数值分析上机实践题12-2013
上海海事大学1213数值分析试A卷答案
![上海海事大学1213数值分析试A卷答案](https://img.taocdn.com/s3/m/14b30cff7375a417876f8f5d.png)
上海海事大学2012---2013学年第 2 学期 研究生 数值分析 课程考试试卷A (答案)学生姓名: 学号: 专业:1. 利用Seidel 迭代法求解Ax=b 时,其迭代矩阵是))-1s U L D B -=(; 当系数矩阵A 满足 严格对角占优 时,Seidel 迭代法收敛 。
7. 反幂法是求可逆矩阵按模最小 特征值和特征向量的计算方法. 6. QR 法是计算 非奇异矩阵的 所有 特征值和特征向量的计算方法 1. 利用Jacobi 迭代法求解Ax=b 时,其迭代矩阵是)(1U L D B J +=-;当系数矩阵A 满足 严格对角占优 时,Jacobi 迭代法收敛 。
2. 对于求解Ax=b ,如果右端有b δ的扰动存在而引起解的误差为x δ,则相对误差≤xxδ bbA Cond δ)(3. 幂法是求矩阵 按模最大 特征值和特征向量的计算方法.Jacobi 法是计算 实对称矩阵的所有 特征值和特征向量的计算方法 六.设方程组Ax=b 有唯一解*x ,其等价变形构造的迭代格式为f Bx x k k +=+)()1(,如矩阵谱半径1)(>B ρ,但B 有一个特征值满足1<λ,求证:存在初始向量)0(x ,使得迭代产生的序列{})(x x 收敛于*x 。
(7分)证明: 由f Bx x k k +=+)()1(,f Bx x +=**()()*)0(1k *)(*)1(---x x B x x B x xk k ++== 对于B 的一个特征值满足1<λ,特征向量设为y ,,,11y y B y By k k ++==λλ故取初始向量y x x +=*)0(,有()y y B x x B x x k k 11k *)0(1k *)1(--++++===λ∞→→==+++k yy x xk k k ,0-11*)1(λλ,所以{})(x x 收敛于*x八.给定函数函数)(x f ,对于一切x ,存在)(x f ',且M x f m ≤'≤<)(0, 证明对于范围M20<<λ内的任意定数λ,迭代过程)(-1k k k x f x x λ=+均收敛于0)(=x f 的根。
2012数值分析试题及答案
![2012数值分析试题及答案](https://img.taocdn.com/s3/m/7d0d260cbed5b9f3f90f1c26.png)
aii
(bi
n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6
…
…
…
9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
…
四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I
S2
1 [cos0 6
cos2
数值分析计算实习题
![数值分析计算实习题](https://img.taocdn.com/s3/m/458633d316fc700aba68fc8b.png)
数值分析计算实习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《数值分析》计算实习题姓名:学号:班级:第二章1、程序代码Clear;clc;x1=[ ];y1=[ ];n=length(y1);c=y1(:);for j=2:n %求差商for i=n:-1:jc(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1));endendsyms x df d;df(1)=1;d(1)=y1(1);for i=2:n %求牛顿差值多项式df(i)=df(i-1)*(x-x1(i-1));d(i)=c(i-1)*df(i);endP4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数pp=csape(x1,y1, 'variational');%调用三次样条函数q=;q1=q(1,:)*[^3;^2;;1];q1=vpa(collect(q1),5)q2=q(1,:)*[^3;^2;;1];q2=vpa(collect(q2),5)q3=q(1,:)*[^3;^2;;1];q3=vpa(collect(q3),5)q4=q(1,:)*[^3;^2;;1];q4=vpa(collect(q4),5)%求解并化简多项式2、运行结果P4 =*x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - + q1 =- *x^3 + *x^2 - *x +q2 =- *x^3 + *x^2 - *x + q3 =- *x^3 + *x^2 - *x + q4 =- *x^3 + *x^2 - *x +3、问题结果4次牛顿差值多项式4()P x = *x - *(x - *(x - - *(x - *(x - *(x - - *(x - *(x - *(x - *(x - +三次样条差值多项式()Q x0.10.20.30.40.50.60.70.80.910.40.50.60.70.80.911.1323232321.33930.803570.40714 1.04,[0.2,0.4]1.3393 1.60710.88929 1.1643,[0.4,0.6]1.3393 2.4107 1.6929 1.4171,[0.6,0.8]1.3393 3.21432.8179 1.8629,[0.8,1.0]x x x x x x x x x x x x x x x x ⎧-+-+∈⎪-+-+∈⎪⎨-+-+∈⎪⎪-+-+∈⎩第三章1、程序代码Clear;clc; x=[0 1]; y=[1 ];p1=polyfit(x,y,3)%三次多项式拟合 p2=polyfit(x,y,4)%四次多项式拟合 y1=polyval(p1,x);y2=polyval(p2,x);%多项式求值plot(x,y,'c--',x,y1,'r:',x,y2,'y-.')p3=polyfit(x,y,2)%观察图像,类似抛物线,故用二次多项式拟合。
兰州商学院2012—2013学年第一学期数值分析期末考试试卷
![兰州商学院2012—2013学年第一学期数值分析期末考试试卷](https://img.taocdn.com/s3/m/98f4986031b765ce050814fb.png)
1 0 0 0 1 0 0 0 1
1 0.5 0 2 0 0.5 ( L U ) = 0.5 1 0.5 0 2
1 0 0.5 2 BJ D 1 ( L U ) = 0.5 0 0.5 , 1 0.5 0 2
( k 1)
BX (k ) f
B P 1JP
其中 J 为 B 的 Jordan 标准型
J1 J
J2
1 0.5 1 2 b 相当于(I-B)x=f , I-B = A 0.5 1 0.5 , 1 0.5 1 2
第 4 页 共 17 页
1 x 3 0.5 x 1 0.5x 2 2 即 b. 0.5x 1 x 2 0.5x 3 1 1 x 1 0.5x 2 x 3 0.5 2 (k 1) 1 (k ) k) 0.5 0.5x ( x3 2 x 1 2 (k 1) (k ) k) 1 0.5x 1 0.5x ( b 的 Jacobi 迭代格式: x 2 3 1 (k ) k 1) k) x ( 0.5 x 1 0.5x ( 3 2 2
第 2 页 共 17 页
if(err<delta)|(relerr<delta); return end end X=X'; end ②.gseid.m function X = gseid(A,B,P,delta,max1) N=length(B); for k=1:max1 for j=1:N if j==1 X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1); elseif j==N X(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N); else X(j) = (B(j)-A(j,1:j-1)*X(1:j-1)'-A(j,j+1:N)*P(j+1:N))/A(j,j); end end err =abs(norm(X'-P)); relerr =err/(norm(X)+eps); P=X'; if(err<delta)|(relerr<delta); return end end X=X'; end ③.testjacobi_01.m A =[10 -1 2 0;1 -11 1 -3;2 -1 10 -1;0 3 -1 8]; B = [6 25 -11 5]';P = [0 0 0 0]'; X = jacobi(A,B,P,10^-9,100) ④. testgseid_01.m A =[10 -1 2 0;1 -11 1 -3;2 -1 10 -1;0 3 -1 8]; B = [6 25 -11 5]';P = [0 0 0 0]'; X = gseid(A,B,P,10^-9,100) ⑤.testjacobi_02.m A =[2 1 1;1 1 1;1 1 2]; B = [0 3 1]';P = [0 0 0]'; X = jacobi(A,B,P,10^-9,100) ⑥.testgseid_02.m
常州大学数值分析12-13研究生试卷A参考答案
![常州大学数值分析12-13研究生试卷A参考答案](https://img.taocdn.com/s3/m/4122420ebed5b9f3f90f1c43.png)
一.(1)已知函数24()73f x x x =++,用秦九昭方法计算(2)f ;(2)秦九昭方法计算任一n 次多项式在任一点函数值至多需要多少次乘法? (3)至少写出四种减少误差危害的常用手段。
解:(1)2422()73(31)7f x x x x x =++=++22(2)(321)2759f =⨯++=………… 5 分(2) 秦九昭方法计算任一n 次多项式在任一点函数值至多需要n 次乘法。
………… 5 分(3) A )防止大数“吃”小数; B )避免除数绝对值远远小于被除数绝对值的除法;C )避免相近数相减;D )避免使用不稳定的算法;E )注意简化计算步骤,减少运算次数;………… 5 分二.给定方程组123311413132156x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ (1)以分量形式写出解此线性方程组的Jacobi 迭代格式和Gauss -Seidel 迭代格式;(2)求1A 和A ∞;(3)判断Gauss -Seidel 迭代格式的敛散性。
解:(1)Jacobi 迭代(1)()()123(1)()()213(1)()()312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x +++=--=+-=-+, 0,1,2,k=Gauss-Seidel 迭代(1)()()123(1)(1)()213(1)(1)(1)312(4)/3(3)/3(62)/5k k k k k k k k k x x x x x x x x x ++++++=--=+-=-+, 0,1,2,k= ………… 5 分(2)17A =,8A ∞=;………… 5 分(3)因为方程组系数矩阵严格对角占优,所以Gauss -Seidel 迭代格式收敛。
………… 5 分三. 已知方程2()30x f x e x =-=,(1)证明该方程在区间[0.6,1.2]上存在唯一实根; (2)叙述牛顿法求方程()0f x =根的方法思想;(3)以初值01x =,用牛顿法求上述方程的近似解,要求误差不超过210- 。
数值分析计算实习题答案
![数值分析计算实习题答案](https://img.taocdn.com/s3/m/5b2a4575f011f18583d049649b6648d7c1c70884.png)
数值分析计算实习题答案数值分析计算实习题答案数值分析是一门研究如何利用计算机对数学问题进行近似求解的学科。
在数值分析的学习过程中,实习题是一种重要的学习方式,通过实践来巩固理论知识,并培养解决实际问题的能力。
本文将为大家提供一些数值分析计算实习题的答案,希望能够帮助大家更好地理解和掌握数值分析的相关知识。
一、插值与拟合1. 已知一组数据点,要求通过这些数据点构造一个一次插值多项式,并求出在某一特定点的函数值。
答案:首先,我们可以根据给定的数据点构造一个一次插值多项式。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个一次多项式p(x) = a0 + a1x,其中a0和a1为待定系数。
根据插值条件,我们有p(x0) = y0,p(x1) = y1。
将这两个条件代入多项式中,可以得到一个方程组,通过求解这个方程组,我们就可以确定a0和a1的值。
最后,将求得的多项式代入到某一特定点,就可以得到该点的函数值。
2. 已知一组数据点,要求通过这些数据点进行最小二乘拟合,并求出拟合曲线的表达式。
答案:最小二乘拟合是一种通过最小化误差平方和来找到最佳拟合曲线的方法。
假设给定的数据点为(x0, y0), (x1, y1),我们可以构造一个拟合曲线的表达式y =a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为待定系数。
根据最小二乘拟合原理,我们需要最小化误差平方和E = Σ(yi - f(xi))^2,其中yi为实际数据点的y值,f(xi)为拟合曲线在xi处的函数值。
通过求解这个最小化问题,我们就可以确定拟合曲线的表达式。
二、数值积分1. 已知一个函数的表达式,要求通过数值积分的方法计算函数在某一区间上的定积分值。
答案:数值积分是一种通过将定积分转化为数值求和来近似计算的方法。
假设给定的函数表达式为f(x),我们可以将定积分∫[a, b]f(x)dx近似为Σwi * f(xi),其中wi为权重系数,xi为待定节点。
数值分析上机实验题参考
![数值分析上机实验题参考](https://img.taocdn.com/s3/m/601cb619650e52ea55189866.png)
数值分析论文数值积分 一、问题提出选用复合梯形公式,复合Simpson 公式,Romberg 算法,计算I = dx x ⎰-4102sin 4 ()5343916.1≈II =dx x x ⎰1sin ()9460831.0,1)0(≈=I fI = dx xe x⎰+1024 I =()dx x x ⎰++1211ln 二、要求编制数值积分算法的程序;分别用两种算法计算同一个积分,并比较其结果;分别取不同步长()/ a b h -=n ,试比较计算结果(如n = 10, 20等); ﹡给定精度要求ε,试用变步长算法,确定最佳步长﹡。
三、目的和意义深刻认识数值积分法的意义; 明确数值积分精度与步长的关系;根据定积分的计算方法,可以考虑二重积分的计算问题引言一、数值求积的基本思想实际问题当中常常需要计算积分,有些数值方法。
如微分方程和积分方程的求解,也都和积分计算相联系。
依据人们熟悉的微积分基本原理,对于积分I=⎰a b f(x)dx,只要找到被积函数f(x)和原函数F(x),便有下列牛顿-莱布尼茨公式:I=⎰a b f(x)dx=F(b)-F(a).但实际使用这种求积方法往往有困难,因为大量的被积函数,诸如x xsin,2xe-等,其原函数不能用初等函数表达,故不能用上述公式计算。
另外,当f(x)是由测量或数值计算给出的一张数据表时,牛顿-莱布尼茨公式也不能直接运用,因此有必要研究积分的数值计算问题。
二、数值积分代数精度数值求积方法是近似方法,为要保证精度,我们自然希望求积公式能对“尽可能多”的函数准确成立,就提出了所谓代数精度的概念。
如果某个求积公式对次数不超过m的多项式均能准确成立,但对m+1次多项式就不能准确成立,则称该求积公式具有m次代数精度。
三、复合求积公式为了提高精度,通常可以把积分区间分成若干子区间(通常是等分),再在每个子区间用低阶求积公式,即复化求积法,比如复化梯形公式与复化辛普森公式。
2012数值分析试题及答案
![2012数值分析试题及答案](https://img.taocdn.com/s3/m/7d0d260cbed5b9f3f90f1c26.png)
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
所以,迭代矩阵为 M D 1 (D A) .
当 A 是严格对角占优矩阵, 0.5 时,由于
n
| aij |
(M ) M max | j1 | 1,所以,迭代格式收敛.
1in
2aii
三、(12 分)说明方程 x cosx 0 有唯一根,并建立一个收敛的迭代格式,使
42 ,则 A 的 Doolittle 分解式是( A 13
10 10
2 -2
),Crout
… …
○
分解式是(
A 13
-02
1 0
12
).
… … …
3.解线性方程组
xx11
4x2 9x2
2 1
的
Jacobi
迭代矩阵的谱半径
(B)
(
2/3
).
… 封
4.迭代格式 xk1 xk3 3xk2 3xk , k 0,1,2,... 求根 1是( 3 )阶收敛的.
… …
5.设 f (x) sin x ,用以 xi i, i 0,1,2 为节点的二次插值多项式近似 sin1.5 的值,
aii
(bi
n
aij
x
(k j
)
数值分析修改版B2012-2013第一学期
![数值分析修改版B2012-2013第一学期](https://img.taocdn.com/s3/m/e978d1e5aeaad1f346933fb3.png)
第 1 页 共 2 页淮南师范学院2012 - 2013学年度第一学期试卷 B (闭卷)课程 数值分析 系别 数学与计算科学系 年级 10 专业 信息与计算科学 班级 1,2 学号 姓名一、填空题:(每空3分,共30分)1. 已知0,0,1,2,3i x x ih i =+=,01231,3,4,8,y y y y ====()i i y f x =,为h 正常数,则三阶差分30y ∆=2.设()x f x e =,则均差[1,0,1]f -= 3.已知向量(2,3,2)T x =,则1x =4.已知110541315A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,则A ∞= 5.1 2.71e =作为 2.71828e = 的近似值有 位有效数字。
6. 已知(0)3,(2)9f f ==利用梯形公式求20()f x dx ⎰近似值为7. 已知1113()[()()]244f x dx f f ≈+⎰,该求积公式的代数精度次数为8.经过已知三点001122(,),(,),(,)x y x y x y ,012()x x x <<的二次lagrange 插值多项式为9.一次lagrange 插值公式余项为10.已知初值问题23(0)1y x yy ⎧'=-⎪⎨⎪=⎩,欧拉迭代公式是二、简答题:(共1题, 10分)1.已知微分方程初值问题2,01(0)1dyxy x x dx y ⎧=-≤≤⎪⎨⎪=⎩,试写出其改进欧拉公式。
三、计算题:(共4题,每小题10分,共40分)1.用高斯消去法求解线性方程组1231451012520143x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦。
第 2 页 共 2 页2.已知三点(0,1)(2,3)(4,8),写出经过这三点的二次牛顿插值公式()N x ,并用该公式,计算当1x=的函数值(1)N 。
3.已知函数值表如下试用一次多项式拟合这组数据。
江苏大学数值分析期末试题教学提纲
![江苏大学数值分析期末试题教学提纲](https://img.taocdn.com/s3/m/fa526d806edb6f1aff001ff7.png)
江苏大学试题(A)
(2012-2013 学年第 1 学期)
课程名称数值分析开课学院理学院
使用班级数学、数师12级考试日期
题号
一
二
三
四
五
六
七
八
总分
核查人签名
得分
阅卷教师
一、填空题:(每空2分,共30分)
1、已知 的近似值 的相对误差不大于0.01%,则 至少具有有效数字。
2、已知 ,则 ______, _______。
30
50
80
100
求运动方程的S=at+b的 的最小二乘解:,
平方误差 =。
7、为求积公式: 具有最高的代数精确度,确定公式中的待定参数:。
8、用二分法求方程 在区间 内的根(要求精确到小数点后两位),则方程的根 ≈。
9、求方程 在x=1.5附近的根(要求精度 =0.0005), ≈。
10、用弦截法求 在 =2附近的根,取初值 =2, =1.9(要求计算结果精确到四位有效数字ຫໍສະໝຸດ , ≈。江苏大学试题第1页
二、(12分)已知方阵 ,
(1)证明:A存在唯一的分解,并给出A的Doolittle分解;
(2)用上述分解求解方程组 ,其中 。
三、(10分)设线性方程组 ,
用高斯—赛德尔迭代法解次方程组,要求当 时终止迭代。
四、(10分)给定数据表:
0.0
0.2
0.4
0.6
0.8
1.0000
1.2214
(1)推导以这3个点作为求积节点在[0,1]上的插值型求积公式;
(2)指明求积公式具有的代数精度,并判断是否为Guass积分;
(3)用所求公式计算 。
数值分析上机实习题
![数值分析上机实习题](https://img.taocdn.com/s3/m/64f38e3c443610661ed9ad51f01dc281e53a56b2.png)
数值分析上机实习题第2章插值法1. 已知函数在下列各点的值为试⽤四次⽜顿插值多项式)(x p 4及三次样条韩式)(S x (⾃然边界条件)对数据进⾏插值。
⽤图给出(){}10,11,1,0,08.02.0,,x i =+=i x y i i ,)(x p 4及)(x S Python 代码import numpy as npimport matplotlib.pyplot as pltfrom matplotlib.font_manager import FontPropertiesfont_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc",size=12) #求⽜顿n 次均差 def qiujuncha(x,f,n): for i in range(1,n): for j in range(4,i-1,-1):f[j]= (f[j] - f[j-1])/(x[j]-x[j-i]) #根据⽜顿多项式求值 def niudun(x,f,x1): sum = f[0]; tmp = 1;for i in range(1,5): tmp *= (x1-x[i-1]) sum = sum + f[i]*tmp return sum#⽜顿插值画图 def drawPic(x,f):x1 = np.linspace(0.2, 1, 100) plt.plot(x1, niudun(x,f,x1))plt.title(u"⽜顿四次插值",fontproperties=font_set) plt.xlabel(u"x 轴",fontproperties=font_set) plt.ylabel(u"y 轴", fontproperties=font_set) plt.show() def qiu_h(x,h): n = len(x) -1 for i in range(n): print(i)h[i] = x[i+1]-x[i]#⾃然边界条件下的三次样条插值求Mdef qiu_m(h,f,o,u,d):n = len(h)o[0] = 0u[n] = 0d[n] = d[0] = 0a = []for i in range(1,n):u[i] = h[i-1]/(h[i-1]+h[i])for i in range(1,n):o[i] = h[i]/(h[i-1]+h[i])for i in range(1,n-1):d[i] = 6*(f[i+1]-f[i])/(h[i-1]+h[i])t = [0 for i in range(5)]t[0] =2t[1] = o[0]a.append(t)for i in range(1,n):t = [0 for i in range(5)]t[i - 1] = u [i + 1]t[i] = 2t[i + 1] = o [i + 1]a.append(t)t = [0 for i in range(5)]t[n - 1] = u[n]t[n] = 2a.append(t)tmp = np.linalg.solve(np.array(a),np.array(d))m = []for i in range(5):m.append(tmp[i])return m#根据三次条插值函数求值def yangtiao(x1,m,x,y,h,j):returnm[j]*(x[j+1]-x1)**3/(6*h[j])+m[j+1]*(x1-x[j])**3/(6*h[j])+(y[j]-m[j]*h[j]**2/6)*(x[j+1]-x1)/h[j] +(y[j+1]-m[j+1]*h[j]**2/6)*(x1-x[j])/h[j] def main():x = [0.2, 0.4, 0.6, 0.8, 1.0]y = [0.98, 0.92, 0.81, 0.64, 0.38]f = y[:]f1 = y[:]h = [0.2,0.2,0.2,0.2]u = [0 for n in range(5)]d = [0 for n in range(5)]o = [0 for n in range(5)] qiujuncha(x,f,4) qiujuncha(x,f1,2)m = qiu_m(h,f1,o,u,d) x1 = np.linspace(0.2, 0.4, 10)p1= plt.plot(x1, yangtiao(x1,m,x,y,h,0),color='red') x1 = np.linspace(0.4, 0.6, 10)plt.plot(x1, yangtiao(x1, m, x, y, h, 1),color='red') x1 = np.linspace(0.6, 0.8, 10)plt.plot(x1, yangtiao(x1, m, x, y, h, 2),color='red') x1 = np.linspace(0.8, 1.0, 10)plt.plot(x1, yangtiao(x1, m, x, y, h, 3),color='red') x1 = np.linspace(0.2, 1.0, 40)p2 = plt.plot(x1,niudun(x,f,x1),color='green') plt.xlabel(u"x 轴", fontproperties=font_set) plt.ylabel(u"y 轴",fontproperties=font_set) plt.title("三次样条插值和⽜顿插值")plt.legend(labels=[u'三次样条插值',u'⽜顿插值'],prop=font_set,loc="best") plt.show() main()实验结果运⾏结果可得插值函数图(如图1-1),4次⽜顿插值函数)(x p 4和三次样条插值函数)(x S 如下:)6.0(*)4.0(*)2.0(625.0)4.0(*)2.0(*3.098.0)(4-------=x x x x x x x P 98.0)8.0(*)6.0(*)4.0(*)2.0(*20833.0+-----x x x x]4.0,2.0[),2.0(467.4)4.0(9.4)2.0(167.1)(S 3∈-+-+-=x x x x x]6.0,4.0[),4.0(113.4)6.0(6467.4)4.0(575.1)6.0(167.1)(S 33∈-+-+----=x x x x x x ]8.0,6.0[),6.0(2.3)8.0(113.4)6.0(575.1)(S 3∈-+-+--=x x x x x]0.1,8.0[),8.0(9.1)0.1(2.3)(S ∈-+-=x x x x图1-1三次样条插值和⽜顿插值图2.在区间[-1,1]上分别取n = 10,20⽤两组等距节点对龙格函数做多项式插值三次样条插值,对每个n值画出插值函数及图形。
数值分析实验(参考答案)
![数值分析实验(参考答案)](https://img.taocdn.com/s3/m/044a7d6d561252d380eb6eae.png)
数值分析上机实验学生姓名: 学号: 教师:实验1:1. 实验项目的性质和任务通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。
2.教学内容和要求 1)对高阶多多项式201()(1)(2)(20)()k p x x x x x k ==---=-∏编程求下面方程的解 19()0p x x ε+=并绘图演示方程的解与扰动量ε的关系。
Matlab 程序:x=1:20;y=zeros(1,20); ve=zeros(1,21); plot(x,y,'o') hold on ; pause; for x=1:5ve(2)=10^(-x);e=roots(poly(1:20)+ve);plot(e,'*') hold on pause; end0510152025303540-20-15-10-5051015202)对2~20n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组 n H x b =最后,用矩阵分解方法求解方程组,并分析计算结果。
Matlab 程序:for n=2:20; H=hilb(n); ca=cond(H,2) x=(1:n)'; b=H*x; [L,U]=lu(H); y=L\b;x1=U\yplot(x,x,'o',x1,x1,'*') hold on pause; end-500-400-300-200-100100200300400500-500-400-300-200-10001002003004005003)对函数 21()[1,1]125f x x x=∈-+的Chebyshev 点 (21)cos()1,2,...,12(1)kk x k n n π-==++编程进行Lagrange 插值,并分析插值结果。
Matlab 程序:function y=lagrangen(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i);s=0;for k=1:nL=1;for j=1:nif j~=kL=L*(z-x0(j))/(x0(k)-x0(j));endends=s+L*y0(k);endy(i)=s;endy;for n=5:20x=-1:0.01:1; y=1./(1+25*x.^2);plot(x,y,'r')hold onk=n+1:-1:1;x0=cos((2*k-1)*pi./(2*(n+1))),y0=1./(1+25*x0.^2);x=-1:0.01:1; y1=lagrangen(x0,y0,x);plot(x0,y0,'o',x,y1), pausehold off end-1-0.8-0.6-0.4-0.200.20.40.60.81-0.200.20.40.60.811.2-1-0.8-0.6-0.4-0.200.20.40.60.81-1-0.8-0.6-0.4-0.200.20.40.60.81。
数值分析计算实习题(二)
![数值分析计算实习题(二)](https://img.taocdn.com/s3/m/123ecb0acec789eb172ded630b1c59eef8c79a0e.png)
数值分析计算实习题(二)数值分析计算实习题(二)SY1004114 全昌彪一:算法设计方案概述:本题采用fortran90语言编写程序,依据题目要求,采用带双步位移QR分解法求出所给矩阵的所有特征值,并求出相应于其实特征值的特征向量,以及相关需要给出的中间结果。
1、矩阵的A的初始化(赋值):利用子函数initial(a,n)来实现,返回n×n 维二维数组a。
2、A矩阵的拟上三角化:利用子函数hessenberg(a,n),在对矩阵进行QR分解前进行拟上三角化,这样可以提高计算效率,减少计算量,返回A矩阵的相似矩阵Hessenberg阵A(n-1)。
3、对A(n-1)进行带双步位移QR分解得出Cm及A矩阵的所有特征值,这一步利用了两个子函数eigenvalue(a,n,lamda,lamdai)和qrresolve(b,c,m)带双步位移QR分解可以加速收敛。
每次QR分解前先进行判断,若可以直接得到矩阵的特征值,则对矩阵直接降阶处理;若不可以,则进行QR分解,这样就进一步减少了计算量,提高了计算效率。
考虑到矩阵A可能有复特征值,采用两个一维数组lamda(n)及lamdai(n)分别存储其实部和虚部。
在双步位移处理及降阶过程中,被分解的矩阵Ak(m ×m)及中间矩阵M k(m×m)的维数随m不断减少而降阶,于是引入了动态矩阵C(m×m)和B(m×m)分别存储,在使用前,先声明分配内存,使用结束后立即释放内存。
返回A(n-1)经双步位移QR分解后的矩阵及A矩阵的所有特征值。
4、特征向量的求解:采用子函数eigenvector(a,lamda)实现求解A矩阵的属于实特征值的特征向量。
核心算法为高斯列主元消去法,(A-λI)x=b,b=0,回代过程令x(10)=1,即可求出对应于每一实特征值的特征向量的各个元素。
5、相关输出结果:所有数据均采用e型输出,数据保留到小数点后12位。
数值分析上机题答案
![数值分析上机题答案](https://img.taocdn.com/s3/m/de2a4242783e0912a2162a2f.png)
数值分析上机题答案【篇一:数值分析上机试题对应参考答案】么是近似值x* 有效数字?若近似值x*的误差限是某一位的半个单位,该位到x*的第一位非零数字共有n位,就说x*有n位有效数字。
它可表示为2、数值计算应该避免采用不稳定的算法,防止有效数字的损失. 因此,在进行数值运算算法设计过程中主要注意什么?(1)简化计算过程,减少运算次数;(2)避免两个相近的数相减;(3)避免除数的绝对值远小于被除数的绝对值;(4)防止大数“吃掉”小数的现象;(5)使用数值稳定的算法,设法控制误差的传播。
3、写出“n 阶阵a 具有n 个不相等的特征值”的等价条件(至少写3 个)(1)|a|不为零(2)n阶矩阵a的列或行向量组线性无关(3)矩阵a为满秩矩阵(4)n阶矩阵a与n阶可逆矩阵b等价4、迭代法的基本思想是什么?就是用某种极限过程去逐步逼近线性方程组精确解得方法。
其基本思想为:先任取一组近似解初值x0,然后按照某种迭代原则,由x0计算新的近似解x1,以此类推,可计算出x2,x3,…xk,。
,如果{x}收敛,则取为原方程组的解。
5、病态线性方程组的主要判断方法有哪些?(1)系数矩阵的某两行(列)几乎近似相关(2)系数矩阵的行列式的值很小(3)用主元消去法解线性方程组时出现小主元(4)近似解x*已使残差向量r=b-ax*的范数很小,但该近似解仍不符合问题要求。
6、lagrange 插值的前提条件是什么?并写出二次lagrange 插值的基函数。
1,j?i?(x)? 前提条件是:l i ,j?0,1,2?,n.?ij0,j?i?二次lagrange 插值的基函数: (x?x)(x?x)12??lx0(xx)(xx) 0?10?2 (x?x)(x?x)02?? lx1(xx)(xx)1?01?2(x?x)(x?x)01?? lx2(x?x)(x?x)20217、什么是数值积分的代数精度?如果某一个求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,则称该求积公式具有m次代数精度(或代数精确度)。
研究生数值分析2012-2013试卷
![研究生数值分析2012-2013试卷](https://img.taocdn.com/s3/m/0baa6bc6c1c708a1284a44d8.png)
山东科技大学 2012-2013 学年第一学期《数值分析》考试试卷[][][][]其收敛阶出的牛顿迭代格式,并指的写出求方程为正数,记设六、计算题插值多项式。
的三次写出时,已知当五、计算题差。
多项式,并估计平方误上的一次最佳平方逼近在区间求设函数四、计算题一个复化求积公式利用该求积公式构造等分,并记作)将区间(斯型,并说明理由;)判断该公式是否为高(数精度;代数精度,并指出其代,使其具有尽可能高的试确定求积系数给定求积公式:三、计算题差限。
的绝对误差限与相对误位有效数字,试分析均具有设二、计算题。
计算、设的值。
与计算、设一、计算题**211212121710610360)(,,)(ewton )(,5,2,3,1)(5,3,2,020)(,)(,,,1,0,1,2n 11-32,,)1()1()0()1()(365.3,1.12,,,,723226131,1252222222,13)(1x x f a x a a x x f N x f x f x x f x x f n k i ih x nh C B A Cf Bf Af d x f x x x x A A x x A x L f L f x x x f n n i x F ==-=====+-==++-≈+==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=++=⎰-∞并指出其精度。
写出改进的欧拉公式,,记取正整数题考虑常微分方程初值问八、计算题消去法求方程组的解。
用列主元迭代格式的敛散性;试分析迭代格式。
迭代格式与写出给定线性方程组七、计算题.0,,n ,)(),,(auss )3(eidel -auss )2(eidel -auss acobi )1(215702031-22-1'321n i ih a x n a b h a y b x a y x f y G S G S G J x x x i ≤≤+=-=⎩⎨⎧=≤≤=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡η。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析上机实践题
第 8次上机题目(解常微分方程初值问题的Euler 法)
第一组: 对初值问题
⎩
⎨⎧=≤≤='1)0(10,y x y y , 使用显式Euler 公式求近似解,并与准确解x e x y =)(比较精度;步长h 自己选定。
并画图比较结果。
第二组: 对初值问题
⎩
⎨⎧=≤≤-='0)0(10,12y x x y , 使用显式Euler 公式求近似解,并与准确解x x x y -=2)(比较精度;步长h 自己选定。
并画图比较结果。
第三组: 对初值问题
⎩
⎨⎧=≤≤++-='1)0(10,1y x x y y , 使用显式Euler 公式求近似解,并与准确解x e x y x +=-)(比较精度;步长h 自己选定。
并画图比较结果。
第四组: 对初值问题
⎪⎩
⎪⎨⎧=≤≤+='0)1(21,22y x e x x y y x , 使用显式Euler 公式求近似解,并与准确解)()(2e e x x y x -=比较精度;步长h 自己选定。
并画图比较结果。
第五组: 对初值问题
⎪⎩
⎪⎨⎧-=≤≤--='1)1(21,122y x y x y x y , 使用显式Euler 公式求近似解,并与准确解x
x y 1)(-=比较精度;步长h 自己选
定。
并画图比较结果。
%显式Euler 方法求微分方程数值解
clear
clc
h=0.2;
x=0:h:2;
n=length(x);
y(1)=-1;
for i=1:n-1
y(i+1)=y(i)+h*(x(i)^(-2)-y(i)*x(i)^(-1)-y(i)^2)
end
y
f =
Inline function:
f(x,y) = y-x^2+1
y =
-1.0000 -1.0040 -1.0257 -1.0865 -1.2128 -1.4364 -1.7964 -2.3404 -3.1265 -4.2255 -5.7239
yyy =
0.5000 0.8293 1.2141 1.6489 2.1272 2.6409 3.1799 3.7324
4.2835 4.8152
5.3055
>> y(i+1);
plot(x,y,'r');grid
>> y(i+1);
plot(x,y,'r');grid
>> hold on
>> t=1:0.01:2;
>> z=-1./t;
>> plot(t,z,'b');grid
第六组: 对初值问题
⎩
⎨⎧=≤≤++-='1)0(50,1y x x y y , 使用显式Euler 公式求求y(5)的近似值,分别用步长h=0.2,h=0.1,h=0.05,并与准确解x e x y x +=-)(比较精度;并画图比较结果。
⎩
⎨⎧=≤≤-='1)0(20,10y x y y , 使用显式Euler 公式求近似解,并与准确解x e x y 10)(-=比较精度;步长h 自己选定。
并画图比较结果。
第八组: 对初值问题
⎩
⎨⎧=≤≤+-='0)0(10,2y x y y , 使用显式Euler 公式求近似解,并与准确解x e x y --=22)(比较精度;步长h 自己选定。
并画图比较结果。
第九组: 对初值问题
⎪⎩
⎪⎨⎧=≤≤='1)1(21,31y x xy y , 使用显式Euler 公式求近似解,并与准确解23
2]32[)(+=x x y 比较精度;步长h 自己选定。
并画图比较结果。
第十组: 对初值问题
⎩
⎨⎧=≤≤-='100)0(10,50y x y y , 使用显式Euler 公式求近似解,并与准确解x e x y 50)(-=比较精度;步长h 自己选定。
并画图比较结果。
第十一组: 对初值问题
⎪⎩
⎪⎨⎧=≤≤='1)1(31,21y x xy y , 使用显式Euler 公式求近似解,并与准确解1ln )(+=x x y 比较精度;步长h 自己选定。
并画图比较结果。
⎪⎩
⎪⎨⎧=≤≤-='1)0(10,2y x y x y y , 使用显式Euler 公式求近似解,并与准确解12)(+=x x y 比较精度;步长h 自己选定。
并画图比较结果。