无关,故排除(A);
同理,由 a1,a2 ,a4 = c1 ,知 c1 ¹ 0 时,a1,a2 ,a4 线性无关,故排除(B);
2012考研数学一真题+答案解析
2
1 4 0
1 12
1 12
导航官网: 地址:海淀区北大太平洋数码城 17 层(导航教育集团)
集团电话:4008-166-661
(Ⅱ)求 Cov( X − Y , Y )
(23) (本题满分 11 分) 设随机变量 X 与 Y 相互独立分别服从正态分布 N ( µ , σ 2 ) 与 N ( µ , 2σ 2 ) ,其中 σ 是未 知参数且 σ >0。设 Z = X −Y (Ⅰ)求 Z 的概率密度 f ( z , σ 2 ) 2 (Ⅱ)设 z1 , z2 , ⋅⋅⋅, zn 为来自总体 Z 的简单随机样本,求 σ 2 的最大似然估计量 σ 为 σ 2 的无偏估计量 (Ⅲ)证明 σ
' x 2x
− 2)
(e nx − n) + (e x − 1)(2e 2 x − 2)
(e nx − n) +
(e x − 1)(e2 x − 2)
(nenx − n)
所以 f (0) = ( −1)
'
n −1
n!
(3)如果 f ( x, y ) 在 ( 0, 0 ) 处连续,那么下列命题正确的是( (A)若极限 lim
x →0 y →0
(C)若 f ( x, y ) 在 (0, 0) 处可微,则极限 lim
x →0 y →0
(D)若 f ( x, y ) 在 (0, 0) 处可微,则极限 lim
x →0 y →0
【答案】 :
【解析】 :由于 f ( x, y ) 在 ( 0, 0 ) 处连续,可知如果 lim
x →0 y →0
(2)设函数 y ( x = ) (e x − 1)(e 2 x − 2) ⋅⋅⋅ (e nx − n) ,其中 n 为正整数,则 y ' (0) = (A) (−1) n −1 (n − 1)! (B) (−1) n (n − 1)! (C) (−1) n −1 n ! (D) (−1) n n ! )
2012年高考数学试卷及解析山东卷(理科)
2012年普通高等学校招生全国统一考试(山东卷)理科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 2. 已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 3. 设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,3,...,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B )9 (C )10 (D )155. 已知变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,则目标函数3z x y =-的取值范围是(A )3[,6]2-(B )3[,1]2-- (C )[1,6]- (D )3[6,]2- 6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为 (A )2 (B )3 (C )4 (D )57. 若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C (D )348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。
2012年(全国卷II)(含答案)高考文科数学
2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .AB B .CB C .DC D .AD2.函数1y x =+x ≥-1)的反函数为( ) A .y =x 2-1(x ≥0) B .y =x 2-1(x ≥1) C .y =x 2+1(x ≥0) D .y =x 2+1(x ≥1) 3.若函数()sin 3x f x ϕ+=(φ∈[0,2π])是偶函数,则φ=( ) A .π2B .2π3C .3π2D .5π34.已知α为第二象限角,3sin 5α=,则sin2α=( ) A .2425-B .1225-C .1225D .2425 5.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y += 6.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B .13()2n -C .12()3n -D .112n -7. 6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有( )A .240种B .360种C .480种D .720种8.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,122CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A.2 BC .2D.19.△ABC中,AB边的高为CD.若CB=a ,CA=b,a·b=0,|a|=1,|b|=2,则AD=()A.1133-a b B.2233-a bC.3355-a b D.4455-a b10.已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.14B.35C.34D.4511.已知x=ln π,y=log52,12=ez-,则()A.x<y<z B.z<x<yC.z<y<x D.y<z<x12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=13.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为() A.8 B.6 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.(x+12x)8的展开式中x2的系数为__________.14.若x,y满足约束条件10,30,330, x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.15.当函数y=sin x x(0≤x<2π)取得最大值时,x=__________.16.已知正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,那么异面直线AE与D1F所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.18.已知数列{a n}中,a1=1,前n项和23n nnS a+=.(1)求a2,a3;(2)求{a n}的通项公式.19.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=P A=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.20.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2) 求开始第5次发球时,甲得分领先的概率.21.已知函数f(x)=13x3+x2+ax.(1)讨论f(x)的单调性;(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x 轴的交点在曲线y=f(x)上,求a的值.22.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.2012年普通高等学校招生全国统一考试(2全国卷)数学(文)试题答案解析:1. B ∵正方形组成的集合是矩形组成集合的子集, ∴C B .2. A ∵1y x =+∴y 2=x +1, ∴x =y 2-1,x ,y 互换可得:y =x 2-1. 又∵10y x =+≥.∴反函数中x ≥0,故选A 项. 3.C ∵()sin3x f x ϕ+=是偶函数,∴f (0)=±1. ∴sin 13ϕ=±.∴ππ32k ϕ=+(k ∈Z).∴φ=3k π+3π2(k ∈Z). 又∵φ∈[0,2π],∴当k =0时,3π2ϕ=.故选C 项. 4.A ∵3sin 5α=,且α为第二象限角, ∴24cos 1sin 5αα=-=--.∴3424sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭.故选A 项. 5. C ∵焦距为4,即2c =4,∴c =2.又∵准线x =-4,∴24a c-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184x y +=,故选C 项.6.B 当n =1时,S 1=2a 2,又因S 1=a 1=1,所以21 2a=,213 122S=+=.显然只有B项符合.7.C由题意可采用分步乘法计数原理,甲的排法种数为14A,剩余5人进行全排列:55A,故总的情况有:14A·55A=480种.故选C 项.8.D连结AC交BD于点O,连结OE,∵AB=2,∴AC=又1CC=AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为C H的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△AC C1为等腰直角三角形,∴CH=2.∴HM=1.9.D∵a·b=0,∴a⊥b.又∵|a|=1,|b|=2,∴||5AB=.∴||5CD==.∴2||25AD ==. ∴4544445()5555AD AB AB ===-=-a b a b .10. C 设|PF 2|=m ,则|PF 1|=2m , 由双曲线定义|PF 1|-|PF 2|=2a , ∴2m -m=.∴m 又24c ==, ∴由余弦定理可得cos ∠F 1PF 2=2221212||||432||||4PF PF c PF PF +-=.11. D ∵x =ln π>1,y =log 52>1log 2=,121e2z -==>=,且12e -<e 0=1,∴y <z <x . 12. B 如图,由题意:tan ∠BEF =12, ∴2112KX =,∴X 2为HD 中点,2312X D X D =,∴313X D =, 4312X C X C =,∴413X C =, 5412X H X H =,∴512X H =, 5612X A X A =,∴613X A =,∴X 6与E 重合,故选B 项. 13.答案:7 解析:∵(x +12x )8展开式的通项为T r +1=8C r x 8-r(12x)r =C r 82-r x 8-2r,令8-2r =2,解得r =3.∴x 2的系数为38C 2-3=7.14.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 15.答案:5π6解析:y =sin xx=1π2(sin )2sin()23x x x =-. 当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =. 16.答案:35解析:设正方体的棱长为a .连结A 1E ,可知D 1F ∥A 1E ,∴异面直线AE 与D 1F 所成的角可转化为AE 与A 1E 所成的角, 在△AEA 1中,2222213cos 5a a a a a AEA ⎛⎫⎛⎫+++- ⎪ ⎪∠==. 17.解:由A ,B ,C 成等差数列及A +B +C =180°,得B =60°,A +C =120°.由2b 2=3ac 及正弦定理得2sin 2B =3sin A sin C , 故1sin sin 2A C =.cos(A +C )=cos A cos C -sin A sin C =cos A cos C -12, 即cos A cos C -12=12-,cos A cos C =0, cos A =0或cos C =0,所以A =90°或A =30°.18.解:(1)由2243S a =得3(a 1+a 2)=4a 2,解得a 2=3a 1=3; 由3353S a =得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6. (2)由题设知a 1=1.当n >1时有a n =S n -S n -1=12133n n n n a a -++-, 整理得111n n n a a n -+=-. 于是a 1=1,a 2=31a 1,a 3=42a 2,… a n -1=2nn -a n -2,a n =11n n +-a n -1.将以上n 个等式两端分别相乘,整理得(1)2n n n a +=. 综上,{a n }的通项公式(1)2n n n a +=. 19.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又P A ⊥底面ABCD , 所以PC ⊥BD . 设AC ∩BD =F ,连结EF .因为AC =P A =2,PE =2EC ,故PC =3EC =,FC = 从而PC FC =,ACEC =, 因为PC ACFC EC=,∠FCE =∠PCA , 所以△FCE ∽△PCA ,∠FEC =∠P AC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED .(2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足.因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,2222PD PA AD =+=. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 2.设PD 与平面PBC 所成的角为α,则1sin 2d PD α==. 所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (220,0),D 2,b,0),其中b >0, 则P (0,0,2),E (23,0,23),B 2b,0). 于是PC =(220,-2),BE =(23,b ,23),DE =(23,-b ,23),从而0PC BE ⋅=,0PC DE ⋅=, 故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB =b,0). 设m =(x ,y ,z )为平面P AB 的法向量, 则m ·AP =0,m ·AB =0,即2z =0-by =0, 令x =b ,则m =(b,0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b =-,n =(1,b-). 因为面P AB ⊥面PBC ,故m·n =0,即20b b-=,故b = 于是n =(1,-1),DP =(2),1cos ,2||||DP DP DP ⋅==n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP 〉互余,故PD 与平面PBC 所成的角为30°.20.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2;B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A , P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A )=P(A0·A)+P(A1·A)=P(A0)P(A)+P(A1)P(A)=0.16×0.4+0.48×(1-0.4)=0.352.(2) P(B0)=0.62=0.36,P(B1)=2×0.4×0.6=0.48,P(B2)=0.42=0.16,P(A2)=0.62=0.36.C=A1·B2+A2·B1+A2·B2P(C)=P(A1·B2+A2·B1+A2·B2)=P(A1·B2)+P(A2·B1)+P(A2·B2)=P(A1)P(B2)+P(A2)P(B1)+P(A2)P(B2)=0.48×0.16+0.36×0.48+0.36×0.16=0.307 2.21.解:(1)f′(x)=x2+2x+a=(x+1)2+a-1.①当a≥1时,f′(x)≥0,且仅当a=1,x=-1时,f′(x)=0,所以f(x)是R上的增函数;②当a<1时,f′(x)=0有两个根x1=-1x2=-1当x∈(-∞,-1时,f′(x)>0,f(x)是增函数;当x∈(-11时,f′(x)<0,f(x)是减函数;当x∈(-1∞)时,f′(x)>0,f(x)是增函数.(2)由题设知,x1,x2为方程f′(x)=0的两个根,故有a<1,x12=-2x1-a,x22=-2x2-a.因此f(x1)=13x13+x12+ax1=13x1(-2x1-a)+x12+ax1=13x12+23ax1=13(-2x1-a)+23ax1=23(a-1)x1-3a.同理,f(x2)=23(a-1)x2-3a.因此直线l 的方程为y =23(a -1)x -3a . 设l 与x 轴的交点为(x 0,0),得02(1)ax a =-, 22322031()[][](12176)32(1)2(1)2(1)24(1)a a a a f x a a a a a a =++=-+----. 由题设知,点(x 0,0)在曲线y =f (x )上,故f (x 0)=0, 解得a =0或23a =或34a =.22.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1, 即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |=,即2r =. (2)设(t ,(t +1)2)为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=化简得t 2(t 2-4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离d ==.。
2012年考研数学一真题及参考答案
的通解为 f (x) = C1e x + C2e−2x .再由 f ' (x) + f (x) = 2ex 得 2C1ex − C2e−2x = 2ex ,可知 C1 = 1, C2 = 0 。
故 f (x) = ex
∫ (10)
2
x
2x − x2 dx
________。
0
【答案】: π 2
∫ ∫ ∫ 2
=
⎧e−x−4 y , x > ⎨⎩0,其它
0,
y
>
0
∫∫ ∫ ∫ ∫ 则 P{X < Y} =
f (x, y)dxdy =
+∞
dx
y e−x−4 ydx =
+∞ e−5 ydy = 1
x< y
0
0
0
5
( 8 ) 将 长 度 为 1m 的 木 棒 随 机 地 截 成 两 段 , 则 两 段 长 度 的 相 关 系 数 为 ( )
【解析】: lim x→1
x2 x2
+x −1
=
∞
,所以
x
= 1 为垂直的
lim
x→∞
x2 + x x2 −1
= 1,所以
y
= 1为水平的,没有斜渐近线
故两条选 C
(2)设函数 f (x) = (ex −1)(e2x − 2)L (enx − n) ,其中 n 为正整数,则 f ' (0) =
(A) (−1)n−1(n −1)!
x x
2 2
gx
−
sin
x
≥
0,
故 f ' ( x) ≥ 0 ,而 f (0) = 0 ,即得 x ln 1+ x + cos x −1− x2 ≥ 0
2012考研数学三真题及答案
2012考研数学三真题及答案2012年考研数学三真题及答案一、选择题1、答案:D解析:根据题目给出的条件可以得到A,C,E,G表示的判断依据。
通过线性规划的图形可以得到B,D,F,H表示的判断依据。
因此选D。
2、答案:B解析:根据题目给出的条件可以得到A,C,G表示的判断依据。
通过线性规划的图形可以得到B,D,E,F,H表示的判断依据。
因此选B。
3、答案:C解析:根据题目给出的条件可以得到A,B,C,H表示的判断依据。
通过线性规划的图形可以得到D,E,F,G表示的判断依据。
因此选C。
4、答案:A解析:根据题目给出的条件可以得到A,B,C,D表示的判断依据。
通过线性规划的图形可以得到E,F,G,H表示的判断依据。
因此选A。
5、答案:D解析:根据题目给出的条件可以得到A,C,E,G表示的判断依据。
通过线性规划的图形可以得到B,D,F,H表示的判断依据。
因此选D。
二、解答题1、答案:根据题目给出的微分方程,dy/dx = (x² - y²) / 2xy我们可以对其进行简化,2xy dy = (x² - y²) dx进行变量分离并求积分得,∫2xy dy = ∫(x² - y²) dxy² = x³ / 3 - xy + C代入边界条件(x=1, y=1)得,1 = 1/3 - 1 + CC = 5/3因此,所求的积分曲线方程为,y² = x³ / 3 - xy + 5/32、答案:根据题目给出的条件,我们可以得到相关的方程式:sin(x + y) - 2cos(x - y) = 0 ------ (1)cos(x + y) + sin(x - y) = 4 ------ (2)我们可以通过对(1)式进行变形,消去sin(x + y)的项:sin(x + y) = 2cos(x - y) ------ (3)将(3)式代入(2)式,得到:2cos(x - y) + sin(x - y) = 4 ------ (4)令 A = x - y, B = x + y,此时我们可以得到:2cosA + sinA = 4 ------ (5)对(5)式进行平方,得到:4cos²A + 4cosA*sinA + sin²A = 16通过三角恒等式sin²A + cos²A = 1,将其代入上式可得:4cosA + 4cosA*sinA + 1 - cos²A = 16化简得:5cosA + 4cosA*sinA = 15将 A = x - y 代入,得:5cos(x - y) + 4cos(x - y)*sin(x - y) = 15解得 cos(x - y) ≈ 1.242由于-1 ≤ cos(x - y) ≤ 1,因此 cos(x - y) ≈ 1代入(1)式:sin(x + y) - 2cos(x - y) ≈ sin(x + y) - 2 ≈ 0解得sin(x + y) ≈ 2由于-1 ≤ sin(x + y) ≤ 1,因此sin(x + y) ≈ 2综上所述,近似解为sin(x + y) ≈ 2,cos(x - y) ≈ 1。
2012年山东高考数学文科试卷(带答案)
2012年普通高等学校招生全国统一考试(山东卷)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(2i)117i(i z -=+为虚数单位),则z 为 ( ). A.3+5i B.3-5i C.-3+5i D.-3-5i 【测量目标】复数代数形式的四则运算.【考查方式】复数的除法运算,化简,直接求得答案. 【参考答案】A【试题解析】由题目可知,()()()()117i 2i 117i 1525i35i 2i 2i 2i 5z +⋅+++====+--⋅+,故答案选A.2. 已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( ). A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4} 【测量目标】集合的含义和集合的基本运算. 【考查方式】集合的补集(列举法). 【参考答案】C【试题解析】由题意可知,{}0,4U A =ð,故而,{}0,2,4U A B = ð故而选择答案选C. 3.函数1()ln(1)f x x =++ ( ).A.[2,0)(0,2]-B.(1,0)(0,2]-C.[2,2]-D.(1,2]- 【测量目标】函数定义域的.【考查方式】分式定义、对数定义、根式定义,三者联立求解. 【参考答案】B【试题解析】要使得函数有意义,应满足210111040x x x x ⎧+>⎪+≠⇒-<<⎨⎪-⎩…或02x <….4. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A 样本数据都加2后所得数据,则,A B 两样本的下列数字特征对应相同是 ( ). A.众数 B.平均数 C.中位数 D.标准差 【测量目标】统计中常见的数字特征.【考查方式】根据题目,算出B 的样本数据,再与A 进行比较,算出结果. 【参考答案】D【试题解析】根据特征数的定义和特征是公式已知标准差始终没有改变. 5. 设命题p :函数sin 2y x =的最小正周期为π2;命题q :函数cos y x =的图象关于直线2x =π对称.则下列判断正确的是 ( ). A.p 为真 B.q ⌝为假 C.p q ∧为假 D.p q ∨为真 【测量目标】简单逻辑连接词,判断命题的真假判断.【考查方式】分别判断命题是否为真命题,对A 、B 、C 、D 四个选项依次进行判断. 【参考答案】C【试题解析】命题p 中,函数sin 2y x =最小正周期应为2ππ2T ==,故而命题p 是假命题, 命题q :函数cos y x =的图象关于直线0x =对称,关于π,02⎛⎫⎪⎝⎭成中心对称,故而命题q 也是假命题.所以q ⌝为真,p q ∨为假,p q ∧为假,故而正确选项为C.6. 设变量,x y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩………则目标函数3z x y =-的取值范围是 ( ).A.3[,6]2-B.3[,1]2--C.[1,6]-D.3[6,]2-【测量目标】二元线性规划求目标函数的最值.【考查方式】根据约束条件,画出相应的封闭区域,通过平移找到最优解.采用了数学中数形结合的思想. 【参考答案】A【试题解析】由所给的不等式组可知所表示的可行域如图所示,而目标函数可以看做3y x z =-,截距最小时z 值最大,当截距最大时z 值最小,(步骤1)根据条件242220x y x x y y +==⎧⎧⇒⎨⎨+==⎩⎩,(步骤2)故当目标函数过()2,0时,取到z 的最大,max 6z =,(步骤3)由1412243x y x x y y ⎧-=-=⎧⎪⇒⎨⎨+=⎩⎪=⎩,当目标函数经过1,32⎛⎫⎪⎝⎭时,z 取到最小值, min 32z =-,故而答案为A.(步骤4)7. 执行右面的程序框图,如果输入4a =,那么输出的n 的值为 ( ). A.2 B.3 C.4 D.5【测量目标】循环结构的程序框图.【考查方式】执行循环结构的流程图,直至结束,求解. 【参考答案】B【试题解析】由题意可知,当第一次执行循环体时,1,3P Q ==,这时,1n =;(步骤1) 当第二次执行循环体时,145,2317,P Q =+==⨯+=这时,2n =;(步骤2) 当第三次执行循环体时,214421,27115P Q =++==⨯+=,这时,3n =.(步骤3) 而此时Q P <,故而程序结束,这时3n =,故答案选B.(步骤4) 8. 函数ππ2sin (09)63x y x⎛⎫=- ⎪⎝⎭剟的最大值与最小值之和为 ( ).A.2B.0C.-1D.1--【测量目标】三角函数的最值.【考查方式】将函数进行,由定义域限制直接求得结果. 【参考答案】A【试题解析】 09x剟,πππ7π3636x ∴--剟,(步骤1)结合函数图象易知ππsin 163x ⎛⎫- ⎪⎝⎭,(步骤2)即2y , 故最大值为2,而最小值为所以最大值与最小值之和为2(步骤3)9. 圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 ( ). A.内切 B.相交 C.外切 D.相离 【测量目标】圆与圆的位置关系.【考查方式】画出两圆图象,确定位置关系,直接得到答案. 【参考答案】B【试题解析】由题意可知,两个圆的圆心分别为()122,0,(2,1)O O -, 对应的半径为122,3r r ==, (步骤1)两个圆圆心距为12O O ==,所以211212r r OO r r -<<+, 故而两个圆相交.(步骤2) 10. 函数cos622x xxy -=-的图象大致为 ( ).A BC D【测量目标】函数图象的判断. 【考查方式】根据函数cos622x xxy -=-,代入特殊点,观察图像的大致走向.【参考答案】D【试题解析】根据条件cos(6)cos 6()()2222x x x xx xf x f x ----==-=---, 所以函数为奇函数,排除选项A,(步骤1)又因为,当x 取很小的正数时有cos60,220,x x x ->->故而()0f x >,故而排除B,(步骤2)当x 取很大的正数时,分母为非常大的正数,而分子始终[]1,1-之间,故而排除C,所以选D. (步骤3)11. 已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( ).A. 2x y =B.2x y =C.28x y =D.216x y = 【测量目标】双曲线的几何性质、点到直线的距离公式.【考查方式】由点到直线的距离公式与双曲线方程联立求解抛物线方程. 【参考答案】D【试题解析】双曲线的一条渐近线为by x a=, 即0bx ay -=,(步骤1) 抛物线的焦点为0,2p ⎛⎫⎪⎝⎭,抛物线焦点到渐近线距离:22a pd c ==⋅=,(步骤2) 48p e ⇒==故而抛物线方程为216x y =.(步骤3) 12. 设函数1()f x x=,2()g x x bx =-+.若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 ( ). A.12120,0x x y y +>+>. B.12120,0x x y y +>+<. C.12120,0x x y y +<+>. D.12120,0x x y y +<+<. 【测量目标】函数零点的求解和判断.【考查方式】求出函数零点,比较系数,直接得出结果. 【参考答案】B【试题解析】设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12x x 、.(步骤1)由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,(步骤2)因为(0)1F =,故必有2()03F b =由此得b =(步骤3)不妨设12x x <,则223x b ==所以21()()(F x x x x =-,比较系数得1x -=,故1x =120x x +>,(步骤4) 由此知12121212110x x y y x x x x ++=+=<,故答案为B.(步骤5)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 如图,正方体1111ABCD A B C D -的棱长为1,E 为线段1B C 上的一点,则三棱锥1A DED -的体积为.【测量目标】多面体体积公式.【考查方式】转换三棱锥顶点,求解三棱锥体积. 【参考答案】16【试题解析】由题意可知,11111111113326A DED E DD A D DA V V DC S --==⨯⨯=⨯⨯⨯⨯=△.14. 如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.【测量目标】茎叶图、频率分布直方图.【考查方式】统计中的茎叶图,是解答本题的关键. 【参考答案】9【试题解析】最左边两个矩形面积之和为0.10×1+0.12×1=0.22,总城市数为11÷0.22=50,最右面矩形面积为0.18×1=0.18,50×0.18=9.15.若函数()(0,1)x f x a a a =>≠在[-1,2]上的最大值为4,最小值为m ,且函数()(14g x m =-在[0,)+∞上是增函数,则a =____. 【测量目标】利用函数单调性研究最值. 【考查方式】函数单调性与最值问题. 【参考答案】14【试题解析】当1a >时,有214,a a m -==,此时12,2a m ==,此时()g x =. 若01a <<,则124,a a m -==,故11,416a m ==,检验知符合题意.16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为 .【测量目标】三角函数与向量知识的综合运用.【考查方式】由参数方程,求解点坐标,典型的数形结合法思想. 【参考答案】()2sin 2,1cos2--【试题解析】方法一:根据题意可知圆滚动了2单位个弧长,点P 旋转 了221=弧度,(步骤1) 此时点P 的坐标为:π2cos 22sin 22p x ⎛⎫=--=- ⎪⎝⎭,π1sin 21cos 22p y ⎛⎫=+-=- ⎪⎝⎭,(步骤2)()2sin 2,1cos 2OP =--.(步骤3)方法二:根据题意可知滚动制圆心为(2,1)时的圆的参数方程为2cos 1sin x y y θθ=+⎧=⎨=+⎩,且2,PCD θ∠==3π22-,则点P 的坐标为3π2cos 22sin 223π1sin 21cos 22x y ⎧⎛⎫=+-=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+-=- ⎪⎪⎝⎭⎩, 即()2sin 2,1cos 2OP =--.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在ABC △中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列; (Ⅱ)若1,2a c ==,求△ABC 的面积S .【测量目标】等比数列、三角恒等变换、余弦定理.【考查方式】根据题设,化简,求解三边之间的等式关系;由Ⅰ中的三边关系和余弦定理进一步求解三角形面积.【试题解析】(Ⅰ)由已知得,sin sin sin sin sin cos cos cos cos A C A CB AC A C⎛⎫+=⎪⎝⎭, sin (sin cos cos sin )sin sin B A C A C A C ⇒+=, sin sin()sin sin B A C A C +=, 2sin sin sin B A C =,(步骤1)再由正弦定理可得:2b ac =,(步骤2) 所以,,a b c 成等比数列. (步骤3) (Ⅱ)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,(步骤4)sin B ==,(步骤5)∴△ABC 的面积11sin 1222S ac B ==⨯⨯=(步骤6)18.(本小题满分12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(Ⅰ)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率; (Ⅱ)现袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率. 【测量目标】古典概型的应用. 【考查方式】根据取卡次数,分类列举.【试题解析】(I)从五张卡片中任取两张的所有可能情况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种情况,故所求的概率为310P =. (II)加入一张标号为0的绿色卡片后,从六张卡片中任取两张,除上面的10种情况外,多出5种情况:红1绿0,红2绿0,红3绿0,蓝1绿0,蓝2绿0,即共有15种情况,其中颜色不同且标号之和小于4的有8种情况,所以概率为815P =.19.(本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点,求证:DM ∥平面BEC . 【测量目标】空间几何中量的关系,线面平行的判定.【考查方式】用已知线线关系推出未知结果,利用线线平行推出线面平行.【试题解析】(Ⅰ)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥,(步骤1)又已知CE BD ⊥,所以BD ⊥平面OCE .(步骤2) 所以BD OE ⊥,即OE 是BD 的垂直平分线,(步骤3) 所以BE DE =.(步骤4)(Ⅱ)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE ,(步骤5) ∵△ABD 是等边三角形,∴DN AB ⊥.(步骤6)由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°, 即BC AB ⊥,所以ND ∥BC ,(步骤7)所以平面MND ∥平面BEC ,故DM ∥平面BEC .(步骤8)20.(本小题满分12分)已知等差数列{}n a 的前5项和为105,且2052a a = (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中不大于27m 的项的个数记为m b .求数列{}m b 的前m 项和m S .【测量目标】等差、等比数列的通项公式;等比数列的前n 项求和.【考查方式】根据题设,算出1,a d ,直接求出通项公式.再根据,n m a b 关系列式求出m S .【试题解析】Ⅰ.由已知得:111510105,92(4),a d a d a d +=⎧⎨+=+⎩ 解得17,7a d ==,(步骤1) 所以通项公式为7(1)77n a n n =+-⋅=.(步骤2)Ⅱ.由277m n a n =…,得217m n -…,即217m m b -=. ∵211217497m k m k b b ++-==,∴{}m b 是公比为49的等比数列,(步骤3) ∴7(149)7(491)14948m m m S -==--.(步骤4)21.(本小题满分13分) 如图,椭圆2222:1(0)x y M a b a b+=>>的离心率为,直线x a =±和y b =±所围成的矩形ABCD 的面积为8.(Ⅰ)求椭圆M 的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆M 有两个不同,,P Q l 与矩形ABCD 有两个不同的交点,S T .求||||PQ ST 的最大值及取得最大值时m 的值. 【测量目标】椭圆的标准方程及几何性质,直线与椭圆的位置关系.【考查方式】椭圆的基本性质求解标准方程和最值问题.【试题解析】(Ⅰ)22234c a b e a a -===……①(步骤1) 矩形ABCD 面积为8,即228a b ⋅=……②(步骤2)由①②解得:2,1a b ==,∴椭圆M 的标准方程是2214x y +=.(步骤3) (Ⅱ)222244,58440,x y x mx m y x m ⎧+=⇒++-=⎨=+⎩,(步骤4)设1122(,),(,)P x y Q x y ,则21212844,55m x x m x x -+=-=,由226420(44)0m m ∆=-->得m <.(步骤5)||PQ .(步骤6)当l 过A 点时,1m =,当l 过C 点时,1m =-.①当1m <-时,有(1,1),(2,2),||)S m T m ST m ---+=+,(步骤7)||||PQ ST 3t m =+,由此知当134t =,即45,(1)33t m ==-∈-时,||||PQ ST .(步骤8)②由对称性,可知若1m <<53m =时,||||PQ ST (步骤9)③当11m -剟时,||ST =||||PQ ST =,由此知,当0m =时,||||PQ ST .(步骤10)综上可知,当53m =±和0时,||||PQ ST .(步骤11)22.(本小题满分13分) 已知函数ln ()(e xx k f x k +=为常数,e =2.71828…是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设()()g x xf x '=,其中()f x '为()f x 的导函数.证明:对任意20,()1e x g x -><+.【测量目标】利用导数求函数的单调区间、解决不等式问题.【考查方式】利用导数求单调区间,证明不等式.【试题解析】(Ⅰ)1ln ()e x x k x f x --'=,由已知,1(1)0ek f -'==,∴1k =.(步骤1) (Ⅱ)由(Ⅰ)知,1ln 1()e xx x f x --'=.设1()ln 1k x x x =--,则211()0k x x x'=--<,即()k x 在(0,)+∞上是减函数,(步骤2) 由(1)0k =知,当01x <<时()0k x >,从而()0f x '>,(步骤3) 当1x >时()0k x <,从而()0f x '<.(步骤4) 综上可知,()f x 的单调递增区间是(0,1),单调递减区间是(1,)+∞.(步骤5) (Ⅲ)由Ⅱ可知,当1x …时,()()g x xf x '=≤0<1+2e -,故只需证明2()1e g x -<+在01x << 时成立.(步骤6)当01x <<时,e x >1,且()0g x >, ∴1ln ()1ln e xx x x g x x x x --=<--.(步骤7) 设()1ln F x x x x =--,(0,1)x ∈,则()(ln 2)F x x '=-+,(步骤8) 当2(0,e )x -∈时,()0F x '>,当2(e ,1)x -∈时,()0F x '<, ∴当2e x -=时,()F x 取得最大值22()1e F --=+e .(步骤9) ∴2()()1e g x F x -<+….综上,对任意0x >,2()1e g x -<+.(步骤10)。
2012年高考理科数学(全国卷)含答案及解析
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、选择题(1)、复数131ii-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3.},B ={1,m } ,A U B =A , 则m =A. 0B. 0或3C. 1D. 1或3 【考点】集合 【难度】容易 【答案】B 【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去Q .【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为A. 216x +212y =1B. 212x +28y =1C. 28x +24y =1D. 212x +24y =1【考点】椭圆的基本方程【难度】容易 【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a=22=184x y+【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
在高考精品班数学(文)强化提高班中有对圆锥曲线相关知识的总结讲解。
2012年高考新课标全国卷文科数学试题(附答案)
2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x |x 2−x −2<0},B={x |−1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =32ii-++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A )−1 (B )0 (C )12(D )1(4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、 右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 (A )12 (B )23 (C )34 D .45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3) (6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则 (A )A +B 为1a ,2a ,…,N a 的和 (B )2A B+为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D )A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数 (7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π (9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (11)当0<x ≤12时,4log xa x <,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{n a }满足1(1)21nn n a a n ++-=-,则{n a }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830二.填空题:本大题共4小题,每小题5分。
2012年山东高考数学真题及答案
2012年普通高等学校招生全国统一考试(山东卷)理科数学参考公式:锥体的体积公式:V=Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )〃P (B )。
第I 卷(共60分)一. 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A。
另解:设),(R b a bi a z Î+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
3 设a >0 a 0 a≠≠1 ,则“函数f(x)= a x在R 上是减函数 ”,是“函数g(x)=(2-a) 3x 在R 上是增函数”的A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件 解析:p :“函数f(x)= a x 在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。
2012年七年级数学试卷及答案
2012年七年级数学考试卷一、选择题。
1.下列说法正确的是( )A 、不相交的两条直线叫做平行线B 、不平行的两条直线一定相交C 、垂直于同一直线的两条直线互相垂直D 、平行于同一直线的两条直线互相平行 2.下列命题中正确的有 ( ).① 相等的角是对顶角; ② 若a ∥b ,b ∥c ,则a ∥c ; ③ 同位角相等; ④ 邻补角的平分线互相垂直. A .0个 B .1个 C .2个 D .3个3.在等腰△ABC 中,AB=AC ,一腰中线BD 将三角形周长分为15和21两部分,则这个三角形的底边长为( )A .8 B.12 C.8或16 D.8或12 4、一个三角形的三个内角中( )A. 至少有一个等于90°B. 不可能都小于60°C. 不可能有两个大于89°D. 至少有一个大于90°5、从多边形一个顶点出发最多可以引9条对角线,则这个多边形的内角和等于( )A 、1620°B 、1440 °C 、1260°D 、1800° 6、如图小陈从O 点出发,前进5米后向右转020,再向前进5米后又向右转020……,这样一直下去,他第一次回到出发点O 时,一共走了( )A 、 60米B 、100米C 、120米D 、90米 7. 已知三角形的三边长分别是3,8,,若的值为偶数,则的值有 ( ). A .3个 B .4个 C .5个 D .6个8. 在下列四组多边形地板砖中,①正五边形与正十边形;②正三角形与正六边形;③正六边形与正方形;④正八边形与正方形.将每组中的两种多边形结合,能镶嵌地面的是 ( ).A .①③④B .②③④C .①②④D .①②③9.一个人从点A 出发,沿北偏东70°的方向走到B 处,再从点B 处沿南偏西15°的方向走到点C 处,那么∠ABC 的度数是( )A .55°B .85°C .105°D .125°10.已知:面积为16的A B C ∆中两中线AD BE ⊥,若:2:3A D B E =,则B E =( )A.2B.4C.6D.8二、填空题。
2012考研数学一真题及答案解析
2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xy x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3(2)设函数2()(1)(2)()x x nx f x e e e n =---,其中n 为正整数,则'(0)f = (A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n - (3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( ) (A )若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (B )若极限2200(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y →→+存在 (D )若(,)f x y 在(0,0)处可微,则极限2200(,)limx y f x y x y →→+存在 (4)设2kx k eI e=⎰sin x d x (k=1,2,3),则有D(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3.(C) I 1< I 3 <I 1, (D) I 1< I 2< I 3.(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα (C )134,,ααα (D )234,,ααα(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫⎪= ⎪⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( ) (A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫⎪ ⎪⎪⎝⎭(C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫⎪ ⎪⎪⎝⎭(7)设随机变量x 与y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}=<y x p ()1124()()() ()5355A B C D(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为()1)(21)(21)(1)(--D C B A 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题..纸.指定位置上. (9)若函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及x e x f x f 2)()('=+,则)(x f =________。
2012年普通高等学校招生全国统一考试 数学试卷含答案(文科)
2012年普通高等学校招生全国统一考试(课标全国卷)文数本卷满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀2.复数z=-的共轭复数是( )A.2+iB.2-IC.-1+iD.-1-i3.在一组样本数据(x1,y1),(x2,y2),…,(x n,y n)(n≥2,x1,x2,…,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为( )A.-1B.0C.D.14.设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A. B. C. D.5.已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是( )A.(1-,2)B.(0,2)C.(-1,2)D.(0,1+)6.如果执行如图的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则( )A.A+B为a1,a2,…,a N的和B.为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为( )A. B.4 C.4 D.69.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=( )A. B. C. D.10.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )A. B.2 C.4 D.811.当0<x≤时,4x<log a x,则a的取值范围是( )A.,B.,C.(1,D.(,2)12.数列{a n}满足a n+1+(-1)n a n=2n-1,则{a n}的前60项和为( )A.3 690B.3 660C.1 845D.1 830第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.曲线y=x(3ln x+1)在点(1,1)处的切线方程为.14.等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q= .15.已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|= .16.设函数f(x)=()的最大值为M,最小值为m,则M+m= .三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=(Ⅰ)求A;(Ⅱ)若a=2,△ABC的面积为,求b,c.18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点. (Ⅰ)证明:平面BDC1⊥平面BDC;(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.20.(本小题满分12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l.A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(Ⅰ)若∠BFD=90°,△ABD的面积为4,求p的值及圆F的方程;(Ⅱ)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(本小题满分12分)设函数f(x)=e x-ax-2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)f '(x)+x+1>0,求k的最大值.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4—1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点.若CF∥AB,证明:(Ⅰ)CD=BC;(Ⅱ)△BCD∽△GBD.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程是,(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为,.(Ⅰ)求点A,B,C,D的直角坐标;(Ⅱ)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|x+a|+|x-2|.(Ⅰ)当a=-3时,求不等式f(x)≥3的解集;(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.2012年普通高等学校招生全国统一考试(课标全国卷)一、选择题1.B A={x|-1<x<2},B={x|-1<x<1},则B⫋A,故选B.评析本题考查了集合的关系以及二次不等式的解法.=-=-1+i,=-1-i,故选D.2.D z=-=(-)(-)()(-)评析本题考查了复数的运算,易忽略共轭复数而错选.3.D 所有点均在直线上,则样本相关系数最大即为1,故选D.评析本题考查了线性回归,掌握线性回归系数的含义是解题关键,本题易错选C.4.C 设直线x=a与x轴交于点Q,由题意得∠PF2Q=60°,|F2P|=|F1F2|=2c,|F2Q|=a-c,∴a-c=×2c,e==,故选C.评析本题考查了椭圆的基本性质,考查了方程的思想,灵活解三角形对求解至关重要. 5.A 由题意知区域为△ABC(不含边界).当直线-x+y-z=0过点C(1+,2)时,z min=1-;当过点B(1,3)时,z max=2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.6.C 不妨令N=3,a1<a2<a3,则有k=1,A=a1,B=a1;x=a2,A=a2;x=a3,A=a3,故输出A=a3,B=a1,选C. 评析本题考查了流程图,考查了由一般到特殊的转化思想.7.B 由三视图可得,该几何体为三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=××6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.8.B 如图,设平面α截球O所得圆的圆心为O1,则|OO1|=,|O1A|=1,∴球的半径R=|OA|==.∴球的体积V=πR3=4π.故选B.评析本题考查了球的基础知识,利用勾股定理求球的半径是关键.9.A 由题意得=2-,∴ω=1,∴f(x)=sin(x+φ),则+φ=kπ+(k∈Z),φ=kπ+(k∈Z),又0<φ<π,∴φ=,故选A.评析本题考查了三角函数的图象和性质,掌握相邻对称轴的距离为周期的一半是关键.10.C 由题意可得A(-4,2).∵点A在双曲线x2-y2=a2上,∴16-12=a2,a=2,∴双曲线的实轴长2a=4.故选C.评析本题考查了双曲线和抛物线的基础知识,考查了方程的数学思想,要注意双曲线的实轴长为2a.11.B 易知0<a<1,则函数y=4x与y=log a x的大致图象如图,则只需满足log a>2,解得a>,故选B.评析本题考查了利用数形结合解指数、对数不等式.12.D 当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=(a2+a3)+(a4+a5)+…+(a60+a61)=3+7+11+…+(2×60-1)=()=30×61=1 830.评析本题考查了数列求和及其综合应用,考查了分类讨论及等价转化的数学思想.二、填空题13.答案y=4x-3解析y'=3ln x+1+x·=3ln x+4,k=y'|x=1=4,切线方程为y-1=4(x-1),即y=4x-3.评析本题考查了导数的几何意义,考查了运算求解能力.14.答案-2解析由S 3+3S2=0得4a1+4a2+a3=0,有4+4q+q2=0,解得q=-2.评析本题考查了等比数列的运算,直接利用定义求解可达到事半功倍的效果.15.答案3解析把|2a-b|=两边平方得4|a|2-4|a|·|b|·cos 45°+|b|2=10.∵|a|=1,∴|b|2-2|b|-6=0.∴|b|=3或|b|=-(舍去).评析本题考查了向量的基本运算,考查了方程的思想.通过“平方”把向量问题转化为数量问题是求解的关键.16.答案 2解析f(x)==1+,令g(x)=,则g(x)为奇函数,有g(x)max+g(x)min=0,故M+m=2.评析本题考查了函数性质的应用,运用了奇函数的值域关于原点对称的特征,考查了转化与化归的思想方法.三、解答题17.解析(Ⅰ)由c=asin C-c·cos A及正弦定理得·sin A·sin C-cos A·sin C-sin C=0.由于sin C≠0,所以sin-=.又0<A<π,故A=.(Ⅱ)△ABC的面积S=bcsin A=,故bc=4.而a2=b2+c2-2bccos A,故b2+c2=8.解得b=c=2.评析本题考查了正、余弦定理和三角公式,考查了方程的思想,灵活利用正、余弦定理是求解关键,正确的转化是本题的难点.18.解析(Ⅰ)当日需求量n≥17时,利润y=85.当日需求量n<17时,利润y=10n-85.所以y关于n的函数解析式为y=-,,,(n∈N).(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为(55×10+65×20+75×16+85×54)=76.4.(ii)利润不低于75元当且仅当日需求量不少于16枝.故当天的利润不少于75元的概率为P=0.16+0.16+0.15+0.13+0.1=0.7.评析本题考查概率统计,考查运用样本频率估计总体概率及运算求解能力.19.解析(Ⅰ)证明:由题设知BC⊥CC 1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(Ⅱ)设棱锥B-DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC-A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.评析本题考查了线面垂直的判定,考查了体积问题,同时考查了空间想象能力,属中档难度.20.解析(Ⅰ)由已知可得△BFD为等腰直角三角形,|BD|=2p,圆F的半径|FA|=p.由抛物线定义可知A到l的距离d=|FA|=p.因为△ABD的面积为4所以|BD|·d=4即·2p·p=4解得p=-2(舍去),p=2.所以F(0,1),圆F的方程为x2+(y-1)2=8.(Ⅱ)因为A,B,F三点在同一直线m上,所以AB为圆F的直径,∠ADB=90°.由抛物线定义知|AD|=|FA|=|AB|,所以∠ABD=30°,m的斜率为或-.当m的斜率为时,由已知可设n:y=x+b,代入x2=2py得x2-px-2pb=0.由于n与C只有一个公共点,故Δ=p2+8pb=0.解得b=-.因为m的截距b1=,||||=3,所以坐标原点到m,n距离的比值为3.当m的斜率为-时,由图形对称性可知,坐标原点到m,n距离的比值为3.评析本题考查了直线、圆、抛物线的位置关系,考查了分类讨论的方法和数形结合的思想.21.解析(Ⅰ)f(x)的定义域为(-∞,+∞), f '(x)=e x-a.若a≤0,则f '(x)>0,所以f(x)在(-∞,+∞)上单调递增.若a>0,则当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0,所以, f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(Ⅱ)由于a=1,所以(x-k)f '(x)+x+1=(x-k)(e x-1)+x+1.故当x>0时,(x-k)f '(x)+x+1>0等价于k<-+x(x>0).①令g(x)=-+x,则g'(x)=--(-)+1=(--)(-).由(Ⅰ)知,函数h(x)=e x-x-2在(0,+∞)上单调递增.而h(1)<0,h(2)>0,所以h(x)在(0,+∞)上存在唯一的零点.故g'(x)在(0,+∞)上存在唯一的零点.设此零点为α,则α∈(1,2).当x∈(0,α)时,g'(x)<0;当x∈(α,+∞)时,g'(x)>0.所以g(x)在(0,+∞)上的最小值为g(α).又由g'(α)=0,可得eα=α+2,所以g(α)=α+1∈(2,3).由于①式等价于k<g(α),故整数k的最大值为2.评析本题考查了函数与导数的综合应用,判断出导数的零点范围是求解第(Ⅱ)问的关键.22.证明(Ⅰ)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC.(Ⅱ)因为FG∥BC,故GB=CF.由(Ⅰ)可知BD=CF,所以GB=BD.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD.评析本题考查了直线和圆的位置关系,处理好平行的关系是关键.23.解析(Ⅰ)由已知可得A ,,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(Ⅱ)设P(2cos φ,3sin φ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].评析本题考查了曲线的参数方程和极坐标方程.考查了函数的思想方法,正确“互化”是关键,难点是建立函数S=f(φ).24.解析(Ⅰ)当a=-3时,f(x)=-,, ,,-,.当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时, f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4.所以f(x)≥3的解集为{x|x≤1或x≥4}.(Ⅱ)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a≤x≤2-a.由条件得-2-a≤1且2-a≥2,即-3≤a≤0.故满足条件的a的取值范围为[-3,0].评析本题考查了含绝对值不等式的解法,运用零点法分类讨论解含绝对值的不等式,考查了运算求解能力.。
2012全国高考数学试卷及答案
2012年普通高等学校招生全国统一考试(全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试..题卷上作答无效.......。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合{1,2,3,4}U =,{1,2,3}M =,{2,3,4}N = ,则()U C M N = ( ) (A ){1,2} (B ){2,3} (C ){2,4} (D ){1,4} (2)函数0)y x =≥的反函数是( )(A )2()4x y x R == (B)2(0)4x y x =≥ (C)y=4x 2(x=R) (D) y=4x 2(x ≥=R) (3) 设向量a.b 满足11,,a+22a b a b b ===-= 则( )(A(B(C(D(4)若变量,x y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为( )(A )17 (B )14 (C )5 (D )3 (5)下面四个条件中,使a b >成立的充分而不必要条件是( ) (A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >(6)设n S 是等差数列{}n a 的前n 项和,若11a =,公差22, 24k k d S S +=-=,则k =( ) (A )8 (B )7 (C )6 (D )5(7)设函数()cosx f x ωω=()(>0),将()y f x = 图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )(A )13(B )3 (C )6 (D )9 (8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点, B BD l β∈⊥,D 为垂足,若2,1AB AC BD ===,则CD =( )(A )2 (B (C (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( ) (A )12种 (B )24种 (C )30种 (D )36种(10)设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则52()f -= ( ) (A )12-(B ) 41 (C )41 (D )12(11)设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =( ) (A )4 (B )42 (C )8 (D )82(12)已知平面α截一球面得圆M ,过圆心M 且与α成︒60二面角的平面β截该球面得圆N ,若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( )(A )7π (B )9π (C )11π (D )13π2011年普通高等学校招生全国统一考试文科数学第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上。
2012全国高考数学(理科)新课标答案及解析
2012年普通高等学校招生全国统一考试理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45∆21F PF 是底角为30 的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2012年陕西省中考数学试卷-答案
【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。
2012年高考数学全国卷
绝密*启用前2012年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己地姓名、准考证号填写在本试卷和答题卡相应位置上.2.问答第Ⅰ卷时.选出每小题答案后,用铅笔把答题卡上对应题目地答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时.将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回.第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同地四个选项中,只有一项是符合题目要求地.(1)已知集合A={1,2,3,4,5},B={(x,y)|x A}Y -X A,Y A,∈∈∈,则B 中所含元素地个数为(A )3 (B )6 (C) 8 (D )10 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同地安排方案共有(A )12种(B )10种 (C) 9种(D )8种(3)下面是关于复数i 12+-=Z 地四个命题:P1:|z|=2, P2:z2=2i,P3:z 地共轭复数为1+i, p4:z 地虚部为-1,期中地真命题为(A )p2,p3 (B)P1,P2 (C)P2,P4 (D)P3,P4 (4)设是椭圆E :)0(1x 22>>=+b a b y a 地左、右焦点,P 为直线上一点, ∆是底角为地等腰三角形,则E 地离心率为()(A )(B )(C )(D ) (5)已知为等比数列,274=+a a ,,则(A )7 (B )5 (C )-5 (D )-7(6)如果执行右边地程序框图,输入正整数和实数,输出A,B,则(A )A+B 为地和(B )为地算术平均数 (C )A 和B 分别是中最大地数和最小地数(D )A 和B 分别是中最小地数和最大地数12F F 32a x =21F PF 3012233445{}n a 568a a =-110a a +=(2)N N ≥12,,...,n a a a 12,,...,n a a a 2A B +12,,...,n a a a 12,,...,n a a a 12,,...,n a aa(7)如图,网格纸上小正方形地边长为1,粗线画出地是某几何体地三视图,则此几何体地体积为(A )6(B )9(C )12(D )18(8)等轴双曲线C 地中心在原点,检点在X 轴上,C 与抛物线xy 162=地准线交于A ,B 两点,|AB|=43,则C 地实轴长为(A )2(B )22(C )4(D )8(9)已知w>0,函数f(x)=sin(ωx+4π)在(2π,π)单调递减.则△t 地取值范围是 (A) [21,45] (B)[21,43] (C)(O,21] (D)(0,2](10) 已知函数f(x)=x -1)ln(x 1+,则y=f(x)地图像大致为(11)已知三棱锥S-ABC 地所有顶点都在球O 地求面上,△ABC 是边长为1地正三角形,SC 为球O地直径,且SC=2,则此棱锥地体积为(A )62(B )63(C )32(D )22(12)设点P 在曲线y=21ex 上,点Q 在曲线y=ln(2x)上,则|pQ|最小值为(A ) 1-ln2 (B )2(1-ln2)(C )1+ln2 (D )2 (1+ln2)第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试卷考生都必须作答,第22-第24题为选考题,考生根据要求做答.二.填空题:本大题共4小题,每小题5分. (13)已知向量a,b 夹角为450 ,且|a|=1,|2a-b|=10,则|b|=(14) 设x,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≥0y 0x 3y x -1y -x 则z=x-2y 地取值范围为(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件地使用寿命(单位:小时)均服从正态分布N (1000,250),且各个元件能否正常相互独立,那么该部件地使用寿命超过1000小时地概率为(16)数列{n a }满足n n n a a )1(1-++=2n-1,则{n a }地前60项和为三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)已知a.b.c 分别为△ABC 三个内角A ,B ,C 地对边a 03sin cos=--+c b c a c(1) 求A (2) 若a=2,△ABC 地面积为3求b,c18.(本小题满分12分)某花店每天以每枝5元地价格从农场购进若干枝玫瑰花,然后以每枝10元地价格出售,如果当天卖不完,剩下地玫瑰花作垃圾处理.(I)若花店一天购进16枝玫瑰花,求当天地利润y(单位:元)关于当天需求量n (单位:枝,n ∈N )地函数解读式. (II)花店记录了100天玫瑰花地日需求量(单位:枝),整理得下表:以100天记录地各需求量地频率作为各需求量发生地概率.(i )若花店一天购进16枝玫瑰花,x 表示当天地利润(单位:元),求x 地分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.(19)(本小题满分12分) 如图,之三棱柱ABC-111C B A 中AC=BC=121AA ,D 是棱1AA地中点,BD DC ⊥1 (I)证明:BCDC ⊥1 (II)求二面角11C BD A --地大小(20)(本小题满分12分)设抛物线C:PY X 22=(P>0)地交点为F ,准线为I ,A 为C 上地一点,已知以F 为圆心,FA 为半径地圆F 交I 于B ,D 两点.(I )若090=∠BFD ,ABD ∆地面积为24求P 地值及圆F 地方程;(II )若A ,B,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点m ,n 距离地比值.(21)(本小题满分12分) 已知函数f(x)满足满足f(x)=2121)0()1(f x x f e x +--‘(I ) 求f(x)地解读式及单调区间; (II ) 若f(x)b ax x ++≥221,求(a+1)b 地最大值 请考生在第22,23,24题中任选一题做答,如果多做,则按所做地第一题计分,做答时请写清题号.(22)(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 地中点,直线DE 交于△ABC 地外接圆于F ,G 两点,若CF//AB ,证明:(I ) CD=BC ;(II )△BCD ∽△GBD(23)(本小题满分10分)选修4—4;坐标系与参数方程已知曲线1C 地参数方程是)(3sin y 2cos x 为参数ϕϕϕ⎩⎨⎧==,以坐标原点为极点,x 轴地正半轴为极轴建立坐标系,曲线2C 地坐标系方程是2=ρ,正方形ABCD 地顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 地极坐标为(2,3π)(I ) 求点A 、B 、C 、D 地直角坐标;(II ) 设P 为1C 上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2地取值范围.(24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x) = |x + a| + |x - 2|.(I) 当a = -3时,求不等式f(x) ≥3地解集;(II) 若f(x)≤|x - 4|地解集包含[1,2],求a 地取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年长春市初中毕业生学业考试网上阅卷模拟训练数 学本试卷包括七道大题,共26小题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分) 1.计算 6(3)--的值是(A )-9. (B )-3. (C )3. (D )9.2.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为 (A )362×102. (B )3.62×104. (C )3.62×105. (D )0.362×105. 3.右图是由5个完全相同的小正方体组成的几何体,其左视图是4.吉林省2007~2011年全省粮食产量统计结果如图所示(单位:万吨).这组粮食产量数据的中位数是 (A )2 454. (B )2 460. (C )2 840. (D )3 171. 5.不等式24x -≤0的解集在数轴上表示为(A ) (B )(C ) (D )正面(第3题)2 4542 8402 4602 8423 1712007年 2008年 2009年 2010年 2011年(第4题)(A ) (B ) (C ) (D )6.如图,AB 、CD 都是⊙O 的弦,且AB ⊥CD .若∠CDB =62︒,则∠ACD 的大小为 (A )28︒. (B )31︒. (C )38︒. (D )62︒.7.如图,在正六边形ABCDEF 中,△ABC 的面积为2,则△EBC 的面积为 (A )4. (B )6. (C )8. (D )12.8.如图,在平面直角坐标系中,若点A (2,3)在直线12y x b =-+与x 轴正半轴、y 轴正半轴围成的三角形内部,则b 的值可能是(A )3-. (B )3. (C )4. (D )5. 二、填空题(每小题3分,共18分)9.写出一个在2和3之间的无理数: . 10.分解因式:23a a -= .11.购买m 千克苹果花费p 元,则按同样的价格购买n 千克苹果,需花费 元(用含p 、m 、n 的代数式表示).12.如图,在四边形ABCD 中,∠A =90︒,BD ⊥CD ,∠ADB =∠C .若AB =4,AD =3,则BC 的长为 .(第12题) (第13题) (第14题)13.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连结AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为42cm .则OC 的长为 cm .14.将矩形纸片ABCD 按如图方式折叠,DE 、CF 为折痕,折叠后点A 和点B 都落在点O 处.若△EOF 是等边三角形,则ABAD的值为 . (第7题)A B CO MN AEFACD(第8题)(第6题) ABCDO .三、解答题(每小题5分,共20分)15.先化简,再求值:2(1)2(1)3a a +---,其中a =16.A 、B 两车间生产同一种材料,B 车间每天比A 车间多生产20吨,A 车间生产25吨与B 车间生产35吨所用时间相同.A 车间每天生产这种材料多少吨?17.如图,四边形ABCD 是矩形,以AD 为直径的⊙O 交BC 边于点E 、F ,AB =4,AD =12.求线段EF 的长.18.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.四、解答题(每小题6分,共12分)19.图①、图②和图③均是边长为1的正方形网格,按要求画出顶点在格点上的图形. (1)用若干个图①中的三角形拼出一个梯形,在图②中画出拼得的梯形.(2)用若干个图①中的三角形、图②中的梯形拼出一个是中心对称但不是轴对称的四边形,在图③中画出拼得的四边形,并画出所用三角形和梯形的各边.图① 图② 图③小林小丹 小林小丹20.如图,在平面直角坐标系中,△ABC 的顶点A 、B 分别落在x 轴、y 轴的正半轴上,顶点C 在第一象限,BC 与x 轴平行.已知BC =2,△ABC 的面积为1. (1)求点C 的坐标.(2)将△ABC 绕点C 顺时针旋转90︒,△ABC 旋转到△A 1B C 的位置,求经过点1B的反比例函数关系式.五、解答题(每小题6分,共12分)21.为了解全校学生登录校社团网站的情况,学生会在全校学生中随机抽取了n 名学生,对他们一周当中登陆校社团网站的次数进行了调查,并将调查结果绘制成如下条形统计图.(1)这次被调查的学生人数n 为 .(2)全校有2 100名学生,估计一周登录 校社团网站超过3次的人数.(3)估计全校2 100名学生一周登录校社团 网站的总次数会达到多少次?22.从水平地面到水平观景台之间有一段台阶路和一段坡路,示意图如下.台阶路AE共有8个台阶,每个台阶的宽度均为0.5m ,台阶路AE 与水平地面夹角∠EAB 为28︒.坡路EC 长7m ,与观景台地面的夹角∠ECD 为15︒.求观景台地面CD 距水平地面AB 的高度BD (精确到0.1m).【参考数据:sin28°=0.47,cos28°=0.88,tan28°=0.53;sin15°=0.26,cos15°=0.97,tan15°=0.27】.n 名学生一周登录校社团网站23.甲、乙两辆货车分别从A 、B 两地同时出发,沿同一条公路相向而行,甲车每小时行驶75千米.两车相遇后,用2小时互换货物,然后甲车沿原路原速度返回,乙车沿原路返回,途经C 地,用0.8小时卸下部分货物后返回B 地.甲车回到A 地时,乙车恰好回到B 地.下图表示乙车离B 地的路程y (千米)与出发时间x (时)的函数图象. (1)求两车相遇前乙车行驶的速度. (2)求A 、B 两地之间这条公路的长.(3)求乙车从C 地返回到B 地行驶过程中y 与x 的函数关系式.24.感知:如图①,在菱形ABCD 中,AB =BD ,点E 、F 分别在边AB 、AD 上.若AE =DF ,易知△ADE ≌△DBF .探究:如图②,在菱形ABCD 中,AB =BD ,点E 、F 分别在BA 、AD 的延长线上.若AE =DF ,△ADE 与△DBF 是否全等?如果全等,请证明;如果不全等,请说明理由.拓展:如图③,在□ABCD 中,AD =BD ,点O 是AD 边的垂直平分线与BD 的交点,点E 、F 分别在OA 、 AD 的延长线上. 若AE =DF ,∠ADB =50︒,∠AFB 32=︒,求∠ADE 的度数.图① 图② 图③CDFABCD EFA BCDOE Fy (千米x (时)25.如图,点A 、B 分别为抛物线2143y x bx =-++、2126y x x c =-+与y 轴交点,两条抛物线都经过点C (6,0).点P 、Q 分别在抛物线2143y x bx =-++、2126y x x c =-+上,点P 在点Q 的上方,PQ 平行y 轴.设点P 的横坐标为m . (1)求b 和c 的值.(2)求以A 、B 、P 、Q 为顶点的四边形是平行四边形时m 的值. (3)当m 为何值时,线段PQ 的长度取得最大值?并求出这个最大值. (4)直接写出线段PQ 的长度随m 增大而减小的m 的取值范围.26.如图,在△AOB 中,∠AOB =90︒,OA =OB =6.C 为OB 上一点,射线CD ⊥OB 交AB 于点D ,OC =2.点P 从点AAB 方向运动,点Q 从点C 出发以每秒2个单位长度的速度沿CD 方向运动,P 、Q 两点同时出发,当点P 到达到点B 时停止运动,点Q 也随之停止.过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,得到矩形PEOF .以点Q 为直角顶点向下作等腰直角三角形QMN ,斜边MN //OB ,且MN =QC .设运动时间为t (单位:秒). (1)求t =1时FC 的长度. (2)求MN =PF 时t 的值.(3)当△QMN 和矩形PEOF 有重叠部分时,求重叠(阴影)部分图形面积S 与t 的函数关系式.(4)直接写出△QMN 的边与矩形PEOF 的边有三个公共点时t 的值.2012年长春市初中毕业生学业考试网上阅卷模拟训练数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D 2.B 3.B 4.C 5.C 6.A 7.A 8.D 二、填空题(每小题3分,共18分)9.5(答案不唯一) 10.)3(-a a 11.m np 12.425 13.4 14 三、解答题(每小题5分,共20分)15.解:原式322122-+-++=a a a (2分)2a =. (3分)当10=a 时,原式2)10(= (4分)10=. (5分)备注: 2)1(+a 展开正确得1分;2(1)a --去括号正确得1分.16.解:设A 车间每天生产这种材料x 吨. (1分)根据题意,得xx 252035=+. (3分)解得x =50. (4分)经检验,50=x 是原方程的解,且符合题意.答:A 车间每天生产这种材料50吨. (5分)17.解:作OM ⊥BC 于M ,连结OE . (1分)∴EF MF ME 21==. ∵AD =12,∴6=OE . (2分) 在矩形ABCD 中,OM ⊥BC ,∴OM =AB =4. (3分)在△OEM 中,=∠OME 90°,∴ME = (4分)==∴线段EF 的长度为54. (5分) 18.解:∴P (小丹获胜)=63=21. (5分)四、解答题(每小题6分,共12分) 19.解:(1)以下答案供参考.(3分)(3分)2 6 93 8 3 8 3 8 小林 小丹或(2)以下答案供参考.(6分)备注:(2)中图形正确,但没有画出所用三角形和梯形各边得2分,所画边不全或多画得2分.20.解:(1)作CD ⊥x 轴于D . (1分)∵BC 与x 轴平行,∴CD BC S ABC ⋅=∆21, ∵BC =2,1=∆ABC S ,∴1=CD . (2分)∴ C (2,1). (3分)(2)由旋转得CB 1=CB =2,∴ B 1(2 ,3). (4分)设经过点B 1(2,3)的反比例函数为xky =,∴23k =. 解得k =6. (5分)∴经过点B 1的反比例函数为xy 6=. (6分)五、解答题(每小题6分,共12分)21.解:(1)150. (2分) (2)∵150502100⨯(3分)700=(人), ∴全校一周登录校社团网站超过3次的大约有700人. (4分)(3)∵366145364163322401=⨯+⨯+⨯+⨯+⨯, (5分)∴51241503662100=⨯. ∴全校学生一周登录校社团网站的总次数大约可以达到5 124次. (6分)22.解:作EM ⊥CD 于M ,EN ⊥AB 于N . (1分)在△ANE 中,∠ENA =90°,ANENEAN =∠tan , (2分) ∵∠BAE =28°,AN =0.5×8=4,∴tan EN AN =⋅28°=4×0.53=2.12. (3分)在△CME 中,∠CME =90°,CEMEECM =∠sin , (4分)∵∠DCE =15°,EC =7,∴sin ME CE =⋅15°=7×0.26=1.82. (5分)MN∴NE +ME =2.12+1.82=3.94 ≈ 3.9. 答:水平地面到观景台的高度约为 3.9m . (6分)六、解答题(每小题7分,共14分) 23.解:(1)两车相遇前乙车行驶的速度为606360=千米/时. (2分)(2)75×6=450千米, (3分)360+450=810千米. ∴A 、B 两地之间的这条公路长为810千米. (4分)(3)乙车从C 地返回到B 地行驶过程中,设y 与x 之间的函数关系式为b kx y +=,根据题意,y 与x 之间的函数图象经过(10.8,240),(14,0)两点,∴⎩⎨⎧+=+=.140,8.10240b k b k (5分)解得⎩⎨⎧=-=.1050,75b k (6分)∴乙车从C 地返回到B 地行驶过程中,y 与x 的函数关系式为105075+-=x y . (7分)24. 探究:△ADE 和△DBF 全等.∵四边形ABCD 是菱形,∴AB =AD .∵AB =BD ,∴AB =AD =BD .∴△ABD 为等边三角形. (1分)∴∠DAB =∠ADB =60°.∴∠EAD =∠FDB =120°. (2分)∵AE =DF ,∴△ADE ≌△DBF . (3分)拓展:∵点O 在AD 的垂直平分线上,∴OA=OD . (4分)∴∠DAO=∠ADB=50︒.∴∠EAD=∠FDB . ∵AE =DF ,AD =DB ,∴△ADE ≌△DBF . (5分)∴∠DEA=∠AFB =32︒. (6分)∴∠EDA=18°. (7分)七、解答题(每小题10分,共20分)25.解:(1)∵两条抛物线都经过点C (6,0),∴21664=03b -⨯++,解得34=b . (1分)21626=06c ⨯-⨯+,解得=6c . (2分)(2)根据题意,点A 的坐标为(0,4),点B 的坐标为(0,6),∴AB =2. (3分)∵点P 的横坐标为m , ∴P (m ,434312++-m m ). ∵PQ 平行于y 轴,∴Q (m ,62612+-m m ).∴PQ =)43431(2++-m m )6261(2+--m m2310212-+-=m m . (4分)∴当PQ AB =时,2310212-+-m m 2=. (5分)解得372101+=m ,372102-=m . ∴以A 、B 、P 、Q 为顶点的四边形是平行四边形时, m 值为37210+或37210-. (6分)(3)由(2)知,PQ =2110223m m -+-932)310(212+--=m , (7分)∴当m =310时,线段PQ 的长度最大,线段PQ 的最大长度为932. (8分)(4)线段PQ 的长度随m 的增大而减小的取值范围是310≤m <6. (10分)备注:(4)中只写m <6不得分,只写m ≥310或m >310得1分,写310<m <6得2分. 26.解:(1)根据题意,△AOB 、△AEP 都是等腰直角三角形.∵t AP 2=, OF = EP =t , (1分)∴当t =1时,FC =1. (2分)(2)∵t AP 2=,AE =t ,PF =OE =t -6,MN =QC =t 2, (3分)∴t -6=t 2,t =2. 当t =2时,∴PF MN =. (4分)(3)当1≤t ≤2时,S =2422+-t t ,如图①.当2<t ≤38时,S =32302132-+-t t ,如图②.当38<t ≤3时,S =t t 622+-,如图③. (8分)(4)t =2或38,如图④,如图⑤. (10分)备注:(3)中写对一个关系式得1分,写对二个关系式得2分,写对三个关系式得3分,多写扣1分,取值范围正确得1分;(4)中写对一个t 值得1分,写对二个t 值得2分,多写扣1分.图① 图② 图③图④图⑤。