高中数学竞赛标准讲义:第五章:数列
(完整版)高中数学竞赛讲义(五)──数列
![(完整版)高中数学竞赛讲义(五)──数列](https://img.taocdn.com/s3/m/f001384e58f5f61fb6366670.png)
高中数学竞赛讲义(五)──数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n,…. 数列分有穷数列和无穷数列两种,数列{a n}的一般形式通常记作a1, a2, a3,…,a n或a1, a2, a3,…,a n…。
其中a1叫做数列的首项,a n是关于n的具体表达式,称为数列的通项。
定理1 若S n表示{a n}的前n项和,则S1=a1, 当n>1时,a n=S n-S n-1.定义2 等差数列,如果对任意的正整数n,都有a n+1-a n=d(常数),则{a n}称为等差数列,d叫做公差。
若三个数a, b, c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d, 则a=b-d, c=b+d.定理2 等差数列的性质:1)通项公式a n=a1+(n-1)d;2)前n项和公式:S n=;3)a n-a m=(n-m)d,其中n, m为正整数;4)若n+m=p+q,则a n+a m=a p+a q;5)对任意正整数p, q,恒有a p-a q=(p-q)(a2-a1);6)若A,B至少有一个不为零,则{a n}是等差数列的充要条件是S n=An2+Bn.定义3 等比数列,若对任意的正整数n,都有,则{a n}称为等比数列,q叫做公比。
定理3 等比数列的性质:1)a n=a1q n-1;2)前n项和S n,当q1时,S n=;当q=1时,S n=na1;3)如果a, b, c成等比数列,即b2=ac(b0),则b叫做a, c的等比中项;4)若m+n=p+q,则a m a n=a p a q。
定义4 极限,给定数列{a n}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|a n-A|<,则称A为n→+∞时数列{a n}的极限,记作定义5 无穷递缩等比数列,若等比数列{a n}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和S n的极限(即其所有项的和)为(由极限的定义可得)。
高中数学讲义 第五章 数列 (超级详细)
![高中数学讲义 第五章 数列 (超级详细)](https://img.taocdn.com/s3/m/c9f2319658f5f61fb736666f.png)
(3)由函数 f (x) x2 8x 5 的单调性: (, 4) 是减区间, (4, ) 是增区间,
所以当 n 4 时, an 最小,即 a4 最小。
点评:该题考察数列通项的定义,会判断数列项的归属,要注重函数与数列之间的联系,用函数的观点解 决数列的问题有时非常方便。
①
2[(b1 b2 ... bn bn1) (n 1)] (n 1)bn1.
②;
②-①,得 2(bn1 1) (n 1)bn1 nbn , 即 (n 1)bn1 nbn 2 0, ③
∴ nbn2 (n 1)bn1 2 0. ④
③-④,得 nbn2 2nbn1 nbn 0, 即
数列的比较简单的数列进行化归与转化. 4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等. 5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.
第 1 课 数列的概念
【考点导读】 1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解 数列是一种特殊的函数; 2. 理解数列的通项公式的意义和一些基本量之间的关系;
∴ a1 an 60
(2)答案:2
因为前三项和为 12,∴a1+a2+a3=12,∴a2= S3 =4 3
又 a1·a2·a3=48, ∵a2=4,∴a1·a3=12,a1+a3=8, 把 a1,a3 作为方程的两根且 a1<a3, ∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选 B. 点评:本题考查了等差数列的通项公式及前 n 项和公式的运用和学生分析问题、解决问题的能力。
高考数学 第五章 数列课件 湘教
![高考数学 第五章 数列课件 湘教](https://img.taocdn.com/s3/m/80918260360cba1aa911da93.png)
(3)设
cn=10f(n)·45
4 5
g
(n)
,考查数列{cn}的变化规律,解不等式
cn 1 cn
<1,
由
cn>0,上式可化为
10·4
4 5
2n3
<1,解得
n>
1 2lg
4
3 2
≈3.7.∵n
是正整数,
5
得
n≥4,于是
c1≤c2≤c3≤c4,而
c4>c5>c6…∴10f(n)·45
4 5
距相等.
(1)求 a 的值;
(2)若 n 为正整数,设 an=
g
(n)
·
5 6
f
(n)
,数列{an}中是否存在数值最大的项?若存在,求
出对应的项,若不存在,请说明理由;
(3)若
n
为正整数,证明:10f(n)·
4 5
g(n)
<4.
【解析】 (1)在两个函数式中,令 x=0,依题意得|a|=1,由 a>0,∴a=1.
第五章 数 列
5.1 数列的概念与简单表示 5.2 等差数列及其前n项和 5.3 等比数列及其前n项和 5.4 数列求和 5.5 数列模型的应用 5.6 数列综合性问题
知识点
考纲下载
数列
1.了解数列的概念和几种简单的表示方法(列表、图 象、通项公式、递推公式 ).
2.了解数列是自变量为正整数的一种特殊函数.
当b≠-1时,an=
3+b,n=1, 2·3n-1,n≥2.
(2)∵an+1=3an+2,∴an+1+1=3(an+1), ∴aan+n+1+11=3,∴数列{an+1}为等比数列,公比 q=3. 又 a1+1=2,∴an+1=2·3n-1,∴an=2·3n-1-1.
高中数学竞赛讲义
![高中数学竞赛讲义](https://img.taocdn.com/s3/m/fb0d2199d1d233d4b14e852458fb770bf78a3bfa.png)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。
高中数学竞赛讲义(免费)(完整资料).doc
![高中数学竞赛讲义(免费)(完整资料).doc](https://img.taocdn.com/s3/m/9a8c0cfbc850ad02de8041db.png)
【最新整理,下载后即可编辑】高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
高中数学竞赛数列专题
![高中数学竞赛数列专题](https://img.taocdn.com/s3/m/04e1ddcbcd22bcd126fff705cc17552707225e1e.png)
高中数学竞赛数列专题摘要:一、高中数学竞赛数列专题简介1.高中数学竞赛背景2.数列专题在竞赛中的重要性3.数列专题的主要内容二、等差数列与等比数列1.等差数列的概念与性质2.等差数列的通项公式与求和公式3.等比数列的概念与性质4.等比数列的通项公式与求和公式三、常见的数列类型1.质数数列2.斐波那契数列3.几何数列4.调和数列四、数列的性质与应用1.数列的递推关系2.数列的极限与无穷数列3.数列在实际问题中的应用五、高中数学竞赛数列专题的备考策略1.掌握基础知识2.熟练运用公式与性质3.分析与解决问题的方法与技巧4.模拟试题与真题训练正文:高中数学竞赛数列专题涵盖了丰富的知识点,旨在培养学生的逻辑思维能力和解决问题的能力。
为了更好地应对数列专题的挑战,我们需要对这一专题有全面的了解,包括基本概念、公式、性质以及实际应用等方面。
首先,高中数学竞赛的背景为选拔优秀的学生参加各类数学竞赛,如全国青少年数学竞赛、国际奥林匹克数学竞赛等。
在这些竞赛中,数列专题具有很高的出现频率和重要性,因此,对这一专题的掌握程度对竞赛成绩有着直接影响。
数列专题的主要内容包括等差数列与等比数列、常见的数列类型、数列的性质与应用等方面。
等差数列与等比数列是数列的基本类型,它们在数学竞赛中占据重要地位。
等差数列具有以下性质:任意两项之差相等;等差数列的通项公式为an=a1+(n-1)d,求和公式为Sn=n/2(2a1+(n-1)d)。
等比数列具有以下性质:任意两项之比相等;等比数列的通项公式为an=a1*q^(n-1),求和公式为Sn=a1*(1-q^n)/(1-q)。
在高中数学竞赛中,还常遇到一些常见的数列类型,如质数数列、斐波那契数列、几何数列和调和数列等。
这些数列具有独特的性质和规律,需要我们熟练掌握其定义、公式和性质。
数列的性质与应用方面,我们需要了解数列的递推关系、极限与无穷数列,以及数列在实际问题中的应用。
递推关系是指数列的通项公式可以通过已知的前几项求得。
高中数学课件-数列
![高中数学课件-数列](https://img.taocdn.com/s3/m/86024e60580102020740be1e650e52ea5418ce52.png)
数列的性质
1 有界性
数列有界指该数列中的数都在一定的范围内,有上界和下界。
2 单调性
数列单调指数列中的数是严格递增或递减的。
3 极限概念
极限是数列研究的重要概念,代表了数列在某一点趋近于的值。
数列的应用
1
求和公式
数列的求和公式是数列应用中的重要内容,可以帮助我们计算数列前n项的和。
2
推广应用
数列的应用远不止学科知识,还广泛应用于物理、经济、生物、天文等领域。
发展前景
人类文明的快速发展注定了数列在未来的地位,新的发现在繁杂的社会系统和自然界规律中 释放出无尽的创造力。
3
经典题型解析
数列也是高考数学中的重要考点,深入学习数列能够帮助我们更好地应对考试。
数列与未来
科学研究
物理、生物等领域正广泛应用数列算法,探索新的领域和发现。数列将会在未来的科学研究 中发挥更加重要的作用。
计算机编程
数列可以用于算法设计,图像处理和最优解问题等。计算机科学中对数列的研究成果已经逐 步应用于计算机程序设计中。
高中数学课件-数列
数列是高中ቤተ መጻሕፍቲ ባይዱ学学习中的重要内容之一。本课件以深入浅出的方式,引导学 生了解数列的基本概念,性质和应用,为学生提供系统的学习体验。
数列初步
数列的定义
数列是按照一定规律排列成的数 的集合。
数列的分类
包括等差数列、等比数列等。这 些数列都具有一定的规律性。
数列的通项公式
通项公式可以帮助我们计算数列 中任意一项的值,也是数列研究 的重要工具。
高中数学竞赛培训讲义
![高中数学竞赛培训讲义](https://img.taocdn.com/s3/m/b85c2676a517866fb84ae45c3b3567ec102ddc25.png)
2011高中数学竞赛培训教材编者:全国特级教师(一)集合与容斥原理集合是一种根本数学语言、一种根本数学工具。
它不仅是高中数学的第一课,而且是整个数学的根底。
对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。
如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进展组合计数等。
一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。
分析:A中的元素是自然数,即由两个整数a、b的平和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(一样或不一样)数加起来得到的一个和数,此题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.那么X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac·bd+b2d2+b2c2-2bc·ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。
2.设M={a|a= x2-y2,x,y∈Z}.求证:〔1〕一切奇数属于M;〔2〕4k-2(k∈Z)不属于M;〔3〕M中任意两个数的积仍属于M。
3.函数f〔x〕=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)假设A={-1,3}时,求集合B.二、集合中待定元素确实定例2.集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,那么(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。
高中数学竞赛数列专题
![高中数学竞赛数列专题](https://img.taocdn.com/s3/m/b1be413bf342336c1eb91a37f111f18583d00c8f.png)
高中数学竞赛数列专题摘要:一、引言1.高中数学竞赛的重要性2.数列专题在竞赛中的地位二、数列基本概念与性质1.等差数列2.等比数列3.斐波那契数列4.数列的极限与连续三、数列求和公式与应用1.等差数列求和公式2.等比数列求和公式3.求和公式的应用实例四、数列与函数的关系1.数列的通项公式与函数2.数列的前n项和与函数五、数列题型分类与解题策略1.判断数列性质题2.数列求和题3.数列递推式题4.数列与函数综合题5.解题策略总结六、高中数学竞赛数列真题解析1.真题举例2.解题过程与思路分析七、数列专题强化训练与建议1.推荐练习资料2.强化训练方法与时间安排3.提高数列能力的建议八、总结1.数列专题在高中数学竞赛中的重要性2.掌握数列基本概念与性质3.熟练运用求和公式和解题策略4.结合实际训练,提高数列水平正文:一、引言随着教育制度的不断发展,高中数学竞赛日益受到广泛关注。
在众多竞赛专题中,数列专题具有举足轻重的地位。
本文将从以下几个方面展开讨论,以帮助同学们更好地掌握数列知识,提高在数学竞赛中的竞争力。
二、数列基本概念与性质1.等差数列:等差数列是指一个数列,其中任意两个相邻的元素之差相等。
这一常量称为公差。
2.等比数列:等比数列是指一个数列,其中任意两个相邻的元素之比相等。
这一常量称为公比。
3.斐波那契数列:斐波那契数列是指这样一个数列:第一项和第二项均为1,从第三项开始,每一项等于前两项之和。
4.数列的极限与连续:数列极限是指当项数趋向无穷时,数列值的极限值。
数列连续性是指数列在某一区间内,任意两项之间的差值趋于0。
三、数列求和公式与应用1.等差数列求和公式:Sn = n/2 * (a1 + an),其中n为项数,a1为首项,an为末项。
2.等比数列求和公式:Sn = a1 * (1 - q^n) / (1 - q),其中n为项数,a1为首项,q为公比。
3.求和公式的应用实例:利用求和公式计算等差数列或等比数列的前n项和。
数列极限部分
![数列极限部分](https://img.taocdn.com/s3/m/938f940402020740be1e9bb6.png)
极 限 与 连 续
因此, 成立. 因此, c ≤ an < 1 + c 成立 由单调有界定理 {an } 收敛,设 a = lim an . 收敛,
n →∞
在 an+12 = c + an 两边取极限,得 a 2 = c + a ,解得 两边取极限, 解得
b−a 进行n等分 等分,则 将区间 [a, b] 进行 等分 则 ∆ xi = n i ξi 取区间 [ xi −1 , xi ] 的右端点 ξi = xi = a + (b − a) 的右端点: n
极 限 与 连 续
b−a n lim ∑f n→∞ n i =1
b−a b a +i⋅ = ∫a f ( x)dx n
n +1 n
n +1
n
f ( x)dx − f (n + 1)
f (n + 1)dx − f (n + 1) = 0
单调下降。 故 {S n } 单调下降。 而
Sn ≥ ∑ ∫
k =1
n
k +1
k
f ( x)dx − ∫ f ( x)dx = ∫
1
n
n +1
n
f ( x) dx ≥ 0
于是 lim S n 存在。 存在。 n→∞
杨建新
数学竞赛强化讲义
更一般的情形,设 更一般的情形 设 f ∈ C[1, +∞), f 单调递减且 f ≥ 0, 求证: n→∞ S n = ∑ f (k ) − ∫ f ( x)dx ,求证: lim S n
高中数学竞赛讲义(免费)
![高中数学竞赛讲义(免费)](https://img.taocdn.com/s3/m/0f3afe92d1f34693dbef3e09.png)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛数列
![高中数学竞赛数列](https://img.taocdn.com/s3/m/01df6c0f6ad97f192279168884868762caaebbba.png)
竞赛辅导数列(等差数列与等比数列)数列是高中数学中一个重要课题,也是数学竞赛中常常出现问题。
数列最根本是等差数列与等比数列。
所谓数列,就是按肯定次序排列一列数。
假如数列{a n}第n项a n 与项数(下标)n之间函数关系可以用一个公式a n=f(n)来表示,这个公式就叫做这个数列通项公式。
从函数角度看,数列可以看作是一个定义域为正整数集N*(或它有限子集{1,2,…n})函数当自变量从小到大依次取值时对应一列函数值,而数列通项公式也就是相应函数解析式。
为理解数列竞赛题,首先要深入理解并娴熟驾驭两类根本数列定义、性质有关公式,把握它们之间(同构)关系。
一、等差数列假如一个数列从第二项起,每一项与它前一项差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列公差,公差常用字母d表示。
等差数列{a n}通项公式为:前n项和公式为:从(1)式可以看出,是一次数函()或常数函数(),()排在一条直线上,由(2)式知,是二次函数()或一次函数(),且常数项为0。
在等差数列{}中,等差中项:且随意两项关系为:它可以看作等差数列广义通项公式。
从等差数列定义、通项公式,前项和公式还可推出:假设二、等比数列假如一个数列从第2项起,每一项与它前一项比等于同一个常数,这个数列就叫做等比数列。
这个常数叫做等比数列公比。
公比通常用字母表示。
等比数列{a n}通项公式是:前项和公式是:在等比数列中,等比中项:且随意两项关系为假如等比数列公比满意0<<1,这个数列就叫做无穷递缩等比数列,它各项和(又叫全部项和)公式为:从等比数列定义、通项公式、前项和公式可以推出:另外,一个各项均为正数等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列各项做指数构造幂,那么{}是等比数列。
在这个意义下,我们说:一个正项等比数列与等差数列是“同构〞。
重要不仅是两类根本数列定义、性质,公式;而且蕴含于求和过程当中数学思想方法和数学才智,也是极其宝贵,诸如“倒排相加〞(等差数列),“错位相减〞(等比数列)。
高中数学竞赛标准讲义
![高中数学竞赛标准讲义](https://img.taocdn.com/s3/m/fce55b34a36925c52cc58bd63186bceb19e8edf5.png)
高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。
在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。
本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。
一、高中数学竞赛题型。
高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。
选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。
在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。
二、高中数学竞赛考点。
高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。
这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。
在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。
三、高中数学竞赛解题技巧。
在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。
首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。
通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。
四、高中数学竞赛备考建议。
在备战高中数学竞赛时,学生需要有计划地进行复习和练习。
首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。
通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。
2021年最新高中数学竞赛教材讲义第五章数列教师版
![2021年最新高中数学竞赛教材讲义第五章数列教师版](https://img.taocdn.com/s3/m/d835883125c52cc58bd6bea5.png)
x0 成立,则称 x0 为 f ( x) 的
定理 1 设 f ( x) ax b( a 0,1) ,且 x0 为 f (x) 的不动点, { an } 满足递推关系 an f ( an 1) ,
n 2,3, ,证明 { an x0} 是公比为 a 的等比数列。 例 1 已知数列 an 的前 n 项和为 Sn ,且 Sn n 5a n 85 , n N *
an 与前 n 项和 Sn 是确定次数的多项式 (关于 n 的 ),先设出多项
(3) 裂项相消法:其出发点是 an 能写成 an=f(n+1)-f(n) (4) 化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
例 1.数列 { an} 的二阶差数列的各项均为 16,且 a63=a89=10,求 a51
例 2.一个三阶等差数列 { an} 的前 4 项依次为 30,72,140,240,求其通项公式
解:由性质 (2), an 是 n 的三次多项式,可设
A B C D 30
A1
8 A 4 B 2C D 72
B7
解得
27 A 9 B 3 C D 140
C 14
64 A 16 B 4 C D 240
D8
(3) 如果数列 {an} 是 p 阶等差数列,则其前 n 项和 Sn 是关于 n 的 p+1 次多项式
5.高阶等差数列中最重要也最常见的问题是求通项和前
n 项和,更深层次的问题是差分方程的求解,解决问题的基
本方法有:
(1)逐差法:其出发点是
n1
an=a1+ (ak 1 ak )
k1
(2) 待定系数法:在已知阶数的等差数列中,其通项 式的系数,再代入已知条件解方程组即得
高中必修五数学数列讲义
![高中必修五数学数列讲义](https://img.taocdn.com/s3/m/9e3579d9172ded630a1cb620.png)
第二章数列第一节:数列及其通项公式一.数列的概念1.数列的定义:;2.表示法:;3.数列的分类:;4.通项公式:;5.递推公式的概念:;注意:①数列与集合有本质的区别;②项与项数的区别;③}a{n 与na的区别;④不是每一个数列都有通项公式;⑤na是n的函数。
二.数列通项公式的求法1.根据数列的有限项,写出数列的通项公式。
练习1.已知数列{a n }的前几项,写出数列的一个通项公式(1)1,4,9,16,……;a n = ;(2)2468,,,,392781……;a n = ;(3)313131,,,,,,,23456a n = ;(4)9,99,999,9999,……;a n = ; (5)7,77,777,7777,……;a n = ;(6)7,-77,777,-7777,……;a n = ; (7)0.5,0.55,0.555,0.5555, ……;a n = ; (8)1.-1,1,-1,……;a n = ; (9)1,0,1,0,……;a n = ;(10)11,101,1001,10001,……;a n = ;(11)12341,2,3,4,2345……;a n = ;(12)1375,,,,24816;a n = ;(13)210172637,1,,,,3791113---,……;a n = ;2.数列1,3,2,6,5,15,14,x,y,z ,122,……,中x,y,z 的值依次是( )A 42,41,123B 13,39,123C 24,23,123D 28,27,1233.数列1,1,2,3,5,8,……;的第7项是 。
4.数列}a {n 中,11(2)(n n n a n n n -⎧⎪=⎨⎪-⎩为奇数)(为偶数), 则}a {n 的前5项是 。
5.已知函数xx x f 1-)(=,设*))((N n n f a n ∈= (1)求证:1<n a ;(2){a n }是递增数列还是递减数列?为什么?2.已知数列的前n 项和求数列的通项公式(1) 已知数列{a n }的前n 项和为221n S n n =++,求数列{a n }的通项公式;(2) 已知数列{a n }的前n 项和为22n S n n =+,求数列{a n }的通项公式。
高中数学竞赛5数列部分
![高中数学竞赛5数列部分](https://img.taocdn.com/s3/m/aa59b117fab069dc51220121.png)
全国高中数学联赛试题分类汇编5.数列部分2019B 8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .2019B 二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有 4 个正约数; (2) 若12k d d d <<<是n 的所有正约数,则21321,,,k k d d d d d d ----构成等比数列。
2018A 8、设整数数列1021,,,a a a 满足1103a a =,5822a a a =+,且{}i i i a a a ++∈+2,11,9,,2,1 =i ,则这样的数列的个数为2018A 一、(本题满分40分)设n 是正整数,n a a a ,,,21 ,n b b b ,,,21 ,B A ,均为正实数,满足:i i b a ≤,A a i ≤,n i ,,2,1 =,且ABa a ab b b n n ≤ 2121。
证明:11)1()1)(1()1()1)(1(2121++≤++++++A B a a a b b b n n 。
2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列满足:对任意正整数,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为2017A 8、设两个严格递增的正整数数列{}n a ,{}n b 满足,对任意正整数,有n n n a a a +=++12,n n b b 21=+ ,则11b a +的所有可能值为2017B1、在等比数列{}n a 中,22=a ,333=a ,则2017720111a a a a ++为2018A 10、(本题满分20分)已知实数列 321,,a a a 满足:对任意正整数n ,有1)2(=-n n n a S a ,其中n S 表示数列的前n 项和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d.定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn . 定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
定义4 极限,给定数列{a n }和实数A ,若对任意的ε>0,存在M ,对任意的n >M(n ∈N ),都有|a n -A |<ε,则称A 为n →+∞时数列{a n }的极限,记作.lim A a n n =∞→定义5 无穷递缩等比数列,若等比数列{a n }的公比q 满足|q |<1,则称之为无穷递增等比数列,其前n 项和S n 的极限(即其所有项的和)为qa -11(由极限的定义可得)。
定理3 第一数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )时n =k 成立时能推出p (n )对n =k +1成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。
竞赛常用定理定理4 第二数学归纳法:给定命题p (n ),若:(1)p (n 0)成立;(2)当p (n )对一切n ≤k 的自然数n 都成立时(k ≥n 0)可推出p (k +1)成立,则由(1),(2)可得命题p (n )对一切自然数n ≥n 0成立。
定理5 对于齐次二阶线性递归数列x n =ax n -1+bx n -2,设它的特征方程x 2=ax +b 的两个根为α,β:(1)若α≠β,则x n =c 1a n -1+c 2βn -1,其中c 1, c 2由初始条件x 1, x 2的值确定;(2)若α=β,则x n =(c 1n +c 2) αn -1,其中c 1, c 2的值由x 1, x 2的值确定。
二、方法与例题 1.不完全归纳法。
这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。
通常解题方式为:特殊→猜想→数学归纳法证明。
例1 试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。
【解】1)a n =n 2-1;2)a n =3n -2n ;3)a n =n 2-2n . 例2 已知数列{a n }满足a 1=21,a 1+a 2+…+a n =n 2a n , n ≥1,求通项a n .【解】 因为a 1=21,又a 1+a 2=22·a 2, 所以a 2=231⨯,a 3=4311322⨯=-+1a a ,猜想)1(1+=n n a n (n ≥1).证明;1)当n =1时,a 1=121⨯,猜想正确。
2)假设当n ≤k 时猜想成立。
当n =k +1时,由归纳假设及题设,a 1+ a 1+…+a 1=[(k +1)2-1] a k +1,, 所以)1(1231121+⨯++⨯+⨯k k =k (k +2)a k +1, 即1113121211+-++-+-k k =k (k +2)a k +1,所以1+k k =k (k +2)a k +1,所以a k +1=.)2)(1(1++k k由数学归纳法可得猜想成立,所以.)1(1+=n n a n 例3 设0<a <1,数列{a n }满足a n =1+a , a n -1=a +na 1,求证:对任意n ∈N +,有a n >1.【证明】 证明更强的结论:1<a n ≤1+a . 1)当n =1时,1<a 1=1+a ,①式成立;2)假设n =k 时,①式成立,即1<a n ≤1+a ,则当n =k +1时,有.11111111121=++>+++=++≥+=>++a a a a a a a a a a a kk由数学归纳法可得①式成立,所以原命题得证。
2.迭代法。
数列的通项a n 或前n 项和S n 中的n 通常是对任意n ∈N 成立,因此可将其中的n 换成n +1或n -1等,这种办法通常称迭代或递推。
例4 数列{a n }满足a n +pa n -1+qa n -2=0, n ≥3,q ≠0,求证:存在常数c ,使得121+++n n pa a ·a n +.02=+n n cq qa【证明】121+++n n pa a ·a n+1+221++=n n a qa (pa n +1+a n +2)+21+n qa =a n +2·(-qa n )+21+n qa = 21221[)(+++=-n n n n a q a a a q +a n (pq n +1+qa n )]=q (2121n n n n qa a pa a ++++).若211222qa a pa a ++=0,则对任意n , n n n a pa a 121++++2n qa =0,取c =0即可.若211222qa a pa a ++≠0,则{n n n a pa a 121++++2n qa }是首项为211222qa a pa a ++,公式为q的等比数列。
所以n n n a pa a 121++++2n qa =)(211222qaa pa a ++·q n . 取)(212122qa a pa a c ++-=·q1即可. 综上,结论成立。
例5 已知a 1=0, a n +1=5a n +1242+n a ,求证:a n 都是整数,n ∈N +. 【证明】 因为a 1=0, a 2=1,所以由题设知当n ≥1时a n +1>a n . 又由a n +1=5a n +1242+n a 移项、平方得.01102121=-+-++n n n n a a a a ①当n ≥2时,把①式中的n 换成n -1得01102112=-+---n n n n a a a a ,即.01102121=-+-++n n n n a a a a ②因为a n -1<a n +1,所以①式和②式说明a n -1, a n +1是方程x 2-10a n x +2n a -1=0的两个不等根。
由韦达定理得a n +1+ a n -1=10a n (n ≥2).再由a 1=0, a 2=1及③式可知,当n ∈N +时,a n 都是整数。
3.数列求和法。
数列求和法主要有倒写相加、裂项求和法、错项相消法等。
例6 已知a n =100241+n (n =1, 2, …),求S 99=a 1+a 2+…+a 99. 【解】 因为a n +a 100-n =100241+n +100100241+-n =10010010010010010021)44(2244422=++⨯++⨯--n n n n , 所以S 99=.29929921)(21101100991100=⨯=+∑=-n n n a a例7 求和:43213211⨯⨯+⨯⨯=n S +…+.)2)(1(1++n n n 【解】 一般地,)2)(1(22)2)(1(1++-+=++k k k kk k k k⎪⎪⎭⎫ ⎝⎛++-+=)2)(1(1)1(121k k k k , 所以S n =∑=++nk k k k 1)2)(1(1⎥⎦⎤⎢⎣⎡++-+++⨯-⨯+⨯-⨯=)2)(1(1)1(143132132121121n n n n⎥⎦⎤⎢⎣⎡++-=)2)(1(12121n n .)2)(1(2141++-=n n 例8 已知数列{a n }满足a 1=a 2=1,a n +2=a n +1+a n , S n 为数列⎭⎬⎫⎩⎨⎧n n a 2的前n 项和,求证:S n <2。
【证明】 由递推公式可知,数列{a n }前几项为1,1,2,3,5,8,13。
因为nn n a S 228252322212165432+++++++= , ① 所以1543222523222121++++++=n n n a S 。
② 由①-②得12222222121212121+---⎪⎪⎭⎫ ⎝⎛++++=n nn n n a a S , 所以122412121+--+=n n n n a S S 。
又因为S n -2<S n 且12+n n a>0,所以412121+<n S S n , 所以2141<n S , 所以S n <2,得证。
4.特征方程法。
例9 已知数列{a n }满足a 1=3, a 2=6, a n +2=4n +1-4a n ,求a n . 【解】 由特征方程x 2=4x -4得x 1=x 2=2. 故设a n =(α+βn )·2n -1,其中⎩⎨⎧⨯+=+=2)2(63βαβα,所以α=3,β=0, 所以a n =3·2n -1.例10 已知数列{a n }满足a 1=3, a 2=6, a n +2=2a n +1+3a n ,求通项a n . 【解】 由特征方程x 2=2x +3得x 1=3, x 2=-1, 所以a n =α·3n +β·(-1)n ,其中⎩⎨⎧+=-=βαβα9633,解得α=43,β43-=, 所以11)1(3[41++-+=n n n a ·3]。