九年级上册数学 期末试卷易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学 期末试卷易错题(Word 版 含答案)
一、选择题
1.如图,已知AB 为
O 的直径,点C ,D 在O 上,若28BCD ∠=︒,则ABD ∠=
( )
A .72︒
B .56︒
C .62︒
D .52︒ 2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析
式为( )
A .23(2)3y x =++
B .23(2)3y x =-+
C .23(2)3y x =+-
D .23(2)3y x =-- 3.如图,
点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )
A .80°
B .40°
C .50°
D .20° 4.方程x 2﹣3x =0的根是( ) A .x =0
B .x =3
C .10x =,23x =-
D .10x =,23x = 5.如图在△ABC 中,点D 、
E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相
似的条件是( )
A .∠AED=∠B
B .∠ADE=∠
C C .A
D D
E AB BC = D .AD AE AC AB = 6.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如
下表: x 2- 1- 0 1 2 y
5 0 3- 4- 3-
以下结论: ①二次函数2
y ax bx c =++有最小值为4-;
②当1x <时,y 随x 的增大而增大;
③二次函数2y ax bx c =++的图象与x 轴只有一个交点; ④当13x
时,0y <. 其中正确的结论有( )个
A .1
B .2
C .3
D .4 7.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( )
A .45
B .35
C .43
D .34
8.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )
A .321y y y >>
B .312y y y >=
C .123y y y >>
D .123y y y => 9.如图,O 的直径AB 垂直于弦CD ,垂足是点
E ,22.5CAO ∠=,6OC =,则CD 的长为( )
A .62
B .32
C .6
D .12 10.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若
70ADB ︒∠=,则ABC ∠的度数是( )
A .20︒
B .70︒
C .30︒
D .90︒
11.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( )
A .12.36cm
B .13.6cm
C .32.386cm
D .7.64cm
12.如图,点P (x ,y )(x >0)是反比例函数y=k x
(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )
A .S 的值增大
B .S 的值减小
C .S 的值先增大,后减小
D .S 的值不变
二、填空题
13.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.
14.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x
… -1 0 1 2 3 … y … -3 -3 -1 3
9 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =
________.
15.在△ABC 中,∠C =90°,cosA =35
,则tanA 等于 . 16.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.
17.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .
18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm .
19.二次函数2
y ax bx c =++的图像开口方向向上,则a ______0.(用“=、>、<”填空) 20.如图,抛物线2143115y x =-与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.
21.已知⊙O半径为4,点,A B在⊙O上,
213
90,sin
BAC B
∠=∠=,则线段OC
的最大值为_____.
22.圆锥的底面半径是4cm,母线长是6cm,则圆锥的侧面积是______cm2(结果保留π).
23.如图,正方形ABCD的边长为5,E、F分别是BC、CD上的两个动点,AE⊥EF.则AF 的最小值是_____.
24.如图,在四边形ABCD中,∠BAD=∠BCD=90°,AB+AD=8cm.当BD取得最小值时,AC的最大值为_____cm.
三、解答题
25.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2 m,两棵树苗之间的距离CD为16 m,在路灯的照射下,树苗CE的影长CG为1 m,树苗DF的影长DH为3 m,点G、C、B、D、H在一条直线上.求路灯AB的高度.
26.如图,宾馆大厅的天花板上挂有一盏吊灯AB ,某人从C 点测得吊灯顶端A 的仰角为35︒,吊灯底端B 的仰角为30,从C 点沿水平方向前进6米到达点D ,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB 的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)
27.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.
28.中国古代有着辉煌的数学成就,《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》等是我国古代数学的重要文献.
(1)小聪想从这4部数学名著中随机选择1部阅读,则他选中《九章算术》的概率为 ;
(2)某中学拟从这4部数学名著中选择2部作为“数学文化”校本课程学习内容,求恰好选中《九章算术》和《孙子算经》的概率.
29.解方程:(1)3x 2-6x -2=0; (2)(x -2)2=(2x +1)2.
30.在矩形ABCD 中,3AB =,5AD =,E 是射线DC 上的点,连接AE ,将ADE ∆沿直线AE 翻折得AFE ∆.
(1)如图①,点F 恰好在BC 上,求证:ABF ∆∽FCE ∆;
(2)如图②,点F 在矩形ABCD 内,连接CF ,若1DE =,求EFC ∆的面积;
(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.
31.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E
(1)判断直线CD与⊙O的位置关系,并说明理由;
(2)若BE=4,DE=8,求AC的长.
32.已知二次函数y=ax2+bx﹣16的图象经过点(﹣2,﹣40)和点(6,8).
(1)求这个二次函数图象与x轴的交点坐标;
(2)当y>0时,直接写出自变量x的取值范围.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
连接AD,根据同弧所对的圆周角相等,求∠BAD的度数,再根据直径所对的圆周角是90°,利用内角和求解.
【详解】
解:连接AD,则∠BAD=∠BCD=28°,
∵AB是直径,
∴∠ADB=90°,
∴∠ABD=90°-∠BAD=90°-28°=62°.
故选:C.
【点睛】
本题考查圆周角定理,运用圆周角定理是解决圆中角问题的重要途径,直径所对的圆周角是90°是圆中构造90°角的重要手段.
2.A
解析:A
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答即可.
【详解】
将抛物线2
3y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 3.C
解析:C
【解析】
∵∠BOC=2∠BAC ,∠BAC=40°
∴∠BOC=80°,
∵OB=OC ,
∴∠OBC=∠OCB=(180°-80°)÷2=50°
故选C .
4.D
解析:D
【解析】
【分析】
先将方程左边提公因式x ,解方程即可得答案.
【详解】
x 2﹣3x =0,
x (x ﹣3)=0,
x 1=0,x 2=3,
故选:D .
本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.
5.C
解析:C
【解析】
【分析】
由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.
【详解】
解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;
B 、∠ADE=∠
C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误;
C 、
AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB
=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .
【点睛】
本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.
6.B
解析:B
【解析】
【分析】
根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.
【详解】
①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202
+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;
③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象
与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;
④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x
时,y<0;故此选项正确;
综上:①④两项正确,
故选:B .
【点睛】
本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.
解析:A
【解析】
【分析】
先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解.
【详解】
如图,
∵∠C =90°,AC =8,BC =6,
∴AB 222268BC AC +=+10,
∴sin B =
84105
AC AB ==. 故选:A .
【点睛】 本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.
8.D
解析:D
【解析】
试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴
的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .
考点:二次函数图象上点的坐标特征.
9.A 解析:A
【解析】
【分析】
先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2322
CE =
=CD 的长. 【详解】
∵CD AB ⊥,AB 为直径,
∴CE DE =,
∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,
∴2222.545BOC A ∠=∠=⨯=,
∴OCE ∆为等腰直角三角形,
∵OC=6,
∴22632CE OC ==⨯=, ∴262CD CE ==.
故选A .
【点睛】
本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.
10.A
解析:A
【解析】
【分析】
连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.
【详解】
连接AC ,如图,
∵BC 是O 的直径,
∴90BAC ︒∠=,
∵70ACB ADB ︒∠=∠=,
∴907020ABC ︒︒︒∠=-=.
故答案为20︒.
故选A .
【点睛】
本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.
11.A
解析:A
【解析】
【分析】
根据黄金分割的比值约为0.618列式进行计算即可得解.
【详解】
解:∵书的宽与长之比为黄金比,书的长为20cm,
∴书的宽约为20×0.618=12.36cm.
故选:A.
【点睛】
本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.
12.D
解析:D
【解析】
【分析】
作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的
几何意义得到S△POB=1
2
|k|,所以S=2k,为定值.
【详解】
作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.
∵S△POB=1
2
|k|,∴S=2k,∴S的值为定值.
故选D.
【点睛】
本题考查了反比例函数系数k的几何意义:在反比例函数y=k
x
图象中任取一点,过这一个
点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.
二、填空题
13.y=x2+2
【解析】
分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.
详
解析:y=x2+2
【解析】
分析:先确定二次函数y=x2﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,2),然后根据顶点式写出平移后的抛物线解析式.
详解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.
故答案为y=x2+2.
点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3
解析:-3
【解析】
【分析】
首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.
【详解】
解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得
3 1 3c
a b c a b c
-=⎧
⎪
-=++⎨
⎪-=-+⎩,解得
1
1
3
a
b
c
=
⎧
⎪
=
⎨
⎪=-
⎩
,∴y=x²+x-3,
∵△=b2-4ac=12-4×1×(-3)=13,
∴
x=
1
22
b
a
-±-±
=
,
∵1x<0,
∴1x=−1
<0,
∵-4≤
-3,
∴3222-≤-
≤-,
∴-≤ 2.5-, ∵整数k 满足k <x 1<k+1,
∴k=-3,
故答案为:-3.
【点睛】
本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.
15..
【解析】
试题分析:∵在△ABC 中,∠C =90°,cosA =,∴.
∴可设.
∴根据勾股定理可得.
∴.
考点:1.锐角三角函数定义;2.勾股定理. 解析:
43
. 【解析】 试题分析:∵在△ABC 中,∠C =90°,cosA =
35,∴35AC AB =. ∴可设35AC k AB k ==,.
∴根据勾股定理可得4BC k =. ∴44tanA 33
BC k AC k ===. 考点:1.锐角三角函数定义;2.勾股定理.
16.2
【解析】
【分析】
首先根据平均数确定x 的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn ﹣)2],计算方差即可.
【详解】
∵组数据的平均数是10,
∴(9+10+12+x+8
解析:2
【解析】
【分析】
首先根据平均数确定x的值,再利用方差公式S2=1
n
[(x1﹣x)2+(x2﹣x)2+…+(x n﹣
x)2],计算方差即可.【详解】
∵组数据的平均数是10,
∴1
5
(9+10+12+x+8)=10,
解得:x=11,
∴S2=1
5
[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],
=1
5
×(1+0+4+1+4),
=2.
故答案为:2.【点睛】
本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1
n
[(x1﹣
x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
17.5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
解析:5
【解析】
【分析】
根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.
【详解】
解:设举起手臂之后的身高为x
由题可得:1.7:0.85=x:1.1,解得x=2.2,
则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m
【点睛】
本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.
18.4
【解析】
【分析】
由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.
【详解】
解:由圆锥的母线长是5cm,侧面积
解析:4
【解析】
【分析】
由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.
【详解】
解:由圆锥的母线长是5cm,侧面积是20πcm2,
根据圆锥的侧面展开扇形的弧长为:
240
5
S
l
r
π
===8π,
再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,
可得
8
22
l
r
π
ππ
===4cm.
故答案为:4.
【点睛】
本题考查圆锥的计算,掌握公式正确计算是解题关键.
19.>
【解析】
【分析】
根据题意直接利用二次函数的图象与a的关系即可得出答案.【详解】
解:因为二次函数的图像开口方向向上,
所以有>0.
故填>.
【点睛】
本题主要考查二次函数的性质,掌握二次
解析:>
【解析】
【分析】
根据题意直接利用二次函数的图象与a的关系即可得出答案.
【详解】
解:因为二次函数2y ax bx c =++的图像开口方向向上,
所以有a >0.
故填>.
【点睛】
本题主要考查二次函数的性质,掌握二次项系数a 与抛物线的关系是解题的关键,图像开口方向向上,a >0;图像开口方向向下,a <0.
20.【解析】
【分析】
先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.
【详解】
令中y=0,得x1=
【解析】
【分析】
先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可.
【详解】
令21115y x =-中y=0,得x 1
x 2
∴直线AC
的解析式为1y =-, 设P (x ,31x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1
∴PQ 2=PB 2-BQ 2,
2+(31x )2-1, =242837533x x , ∵43
a =0<, ∴PQ 2有最小值24283475()3326443,
∴PQ 的最小值是26,
故答案为:26,
【点睛】
此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题的关键.
21.【解析】
【分析】
过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.
解析:413833
+ 【解析】
【分析】
过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AO AE =,进而求得6AE =,再通过证明AEB AOC ∆∆,可得出23
OC BE =,根据三角形三边关系可得:BE OE OB ≤+,由勾股定理可得213OE =,求出BE 的最大值,则答案即可求出.
【详解】
解:过点A 作AE ⊥AO,并使∠AEO =∠ABC,
∵OAE BAC AEO ABC ∠=∠⎧⎨∠=∠⎩
, ∴ABC AEO ∆∆,
∴tan AC AO B AB AE ∠=
=, ∵213sin B ∠=,
∴cos 13B ∠==,
∴sin 2tan cos 3
B B n B ∠∠===∠, ∴
23
AO AE =, 又∵4AO =,
∴6AE =,
∵90,90EAB BAO OAC BAO ∠+∠=︒∠+∠=︒, ∴ =EAB OAC ∠∠, 又∵
AC AO AB AE
=, ∴AEB AOC ∆∆, ∴
23
OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,
∵OE ===,
∴4OE OB +=,
∴BE
的最大值为:4,
∴OC
的最大值为:
(
)
28433=. 【点睛】
本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.24π
【解析】
【分析】
根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.
【详解】
解:∵圆锥的底面半径为4cm ,
∴圆锥的底面圆的周长=2π•4=8π,
解析:24π
【解析】
【分析】
根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.
【详解】
解:∵圆锥的底面半径为4cm,
∴圆锥的底面圆的周长=2π•4=8π,
∴圆锥的侧面积=1
2
×8π×6=24π(cm2).
故答案为:24π.
【点睛】
本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周
长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=1
2
•l•R,(l为弧长).
23.【解析】
【分析】
设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.
【详解】
解:设BE=x,CF=y,则EC=5﹣x,
解析:25 4
【解析】
【分析】
设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.
【详解】
解:设BE=x,CF=y,则EC=5﹣x,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEC=90°,
而∠AEB+∠BAE=90°,
∴∠BAE=∠FEC,
∴Rt△ABE∽Rt△ECF,
∴AB
EC
=
BE
CF
,
∴
5
5x
=
x
y
,
∴y=﹣1
5
x2+x=﹣
1
5
(x﹣
5
2
)2+
5
4
,
∵﹣1
5
<0,
∴x=5
2
时,y有最大值
5
4
,
∴CF的最大值为5
4
,
∴DF的最小值为5﹣5
4
=
15
4
,
∴AF的最小值=22
AD DF
+=
2
2
15
5
4
⎛⎫
+ ⎪
⎝⎭
=
25
4
,
故答案为25
4
.
【点睛】
本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF的最小值.24.【解析】
【分析】
设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.
解析:2
【解析】
【分析】
设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为2.
【详解】
解:设AB=x,则AD=8﹣x,
∵∠BAD=∠BCD=90°,
∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.
∴当x=4时,BD取得最小值为42.
∵A,B,C,D四点在以BD为直径的圆上.如图,
∴AC为直径时取得最大值.
AC的最大值为2.
故答案为:2.
【点睛】
本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题
25.m
【解析】
【分析】
设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.
【详解】
解:设BC的长度为x m
由题意可知CE∥AB∥DF
∵CE∥AB
∴△GCE∽△GBA,△HDF∽△HBA
∴GC CE
GB AB
=,即
1
1x
+
=
2
AB
HD HB =
FD
AB
,即()
3
316x
+-
=
2
AB
∴
1
1x
+
=()
3
316x
+-
∴x=4
∴AB=10
答:路灯AB的高度为10 m.
【点睛】
此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.26.吊灯AB的长度约为1.1米.
【解析】
【分析】
延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC
中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】
解:延长CD交AB的延长线于点E,则∠AEC=90°,
∵∠BDE=60°,∠DCB=30°,
∴∠CBD=60°﹣30°=30°,
∴∠DCB=∠CBD,
∴BD=CD=6(米)
在Rt△BDE中,sin∠BDE=BE BD
,
∴BE=BD•sin∠BDE═6×sin60°=33≈5.19(米),
DE=1
2
BD=3(米),
在Rt△AEC中,tan∠ACE=AE CE
,
∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),
∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),
∴吊灯AB的长度约为1.1米.
【点睛】
本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.
27.两次摸到的球都是红球的概率为1 9 .
【解析】
【分析】
根据题意画出树状图,再根据概率公式即可求解.
【详解】
解:画树状图得:
∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,
∴两次摸到的球都是红球的概率=1
9
.
【点睛】
此题主要考查概率的计算,解题的关键是根据题意画出所有情况,再用公式进行求解.
28.(1)1
4
;(2)
1
6
【解析】
【分析】
(1)根据小聪选择的数学名著有四种可能,而他选中《九章算术》只有一种情况,再根据概率公式解答即可;
(2)此题需要两步完成,所以可采用树状图法或者采用列表法求解.
【详解】
解:(1)小聪想从这4部数学名著中随机选择1部阅读,
则他选中《九章算术》的概率为1
4
.
故答案为1
4
;
(2)将四部名著《周髀算经》,《九章算术》,《海岛算经》,《孙子算经》分别记为A,B,C,D,记恰好选中《九章算术》和《孙子算经》为事件M.
方法一:用列表法列举出从4部名著中选择2部所能产生的全部结果:
第1部
第2部
A B C D
A BA CA DA
B AB CB DB
C AC BC DC
D AD BD CD
12种结果出现的可能性相等,
所有可能的结果中,满足事件M的结果有2种,即DB,BD,
∴P(M)=
21
= 126
.
方法二:根据题意可以画出如下的树状图:
由树状图可以看出,所有可能的结果有12种,并且这12种结果出现的可能性相等, 所有可能的结果中,满足事件M 的结果有2种,即BD ,DB ,
∴P (M )=
21=126. 故答案为:
16. 【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
29.(1)x 1=1+
3,x 2=1-3;(2)x 1=13,x 2=-3 【解析】
【分析】
(1)利用配方法解方程即可;
(2)先移项,然后利用因式分解法解方程.
【详解】
(1)解:x 2-2x =
23 x 2-2x +1=
23+1 (x -1)2=
53
x -1=
∴x 1=1+
3,x 2=1-3 (2)解:[ (x -2)+(2x +1)] [ (x -2)-(2x +1)]=0
(3x -1) (-x -3)=0
∴x 1=
13
,x 2=-3 【点睛】 本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.
30.(1)见解析;(2)EFC ∆的面积为
513;(3)53、5、15、5)3 【解析】
【分析】
(1)先说明∠CEF=∠AFB 和90B C ∠=∠=,即可证明ABF ∆∽FCE ∆;
(2)过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠=;再
结合矩形的性质,证得△FGE ∽△AHF ,得到AH=5GF ;然后运用勾股定理求得GF 的长,最后运用三角形的面积公式解答即可;
(3)分点E 在线段CD 上和DC 的延长线上两种情况,然后分别再利用勾股定进行解答即可.
【详解】
(1)解:∵矩形ABCD 中,
∴90B C D ∠=∠=∠=
由折叠可得90D EFA ∠=∠=
∵90EFA C ∠=∠=
∴90CEF CFE CFE AFB ∠+∠=∠+∠=
∴CEF AFB ∠=∠
在ABF ∆和FCE ∆中
∵AFB CEF ∠=∠,90B C ∠=∠=
∴ABF ∆∽FCE ∆
(2)解:过点F 作FG DC ⊥交DC 与点G ,交AB 于点H ,则90EGF AHF ∠=∠= ∵矩形ABCD 中,
∴90D ∠=
由折叠可得:90D EFA ∠=∠=,1DE EF ==,5AD AF ==
∵90EGF EFA ∠=∠=
∴90GEF GFE AFH GFE ∠+∠=∠+∠=
∴GEF AFH ∠=∠
在FGE ∆和AHF ∆中
∵,90GEF AFH EGF FHA ∠=∠∠=∠=
∴FGE ∆∽
AHF ∆ ∴EF GF FA AH
= ∴15GF AH
= ∴5AH GF =
在Rt AHF ∆中,90AHF ∠=
∵222AH FH AF +=
∴222(5)(5)5GF GF +-= ∴513
GF = ∴EFC ∆的面积为
155221313⨯⨯= (3)设DE=x ,以点E 、F 、C 为顶点的三角形是直角三角形,则:
①当点E在线段CD上时,∠DAE<45°,
∴∠AED>45°,由折叠性质得:∠AEF=∠AED>45°,
∴∠DEF=∠AED+∠AEF>90°,
∴∠CEF<90°,
∴只有∠EFC=90°或∠ECF=90°,
a,当∠EFC=90°时,如图所示:
由折叠性质可知,∠AFE=∠D=90°,
∴∠AFE+∠EFC=90°,
∴点A,F,C在同一条线上,即:点F在矩形的对角线AC上,在Rt△ACD中,AD=5,CD=AB=3,根据勾股定理得,AC=34,由折叠可知知,EF=DE=x,AF=AD=5,
∴CF=AC-AF=34-5,
在Rt△ECF中,EF2+CF2=CE2,
∴x2+(34-5)2=(3-x)2,解得x=5(345)
3
-
即:DE=
5(345)
3
-
b,当∠ECF=90°时,如图所示: 点F在BC上,由折叠知,EF=DE=x,AF=AD=5,
在Rt△ABF中,根据勾股定理得,BF=22
AF AB
-=4,∴CF=BC-BF=1,
在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,
(3-x)2+12=x2,解得x=5
3
,即:DE=
5
3
;
②当点E在DC延长线上时,CF在∠AFE内部,而∠AFE=90°,∴∠CFE<90°,
∴只有∠CEF=90°或∠ECF=90°,
a、当∠CEF=90°时,如图所示
由折叠知,AD=AF=5,∠AFE=90°=∠D=∠CEF,
∴四边形AFED是正方形,
∴DE=AF=5;
b、当∠ECF=90°时,如图所示:
∵∠ABC=∠BCD=90°,
∴点F在CB的延长线上,
∴∠ABF=90°,由折叠知,EF=DE=x,AF=AD=5,
在Rt△ABF中,根据勾股定理得,22
AF AB
-,
∴CF=BC+BF=9,
在Rt△ECF中,根据勾股定理得,CE2+CF2=EF2,∴(x-3)2+92=x2,解得x=15,即DE=15,
故答案为5(345)
-
、
5
3
、5、15.
【点睛】
本题属于相似形综合题,主要考查了相似三角形的判定和性质、折叠的性质、勾股定理等知识点,正确作出辅助线构造相似三角形和直角三角形是解答本题的关键.
31.(1)相切,证明见解析;(2)62.
【解析】
【分析】
(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;
(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出
r=3,由tan∠E=OB CD
EB DE
=,推出
3
48
CD
=,可得CD=BC=6,再利用勾股定理即可解决问
题.
【详解】
解:(1)相切,理由如下,
如图,连接OC,
∵CB=CD,CO=CO,OB=OD,
∴△OCB≌△OCD,
∴∠ODC=∠OBC=90°,
∴OD⊥DC,
∴DC是⊙O的切线;
(2)设⊙O的半径为r,
在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,
∴r=3,AB=2r=6,
∵tan∠E=OB CD EB DE
=,
∴3
48
CD =,
∴CD=BC=6,
在Rt △ABC 中,=
【点睛】 本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.
32.(1)交点坐标为(2,0)和(8,0);(2)2<x <8
【解析】
【分析】
(1)把点(﹣2,﹣40)和点(6,8)代入二次函数解析式得到关于a 和b 的方程组,解方程组求得a 和b 的值,可确定出二次函数解析式,令y =0,解方程即可;
(2)当y >0时,即二次函数图象在x 轴上方的部分对应的x 的取值范围,据此即可得结论.
【详解】
(1)由题意,把点(﹣2,﹣40)和点(6,8)代入二次函数解析式,
得404216836616
a b a b -=--⎧⎨=+-⎩, 解得:110a b =-⎧⎨=⎩
, 所以这个二次函数的解析式为:2
1016y x x +=--,
当y =0时,210160x x +--=,
解之得:1228x x =,=,
∴这个二次函数图象与x 轴的交点坐标为(2,0)和(8,0);
(2)当y >0时,直接写出自变量x 的取值范围是2<x <8.
【点睛】
本题考查待定系数法求解析式、二次函数图象与x 轴的交点,解题的关键是熟练掌握待定系数法求解析式.。