生物化学

合集下载

生物化学重点知识

生物化学重点知识

生物化学重点知识生物化学是生物学与化学的交叉领域,研究生物体内的化学反应和生物分子之间的相互作用。

在生物化学的学习过程中,有一些重点知识是必须要掌握的,下面将对一些重点知识进行详细介绍。

一、生物大分子生物大分子是构成生物体的主要分子,包括蛋白质、核酸、多糖和脂质。

其中,蛋白质是生物体内最为重要的大分子之一,具有结构和功能的双重性。

蛋白质的结构由氨基酸组成,氨基酸通过肽键连接而成。

蛋白质的功能多种多样,包括参与代谢反应、传递信号、构建细胞结构等。

另外,核酸是生物体内贮存和传递遗传信息的分子,包括DNA和RNA两类。

DNA是遗传信息的载体,其双螺旋结构能够稳定保存大量的遗传信息。

而RNA主要参与蛋白质的合成过程,包括转录和翻译。

多糖是生物体内的能量储备和结构支持物质,如淀粉、糖原和纤维素等。

多糖的结构复杂多样,具有不同的功能和生物活性。

脂质是生物体内最不溶于水的大分子,包括脂肪酸、甘油和磷脂等。

脂质在细胞膜的构建和代谢调节中起着重要作用。

二、酶和酶促反应酶是生物体内催化化学反应的蛋白质,具有高度的特异性和效率。

酶可以加速生物体内代谢反应的进行,并且在反应结束后不被消耗。

酶的催化活性受到温度、pH值等环境因素的影响。

酶促反应是在酶的催化下进行的生物体内化学反应。

酶促反应遵循米氏动力学,包括亲和力、酶底物复合物和酶活性等步骤。

酶促反应在维持生物体内稳态和平衡中起着不可替代的作用。

三、代谢途径代谢是生物体内所有化学反应的总称,包括合成代谢和分解代谢两个方面。

在代谢中,有一些重要的途径是需要重点掌握的。

糖代谢途径是生物体内最主要的能量来源,包括糖原异生途径和糖酵解途径。

细胞通过这些途径产生ATP能量,供给细胞代谢和功能活动。

脂肪酸代谢途径是细胞内脂质代谢的关键过程,包括脂质合成和脂质分解。

脂肪酸代谢可以提供额外的能量供应,同时也参与胆固醇合成等生物学过程。

氨基酸代谢途径是蛋白质合成和代谢的基础,主要包括氨基酸转氨、氨基酸降解和尿素循环等步骤。

生物化学专业的详细介绍

生物化学专业的详细介绍

生物化学专业的详细介绍生物化学是一门综合性学科,它结合了生物学和化学两个学科的理论与实践,研究生物体内的化学成分、化学反应以及与生命活动相关的分子机制。

生物化学专业培养具备扎实的化学基础和深入了解生物学原理的专业人才,他们在生物医药、生物工程、生物技术等领域具有广泛的应用前景。

一、专业简介生物化学专业主要研究生物体内的化学成分、化学反应以及与生命活动相关的分子机制。

通过研究生物大分子的结构、功能和代谢途径,生物化学揭示了生命的基本规律和生物体内的化学过程。

生物化学专业涉及的领域包括蛋白质化学、核酸化学、酶学、代谢途径等。

二、专业课程1. 生物化学基础课程:包括有机化学、无机化学、生物化学、分子生物学等基础课程,为学生打下坚实的化学和生物学基础。

2. 高级生物化学课程:包括蛋白质化学、核酸化学、酶学、代谢途径等高级课程,深入研究生物体内的化学反应和分子机制。

3. 实验课程:生物化学专业的实验课程非常重要,学生通过实验掌握实验操作技巧和科学研究方法,培养实验设计和数据分析的能力。

三、就业方向1. 生物医药领域:生物化学专业的毕业生可以从事药物研发、生物制药、临床检验等工作,为药物研发和临床诊断提供技术支持。

2. 生物工程领域:生物化学专业的毕业生可以从事基因工程、蛋白质工程、酶工程等工作,参与新药研发和生物工艺的优化。

3. 生物技术领域:生物化学专业的毕业生可以从事基因测序、基因编辑、生物传感器等工作,为生物技术的发展做出贡献。

四、就业前景生物化学专业毕业生具备扎实的化学和生物学知识,熟练掌握实验技术和科学研究方法,具有较强的分析和解决问题的能力。

随着生物医药、生物工程、生物技术等领域的快速发展,生物化学专业的毕业生在科研机构、医药企业、生物工程公司等单位都有很好的就业前景。

总结:生物化学专业是一门综合性学科,结合了生物学和化学的理论与实践,研究生物体内的化学成分和分子机制。

生物化学专业的毕业生在生物医药、生物工程、生物技术等领域具有广泛的应用前景。

生物化学名词解释

生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。

通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。

3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。

第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。

单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。

3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。

4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。

6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。

7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学〔biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学与物理学之间的一门边缘学科。

二、生物化学的开展:1.表达生物化学阶段:是生物化学开展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以与生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃开展的时期。

就在这一时期,人们根本上弄清了生物体各种主要化学物质的代途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以与水、无机盐等组成,此外还含有一些低分子物质。

2.物质代:物质代的根本过程主要包括三大步骤:消化、吸收→中间代→排泄。

其中,中间代过程是在细胞进展的,最为复杂的化学变化过程,它包括合成代,分解代,物质互变,代调控,能量代几方面的容。

3.细胞信号转导:细胞存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代、生理活动与生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,提醒结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的根本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学重点知识

生物化学重点知识

生物化学是研究生物体内生物分子的结构、功能和代谢过程的学科。

以下是一些生物化学中的重点知识:
1. 生物大分子:生物化学研究的主要对象包括碳水化合物、脂类、蛋白质和核酸等生物大分子。

它们在生物体内发挥着重要的结构和功能作用。

2. 酶:酶是生物体内催化反应的蛋白质,可以降低活化能,加速生物化学反应的进行。

酶在生物体内参与代谢、信号传导、免疫等多个生理过程。

3. 代谢途径:生物体内的代谢途径包括糖酵解、三羧酸循环、氧化磷酸化、脂肪酸代谢等。

这些途径将营养物质转化为能量和生物体内所需的物质。

4. DNA和RNA:DNA是遗传信息的载体,RNA参与基因表达调控。

DNA复制、转录和翻译是细胞内重要的生物化学过程。

5. 蛋白质结构与功能:蛋白质的结构决定了其功能。

蛋白质通过折叠成特定的空间结构来实现其生物学功能,如酶活性、结构支持等。

6. 细胞膜结构与运输:细胞膜是细胞的重要组成部分,具有选择性
通透性。

细胞膜上的载体蛋白质参与物质的跨膜运输。

7. 信号转导:细胞内外的信号转导是生物体内重要的调控机制,包括激素信号、神经递质信号等的传递与响应。

以上是生物化学中的一些重点知识,深入了解这些知识可以帮助理解生物体内生命活动的分子基础和机制。

生物化学在解释疾病发生机制、药物作用以及生物技术等领域有着重要的应用。

生物化学专业课程科目

生物化学专业课程科目

生物化学专业课程科目
1. 生物化学导论,这门课程通常介绍了生物化学的基本概念,包括生物大分子(蛋白质、核酸、多糖和脂质)的结构和功能,生物化学反应和代谢途径等内容。

2. 生物有机化学,这门课程侧重于生物分子的有机化学特性,包括蛋白质、核酸和酶的结构与功能、生物大分子的合成和分解等内容。

3. 生物物理化学,这门课程涉及生物分子的物理化学性质,如蛋白质的结构与功能、生物膜的性质和传递过程等。

4. 生物化学实验,这门课程通常包括实验室操作和技术,学生将学习如何处理生物样本、进行蛋白质纯化、测定酶活性等实验技术。

5. 生物化学方法学,这门课程介绍了生物化学研究中常用的方法和技术,如质谱分析、核磁共振、光谱学等。

6. 生物化学分子生物学,这门课程涵盖了生物分子的生物学功
能和调控机制,包括基因表达调控、蛋白质合成与修饰等内容。

7. 生物化学代谢途径,这门课程重点介绍了生物体内各种代谢
途径,如糖代谢、脂肪代谢、核酸代谢等。

以上列举的课程科目只是生物化学专业中的一部分,实际上还
有许多其他相关的课程,如生物化学工程、生物信息学、生物化学
毒理学等。

这些课程科目共同构成了生物化学专业的全面知识体系,为学生提供了丰富的学术素养和实践技能。

生物化学

生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。

但是已知某种病毒生物却无核酸(朊病毒)。

2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。

( 2 ) 新陈代谢、生长和运动是生命的基本功能。

( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。

(4)生物具有个体发育和系统进化的历史。

( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。

3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。

生物化学就是生命的化学。

4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。

5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。

第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。

这四种元素约占了生物体总质量的99%以上。

第二类元素:包括S、P、Cl、Ca、K、Na和Mg。

这类元素也是组成生命体的基本元素。

第三类元素:包括Fe、Cu、Co、Mn和Zn。

是生物体内存在的主要少量元素。

第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。

偶然存在的元素。

6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。

生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。

7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。

生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。

维生素、辅酶、激素、核苷酸和氨基酸等小分子。

8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。

9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。

动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。

生物化学重点

生物化学重点

生物化学重点第一章绪论1.生物化学的定义生物化学是研究生命体化学组成及化学变化规律的一门科学。

2.生物体的化学组成生物体的化学组成有水分、盐类、碳氢化合物等。

其中的碳氢化合物包括糖类、脂类、蛋白质、核酸及维生素,激素等。

3.生物化学发展经历了哪些阶段生物化学发展经历的三个阶段:1)叙述生物化学阶段,2)动态生物化学阶段,3)机能生物化学阶段。

4.我国现代生化学家最突出的贡献我国近代生物化学主要研究成果:人工合成蛋白质方面1965年,人工合成具有生物活性的蛋白质:结晶牛胰岛素。

1972年,用X光衍射法测定了猪胰岛素分子的空间结构。

1979年12月27日,人工合成酵母丙氨酸转运核糖核酸半分子。

1981年,人工合成酵母丙氨酸转运核糖核酸全分子。

第二章蛋白质构建分子—氨基酸*1.二十种蛋白质标准氨基酸【R 基决定了蛋白质的性质】七种氨基酸(Arg,Lys,His,Asp,Glu,CysandTyr)易形成离子化的侧链*2.蛋白质中的氨基酸都是L-型。

(Gly甘氨酸除外)氨基酸侧链含有.3.20种氨基酸按照酸碱性的分类。

中性氨基酸:包括8种非极性氨基酸和7种非解离的极性氨基酸,共15种。

酸性氨基酸:即天冬氨酸和谷氨酸。

解离后,分子带负电荷。

碱性氨基酸:即赖氨酸、精氨酸和组氨酸。

解离后,分子携带正电荷。

4. 氨基酸的等电点及其实际意义(用途)*等电点:当调节氨基酸溶液的pH值,使氨基酸的氨基与羧基的解离度完全相等时,则氨基酸所带净电荷为0,在电场中既不向阴极移动也不向阳极移动,此时氨基酸所处溶液的pH值称该氨基酸的等电点,即pI值。

意义:由于在等电点时,氨基酸的溶解度最小,易沉淀。

利用这一性质,可以分离制备某些氨基酸。

利用各种氨基酸的等电点不同,可通过电泳法、离子交换法等方法进行混合氨基酸的分离和制备。

实验证明在等电点时,氨基酸主要以两性离子形式存在,但也有少量的而且数量相等的正、负离子形式,还有极少量的中性分子。

生物化学的概念

生物化学的概念

二、研究内容
1、生物体的化学成份和组成 大量元素:C、H、O、N四种,
根据元素分析 微量元素:Fe、Zn、Cu、Mg等。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
2、结构和功能的关系 DNA
3、研究生物体内的代谢过程即新陈代谢 分解代谢
物质代谢: 合成代谢
汉斯·克雷勃斯(Hans A. Krebs)
1949 Pauling(美)指出 镰刀形红细胞性贫血是一 种分子病,并于1951年提 出蛋白质存在二级结构。 1954年获诺贝尔奖
李纳斯·鲍林(Linus Pauling)

1953年 Watson(美)与 Crick(英)提出DNA分子的双 螺旋结构模型,1962年共获诺贝尔奖。
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。
生物化学的概念微生物的概念及分类与生物化学有关的专业生活中的生物化学生物化学的应用有关生物化学的论文我对生物化学的认识对生物化学的认识组成生物体的化学元素生物的概念
第一章 绪 论
第一节
概述
一、生物化学的概念:
简单地讲:就是生命的化学。 即它是以生物体为研究对象,用化学的方法和理论, 从分子水平来研究生物体的化学组成和生命过程中的 化学规律的一门学科。
我国生物化学的开拓者——吴宪教授
蛋白质研究领域内国际上最具有权威性的综 述性丛书《Advances in Protein Chemistry》第47卷(1995年)发表了美国 哈佛大学教授、蛋白质研究的老前辈J. T. Eddsall的文章“吴宪与第一个蛋白质变性 理论(1931)Hsien Wu and the first Theory of Protein Denaturation(1931)”, 对吴宪教授的学术成就给予了极高的评价。 该卷还重新刊登了吴宪教授六十四年前关于 蛋白质变性的论文。一篇在1931年发表的论 文居然在1995年仍然值得在第一流的丛书上 重新全文刊登,不能不说是国际科学界的一 件极为罕见的大事。

生物化学

生物化学

遗传信息的贮存、传 遗传信息的贮存、 代、表达 遗传的物质基础) (遗传的物质基础) 260nm 粘度↓ 粘度↓ Tm
α-螺旋和β-折叠结构比较 螺旋和β
区别点 形 氢 状 键 α-螺旋 螺旋状 链内,与长轴平行 链内, 较大 较大 0 .15nm 毛发角蛋白 β-折叠 锯齿状 链间,与长轴垂直 链间, 较小 较小 0.36nm 蚕丝蛋白
> 1056
个不同的氨基酸、 (* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目) 个不同的氨基酸 核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
生物信息大分子的特点: 生物信息大分子的特点:
• • 质量一般在10 之间或以上。 质量一般在 4~106之间或以上。 由特殊的亚单位( 由特殊的亚单位(subunit)按一定的顺序、首 亚单位 )按一定的顺序、 尾连接形成的多聚物( 尾连接形成的多聚物(polymer)。 )。 亚单位在多聚物中的排列是有一定顺序(称为序 亚单位在多聚物中的排列是有一定顺序(称为序 )。序列决定着生物大分子的空 列,sequence)。序列决定着生物大分子的空 )。 立体)结构形式和功能, 间(立体)结构形式和功能,决定着生物大分子 的信息内容。 的信息内容。
3、重要性质:两性解离及带电状态判定;紫外吸收;沉淀;变性 、重要性质:两性解离及带电状态判定;紫外吸收;沉淀; 4、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析;分子筛 、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析; 5、结构与功能关系(举例) 、结构与功能关系(举例)
复习思考题
1.为什么说: 蛋白质是生命的物质基础” 1.为什么说:“蛋白质是生命的物质基础”? 为什么说 2.简述蛋白质α螺旋和β折叠的结构特点。 2.简述蛋白质α螺旋和β折叠的结构特点。 简述蛋白质 3.什么是Pr的一、二、三和四级结构,分别指出 3.什么是Pr的一、 什么是Pr的一 三和四级结构, 维持它们结构的化学键。 维持它们结构的化学键。 4.举例说明Pr结构与功能的关系。 4.举例说明Pr结构与功能的关系。 举例说明Pr结构与功能的关系 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 简述Pr变性 6.Pr定量测定的方法主要有哪些? 6.Pr定量测定的方法主要有哪些? 定量测定的方法主要有哪些

生物化学

生物化学

什么是生物化学生物学的分支学科。

它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。

生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。

若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。

因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。

研究各种天然物质的化学称为生物有机化学。

研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。

60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。

生物化学发展简史生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。

例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。

又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。

1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。

1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。

生物化学的发展大体可分为3个阶段。

第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。

其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。

1926年J.B.萨姆纳制得了脲酶结晶,并证明它是蛋白质。

此后四、五年间J.H.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。

通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。

对生物化学的认识

对生物化学的认识

对生物化学的认识
生物化学是运用化学的原理和方法,研究生命现象的学科。

其任务主要是了解生物的化学组成、结构及生命过程中各种化学变化。

它是一门交叉学科,涉及生物学、化学、物理学等多个学科领域。

生物化学研究的内容包括生物体的物质组成、代谢途径、遗传信息传递等方面。

通过对生物分子(如蛋白质、核酸、多糖等)的结构和功能的研究,生物化学家可以揭示生命活动的基本规律。

生物化学在医学、农业、工业等领域都有广泛的应用。

在医学领域,生物化学可以帮助我们了解疾病的发生机制,为疾病的诊断和治疗提供理论依据;在农业领域,生物化学家可以通过研究植物的代谢过程,提高农作物的产量和品质;在工业领域,生物化学可以为生物技术和生物工程提供技术支持,生产出各种生物制品。

学习生物化学需要掌握一定的化学、生物学知识,同时还需要具备较强的实验技能和分析能力。

通过学习生物化学,我们可以更深入地了解生命现象,为解决人类面临的各种健康和环境问题提供科学依据。

总之,生物化学是一门非常重要的学科,对于我们理解生命现象、改善人类健康、推动社会发展都具有重要意义。

生物化学(PDF)版

生物化学(PDF)版

生物化学(PDF)版
生物化学是研究生物体内化学过程和物质转化的分支学科。

它涉及了生物学和化学两个领域,主要关注生物体内的分子结构、生物体内化学反应的动力学和机制,以及生物体内的代谢过程。

以下是生物化学的主要内容:
1.生物分子结构:生物化学研究生物体内多种生物分子的结构、组成和性质,包括蛋白质、核酸、碳水化合物和脂质等。

2.酶和酶动力学:酶是生物体内的催化剂,生物化学研究酶的结构和功能,以及酶对生物化学反应速率的影响。

3.代谢途径:生物体内的代谢途径是生物化学的重要研究内容,包括碳水化合物的糖酵解、脂肪酸的氧化和合成、蛋白质的合成和降解等。

4.能量代谢:生物体内的能量转化是生命活动的重要过程,生物化学研究生物体内能量产生和转化的机制,如细胞呼吸和光合作用等。

5.信号转导:生物体内的信号分子参与了各种生物过程的调控,生物化学研究信号分子的合成、传递和识别机制。

6.生物化学技术:生物化学也涉及了多种实验和技术方法,包括蛋白质纯化、基因克隆、核酸测序和基因组学等。

总之,生物化学研究了生物体内的化学反应、分子结构和代谢过程,对于理解生物体的功能和调控机制是至关重要的。

什么是生物化学

什么是生物化学

什么是生物化学
生物化学是一门研究生物体内化学反应、物质代谢、分子结构与功能的学科。

它在很大程度上依赖于化学、生物学和物理学的原理和方法,旨在揭示生物体生命过程中的化学本质。

生物化学在生物医药、农业、食品科学等领域具有重要意义。

生物化学的研究对象包括蛋白质、核酸、多糖和脂质等生物大分子,以及小分子代谢物和信号分子。

研究者通过分析这些分子的结构、性质、合成与降解途径,探讨它们在生物体生长、发育、繁殖、适应环境等方面的作用。

此外,生物化学家还关注生物体内的酶促反应、膜转运、信号传导等过程,以揭示生命现象背后的化学机制。

生物化学的发展推动了生物科学的研究进展,为人类认识生命本质提供了重要线索。

随着技术的不断创新,生物化学在基因编辑、生物制药、生物能源等领域发挥着越来越重要的作用。

在我国,生物化学研究得到了高度重视,成为国家科技创新和国际竞争力的重要组成部分。

生物化学的研究成果不仅丰富了自然科学的知识体系,还为人类社会带来了实实在在的利益。

例如,通过研究生物化学,科学家们开发出了许多新型药物,有效治疗了许多疾病;生物化学技术在农业领域的应用,提高了作物产量和品质,有助于解决全球粮食安全问题;在环境保护方面,生物化学方法为治理污染提供了新途径。

总之,生物化学在促进人类文明发展和提高人民生活质量方面发挥着不可替
代的作用。

生物化学概述

生物化学概述

生物化学概述
生物化学是研究生物体的化学成分、化学结构、化学反应和化学过程的科学。

它是化学和生物学的交叉学科,通过研究生物体中的化学反应和分子机制来探索生命的本质。

生物化学的研究内容包括以下几个方面:
生物分子的组成
生物体主要由四种生物大分子构成,包括蛋白质、核酸、多糖和脂质。

蛋白质是由氨基酸组成的长链状分子,核酸则是由核苷酸组成的双链分子。

多糖主要有淀粉和纤维素等,而脂质则是生物体内重要的疏水性分子。

生物分子的结构和功能
不同的生物分子具有不同的结构和功能。

例如,蛋白质通过其特定的氨基酸序列和三维结构来实现其特定的功能,如酶的催化作
用和细胞信号传导等。

核酸则通过遗传密码和基因表达来控制生物
体的遗传信息传递。

代谢反应和能量转化
生物体通过代谢反应获取能量并实现物质的合成和降解。

例如,光合作用是植物利用光能合成有机物的重要反应,而细胞呼吸则是
生物体利用有机物氧化释放能量的过程。

信号传导和调控
生物体内的化学信号传递和调控是生命活动的重要组成部分。

细胞表面受体和信号转导通路参与了细胞对外界刺激的感知和响应,从而调控生物体的生理功能。

生物技术和药物研发
生物化学在生物技术和药物研发领域具有广泛的应用。

通过理
解生物分子的结构和功能,可以设计新的药物分子和开发生物技术
产品,以满足医药和工业上的需求。

生物化学是解析和理解生命现象的强有力的工具,它在许多领域都有重要的应用价值。

它不仅有助于推动基础研究的进展,也为科学家们探索新的解决方案和创新提供了支持。

生物化学知识点总结

生物化学知识点总结

生物化学知识点总结一、生物大分子1. 蛋白质蛋白质是生物体内功能最为多样的大分子化合物,其分子量从几千到上百万不等。

蛋白质是由氨基酸通过肽键连接而成的,其结构包括一级结构、二级结构、三级结构和四级结构。

蛋白质的功能包括酶、结构蛋白、免疫蛋白等。

在生物体内,蛋白质不断地受到合成和降解的调控。

2.核酸核酸也是生物体内非常重要的大分子,主要包括DNA和RNA。

DNA是生物遗传信息的分子载体,其双螺旋结构具有很高的稳定性,基因组里的信息以DNA的形式存在,RNA则是DNA的复制和表达过程中的关键参与者。

核酸的功能包括遗传信息的传递、蛋白质的合成控制等。

3.多糖多糖是由多个单糖分子经由糖苷键链接而成的高分子化合物。

生物体内包括多种多糖类物质,如纤维素、淀粉、糖原、聚合葡萄糖和壳多糖等。

在生物体中,多糖具有贮存能量、提供结构支持以及信号识别等生理功能。

4.脂质脂质是一类疏水性的生物大分子,其结构包括脂类、脂肪酸、甘油和磷脂等。

脂质在细胞膜的形成和维护、能量的储存和释放以及信号转导等生理过程中扮演着重要的角色。

二、酶和酶动力学1. 酶的结构和功能酶是生物体内催化生物化学反应的分子,在酶的作用下,生物体内的化学反应可以以更快的速度进行。

酶的结构包括活性位、辅基和蛋白质结构。

酶的功能包括催化特定的反应、特异性和高效性等。

2. 酶动力学酶动力学研究的是酶催化反应的速率和反应机理。

酶动力学参数包括最大反应速率(Vmax)、米氏常数(Km)、酶的抑制和激活等。

酶动力学研究为理解生物化学反应提供了重要的信息。

三、生物体内代谢途径糖代谢包括糖异生途径、糖酵解途径、糖原代谢和半乳糖代谢等,主要在细胞内进行,产生能量和代谢产物。

2. 脂质代谢脂质代谢包括脂质合成、脂质分解、脂蛋白代谢和胆固醇代谢等,涉及到脂肪酸、三酰甘油、磷脂和胆固醇等的合成和降解过程。

3. 氨基酸代谢氨基酸代谢包括氨基酸合成、氨基酸降解、氨基酸转运等,对于蛋白质的降解和合成具有重要的作用,同时参与许多代谢途径。

生物化学ppt课件

生物化学ppt课件

核酸的调节与疾病
核酸代谢异常可能引起疾病,如癌症 等,因此核酸代谢的调节对于维持身 体健康至关重要。
CHAPTER 04
生物化学与医学
疾病的发生与生物化学
疾病的发生
生物化学是许多疾病发生的基础,如糖尿病、心 血管疾病、癌症等。这些疾病的形成与生物化学 过程有关,如糖代谢、脂质代谢、蛋白质代谢等 。
生物化学的历史与发展
• 生物化学作为一门独立的学科,起源于20世纪初。早期的生物化学研究主要集中在蛋白质、糖类、脂肪、核酸等生物大分 子的结构和功能方面。随着技术的进步,生物化学逐渐深入到分子水平,对基因表达、蛋白质合成、代谢调控等生命过程 的研究取得了重大突破。近年来,随着生物信息学和系统生物学的发展,对生物化学的研究和应用也进一步扩大和深化。
要支持。
代谢组学技术
通过对生物体内代谢产 物的全面分析,代谢组 学技术能够揭示生物过 程和疾病发生的潜在机
制。
生物化学在医学领域的应用前景
总结词
应用广泛、潜力巨大
药物研发
生物化学对药物研发过程中的靶点筛选、 药效评估等方面具有决定性作用。
疾病诊断
生物治疗
基于生物化学原理的检测方法能够快速、 准确地诊断多种疾病。
营养与健康
生物化学研究营养与健康的关系,如营养不足或过剩对健 康的影响。这些研究为营养学提供理论依据,从而为预防 和治疗营养相关疾病提供帮助。
营养与疾病
生物化学研究营养与疾病的关系,如某些营养素缺乏可能 导致某些疾病的发生。这些研究为预防和治疗这些疾病提 供理论依据。
CHAPTER 05
生物化学的未来与发展
新兴的生物化学技术
第一季度
第二季度
第三季度
第四季度

生物化学简介

生物化学简介

生物化学简介生物化学是研究生物体内分子组成、结构与功能之间关系的学科,它致力于揭示生命现象的化学基础以及生物分子的相互作用。

通过对生物分子的研究,生物化学为我们解开了许多生命奥秘,为生物医学、农业科学和环境保护等领域的发展做出了重要贡献。

一、生物分子的组成和结构生物分子是构成生命体的基本单位。

它们包括蛋白质、核酸、碳水化合物和脂质等多种类别。

蛋白质是生物体内最为重要的有机分子之一,它们由氨基酸组成,通过肽键相连形成多肽链或蛋白质。

核酸则是存储和传递遗传信息的分子,包括DNA和RNA。

碳水化合物是生物体内能量的主要来源,同时也具有结构性作用。

脂质是构成细胞膜的主要成分,同时还参与了许多生物过程。

二、生物分子的功能生物分子在生命过程中具有多种复杂的功能。

蛋白质能够参与到生命体的几乎所有生物过程中,如酶催化反应、结构支持、传递信号等。

核酸则通过DNA复制和转录过程,参与到遗传信息的传递和表达中。

碳水化合物作为能量储存和供应的分子,在细胞呼吸和光合作用等过程中发挥重要作用。

脂质不仅构成了细胞膜的基本骨架,还参与到细胞信号传导和物质转运等过程中。

三、生物化学与生命现象的关联生物化学研究揭示了生命现象的化学基础和分子机制。

通过研究生物分子的结构和功能,我们可以深入了解生命体的生长、发展和繁殖过程。

例如,生物化学研究发现了DNA的双螺旋结构,揭示了DNA复制和遗传信息传递的分子机制,为遗传学的发展奠定了基础。

此外,生物化学还揭示了许多疾病的发生发展机制,为药物设计和治疗提供了理论依据。

四、生物化学的应用领域生物化学的研究成果为许多领域提供了理论和技术支持。

在生物医学领域,生物化学为疾病诊断和治疗提供了重要依据,如药物研发、基因工程和诊断试剂的制备等。

在农业科学领域,生物化学的进展促进了作物良种的选育和育种技术的改进,提高了农作物产量和质量。

另外,生物化学的研究也使得环境科学得以发展,为环境污染治理和新能源的开发做出贡献。

生物化学王镜岩第三版

生物化学王镜岩第三版

生物化学的发展历程
01
02
03
早期探索
自古以来,人类就对生物 体内的物质变化产生了兴 趣,如酿酒、制药等。
学科形成
19世纪末,随着生物学和 化学的独立发展,生物化 学逐渐形成一门交叉学科。
现代发展
随着科学技术的发展,生 物化学在分子生物学、遗 传学等领域取得了重要突 破。
生物化学的应用领域
医学研究
酶的活性中心
酶分子中与底物结合并催化反应的区域。
酶的活性调节
酶的活性受到多种因素的调节,如抑制剂、 激活剂等。
03 生物代谢途径与调控
糖代谢途径与调控
糖酵解
葡萄糖在无氧条件下被分解为丙酮酸, 产生少量ATP。
糖异生
由非糖物质转变为葡萄糖或糖原的过 程。
磷酸戊糖途径
葡萄糖氧化分解的一种方式,主要产 生NADPH和戊糖。
蛋白质的二级结构
指蛋白质中局部主链的折叠方式, 如α-螺旋、β-折叠等。
蛋白质的三级结构
指整条肽链中全部氨基酸残基 的相对空间位置,由二级结构 单元的排列顺序和连接方式决 定。
蛋白质的性质
蛋白质具有两性解离、沉淀、 变性、结晶等性质。
核酸的结构与性质
01
02
03
04
DNA的结构
DNA由两条反向平行的多核 苷酸链组成,通过碱基配对形
成双螺旋结构。
DNA的理化性质
DNA具有紫外吸收、热变性 、酸碱稳定性等。
RNA的结构
RNA由单链核糖核酸组成, 分为mRNA、tRNA和rRNA
等类型。
RNA的理化性质
RNA具有碱基配对、热不稳 定性和水解性质等。
酶的结构与性质
酶的化学本质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核酸研究技术综述核酸分子杂交原理:摘要核酸分子杂交技术是20世纪70年代发展起来的一种崭新的分子生物学技术。

它是基于DNA分子碱基互补配对原理,用特异性的核酸探针与待测样品的DNA/RNA形成杂交分子的过程。

分子杂交实验依据其形式的不同可以分为液相杂交、固相杂交、原位杂交,而固相杂交又可以分为菌落杂交、点/狭缝杂交、Southern印迹杂交和Northern印迹杂交。

各类型杂交稻基本原理和步骤是基本相同的,只是选用的杂交原材料、点样方法有所不同。

一、核酸分子杂交原理DNA分子是由两条单链形成的双股螺旋结构,维系这一结构的力是两条单链碱基氢键和同一单链上相邻碱基间的范德华力。

在一定条件下,双螺旋之间氢键断裂,双螺旋解开,形成无规则线团,DNA分子成为单链,这一过程称作变性或融解。

加热、改变DNA融解的pH值,或有机溶剂等理化因素,均可使DNA变性。

变性的DNA粘度下降,沉降速度增加,浮力上升,紫外光吸收增加。

在温度升高引起的DNA变性过程中,DNA的变性会在一个很狭窄的温度范围内发生,这一温度范围的重点被称作融解温度Tm。

Tm值得大小取决于核酸分子的G-C含量,核酸分子的G-C含量越高,其Tm值越高。

因为G-C碱基之间有三个氢键,而A-T碱基之间只有两个氢键。

变性DNA只要消除变性条件,具有碱基互补的单链又可以重新结合形成双链,这一过程称作复性。

根据这一原理,将一种核酸单链标记成为探针,再与另一种核酸单链进行碱基互补配对,可以形成异源核酸分子的双链结构,这一过程称作杂交(hybridization)。

杂交分子的形成并不要求两条单链的碱基顺序完全互补,所以不同来源的核酸单链只要彼此之间有一定程度的互补序列就可以形成杂交体。

常规PCR方法在布病检测和诊断中的应用20世纪90年代一种新的生物技术聚合酶链式反应( PCR )以其快速、高效、准确成为检测布病较为多用的工具, 特别是近年来PCR与其他一些检测技术(如核酸杂交、荧光标记技术)的联合应用展现了良好的实际应用前景。

PCR 是在体外对靶基因进行扩增的分子生物学技术, 如果说前面提到的细菌学和免疫学诊断技术是根据布病的表型进行诊断, 那么PCR技术是根据其靶基因对布鲁氏菌进行检测, 它以其特异性强和敏感性高的特点, 使其更具有说服力。

用PCR 技术可以特异性的检测到很微量的布鲁氏菌。

据Huber 等[ 3] 报道用引物对其DNA 进行扩增后, 最少可检测到0 1 pg的布鲁氏菌DNA。

荧光定量PCR方法的原理、方法、应用荧光定量( real t ime) PCR 技术是1996年由美国Applied B iosystem s公司首先推出的一种新的核酸定量检测技术[ 14 ] , 该技术在PCR 仪反应系统中引入了荧光标记探针, 通过荧光信号积累实时监测整个PCR 进程, 使PCR 扩增和产物检测全处在封闭的条件下进行, 从而具有了实时监测、无污染、快速、灵敏、精确、特异性强等诸多特点, 极大的克服了常规PCR技术的不足, 其最主要的优势是能对未经PCR扩增的原始模板进行准确定量, 扩大了PCR的应用范围, 荧光定量PCR 已广泛用于生物学, 临床医学等多个领域。

核酸疫苗的特点、组成及在动物免疫中的应用:1990 年美国学者Wolff 等在一个偶然的机会发现给小鼠直接肌肉注射纯化的DNA 或RNA表达质粒,可使基因在局部肌细胞内表达,并且这种表达可持续数月,甚至终生,这一重大发现,掀起了疫苗研究史上的第3 次革命。

随后大量的研究初步表明,这种携带有某种病原体目的基因的真核表达载体,作为核酸疫苗通过各种基因转移途径进入机体细胞后,被机体细胞吸收且通过宿主细胞的表达加工机构合成目的蛋白抗原,以MHC-Ⅰ或MHC-Ⅱ类分子抗原处理和输送途径将抗原递呈给T、B 淋巴细胞,诱导机体产生特异性抗体和相应的体液免疫和细胞免疫反应,从而达到预防疾病的目的。

传统疫苗包括减毒活疫苗、灭活疫苗等。

减毒活疫苗既能诱导细胞免疫又能诱导体液免疫,但安全性较差,存在着毒力返祖、残余毒力等问题,同时,对机体的应激刺激也较强;灭活疫苗主要诱导体液免疫,诱导细胞免疫的能力较弱,难以产生完全的免疫;近年发展起来的基因工程亚单位疫苗虽然具有诸多的优点,但由于受兽用疫苗价格的限制, 不太可能将有效抗原成分充分提纯, 而往往使用其粗制品,因此在安全性方面必须要考虑粗制品中不明成分可能产生的副作用;另一种基因工程疫苗———重组活载体疫苗常因诱发对载体自身的免疫反应而不便重复使用。

相对而言,核酸疫苗在疫病防制中就具备了许多优点。

核酸疫苗可同时诱导体液免疫和细胞免疫应答,且不受母源抗体的影响病毒感染性疾病的免疫清除主要依赖特异性体液免疫应答和细胞免疫反应。

体液免疫反应主要是特异性中和细胞外游离的病毒,而细胞免疫反应则主要通过特异性CTL 识别、杀伤、破坏病毒感染的细胞,清除细胞内感染的病毒,后者在抗病毒感染中尤为重要。

而DNA 疫苗除能较好诱导体液免疫外,还是CTL细胞最有效的诱导剂,常诱导强烈的细胞免疫,这是大部分传统疫苗所不具备的。

另外,核酸疫苗虽可以正常诱导产生母源抗体,但DNA 载体不会被来自母体的抗体所识别,因而在初龄动物的早期免疫中具有十分重要的意义,可广泛地应用于许多疾病的早期预防。

有利于多价或多联疫苗的研制核酸疫苗的最大优点是可以通过质粒携带多个目的抗原基因而构成多价或多联疫苗。

由于各种DNA 疫苗在结构和组成上具有相似的理化特性,因而有人甚至设想根据质粒DNA 的特点,应用嵌合质粒载体技术,在调控元件下插入同一病原体不同血清型微生物,或不同病原体的保护性抗原基因,从而研制生产出所谓的“万能疫苗”,接种一种疫苗即可产生对多种疾病的免疫保护。

核酸疫苗更加安全稳定核酸疫苗没有常规疫苗和基因工程活载体疫苗可能因毒力返祖,或残留毒力而引发疾病的危险。

到目前为止,还没有发现核酸疫苗诱发对载体自身的免疫反应,因而也不必担心机体对病毒性载体的免疫应答反应和载体对机体的不良影响。

一般来说,外源DNA不会整合到宿主染色体中,应用起来安全稳定。

这些对保证质粒在体内长期稳定地表达具有重要意义。

同时鉴于目的基因和质粒载体本身没有免疫原性,因此还可以使用同一载体反复制备核酸疫苗,不存在重组活载体疫苗那样的抗载体排斥现象。

由于核酸疫苗仅仅含有核酸成分,没有蛋白质等其他辅助成分,在体内不能进行病毒复制,因而无感染复制的危险。

核酸疫苗生产周期短,使用、保存和运输方便制备核酸疫苗只需对编码抗原基因进行设计及克隆,不需在体外表达和纯化蛋白。

作为一种重组质粒,核酸疫苗易在工程菌内大量扩增,且提纯方法比较简单,可在较短时间内大量扩增并获得纯化产物,不仅明显降低生产成本,而且有利于质量控制。

DNA 疫苗的使用剂量很小,常以μg(肌肉内接种等途径)或ng(皮内途径特别是基因枪技术)计算。

由于质粒DNA 性质相对稳定,对理化因素及环境的抗性较强,因而易保存、便于运输,不易失活,并可制成粉未针剂,不需冷冻,易于推广应用。

核酸疫苗的组成和免疫方式:核酸疫苗的组成病原体抗原的编码基因和作为真核细胞表达载体的质粒是构成相应核酸疫苗的两大基本要素。

病原体抗原的编码基因可以是完整的一组基因或单个基因的DNA,也可以是编码抗原决定簇的一段核苷酸序列,其表达产物是病原体的有效成分,可引发保护性免疫。

因此,核酸疫苗侯选基因的筛选实质上是比较分析不同保护性抗原编码基因在被免疫动物体内的表达与诱导保护作用的过程,从中筛选出最理想的一个或几个目的基因。

已有资料表明,单个的抗原基因可能不足以产生足够的保护性免疫反应,多个抗原基因的选择对于免疫反应可能更为有效。

因此,对于那些具有不同亚型的病原体应选择较保守的保护性抗原基因,同时在基因疫苗中克隆入同一病原体的多种保护性抗原基因,也可以使机体对该病原体产生较全面的免疫力。

真核表达质粒是核酸疫苗的基本骨架之一。

表达载体表达抗原蛋白的能力越强,诱发宿主产生的免疫应答能力越强。

不同类型的启动子、增强子、内含子序列、翻译起始序列、转录终止序列、mRNA 的稳定性等调控元件均可直接影响基因表达效率。

其中启动子是最为关键的元件。

常见的启动子有CMV(巨细胞病毒)启动子和SV40(猿猴病毒)启动子, 它们多来源于病毒基因组, 具有强烈的转录激活作用, 诱导抗原基因在真核细胞内有效表达。

核酸疫苗的免疫方式核酸疫苗的导入和免疫方式不同,所涉及的抗原提呈细胞、抗原提呈方式均不同,故可产生不同类型、不同强弱的免疫应答。

进行核酸免疫时,通常都是将纯化的裸DNA 质粒盐溶液直接注射入宿主体内,但如何让DNA 被机体成功表达是一个重要问题。

目前已报道的核酸疫苗导入途径包括肌肉、皮内、皮下、腹腔、静脉、鼻内、气管内注射及点眼、气雾免疫和口服等。

其中,肌肉注射是导入疫苗DNA 的一种简便而有效的方法。

业已证明,肌肉细胞对外源DNA的摄取能力是其他组织的100~1 000 倍,表达水平也较高。

近年来,有关核酸疫苗在动物疫病防治方面的研究报道不断增加,应用范围也在逐渐扩大。

如在猪皮肤细胞表达流感病毒的HA 基因的DNA疫苗,在小鼠中表达伪狂犬病病毒gD 基因的DNA 疫苗,分别显示了诱人的前景。

Jenkins 等应用由微小隐孢子虫表面蛋白cDNA 制备的DNA 疫苗对分娩前母羊进行了免疫接种, 结果证实此DNA 疫苗可诱导母羊产生免疫性应答,在血清和初乳中检测出抗体。

此外,猪瘟病毒基因疫苗、伪狂犬病基因疫苗、猪繁殖障碍与呼吸综合征基因疫苗、水泡性口炎病毒基因疫苗、牛病毒性腹泻病毒基因疫苗等核酸疫苗已先后被报道。

核酸免疫技术:利用基因重组技术直接将编码某种蛋白的外源基因注入宿主体内, 使之在体细胞中表达, 这种外源蛋白能被机体的免疫系统识别而激发免疫反应。

与传统疫苗不同, 核酸疫苗兼有亚单位疫苗的安全性和减毒疫苗诱导全面免疫反应的高效力, 还可对变异迅速的病原体提供交叉保护作用。

在短短的七年中发展迅速, 各种病毒、细菌、寄生虫的核酸疫苗研究相继展开, 硕果累累, 人们普遍认为作为第三代疫苗的核酸疫苗前景广阔。

肝炎病毒核酸疫苗国外研究起步较早, 从乙肝疫苗到丙肝疫苗甚至戊肝疫苗都在进行。

纳米金磁颗粒的组装法制备及其核酸分离性能:金磁颗粒是一种近年来被深入研究的磁分离载体,纳米金的表面化学性质使得胺基或巯基衍生的生物分子能方便地组装在金磁颗粒表面并最大程度地保持其空间构象和生物活性,纳米金的光学和电学性质便于对应用体系进行光学或电化学检测,而磁性粒子的方便操纵特征有利于金磁颗粒在分离和纯化目标分子时能借助外磁场快速回收,因而金磁颗粒在生物大分子的分离与检测、免疫分析等领域显示了很好的应用性能金磁颗粒的制备路线大致分为如下两类:一种是在Fe3O4等纳米磁粒表面直接复合金,即在磁性粒子存在下借助化学还原、超声辐照、γ射线辐照、光化学法等方法将氯金酸还原为金单质并以颗粒或壳层的形态结合在磁粒表面,获得草莓型金磁颗粒或核壳型金磁颗粒[4-7]。

相关文档
最新文档