人教A版高中数学必修五第二章习题课(1).docx
高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析
![高中数学人教A版必修五优化练习:第二章 2.4 第1课时 等比数列的概念和通项公式 Word版含解析](https://img.taocdn.com/s3/m/f440530d2b160b4e767fcf65.png)
[课时作业][A 组 基础巩固]1.已知等比数列{a n }中,a 1=32,公比q =-12,则a 6等于( )A .1B .-1C .2 D.12解析:由题知a 6=a 1q 5=32×⎝⎛⎭⎫-125=-1,故选B.答案:B2.已知数列a ,a (1-a ),a (1-a )2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0且a ≠1C .a ≠0D .a ≠0或a ≠1解析:由a 1≠0,q ≠0,得a ≠0,1-a ≠0,所以a ≠0且a ≠1.答案:B3.在等比数列{a n }中,a 2 016=8a 2 013,则公比q 的值为( )A .2B .3C .4D .8解析:q 3=a 2 016a 2 013=8,∴q =2.答案:A4.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243解析:∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1×26=64.答案:A5.等比数列{a n }各项均为正数,且a 1,12a 3,a 2成等差数列,则a 3+a 4a 4+a 5=( ) A .-5+12 B.1-52 C.5-12 D .-5+12或5-12解析:a 1,12a 3,a 2成等差数列,所以a 3=a 1+a 2,从而q 2=1+q ,∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=1q =5-12. 答案:C6.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 解析:设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5.答案:57.数列{a n }为等比数列,a n >0,若a 1·a 5=16,a 4=8,则a n =________.解析:由a 1·a 5=16,a 4=8,得a 21q 4=16,a 1q 3=8,所以q 2=4,又a n >0,故q =2,a 1=1,a n =2n -1.答案:2n -18.若k,2k +2,3k +3是等比数列的前3项,则第四项为________.解析:由题意,(2k +2)2=k (3k +3),解得k =-4或k =-1,又k =-1时,2k +2=3k +3=0,不符合等比数列的定义,所以k =-4,前3项为-4,-6,-9,第四项为-272. 答案:-2729.已知数列{a n }的前n 项和S n =2a n +1,求证:{a n }是等比数列,并求出通项公式. 证明:∵S n =2a n +1,∴S n +1=2a n +1+1.∴S n +1-S n =a n +1=(2a n +1+1)-(2a n +1)=2a n +1-2a n .∴a n +1=2a n .①又∵S 1=a 1=2a 1+1,∴a 1=-1≠0.由①式可知,a n ≠0,∴由a n +1a n=2知{a n }是等比数列,a n =-2n -1. 10.在各项均为负的等比数列{a n }中,2a n =3a n +1,且a 2·a 5=827. (1)求数列{a n }的通项公式;(2)-1681是否为该数列的项?若是,为第几项? 解析:(1)∵2a n =3a n +1,∴a n +1a n =23,数列{a n }是公比为23的等比数列,又a 2·a 5=827,所以a 21⎝⎛⎭⎫235=⎝⎛⎭⎫233,由于各项均为负,故a 1=-32,a n =-⎝⎛⎭⎫23n -2. (2)设a n =-1681,则-1681=-⎝⎛⎭⎫23n -2, ⎝⎛⎭⎫23n -2=⎝⎛⎭⎫234,n =6,所以-1681是该数列的项,为第6项. [B 组 能力提升]1.设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=230,那么a 3·a 6·a 9·…·a 30等于( )A .210B .220C .216D .215解析:由等比数列的定义,a 1·a 2·a 3=⎝⎛⎭⎫a 3q 3,故a 1·a 2·a 3·…·a 30=⎝⎛⎭⎫a 3·a 6·a 9·…·a 30q 103.又q =2,故a 3·a 6·a 9·…·a 30=220.答案:B2.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( )A .21B .42C .63D .84解析:设等比数列公比为q ,则a 1+a 1q 2+a 1q 4=21,又因为a 1=3,所以q 4+q 2-6=0,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=42.答案:B3.设{a n }为公比q >1的等比数列,若a 2 014和a 2 015是方程4x 2-8x +3=0的两根,则a 2 016+a 2 017=________.解析:4x 2-8x +3=0的两根分别为12和32,q >1,从而a 2 014=12,a 2 015=32,∴q =a 2 015a 2 014=3.a 2 016+a 2 017=(a 2 014+a 2 015)·q 2=2×32=18.答案:184.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12可得q 9=3,又a n -1a n a n +1=a 31q 3n -3=324,因此q 3n -6=81=34=q 36,所以n =14. 答案:145.有四个实数,前三个数依次成等比数列,它们的积为-8;后三个数依次成等差数列,它们的积为-80,求这四个数.解析:由题意,设这四个数为b q,b ,bq ,a ,则⎩⎪⎨⎪⎧ b 3=-8.2bq =a +b ,b 2aq =-80解得⎩⎪⎨⎪⎧ a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧ a =-8,b =-2,q =52.∴这四个数依次为1,-2,4,10或-45,-2,-5,-8.6.已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明数列{lg(1+a n )}是等比数列;(2)求{a n }的通项公式.解析:(1)证明:由已知得a n +1=a 2n +2a n , ∴a n +1+1=a 2n +2a n +1=(a n +1)2. ∵a 1=2,∴a n +1+1=(a n +1)2>0. ∴lg(1+a n +1)=2lg(1+a n ),即lg (1+a n +1)lg (1+a n )=2, 且lg(1+a 1)=lg 3.∴{lg(1+a n )}是首项为lg 3,公比为2的等比数列.(2)由(1)知,lg(1+a n )=2n -1·lg 3=lg 312n -, ∴1+a n =312n -,∴a n =312n --1.。
高中数学必修5复习题及答案(A组)免费范文
![高中数学必修5复习题及答案(A组)免费范文](https://img.taocdn.com/s3/m/0b9cf39bddccda38366bafbe.png)
篇一:高中数学必修5课后习题答案人教版高中数学必修5课后习题解答第一章解三角形1.1两角和与差的正弦、余弦和正切公式练习(P4) 1、(1)a?14,b?19,B?105?;(2)a?18cm,b?15cm,C?75?. 2、(1)A?65?,C?85?,c?22;或A?115?,C?35?,c?13;(2)B?41?,A?24?,a?24. 练习(P8) 1、(1)A?39.6?,B?58.2?,c?4.2 cm;(2)B?55.8?,C?81.9?,a?10.5 cm. 2、(1)A?43.5?,B?100.3?,C?36.2?;(2)A?24.7?,B?44.9?,C?110.4?. 习题1.1 A组(P10) 1、(1)a?38cm,b?39cm,B?80?;(2)a?38cm,b?56cm,C?90? 2、(1)A?114?,B?43?,a?35cm;A?20?,B?137?,a?13cm(2)B?35?,C?85?,c?17cm;(3)A?97?,B?58?,a?47cm;A?33?,B?122?,a?26cm; 3、(1)A?49?,B?24?,c?62cm;(2)A?59?,C?55?,b?62cm;(3)B?36?,C?38?,a?62cm;4、(1)A?36?,B?40?,C?104?;(2)A?48?,B?93?,C?39?;习题1.1 A组(P10)1、证明:如图1,设?ABC的外接圆的半径是R,①当?ABC时直角三角形时,?C?90?时,?ABC的外接圆的圆心O在Rt?ABC的斜边AB上.BCAC在Rt?ABC中,?sinA,?sinBABABab即?sinA,?sinB 2R2R所以a?2RsinA,b?2RsinB 又c?2R?2R?sin902RsinC (第1题图1)所以a?2RsinA, b?2RsinB, c?2RsinC②当?ABC时锐角三角形时,它的外接圆的圆心O在三角形内(图2),作过O、B的直径A1B,连接AC, 1?90?,?BACBAC则?A1BC直角三角形,?ACB. 11在Rt?A1BC中,即BC?sin?BAC1, A1Ba?sin?BAC?sinA, 12R所以a?2RsinA,同理:b?2RsinB,c?2RsinC③当?ABC时钝角三角形时,不妨假设?A为钝角,它的外接圆的圆心O 在?ABC外(图3)(第1题图2)作过O、B的直径A1B,连接AC.1则?A1BC直角三角形,且?ACB?90?,?BAC?180?11在Rt?A1BC中,BC?2Rsin?BAC, 1即a?2Rsin(180?BAC)即a?2RsinA同理:b?2RsinB,c?2RsinC综上,对任意三角形?ABC,如果它的外接圆半径等于则a?2RsinA,b?2RsinB, c?2RsinC2、因为acosA?bcosB,所以sinAcosA?sinBcosB,即sin2A?sin2B 因为0?2A,2B?2?,(第1题图3)所以2A?2B,或2A?2B,或2A?22B. 即A?B或A?B?所以,三角形是等腰三角形,或是直角三角形.在得到sin2A?sin2B后,也可以化为sin2A?sin2B?0 所以cos(A?B)sin(A?B)?0 A?B??2.?2,或A?B?0即A?B??2,或A?B,得到问题的结论.1.2应用举例练习(P13)1、在?ABS中,AB?32.2?0.5?16.1 n mile,?ABS?115?,根据正弦定理,得AS?ASAB?sin?ABSsin(6520?)?AB?sin?ABS16.1?sin115sin(6520?)∴S到直线AB的距离是d?AS?sin2016.1?sin115sin207.06(cm). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在?ABP中,?ABP?180?,?BPA?180(?)ABP?180(?)?(180?)在?ABP中,根据正弦定理,APAB?sin?ABPsin?APBAPa?sin(180?)sin(?)a?sin(?)AP?sin(?)asin?sin(?)所以,山高为h?APsinsin(?)2、在?ABC中,AC?65.3m,?BAC?25?2517?387?47??ABC?909025?2564?35?ACBC?sin?ABCsin?BAC?747AC?sin?BAC65.?3?sinBC?m 9.8?sin?ABCsin?6435井架的高约9.8m.200?sin38?sin29?3、山的高度为?382msin9?练习(P16) 1、约63.77?. 练习(P18) 1、(1)约168.52 cm2;(2)约121.75 cm2;(3)约425.39 cm2. 2、约4476.40 m2a2?b2?c2a2?c2?b2?c?3、右边?bcosC?ccosB?b?2ab2aca2?b2?c2a2?c2?b22a2?a左边? 【类似可以证明另外两个等式】 ?2a2a2a习题1.2 A组(P19)1、在?ABC中,BC?35?0.5?17.5 n mile,?ABC?14812622?根据正弦定理,14?8)?,1BAC?1801102248ACB?78(180ACBC?sin?ABCsin?BACBC?sin?ABC17.?5s?in22AC?8.8 2n milesin?BACsin?48货轮到达C点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在?BCD中,?BCD?301040?,?BDC?180?ADB?1804510125?1CD?3010 n mile3CDBD根据正弦定理, ?sin?CBDsin?BCD10BD?sin?(18040125?)sin40?根据正弦定理,10?sin?40sin1?5在?ABD中,?ADB?451055?,?BAD?1806010110??ABD?1801105515?ADBDABADBDAB根据正弦定理,,即sin?ABDsin?BADsin?ADBsin15?sin110?sin55?10?sin?40?sin1?5BD?sin1?5?10s?in40?6.8 4n mile AD?sin1?10si?n110?sin70BD?sin5?5?10sin40?sin55n mile 21.6 5sin1?10sin15?sin70如果一切正常,此船从C开始到B所需要的时间为:AD?AB6.8?421.6520?min ?6?01?0?60 86.983030即约1小时26分59秒. 所以此船约在11时27分到达B岛. 4、约5821.71 m5、在?ABD中,AB?700 km,?ACB?1802135124?700ACBC根据正弦定理,sin124?sin35?sin21?700?sin?35700?sin21?AC?,BC?sin1?24sin124?700?sin?357?00s?in21AC?BC7?86.89 kmsin1?24si?n124所以路程比原来远了约86.89 km.6、飞机离A处探照灯的距离是4801.53 m,飞机离B处探照灯的距离是4704.21 m,飞机的高度是约4574.23 m.1507、飞机在150秒内飞行的距离是d?1000?1000? m3600dx? 根据正弦定理,sin(8118.5?)sin18.5?这里x是飞机看到山顶的俯角为81?时飞机与山顶的距离.d?sin18.5??tan8114721.64 m 飞机与山顶的海拔的差是:x?tan81sin(8118.5?)山顶的海拔是20250?14721.64?5528 m8、在?ABT中,?ATB?21.418.62.8?,?ABT?9018.6?,AB?15 mABAT15?cos18.6?根据正弦定理,,即AT? ?sin2.8?cos18.6?sin2.8?15?cos18.6?塔的高度为AT?sin21.4?sin21.4106.19 msin2.8?326?189、AE97.8 km 60在?ACD中,根据余弦定理:AB?AC??101.235 根据正弦定理,(第9题)?sin?ACDsin?ADCAD?sin?ADC5?7si?n66sin 44?ACD?0.51AC101.2356?ACD?30.9??ACB?13330.9?6?10 2?在?ABC中,根据余弦定理:AB?245.93222AB?AC?B2C245.9?3101?.22352204sBAC?0.58co? 472?AB?AC2?245.?93101.235?BAC?54.21?在?ACE中,根据余弦定理:CE?90.75222AE2?EC?A2C97.8?90.?751012.235sAEC?0.42co? 542?AE?EC2?97?.890.75?AEC?64.82?0AEC?(1?8?0?7?5?)?7564.8?2 18?所以,飞机应该以南偏西10.18?的方向飞行,飞行距离约90.75 km.10、如图,在?ABCAC??37515.44 km222AB?AC?B2C6400?37515?2.44422200?0.692 ?BAC? 42?AB?AC2?640?037515.448,2 ?BAC?9043.?8 ?BAC?133.? 2所以,仰角为43.82?1111、(1)S?acsinB28?33?sin45326.68 cm222aca36(2)根据正弦定理:,c?sinCsin66.5?sinAsinCsinAsin32.8?11sin66.5?S?acsinB362sin(32.866.5?)?1082.58 cm222sin32.8?2(3)约为1597.94 cm122?12、nRsin.2na2?c2?b213、根据余弦定理:cosB?2acaa2所以ma?()2?c2?2c?cosB22a2a2?c2?b22?()?c?a?c? B22ac12212?()2[a2?4c2?2(a?c?2b)]?()[2(b?c2)?a2]222(第13题)篇二:人教版高中数学必修5期末测试题及其详细答案数学必修5试题一.选择题(本大题共10小题,每小题5分,共50分)1.由a1?1,d?3确定的等差数列?an?,当an?298时,序号n等于()A.99B.100C.96D.1012.?ABC中,若a?1,c?2,B?60?,则?ABC的面积为() A.12B.2 C.1 D.3.在数列{an}中,a1=1,an?1?an?2,则a51的值为()A.99 B.49 C.102 D. 101 4.已知x?0,函数y?4x?x的最小值是() A.5 B.4C.8 D.6 5.在等比数列中,a11?2,q?12,a1n?32,则项数n为() A. 3B. 4C. 5D. 66.不等式ax2?bx?c?0(a?0)的解集为R,那么()A. a?0,0B. a?0,0C. a?0,0D. a?0,0?x?y?17.设x,y满足约束条件??y?x,则z?3x?y的最大值为()y2A. 5B. 3C. 7 D. -88.在?ABC中,a?80,b?100,A?45?,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解9.在△ABC中,如果sinA:sinB:sinC?2:3:4,那么cosC等于()A.23 B.-2113 C.-3D.-410.一个等比数列{an}的前n项和为48,前2n项和为60,则前3n项和为( A、63B、108 C、75 D、83)二、填空题(本题共4小题,每小题5分,共20分) 11.在?ABC中,B?450,c?b?A=_____________; 12.已知等差数列?an?的前三项为a?1,a?1,2a?3,则此数列的通项公式为______三、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤) 15(12分) 已知等比数列?an?中,a1?a3?10,a4?a6?16(14分)(1) 求不等式的解集:?x(2)求函数的定义域:y?17 (14分)在△ABC中,BC=a,AC=b,a,b是方程x2?0的两个根,且2cos(A?B)?1。
高中数学人教A版必修五优化练习第二章2.5第1课时等比数列的前n项和公式含解析
![高中数学人教A版必修五优化练习第二章2.5第1课时等比数列的前n项和公式含解析](https://img.taocdn.com/s3/m/1e2bbfb567ec102de2bd89fd.png)
[课时作业] [A 组 基础巩固]1.等比数列{a n }中,a n =2n ,则它的前n 项和S n =( ) A .2n -1 B .2n -2 C .2n +1-1 D .2n +1-2解析:a 1=2,q =2, ∴S n =2×(1-2n )1-2=2n +1-2.答案:D2.在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和S 10=( )A .2-128B .2-129C .2-1210D .2-1211解析:设等比数列{a n }的公比为q ,由a 1=1,a 4=18,得q 3=18,解得q =12,于是S 10=a 1(1-q 10)1-q =1-(12)101-12=2-129.答案:B3.等比数列{a n }中,已知前4项之和为1,前8项和为17,则此等比数列的公比q 为( ) A .2 B .-2 C .2或-2D .2或-1解析:S 4=a 1·(1-q 4)1-q =1,①S 8=a 1·(1-q 8)1-q =17,②②÷①得1+q 4=17,q 4=16. q =±2. 答案:C4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33 C .31D .29解析:设数列{a n }的公比为q ,∵a 2·a 3=a 21·q 3=a 1·a 4=2a 1, ∴a 4=2.又∵a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54,∴q =12.∴a 1=a 4q 3=16.S 5=a 1·(1-q 5)1-q =31.答案:C5.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( ) A .2 B.12 C .4D.14解析:a 3=3S 2+2,a 4=3S 3+2,等式两边分别相减得a 4-a 3=3a 3,即a 4=4a 3,∴q =4. 答案:C6.若数列{a n }满足a 1=1,a n +1=2a n ,n =1,2,3,…,则a 1+a 2+…+a n =________. 解析:由a n +1a n =2,∴{a n }是以a 1=1,q =2的等比数列,故S n =1×(1-2n )1-2=2n-1.答案:2n -17.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 解析:∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3, 即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2), ∴4(1+q )=1+3(1+q +q 2),解之得q =13.答案:138.等比数列的前n 项和S n =m ·3n +2,则m =________. 解析:设等比数列为{a n },则 a 1=S 1=3m +2,S 2=a 1+a 2=9m +2⇒a 2=6m , S 3=a 1+a 2+a 3=27m +2⇒a 3=18m , 又a 22=a 1·a 3⇒(6m ) 2=(3m +2)·18m ⇒m =-2或m =0(舍去).∴m =-2. 答案:-29.在等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20. 解析:设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d , 由a 3,a 6,a 10成等比数列,得a 3a 10=a 26, 即(10-d )(10+6d )=(10+2d )2.整理,得10d 2-10d =0.解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7, 于是S 20=20a 1+20×192d =20×7+190=330.10.已知数列{a n }的前n 项和S n =2n -n 2,a n =log 5b n ,其中b n >0,求数列{b n }的前n 项和T n .解析:当n ≥2时,a n =S n -S n -1 =(2n -n 2)-[2(n -1)-(n -1)2] =-2n +3,当n =1时,a 1=S 1=2×1-12=1也适合上式, ∴{a n }的通项公式a n =-2n +3(n ∈N *). 又a n =log 5b n , ∴log 5b n =-2n +3, 于是b n =5-2n +3,b n +1=5-2n +1,∴b n +1b n =5-2n +15-2n +3=5-2=125. 因此{b n }是公比为125的等比数列,且b 1=5-2+3=5,于是{b n }的前n 项和T n =5⎣⎡⎦⎤1-⎝⎛⎭⎫125n 1-125=12524⎣⎡⎦⎤1-⎝⎛⎭⎫125n .[B 组 能力提升]1.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析:根据前n 项和S n =2n -1,可求出a n =2n -1,由等比数列的性质可得{a 2n}仍为等比数列,且首项为a 21,公比为q 2,∴a 21+a 22+…+a 2n =1+22+24+…+22n -2=13(4n -1). 答案:D2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 答案:B3.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:由题意,⎩⎪⎨⎪⎧a 1+a 4=9a 2·a 3=a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n=a 1(1-q n )1-q =1-2n 1-2=2n -1.答案:2n -14.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________.解析:由S n +a 1=2a n ,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n ,所以a 1+a 5=2+25=34. 答案:345.(2016·高考全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.6.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解析:(1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.。
高中数学必修5第二章课后习题解答新版
![高中数学必修5第二章课后习题解答新版](https://img.taocdn.com/s3/m/02422efe195f312b3169a582.png)
新课程标准数学必修5第二章课后习题解答第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N n a n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =.4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72n n a =⨯+﹪.3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列 练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-.(2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++ 126(6)(6)(6)a d a d a d =++++++ 126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1na n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和.2.4等比数列练习(P52) 1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++ . 令,1,2,k i b a i +== ,则数列12,,k k a a ++ 可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++ 是等比数列. (2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a aq k a a a +-===== ≥. 所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列. (3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a , 则1112231111121110(1)k k a a aq k a a a +-===== ≥ 所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅=所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯= 还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩ ①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪. 那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n q --=.那么数列{}n a12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为50505013100.052 5.6310 m m 5.6310 m a a q ==⨯≈⨯=⨯ 这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-=- 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a qS q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++ 555S q S =+55(1)q S =+50= 同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元) 习题2.5 A 组(P61) 1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=--(2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n nn n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++ ……①则 212(1)n n n xS x x n x nx -=+++-+ ……②①-②得,21(1)1n n n x S x x x nx --=++++- ……③当1x =时,(1)1232n n n S n +=++++= ;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=- 所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n =6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62)1、证明:11111()(1())1n n n n n n n n n bb b a b a a a b b a a b a a a b a+++---+++=+++==-- 2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++=141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略 5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++= ﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元) 故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+;(3)7(101)9n n a =-; (4)n a =n a3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n nS a a a a n d a n d a n d ++=+++=++++++ 2121()22n a a a n n d S n d =++++⨯=+ 容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-.因此,当工作时间小于10天时,选用第一种付费方式.10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -.所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b += 所以111502n n a a -=+,115003502n n n b a a -=-=- 如果1300a =,则2300a =,3300a =,…,10300a =6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯.由以上两式得,11437(1)13n n n a --=⨯+-⨯ 所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)。
人教A版高中数学必修五第二章测试.doc
![人教A版高中数学必修五第二章测试.doc](https://img.taocdn.com/s3/m/8339674558f5f61fb6366653.png)
人教A 版必修5第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12D .-6解析 a 3=a 2-a 1=6-3=3,a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6.答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98解析 a 2-a 1=-1-(-9)3=83,b 22=(-1)×(-9)=9,∴b 2=-3,∴b 2(a 2-a 1)=-3×83=-8.答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A .2B .3C .4D .5解析 依题意,得-10=-12+82(n +2),∴n =3. 答案 B7.数列{a n }满足a 1=1,且a n +1a n =(n +1)n ,则此数列( )A .等比数列B .等差数列C .既等比又等差数列D .既非等差又非等比数列 解析a n +1a n =n +1n,a 1=1, ∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=nn -1.n -1n -2 (21)·1 =n . 答案 B8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100 D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n}中也是确定常数的项是( ) A.S7B.S4C.S13D.S16解析a2+a4+a15=a1+d+a1+3d+a1+14d=3a1+18d=3(a1+6d)=3a7,∴a7为常数.∴S13=a1+a132×13=13a7为常数.答案 C10.等比数列{a n}中,a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,则通项是( )A.2n-1B.2nC.2n+1D.2n+2解析∵a2+a3+a4+a5+a6=q(a1+a2+a3+a4+a5),∴62=q×31,∴q=2.∴S5=a1(1-25)1-2=31.∴a1=1,∴a n=2n-1.答案 A11.已知等差数列{a n}中,|a3|=|a9|,公差d<0,则使其前n项和S n取得最大值的自然数n是( )A.4或5 B.5或6C.6或7 D.不存在解析由d<0知,{a n}是递减数列,∵|a3|=|a9|,∴a3=-a9,即a3+a9=0.又2a6=a3+a9=0,∴a6=0.∴S5=S6且最大.答案 B12.若a,b,c成等比数列,则方程ax2+bx+c=0( )A.有两个不等实根B.有两相等的实根C.无实数根D.无法确定解析a,b,c成等比数列,∴b2=ac>0.而Δ=b2-4ac=ac-4ac=-3ac<0.∴方程ax2+bx+c=0无实数根.答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x,y,z,18成等比数列,则x=____________.解析依题意,有18=2·q4,∴q4=9,q=± 3.∴x=2q=±2 3.答案±2 314.在数列{a n}中,a1=2,a n=2a n-1a n-1+2(n≥2,n∈N*),则a10=____________.解析由a n=2a n-1a n-1+2(n≥2,n∈N*),得1a n=1a n-1+12,即1a n-1a n-1=12. ∴⎩⎨⎧⎭⎬⎫1a n 成等差数列,1a 1=12,d =12.∴1a n =12+(n -1)×12=n2. ∴a n =2n ,a 10=15.答案 1515.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15.答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }是等差数列,a 1=2,a 1+a 2+a 3=12. (1)求数列{a n }的通项公式;(2)令b n =3a n ,求数列{b n }的前n 项和S n .解 (1)∵数列{a n }是等差数列,由a 1+a 2+a 3=12,得3a 2=12,∴a 2=4,又a 1=2,∴公差d =2. ∴数列{a n }的通项公式为a n =2n . (2)b n =32n =9n ,b n +1b n =9n +19n =9, ∴数列{b n }是等比数列,首项为9,公比q =9. ∴数列{b n }的前n 项和 S n =9(1-9n )1-9=98(9n -1).18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q ,则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n=log 3q (为常数),∴{b n }是公差为log 3q 的等差数列. (2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎪⎨⎪⎧b 11≥0,b 12<0,即⎩⎪⎨⎪⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b 111=-411.∴-25≤d <-411.19.(2010·山东)(12分)已知等差数列{a n }满足a 3=7,a 5+a 7=26.{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{a n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d , 由于a 3=7,a 5+a 7=26, 所以a 1+2d =7,2a 1+10d =26, 解得a 1=3,d =2.由于a n =a 1+(n -1)d ,S n =12[n (a 1+a n )],所以a n =2n +1,S n =n 2+2n . (2)因为a n =2n +1, 所以a 2n -1=4n (n +1), 因此T n =b 1+b 2+…+b n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1 =n4(n +1),所以数列{b n }的前n 项和T n =n4(n +1).20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n .21.(12分)等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .解 (1)依题意,有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2). 由于a 1≠0,故2q 2+q =0. 又q ≠0,从而q =-12.(2)由已知,可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3,∴a 1=4.从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列;(2)若数列{a n }的前n 项和为S n ,求S n . 解 (1)∵a n -2a n -1-2n -1=0, ∴a n 2n -a n -12n -1=12, ∴{a n2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12,∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1 ① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n=2n -1-n ·2n , ∴S n =(n -1)·2n +1.。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5
![高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5](https://img.taocdn.com/s3/m/e5a118df71fe910ef02df822.png)
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
人教a版必修5学案:第2章《习题课1-常见的数列求和及应用》(含答案)
![人教a版必修5学案:第2章《习题课1-常见的数列求和及应用》(含答案)](https://img.taocdn.com/s3/m/32e332e4998fcc22bcd10dca.png)
第二章 习题课1 常见的数列求和及应用自主学习知识梳理1.等差数列的前n 项和公式:S n =____________=____________.2.等比数列前n 项和公式:①当q =1时,S n =________;②当q ≠1时,S n =____________=____________.3.常见求和公式有:①1+2+…+n =____________.②1+3+5+…+(2n -1)=________.③2+4+6+…+2n =________.*④12+22+32+…+n 2=16n (n +1)(2n +1). *⑤13+23+33+…+n 3=14n 2(n +1)2.自主探究拆项成差求和经常用到下列拆项公式,请补充完整.①1n (n +1)=________________. ②1(2n -1)(2n +1)=________________. ③1n (n +1)(n +2)=____________________. ④1n +n +1=________________. ⑤1a +b=________________. 对点讲练知识点一 分组求和例1 求和:S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2.总结 某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列的求和公式分别求和,从而得出原数列的和.变式训练1 求数列1,1+a,1+a +a 2,…,1+a +a 2+…+a n -1,…的前n 项和S n (其中a ≠0).知识点二 拆项相消例2 求和:122-1+132-1+142-1+…+1n 2-1,(n ≥2).总结 如果数列的通项公式可转化为f (n +1)-f (n )的形式,常采用拆项求和法.变式训练2 求和:1+11+2+11+2+3+…+11+2+3+…+n.知识点三 奇偶并项例3 求和:S n =-1+3-5+7-…+(-1)n (2n -1).变式训练3 已知数列-1,4,-7,10,…,(-1)n ·(3n -2),…,求其前n 项和S n .求数列前n 项和,一般有下列几种方法.1.错位相减(前面已复习)适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.2.分组求和把一个数列分成几个可以直接求和的数列.3.拆项相消有时把一个数列的通项公式分成二项差的形式,相加过程消去中间项,只剩有限项再求和.4.奇偶并项当数列通项中出现(-1)n 或(-1)n +1时,常常需要对n 取值的奇偶性进行分类讨论.5.倒序相加例如,等差数列前n 项和公式的推导方法.课时作业一、选择题1.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a n n所确定的数列{b n }的前n 项之和是( )A .n (n +2) B.12n (n +4) C.12n (n +5) D.12n (n +7) 2.已知数列{a n }为等比数列,前三项为a ,12a +12,13a +13,则T n =a 21+a 22+…+a 2n 等于( )A .9⎣⎡⎦⎤1-⎝⎛⎭⎫23nB .81⎣⎡⎦⎤1-⎝⎛⎭⎫23n C .81⎣⎡⎦⎤1-⎝⎛⎭⎫49n D.815⎣⎡⎦⎤1-⎝⎛⎭⎫49n 3.设数列1,(1+2),(1+2+4),…,(1+2+22+…+2n -1)的前m 项和为2 036,则m的值为( )A .8B .9C .10D .114.在50和350之间末位数是1的所有整数之和是( )A .5 880B .5 539C .5 280D .4 8725.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .0B .1C .-1D .2题 号1 2 3 4 5 答 案二、填空题6.(1002-992)+(982-972)+…+(22-12)=________. 7.在100内所有能被3整除但不能被7整除的正整数之和是________.8.若1+3+5+…+(2x -1)11·2+12·3+13·4+…+1x (x +1)=132 (x ∈N *),则x =________. 三、解答题9.求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1).10.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0. (1)求{a n }的通项;(2)求{nS n }的前n 项和T n .习题课1 常见的数列求和及应用知识梳理1.n (a 1+a n )2 na 1+n (n -1)2d 2.na 1 a 1(1-q n )1-q a 1-a n q 1-q 3.n (n +1)2n 2 n 2+n 自主探究①1n -1n +1 ②12⎝⎛⎭⎫12n -1-12n +1 ③12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2) ④n +1-n ⑤1a -b(a -b) 对点讲练例1 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2 =⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n 当x =±1时,S n =4n.综上知,S n =⎩⎪⎨⎪⎧ 4n , x =±1(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n , x ≠±1. 变式训练1 解 当a =1时,则a n =n ,于是S n =1+2+3+…+n =n (n +1)2. 当a ≠1时,a n =1-a n 1-a =11-a(1-a n ). ∴S n =11-a[n -(a +a 2+…+a n )] =11-a ⎣⎢⎡⎦⎥⎤n -a (1-a n )1-a =n 1-a -a (1-a n )(1-a )2. ∴S n =⎩⎪⎨⎪⎧n (n +1)2 (a =1),n 1-a -a (1-a n)(1-a )2 (a ≠1). 例2 解 ∵1n 2-1=1(n -1)(n +1) =12⎝⎛⎭⎫1n -1-1n +1, ∴原式=12⎣⎡ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15⎦⎤+…+⎝⎛⎭⎫1n -1-1n +1 =12⎝⎛⎭⎫1+12-1n -1n +1=34-2n +12n (n +1).变式训练2 解 ∵a n =11+2+…+n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴S n =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2n n +1.例3 解 当n 为奇数时,S n =(-1+3)+(-5+7)+(-9+11)+…+[(-2n +5)+(2n -3)]+(-2n +1)=2·n -12+(-2n +1)=-n. 当n 为偶数时,S n =(-1+3)+(-5+7)+…+[(-2n +3)+(2n -1)]=2·n 2=n. ∴S n =(-1)n n (n ∈N *).变式训练3 解 n 为偶数时,令n =2k (k ∈N *), S n =S 2k =-1+4-7+10+…+(-1)n (3n -2)=(-1+4)+(-7+10)+…+[(-6k +5)+(6k -2)]=3k =32n ; 当n 为奇数时,令n =2k +1 (k ∈N *).S n =S 2k +1=S 2k +a 2k +1=3k -(6k +1)=-3n +12. ∴S n =⎩⎨⎧ -3n +12 (n 为奇数),3n 2 (n 为偶数).课时作业1.C [∵a 1+a 2+…+a n =n 2(2n +4)=n 2+2n . ∴b n =n +2,∴b n 的前n 项和S n =n (n +5)2.] 2.D [由⎝⎛⎭⎫12a +122=a ⎝⎛⎭⎫13a +13, 解得a =3(a =-1舍去).∴a 1=3,a 2=2,a 3=43,∴{a 2n }是以a 21=9为首项,以49为公比的等比数列, ∴T n =9⎣⎡⎦⎤1-⎝⎛⎭⎫49n 1-49=815⎣⎡⎦⎤1-⎝⎛⎭⎫49n .] 3.C [a n =2n -1,S n =2n +1-n -2,代入选项检验,即得m =10.]4.A [S =51+61+…+341=30×(341+51)2=5 880.]5.B [S 17=(1-2)+(3-4)+…+(15-16)+17=9, S 33=(1-2)+(3-4)+…+(31-32)+33=17, S 50=(1-2)+(3-4)+…+(49-50)=-25,所以S 17+S 33+S 50=1.]6.5 050解析 (1002-992)+(982-972)+…+(22-12)=100+99+…+2+1=100×(100+1)2=5 050. 7.1 473解析 100内所有能被3整除的数的和为S 1=3+6+…+99=33×(3+99)2=1 683. 100内所有能被21整除的数的和为S 2=21+42+63+84=210. ∴100内能被3整除不能被7整除的所有正整数之和为S 1-S 2=1 683-210=1 473.8.11解析 1+3+5+…+(2x -1)11·2+12·3+…+1x (x +1)=x 21-1x +1=x 2xx +1=x (x +1)=132,∴x =11. 9.解 考察通项a n =1+12+14+…+12n -1=1-(12)n 1-12=2-12n -1 ∴S n =(2-120)+(2-121)+(2-122)+…+(2-12n -1) =2n -(1+121+122+…+12n -1) =2n -1-12n 1-12=2n -2+12n -1 ∴S n =2n -2+12n -1. 10.解 (1)由210S 30-(210+1)S 20+S 10=0, 得S 30-S 20S 20-S 10=1210,设公比为q , 则a 1(1-q 30)1-q -a 1(1-q 20)1-q a 1(1-q 20)1-q -a 1(1-q 10)1-q=1210,即q 10=1210, 所以q =12,所以a n =12·⎝⎛⎭⎫12n -1=12n , 即a n =12n ,n =1,2,…. (2)因为{a n }是首项a 1=12,公比q =12的等比数列. 所以S n =12⎝⎛⎭⎫1-12n 1-12=1-12n ,nS n =n -n 2n . 则数列{nS n }的前n 项和T n =(1+2+…+n )-⎝⎛⎭⎫12+222+…+n 2n ① T n 2=12(1+2+…+n ) -⎝ ⎛⎭⎪⎫122+223+…+n -12n +n 2n +1② ①-②,得T n 2=12(1+2+…+n )-⎝⎛⎭⎫12+122+…+12n +n 2n +1=n (n +1)4-12⎝⎛⎭⎫1-12n 1-12+n 2n +1, 即T n =n (n +1)2+12n -1+n 2n -2.。
人教a版必修5学案:第2章《习题课2-简单的递推数列及应用》(含答案)
![人教a版必修5学案:第2章《习题课2-简单的递推数列及应用》(含答案)](https://img.taocdn.com/s3/m/3fe69f2c192e45361066f5d5.png)
第二章 习题课2 简单的递推数列及应用自主学习知识梳理在实际考查中常常涉及求一些简单的递推数列的通项公式问题. 1.累加法:a n +1=a n +f (n ) (f (n )可求和) a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+f (1)+f (2)+…+f (n -1) 2.累乘法:a n +1=a n ·f (n ) (f (n )为含n 的代数式)a n =a 1·a 2a 1·a 3a 2·…·a na n -1=a 1·f (1)·f (2)·…·f (n -1)3.转化法:a n +1=pa n +q (pq ≠0,p ≠1)方法一 设a n +1-x =p (a n -x ),则a n +1=pa n +(1-p )x∴(1-p )x =q ,∴x =q1-p .∴a n -q 1-p =⎝⎛⎭⎫a 1-q 1-p ·p n -1∴a n =⎝⎛⎭⎫a 1-q 1-p p n -1+q 1-p.方法二 ∵a n +1=pa n +q ,∴a n =pa n -1+q∴a n +1-a n =p (a n -a n -1)=…=p n -1(a 2-a 1)转化为迭加法求解. 4.S n 与a n 的混合关系式有两个思路:(1)消去S n ,转化为a n 的递推关系式,再求a n ;(2)消去a n ,转化为S n 的递推关系式,求出S n 后,再求a n .自主探究1.试写出用累加法推导等差数列通项公式的过程.2.试写出用累乘法推导等比数列通项公式的过程.对点讲练知识点一 累加法与累乘法求通项例1 已知:a 1=2,a n +1=a n +(2n +1),求a n .变式训练1 已知:a 1=1,a n +1=2n ·a n ,求a n .知识点二 化为基本数列求通项例2 已知:a 1=1,a n +1=2a n +3,求a n .变式训练2 设数列{a n }满足:a 1=1,a 2=53,a n +2=53a n +1-23a n (n =1,2,…).令b n =a n+1-a n .(1)求证:数列{b n }是等比数列,并求b n ; (2)求数列{a n }的通项公式.知识点三 已知a n 与S n 的混合关系式,求a n .例3 已知{a n }是各项为正的数列,且S n =12⎝⎛⎭⎫a n +1a n .求a n 与S n .变式训练3 设数列{a n }的前n 项和为S n ,若对任意的n ∈N *,都有S n =2a n -3n . (1)求数列{a n }的首项a 1及递推关系式a n +1=f (a n ); (2)求通项公式a n .1.近几年高考常以递推公式为依托,设计出一些新颖灵活、难度适中、富有时代气息的试题.在学习时对递推公式及其应用应给予适当的重视.2.递推公式是表示数列的一种重要方法.由一些简单的递推公式可以求得数列的通项公式.本课时主要学习了累加法、累乘法以及化归为等差数列或等比数列的基本方法.课时作业一、选择题1.数列{a n }满足a n +1=a n +n ,且a 1=1,则a 5的值为( ) A .9 B .10 C .11 D .122.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( )A .13B .10C .9D .63.在数列{a n }中,a 1=1,a n +1=a n +2n -1,则a n 的表达式为( )A .3n -2B .n 2-2n +2C .3n -1 D .4n -34.数列{a n }中,a 3=2,a 7=1,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 11的值为( )A .1 B.12 C.13 D.145.已知数列{a n }中,a 1=1,a 2=3,a n =a n -1-a n -2 (n ≥3).那么S 2 011的值是( ) A .1 B .2 C .3 D .4题 号1 2 3 4 5 答 案二、填空题6.数列{a n }中,a 1=1,a n +1a n =a 2n+(-1)n +1 (n ∈N *),则a 4a 2=________. 7.已知数列{a n }满足a 1=1,a n +1=nn +1a n,则a n =________.8.在数列{a n }中,a n +1=2a n 2+a n,对所有正整数n 都成立,且a 7=12,则a 5=______.三、解答题9.已知S n =4-a n -12n -2,求a n 与S n .10.某地区位于沙漠边缘,人与沙漠进行长期不懈的斗争,到2002年底全地区的绿化率已达到30%,从2003年开始,每年将出现以下变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.(1)设全区面积为1,2002年底绿洲面积为a 1=310,经过1年(指2003年底)绿洲面积为a 2,经过n 年绿洲面积为a n +1,求证:数列{a n -45}为等比数列;(2)问:至少经过多少年的努力才能使全区的绿洲面积超过60%(年数取正整数).习题课2 简单的递推数列及应用自主探究1.解 ∵a n +1-a n =d∴⎭⎪⎬⎪⎫a 2-a 1=da 3-a 2=d … …a n-a n -1=d n -1个式子相加得:a n -a 1=(n -1)d ,∴a n =a 1+(n -1)d .或a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =a 1+(n -1)d .2.解 ∵a n +1a n=q (q ≠0),∴⎭⎪⎬⎪⎫a 2a 1=q a 3a 2=q ……an an -1=q n -1个式子相乘得: a n a 1=q n -1,∴a n =a 1q n -1或a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=a 1q n -1. 对点讲练例1 解 a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+3+5+…+(2n -1)=1+3+5+…+(2n -1)+1=n 2+1.变式训练1 解 a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·21·1=21+2+3+…+(n -1)=2n (n -1)2.例2 解 方法一 ∵a 1=1,a 2=5,a 2-a 1=4.a n +1-a n =2(a n -a n -1)=2n -1(a 2-a 1)=2n +1 ∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+22+23+…+2n =21+22+…+2n -1=2n +1-3.方法二 设a n +1-x =2(a n -x ),则a n +1=2a n -x . ∴x =-3,a n +1+3=2(a n +3).∴a n +3=(a 1+3)·2n -1=2n +1,∴a n =2n +1-3.变式训练2 (1)证明 ∵b n +1=a n +2-a n +1=⎝⎛⎭⎫53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ∴b n +1b n =23(n =1,2,3,…) ∴{b n }是等比数列,公比q =23,首项b 1=a 2-a 1=23.∴b n =⎝⎛⎭⎫23n.(2)解 a n +1-a n =⎝⎛⎭⎫23n.∴a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+b 1+b 2+…+b n -1=1+⎝⎛⎭⎫23+⎝⎛⎭⎫232+…+⎝⎛⎭⎫23n -1 =3⎣⎡⎦⎤1-⎝⎛⎭⎫23n . 例3 解 ∵S n =12⎝⎛⎭⎫a n +1a n ,∴2S n =a n +1a n , ∴2S n =S n -S n -1+1S n -S n -1,∴S n +S n -1=1S n -S n -1,∴S 2n -S 2n -1=1, ∴{S 2n }是一个等差数列,公差为1,首项为S 21, 易求得S 21=1. ∴S 2n =1+(n -1)×1=n .∴S n =n , ∴a n =n -n -1.变式训练3 解 (1)a 1=S 1=2a 1-3,∴a 1=3. ∵S n =2a n -3n ,∴S n +1=2a n +1-3(n +1). ∴S n +1-S n =2a n +1-2a n -3.∴a n +1=2a n +1-2a n -3,∴a n +1=2a n +3. (2)∵a n +1=2a n +3,∴a n +1+3=2(a n +3).∴{a n +3}是等比数列,公比为2,首项为a 1+3=6.∴a n +3=(a 1+3)·2n -1=6·2n -1=3·2n , ∴a n =3·2n -3. 课时作业1.C [a 5=a 4+4=a 3+3+4=a 2+2+3+4 =a 1+1+2+3+4=11.]2.D [∵a n =2n -12n =1-12n ,∴S n =n -⎝⎛⎭⎫12+122+…+12n =n -1+12n ,又∵S n =32164=5+164,∴n -1+12n =5+164,∴n =6.]3.B [a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+3+5+…+(2n -3)=1+(n -1)2=n 2-2n +2.]4.B [设数列⎩⎨⎧⎭⎬⎫1a n +1的公差为d ,则1a 7+1=1a 3+1+4d , ∴12=13+4d ,d =124,1a 11+1=1a 7+1+4d , ∴1a 11+1=12+16=23,∴a 11+1=32,∴a 11=12.]5.A [∵a n +1=a n -a n -1=(a n -1-a n -2)-a n -1, ∴a n +1=-a n -2,∴a n +3=-a n . ∴a n +6=-a n +3=-(-a n )=a n . ∴{a n }是周期数列且T =6. ∵a 1+a 2+a 3+a 4+a 5+a 6=(a 1+a 4)+(a 2+a 5)+(a 3+a 6)=0,∴S 2 010=0,∴S 2 011=S 2 010+a 2 011=a 2 011=a 1=1.] 6.1312解析 a 2=2,a 3=32,a 4a 2=a 4a 3a 2a 3=a 23+1a 22-1=1312.7.1n解析 由a n +1a n =n n +1得:a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n =1n ,∴a n a 1=1n ,a n =1n 或(n +1)a n +1=na n =…=2a 2=a 1=1,∴a n =1n . 8.1解析 ∵a n +1=2a n2+a n,∴1a n +1=1a n +12. ∴⎩⎨⎧⎭⎬⎫1a n 是等差数列且公差d =12.∴1a 7=1a 5+2d =1a 5+1=2,∴a 5=1. 9.解 ∵S n =4-a n -12n -2,∴S n -1=4-a n -1-12n -3∴S n -S n -1=a n =a n -1-a n +12n -3-12n -2∴a n =12a n -1+⎝⎛⎭⎫12n -1,∴a n⎝⎛⎭⎫12n -a n -1⎝⎛⎭⎫12n -1=2. ∴2n a n -2n -1a n -1=2.∴{2n a n }是等差数列,d =2,首项为2a 1.∵a 1=S 1=4-a 1-12-1=2-a 1,∴a 1=1.∴2n a n =2+2(n -1)=2n ,∴a n =n ·⎝⎛⎭⎫12n -1. ∴S n =4-a n -12n -2=4-n ·12n -1-12n -2=4-n +22n -1.10.(1)证明 因为2002年底绿洲面积为a 1=310,所以2002年底的沙漠面积为1-a 1=710,经过n -1年后绿洲面积为a n ,沙漠面积为1-a n , 由题意得,再过一年,即经过n 年后,绿洲面积为a n +1=(1-a n )×16%+a n (1-4%),即a n +1=45a n +425.所以a n +1-45=45(a n -45).又因为a 1-45=310-45=-12,所以数列{a n -45}是以45为公比,-12为首项的等比数列.(2)解 由(1)知,a n -45=⎝⎛⎭⎫-12×⎝⎛⎭⎫45n -1,所以a n =45-12·⎝⎛⎭⎫45n -1, 设经过n 年的努力可使全区的绿洲面积超过60%,即a n +1>60%.所以45-12·⎝⎛⎭⎫45n >35,所以⎝⎛⎭⎫45n <25. 验证n =1,2,3,4时,⎝⎛⎭⎫45n >25.当n =5时,⎝⎛⎭⎫455=1 0243 125<25,故至少需要5年的努力,全区的绿洲面积超过60%.。
高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)
![高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)](https://img.taocdn.com/s3/m/39d0b59bb307e87100f696ca.png)
2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5的全部内容。
第2课时等比数列的性质[课时作业][A组基础巩固]1.如果数列{a n}是等比数列,那么()A.数列{a错误!}是等比数列B.数列{2a n}是等比数列C.数列{lg a n}是等比数列D.数列{na n}是等比数列解析:设b n=a错误!,则错误!=错误!=错误!2=q2,∴{b n}为等比数列;2a n+12a n=2a n+1-a n≠常数;当a n〈0时,lg a n无意义;设c n=na n,则错误!=错误!=错误!·q≠常数.答案:A2.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于( )A.9 B.3C.-3 D.-9解析:a1=a2-3,a3=a2+3,a4=a2+3×2=a2+6,由于a1,a3,a4成等比数列,a错误!=a1a4,即 (a2+3)2=(a2-3)(a2+6),解得a2=-9。
答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256解析:由已知,得a1a19=16。
2020学年高中数学3.2一元二次不等式及其解法第2课时一元二次不等式及其解法习题课练习人教A版必修5
![2020学年高中数学3.2一元二次不等式及其解法第2课时一元二次不等式及其解法习题课练习人教A版必修5](https://img.taocdn.com/s3/m/29f75fc1804d2b160a4ec07b.png)
第2课时 一元二次不等式及其解法习题课1.不等式2x +1x≤0的解集为A.⎝ ⎛⎦⎥⎤-12,0B.⎣⎢⎡⎭⎪⎫-12,0 C.⎝⎛⎭⎪⎫-∞,-12∪[0,+∞)D.⎝⎛⎦⎥⎤-∞,-12∪[0,+∞) 解析 原不等式等价于⎩⎪⎨⎪⎧(2x +1)x ≤0x ≠0, 即⎩⎪⎨⎪⎧-12≤x ≤0x ≠0,即-12≤x <0.故原不等式的解集为⎣⎢⎡⎭⎪⎫-12,0. 答案 B2.若不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 均成立,则实数a 的取值范围是 A.(-2,2] B.[-2,2] C.(2,+∞)D.(-∞,2]解析 当a -2=0,即a =2时,符合题意;当a -2≠0时,需满足a -2<0且Δ=4(a -2)2+4(a -2)×4<0,即-2<a <2,故选A.答案 A3.已知集合P ={0,m },Q ={x |2x 2-5x <0,x ∈Z},若P ∩Q ≠∅,则m 等于 A.1 B.2 C.1或25D.1或2解析 因为Q =⎩⎨⎧⎭⎬⎫x |0<x <52,x ∈Z )={1,2},所以m =1或2. 答案 D4.若关于x 的不等式x 2-4x ≥m 对任意x ∈[0,1]恒成立,则实数m 的取值范围是________.解析 设f (x )=x 2-4x =(x -2)2-4, 所以f (x )在x ∈[0,1]上单调递减,所以当x =1时,函数f (x )取得最小值f (1)=-3. 所以要使x 2-4x ≥m 对于任意x ∈[0,1]恒成立, 则需m ≤-3. 答案 (-∞,-3]5.某商品每件成本价80元,售价为100元,每天售出100件,若售价降x 成,售出商品数量就增加850x ,且售价不低于成本价.(1)设该商店一天营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.解析 (1)由题意得y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝ ⎛⎭⎪⎫1+850x ,因售价不低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,所以y =20(10-x )(50+8x ), 定义域为[0,2].(2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134,所以x 的取值范围是⎣⎢⎡⎦⎥⎤12,2.[限时45分钟;满分80分]一、选择题(每小题5分,共30分)1.不等式x -43-2x<0的解集是A.⎩⎨⎧⎭⎬⎫x |32≤x <4) B.{x |3<x <4}C.⎩⎨⎧⎭⎬⎫x |x <32或x >4)D.⎩⎨⎧⎭⎬⎫x |32<x <4) 解析 不等式x -43-2x <0等价于⎝ ⎛⎭⎪⎫x -32(x -4)>0,∴不等式的解集是⎩⎨⎧⎭⎬⎫x |x <32或x >4).答案 C2.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是 A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m 2-4>0,解得m <-2或m >2.答案 C3.关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式ax +bx -2>0的解集是A.(-∞,0)∪(1,+∞)B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞)解析 ∵ax -b >0的解集为(1,+∞), ∴a =b >0,∴ax +b x -2>0⇔a (x +1)x -2>0, ∴x <-1或x >2. 答案 D4.若集合A ={x |ax 2-ax +1<0}=∅,则实数a 的值的集合是 A.{a |0<a <4} B.{a |0≤a <4} C.{a |0<a ≤4}D.{a |0≤a ≤4}解析 ∵集合A ={x |ax 2-ax +1<0}=∅, ∴不等式ax 2-ax +1<0的解集为∅. 若a =0,则ax 2-ax +1<0⇔1<0, 其解集为∅,符合题意.若a ≠0,则⎩⎪⎨⎪⎧a >0,Δ=a 2-4a ≤0,解之得:0<a ≤4. 综上0≤a ≤4. 答案 D5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3 000+20x -0.1x 2(0<x <240,x ∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是A.100台B.120台C.150台D.180台解析 3 000+20x -0.1x 2≤25x ⇔x 2+50x -30 000≥0,解得x ≤-200(舍去)或x ≥150. 答案 C6.(能力提升)对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(-∞,1)∪(2,+∞)解析 f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4. 令g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时,其图象是一条线段. 由题意当a ∈[-1,1]时,g (a )>0恒成立,故⎩⎪⎨⎪⎧g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0, 解之,得x >3或x <1. 答案 B二、填空题(每小题5分,共15分)7.不等式x +5(x -1)2≥2的解为________.解析 原不等式可化为⎩⎪⎨⎪⎧2(x -1)2≤x +5,x ≠1,即⎩⎪⎨⎪⎧2x 2-5x -3≤0,x ≠1, 解之,得-12≤x <1或1<x ≤3.答案 ⎣⎢⎡⎭⎪⎫-12,1∪(1,3] 8.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围为________. 解析 由题意,知Δ=4-4×1×(k 2-1)<0,即k 2>2, ∴k >2或k <- 2.答案 (-∞,-2)∪(2,+∞)9.(能力提升)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.解析 由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f (m )=2m 2-1<0,f (m +1)=2m 2+3m <0,解得-22<m <0. 答案 ⎝ ⎛⎭⎪⎫-22,0 三、解答题(本大题共3小题,共35分)10.(11分)不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切x ∈R 恒成立,求实数m 的取值范围.解析 若m 2-2m -3=0,则m =-1或m =3,当m =-1时,原不等式为4x -1<0对一切x ∈R 不恒成立,不合题意;当m =3时,原不等式为-1<0对一切x ∈R 恒成立,符合题意.若m 2-2m -3≠0,设f (x )=(m 2-2m -3)x 2-(m -3)x -1,由题意得⎩⎪⎨⎪⎧m 2-2m -3<0,Δ=[-(m -3)]2+4(m 2-2m -3)<0, 解得-15<m <3,综上所述,实数m 的取值范围是-15<m ≤3.11.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解析 设函数f (x )=x 2+ax +3-a 在x ∈[-2,2]时的最小值为g (a ),则(1)当对称轴x =-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,解得a ≤73,与a >4矛盾,不符合题意.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=3-a -a 24≥0,解得-6≤a ≤2,此时-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,解得a ≥-7,此时-7≤a <-4. 综上,a 的取值范围为-7≤a ≤2.12.(12分)(能力提升)某摩托车生产企业,上年度生产车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆,本年度为适应市场需要,计划提高产品档次,适度增加投入成本,若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x ,同时预计年销量增加的比例为0.6x ,已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 之间的关系式;(2)为使本年度的利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内? 解析 (1)每辆车投入成本增加的比例为x ,则每辆车投入成本为1×(1+x )万无,出厂价为 1.2×(1+0.75x )万元,年销量为 1 000×(1+0.6x )辆.所以y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x ), 即y =-60x 2+20x +200(0<x <1). (2)欲保证本年度的利润比上年度有所增加,则⎩⎪⎨⎪⎧y -(1.2-1)×1 000>0,0<x <1, 即⎩⎪⎨⎪⎧-60x 2+20x >0,0<x <1. 所以0<x <13.即为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应在⎝ ⎛⎭⎪⎫0,13范围内.。
新版高中数学人教A版必修5习题:第二章数列 习题课1(1)
![新版高中数学人教A版必修5习题:第二章数列 习题课1(1)](https://img.taocdn.com/s3/m/1ae61adb998fcc22bcd10df0.png)
习题课(一)求数列的通项公式课时过关·能力提升基础巩固1在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为().A.2B.6C.7D.8解析:1+2+3+4+…+n=n(n+1)2,当n=6时,共21项,故第25项为7.答案:C2在数列{a n}中,a1=2,a n+1=3a n+2,则a2 016的值为().A.32 015B.32 015-1C.32 016D.32 016-1答案:D3数列17,29,311,413,…的一个通项公式是().A.a n=n2n+3B.an=n2n-3C.a n=n2n+5D.an=n2n-5答案:C4已知数列{a n}满足a n+2=a n+1+a n,若a1=1,a5=8,则a3等于().A.1B.2C.3D.72解析:由a n+2=a n+1+a n ,a 1=1,a 5=8,得a 3=a 2+1,a 4=a 3+a 2,消去a 2得a 4=2a 3-1.又a 5=a 4+a 3=8,即8=3a 3-1,所以a 3=3.故选C . 答案:C5已知数列前n 项和S n =2n 2-3n+1,n ∈N *,则它的通项公式为 . 解析:当n=1时,a 1=S 1=0;当n ≥2时,a n =S n -S n-1=2n 2-3n+1-[2(n-1)2-3(n-1)+1]=4n-5, 故a n ={0,n =1,4n -5,n ≥2.答案:a n ={0,n =1,4n -5,n ≥26在数列{a n }中,a 1=1,a 2=5,a n+2=a n+1-a n (n ∈N *),则a 2 016= . 解析:∵a 1=1,a 2=5,a n+2=a n+1-a n ,∴a 1=1,a 2=5,a 3=4,a 4=-1,a 5=-5,a 6=-4,a 7=1,a 8=5. ∴数列{a n }是周期数列,周期为6. ∴a 2016=a 6×336=a 6=-4.答案:-47在数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n = . 解析:∵a n+1=a n +n+1,∴a n+1-a n =n+1.∴a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,各式相加得a n -a 1=2+3+4+…+n =(n+2)(n -1)2. 又a 1=2,∴a n =(n+2)(n -1)2+2=n 2+n+22.答案:n 2+n+228已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n+1,则a n = . 解析:∵log 2(S n +1)=n+1,∴S n =2n+1-1.当n=1时,a 1=S 1=3;当n ≥2时,a n =S n -S n-1=2n+1-2n =2n .∵当n=1时,上式不满足, ∴a n ={3,n =1,2n ,n ≥2.答案:{3,n =1,2n ,n ≥29根据下列条件,求数列的通项公式a n . (1)在数列{a n }中,a 1=1,a n+1=a n +2n ;(2)在数列{a n }中,a n+1=n+2n·a n ,a 1=4. 解(1)∵a n+1=a n +2n ,∴a n+1-a n =2n .∴a 2-a 1=2,a 3-a 2=22,a 4-a 3=23,…,a n -a n-1=2n-1,以上各式两边分别相加得a n -a 1=2+22+23+…+2n-1=2(1-2n -1)1-2=2n −2.又a 1=1,∴a n =2n -2+1=2n -1.(2)∵a n+1=n+2n ·a n ,∴a n+1a n=n+2n .∴a2a1=31,a3a2=42,a4a3=53,a5a4=64,…,a na n-1=n+1n-1.以上各式两边分别相乘得a n a1=n(n+1)1×2=n(n+1)2.又a1=4,∴a n=2n(n+1).10已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求{a n}的通项公式;(2)求{b n}的前n项和.解(1)由已知,a1b2+b2=b1,b1=1,b2=13,得a1=2.所以数列{a n}是首项为2,公差为3的等差数列,通项公式为a n=3n-1.(2)由(1)和a n b n+1+b n+1=nb n得b n+1=b n3,因此{b n}是首项为1,公比为13的等比数列.记{b n}的前n项和为S n,则S n=1-(13)n1-13=32−12×3n-1.能力提升1在数列{a n}中,a n+1=a n1+3a n,a1=2,则a4等于().A.165B.219C.85D.87答案:B2已知数列{a n}的前n项和S n=n2-2n,则a2+a18等于().A.36B.35C.34D.33解析:a2+a18=S2-S1+S18-S17=(22-2×2)-(12-2×1)+(182-2×18)-(172-2×17)=34.答案:C3已知n∈N*,给出4个表达式:①a n={0,n为奇数,1,n为偶数,②an=1+(-1)n2,③an=1+cosnπ2,④an=|sin nπ2|.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是().A.①②③B.①②④C.②③④D.①③④解析:经检验知①②③都是所给数列的通项公式,故选A.答案:A4已知在数列{a n}中,a1=1,(2n+1)a n=(2n-3)a n-1(n≥2),则数列{a n}的通项公式为. 解析:由(2n+1)a n=(2n-3)a n-1,可得a na n-1=2n-32n+1(n≥2),所以a2a1=15,a3a2=37,a4a3=59,a5a4=711,…,a na n-1=2n-32n+1(n≥2).上述各式左右两边分别相乘得a na1=1×3(2n-1)(2n+1)(n≥2),故a n=3(2n-1)(2n+1)(n≥2).又a1=1满足上式,所以数列{a n}的通项公式为a n=3(2n-1)(2n+1)(n∈N*).答案:a n=3(2n-1)(2n+1)★5若数列{a n}满足a1=23,a2=2,3(an+1−2an+an−1)=2,则数列{an}的通项公式为.解析:由3(a n+1-2a n+a n-1)=2可得a n+1-2a n+a n-1=23,即(a n+1-a n)-(a n-a n-1)=23,所以数列{a n+1-a n}是以a2-a1=43为首项,23为公差的等差数列,所以a n+1-a n=43+23(n−1)=23(n+1).故a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=a1+23(2+3+⋯+n)=13n(n+1).答案:a n=13n(n+1)6已知在数列{a n}中,a n+1=2a n+3·2n+1,且a1=2,则数列{a n}的通项公式为. 解析:∵a n+1=2a n+3·2n+1,∴a n+12n+1=a n2n+3,即a n+12n+1−a n2n=3.∴数列{a n2n}是公差为3的等差数列.又a12=1,∴a n2n=1+3(n−1),∴a n=(3n-2)·2n.答案:a n=(3n-2)·2n7已知数列{a n}满足a1=1,a n+1=3a n+1.(1)证明{a n+12}是等比数列,并求{an}的通项公式;(2)证明1a1+1a2+⋯+1a n<32.(1)解由a n+1=3a n+1,得a n+1+12=3(a n+12).又a1+12=32,所以{a n+12}是首项为32,公比为3的等比数列.a n+12=3n2,因此{a n}的通项公式为a n=3n-12.(2)证明由(1)知1a n =23n-1.因为当n≥1时,3n-1≥2×3n-1,所以13n-1≤12×3n-1.于是1a1+1a2+⋯+1a n≤1+13+⋯+13n-1=32(1-13n)<32.所以1a1+1a2+⋯+1a n<32.★8设数列{a n}的前n项和为S n,且S n=4a n-3(n=1,2,…).(1)证明:数列{a n}是等比数列;(2)若数列{b n}满足b n+1=a n+b n(n=1,2,…),b1=2,求数列{b n}的通项公式.(1)证明因为S n=4a n-3(n=1,2,…),所以S n-1=4a n-1-3(n=2,3,…),当n≥2时,a n=S n-S n-1=4a n-4a n-1,整理,得a na n-1=43.由S n=4a n-3,令n=1,得a1=4a1-3,解得a1=1.所以数列{a n }是首项为1,公比为43的等比数列.(2)解由(1)得a n =(43)n -1,由b n+1=a n +b n (n=1,2,…),得b n+1-b n =(43)n -1.则b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=2+1-(43)n -11-43=3×(43)n -1−1.。
高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)
![高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)](https://img.taocdn.com/s3/m/32dc4834551810a6f42486b5.png)
(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5的全部内容。
2。
5 错误!第一课时等比数列的前n项和(1)公比是1的等比数列的前n项和如何计算?(2)能否根据首项、末项与项数求出等比数列的前n项和?(3)能否根据首项、公比与项数求出等比数列的前n项和?(4)等比数列前n项和的性质有哪些?[新知初探]1.等比数列的前n项和公式已知量首项a1与公比q首项a1,末项a n与公比q公式S n=错误!S n=错误![在应用公式求和时,应注意到S n错误!常数列求和,即S n=na1.2.等比数列前n项和的性质(1)等比数列{a n}中,若项数为2n,则错误!=q;若项数为2n+1,则错误!=q。
(2)若等比数列{a n}的前n项和为S n,则S n,S2n-S n,S3n-S2n…成等比数列(其中S n,S2n -S n,S3n-S2n…均不为0).(3)若一个非常数列{a n}的前n项和S n=Aq n-A(A≠0,q≠0,n∈N*),则数列{a n}为等比数列,即S n=Aq n-A(A≠0,q≠0,q≠1,n∈N*)⇔数列{a n}为等比数列.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)求等比数列{a n}的前n项和时可直接套用公式S n=a11-q n1-q来求( )预习课本P55~58,思考并完成以下问题(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为S n=na()(3)若某数列的前n项和公式为S n=-aq n+a(a≠0,q≠0且q≠1,n∈N*),则此数列一定是等比数列( )解析:(1)错误.在求等比数列前n项和时,首先应看公比q是否为1,若q≠1,可直接套用,否则应讨论求和.(2)正确.若数列既是等差数列,又是等比数列,则是非零常数列,所以前n项和为S n=na。
2014-2015学年 高中数学 人教A版必修五 第二章 习题课 数列求和
![2014-2015学年 高中数学 人教A版必修五 第二章 习题课 数列求和](https://img.taocdn.com/s3/m/e244f34d336c1eb91a375d43.png)
试一试·扫描要点、基础更牢固
习题课
本 讲 栏 目 开 关
1 1. 数列{an}的前 n 项和为 Sn, 若 an= , 则 S5 等于( B ) nn+1 5 1 1 A.1 B. C. D. 6 6 30 1 1 1 解析 ∵an= = - , nn+1 n n+1
1 1 1 1 1 1 5 ∴S5=(1- )+( - )+…+( - )=1- = . 2 2 3 5 6 6 6
习题课
( A )
本 讲 栏 目 开 关
试一试·扫描要点、基础更牢固
习题课
3.数列{an}的通项公式 an= 则项数为
本 讲 栏 目 开 关
,若前 n 项的和为 10, n+ n+1 ( C ) D.121
1
A.11
B.99 C.120 1 解析 ∵an= = n+1- n, n+ n+1
∴Sn= n+1-1=10,∴n=120.
试一试·扫描要点、基础更牢固
习题课
本 讲 栏 目 开 关
na1+an nn-1 1.等差数列的前 n 项和公式:Sn= = na1+ 2 d. 2
2.等比数列前 n 项和公式: (1)当 q=1 时,Sn= na1 ; a11-qn a1-anq (2)当 q≠1 时,Sn= 1-q = 1-q . 3.数列{an}的前 n 项和 Sn=a1+a2+a3+…+an,则 an=
nn+1 2 ∴Sn= n a 1 - a n - 1 - a 1-a2
a=1, a≠1.
研一研·题型解法、解题更高效
试一试·扫描要点、基础更牢固
习题课
4.数列{(-1)n· n}的前 2 013 项的和 S2 013 为
本 讲 栏 目 开 关
高中数学人教A版必修5课件:2.5.2数列求和习题课(42张)
![高中数学人教A版必修5课件:2.5.2数列求和习题课(42张)](https://img.taocdn.com/s3/m/29bb2ef75fbfc77da269b183.png)
|化解疑难|
求数列前 n 项和,一般有下列几种方法 (1)错位相减法:适用于一个等差数列和一个等比数列对
应项相乘构成的数列求和. (2)分组转化法:把一个数列分成几个可以直接求和的数列. (3)裂项相消法:有时把一个数列的通项公式分成两项差的
2.已知数列{an}的通项公式为 an=2n+1,则{an}的前 n 项
和 Sn 等于( )
A.n2
B.n2+2n
C.2n2+n
D.n+2
解析:a1=2×1+1=3, Sn=na12+an=n3+22n+1=n2+2n. 故选 B. 答案:B
3.1+1×1 2+2×1 3+…+99×1100等于(
跟踪训练 1 求数列 214,418,6116,…,2n+2n1+1,…的前 n 项和 Sn.
解析:Sn=214+418+6116+…+2n+2n1+1 =(2+4+6+…+2n)+14+18+…+2n1+1 =n2n2+2+1411--1212n =n(n+1)+12-2n1+1.
)
99 199 A.100 B.100
98 197 C.99 D. 99
解析:因为nn1+1=1n-n+1 1, 所以所求和=
1+1-12+12-13+…+919-1100 =1+1-1100=119090. 答案:B
4.数列{n·2n}的前 n 项和等于( ) A.n·2n-2n+2 B.n·2n+1-2n+1+2 C.n·2n+1-2n D.n·2n+1-2n+1
3Tn = 6×1×31 + 6×2×32 + 6×3×33 + 6(n - 1)×3n - 1 + 6n×3n,②
高中数学_第二章_基本初等函数(Ⅰ)_幂函数(习题课)课件_新人教A版必修1
![高中数学_第二章_基本初等函数(Ⅰ)_幂函数(习题课)课件_新人教A版必修1](https://img.taocdn.com/s3/m/dc089687d4d8d15abe234e14.png)
• 1.幂函数y=xα的图象分布规律是一个难点, 应重点抓住. • (1)α=0时,不过(0,1)点; p • (2)α为整数时,α为奇数则函数为奇函数,α (3)α为分数时,设α= (p、q是互质的整数),p、q都是 q 为偶数则为偶函数,α<0不过原点;
∴a≤-1 当a=0时显然成立, 综上知a≤-1或a=0.
7.已知 x <x2,则 x 的取值范围是________.
2
1
[解析]
• [答案] (0,1)
2
在同一直角坐标系内作出函数 y=x2 和 y=x2
2 1
1
的图象如图所示,则 x <x2时 x 的取值范围,即使函数 y= x 的图象在函数 y=x2的图象下方时 x 的取值范围, 由图可 知 x 的取值范围是(0,1).
1 3.设a>0,且a≠1,函数y=logax和函数y=loga x 的 图象关于 A.x轴对称 C.y=x对称 B.y轴对称 D.原点对称 ( )
[答案]
A
[解析]
1 ∵y=loga =-logax, x
∴两函数的图象关于x轴对称.
1-x 4.已知函数f(x)=lg ,若f(a)=b,则f(-a)等于 1+x ( A.b 1 C.b B.-b 1 D.-b )
• [答案] C • [解析] ∵0<a<1,∴该函数为减函数,排 除A、D,又m<-1,∴x=0时,函数有意 义,且y=loga(-m)<0.排除B,选C.
• 2.已知函数f(x)为偶函数,且当x≥0时, f(x)=2x -1,则使f(x)>1成立的x的取值范 围是 ( ) • A.(1,+∞) B.(-∞,-1) • C.(-1,1) D.(-∞,-1)∪(1, +∞) • [答案] D • [解析] 先画出y=2x -1(x≥0)的图象,再 作关于y轴对称的图象,令2x-1=1得x=1,
高中数学第2章圆锥曲线与方程习题课_双曲线的综合问题及应用课件新人教A版选修2_1
![高中数学第2章圆锥曲线与方程习题课_双曲线的综合问题及应用课件新人教A版选修2_1](https://img.taocdn.com/s3/m/54fef7e6866fb84ae55c8d79.png)
思路分析直线方程与双曲线方程联立方程组⇒判断“Δ”与“0”的
关系⇒直线与双曲线的位置关系.
探究一
探究二
当堂检测
= -1,
2 - 2 = 1,
消去 y 并整理,得(1-k2)x2+2kx-2=0.
∵直线与双曲线有两个不同的交点,
1- 2 ≠ 0,
则
= 4 2 + 8(1- 2 ) > 0,
(1)定义:|r1-r2|=2a.
(2)余弦公式:4c2=12 + 22 -2r1r2cos θ.
1
(3)面积公式:△ 1 2 = 2r1r2sin θ.
一般地,在△PF1F2中,通过以上三个等式,所求问题就会顺利解决.
【思考】直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)
相切,那么,直线与双曲线相切,能用这个方法判断吗?
1
有唯一公共点,由于双曲线的渐近线为 y=±2x,
1
1
故直线 l 的方程为 y=2(x-2)或 y=-2(x-2),
1
1
即 y=2x-1 或 y=-2x+1.故选 C.
答案C
2
【做一做4】 双曲线x2- 3=1的左、右顶点分别为A,B,右支上有一
点M,且kMA=1,则△MAB的面积为
.
2
解析因为kMA=1,A(-1,0),故直线MA的方程为y=x+1,代入x2- 3 =1,整
习题课——双曲线的综合问题及应用
课标阐释
思维脉络
1.掌握利用双曲线的定义解决 双曲线的综合问题及应用
有关问题的方法.
双曲线定义的应用
2.理解直线与双曲线的位置关
2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式
![2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式](https://img.taocdn.com/s3/m/97517c96da38376baf1fae89.png)
∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,
…
;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
(人教版)高中数学必修5课件:第2章 习题课1
![(人教版)高中数学必修5课件:第2章 习题课1](https://img.taocdn.com/s3/m/60f2bdfb0066f5335a8121fb.png)
第二章 数 列
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
∴①式可写成an+3=2(an-1+3)的形式, 则aan-n+1+33=2(n≥2). 因而数列{an+3}(n≥2)是以2为公比的等比数列. 设bn=an+3,b2=a2+3=10, ∴bn=5×2n-1(n≥2), ∴an=5×2n-1-3(n≥2). 又∵当n=1时,a1=2,符合上式, ∴an=5×2n-1-3(n∈N*).
数学 必修5
第二章 数 列
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(2)累积法:如果已知数列{an}的相邻两项an+1与an的商的 一个关系式,我们可依次写出前n项中所有相邻两项的商的关 系式,然后把这n-1个式子相乘,整理求出数列的通项公式.
(3)构造法:根据所给数列的递推公式以及其他有关关系 式,进行变形整理,构造出一个新的等差或等比数列,利用等 差或等比数列的通项公式求解.
数学 必修5
第二章 数 列
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
数学 必修5
第二章 数 列
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
累加法
在数列{an}中,a1=1,an=an-1+2n-1(n≥2且 n∈N*),求数列{an}的通项公式.
[思路点拨] 根据递推公式,写出n-1个等式an=an-1+ 2n-1(n依次取n,n-1,n-2,…,2),将这n-1个等式左右
A.15
B.16
C.49
D.64
解析: a8=S8-S7=82-72=15. 答案: A
数学 必修5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学学习材料唐玲出品习题课(1) 课时目标1.熟练掌握等差数列的概念、通项公式、前n 项和公式,并能综合运用这些知识解决一些问题.2.熟练掌握等差数列的性质、等差数列前n 项和的性质,并能综合运用这些性质解决相关问题.要点回顾1.若S n 是数列{a n }的前n 项和,则S n =a 1+a 2+…+a n ,a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2. 2.若数列{a n }为等差数列,则有:(1)通项公式:a n =a 1+(n -1)d ;(2)前n 项和:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的常用性质(1)若{a n }为等差数列,且m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)若S n 表示等差数列{a n }的前n 项和,则S k ,S 2k -S k ,S 3k -S 2k 成等差数列.一、选择题1.在等差数列{a n }中,a 1+3a 8+a 15=120,则2a 9-a 10的值为( )A .24B .22C .20D .-8答案 A2.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( )A .24B .25C .26D .27答案 C解析 ∵a 3+a 7+a 11=6,∴a 7=2,∴S 13=13(a 1+a 13)2=13a 7=26. 3.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C.100 D.-37答案 C解析设数列{a n},{b n}的公差分别为d,d′,则a2+b2=(a1+d)+(b1+d′)=(a1+b1)+(d+d′)=100.又∵a1+b1=100,∴d+d′=0.∴a37+b37=(a1+36d)+(b1+36d′)=(a1+b1)+36(d+d′)=100.4.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于()A.120 B.105C.90 D.75答案 B解析∵a1+a2+a3=3a2=15,∴a2=5.∵a1=5-d,a3=5+d,d>0,∴a1a2a3=(5-d)·5·(5+d)=80,∴d=3,a1=2.∴a11+a12+a13=3a12=3(a1+11d)=3a1+33d=3×2+33×3=105.5.若{a n}为等差数列,S n为其前n项和,若a1>0,d<0,S4=S8,则S n>0成立的最大自然数n为()A.11 B.12C.13 D.14答案 A解析S4=S8⇒a5+a6+a7+a8=0⇒a6+a7=0,又a1>0,d<0,S12=(a1+a12)·122=0,n<12时,S n>0.6.在等差数列{a n}中,a1=-2 008,其前n项和为S n,若S2 0082 008-S2 0062 006=2,则S2 012等于()A.-2 012 B.2 012C.6 033 D.6 036答案 D解析S nn=a1+(n-1)d2,∴S2 0082 008-S2 0062 006=a1+2 008-12d-a1-2 006-12d=d=2.∴S2 012=2 012×(-2 008)+2 012×2 0112×2=2 012×3=6 036.二、填空题7.已知数列{a n}的前n项和S n=n2+n+1,则a6+a7+…+a10的值为________.答案80解析a6+a7+…+a10=S10-S5=111-31=80.8.设等差数列{a n}的前n项和为S n,若S p=S q(p,q∈N*且p≠q),则S p+q=________. 答案0解析设S n=an2+bn,由S p=S q.知ap 2+bp =aq 2+bq ,∴p +q =-b a. ∴S p +q =a (p +q )2+b (p +q )=a (-b a )2+b (-b a ) =b 2a -b 2a=0. 9.等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的自然数n 是______. 答案 5或6解析 d <0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0,∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>….∴当n =5或6时,S n 取到最大值.10.已知数列{a n }中,a 1=20,a n +1=a n +2n -1,n ∈N *,则数列{a n }的通项公式a n =________.答案 n 2-2n +21解析 ∵a n +1-a n =2n -1,∴a 2-a 1=1,a 3-a 2=3,…,a n -a n -1=2n -3,n ≥2.∴a n -a 1=1+3+5+…+(2n -3).∴a n =20+(n -1)(2n -2)2=n 2-2n +21. 三、解答题11.甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?解 (1)设n 分钟后第1次相遇,依题意,有2n +n (n -1)2+5n =70, 整理得n 2+13n -140=0.解之得n =7,n =-20(舍去).第1次相遇是在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意,有2n +n (n -1)2+5n =3×70, 整理得n 2+13n -420=0.解之得n =15,n =-28(舍去).第2次相遇是在开始运动后15分钟.12.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)设等差数列{a n }的公差为d ,且d >0.∵a 3+a 4=a 2+a 5=22,又a 3·a 4=117,又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n ,∴b n =S n n +c =2n 2-n n +c. ∴b 1=11+c ,b 2=62+c ,b 3=153+c. ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12(c =0舍去). 能力提升13.在等差数列{a n }中,a 10<0,a 11>0,且|a 10|<a 11,S n 为{a n }的前n 项的和,则下列结论正确的是( )A .S 1,S 2,…,S 10都小于零,S 11,S 12,…都大于零B .S 1,S 2,…,S 5都小于零,S 6,S 7,…都大于零C .S 1,S 2,…,S 20都小于零,S 21,S 22,…都大于零D .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零答案 D解析 ∵S 19=19(a 1+a 19)2=19a 10<0, S 20=20(a 1+a 20)2. 而a 1+a 20=a 10+a 11,∵a 10<0,a 11>0且|a 10|<a 11,∴a 10+a 11>0,∴S 20=20(a 1+a 20)2=10(a 10+a 11)>0. 又∵d =a 11-a 10>0.∴S n >0 (n ≥20).14.把自然数1,2,3,4,…按下列方式排成一个数阵.12 34 5 67 8 9 1011 12 13 14 15……………………………根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是______________.答案 n 22-n 2+3 解析 该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1 (n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行从左至右的第3个数为n 22-n 2+3.1.等差数列是最基本、最常见的数列,等差数列的定义是研究解决等差数列的判定和性质,推导通项公式、前n 项和公式的出发点.2.通项公式与前n 项和公式联系着五个基本量:a 1、d 、n 、a n 、S n .掌握好本部分知识的内在联系、结构,以便灵活运用.3.另外用函数观点和方法揭示等差数列的特征,在分析解决数列的综合题中有重要的意义.。