北师大六年级下《圆柱与圆锥》培优训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大六年级下《圆柱与圆锥》培优训练
一、圆柱与圆锥
1.如图,这是用塑料薄膜覆盖的蔬菜大棚,长15米,横截面是一个直径为2米的半圆。

大棚内的空间有多大?
【答案】解:3.14×(2÷2)2×15÷2=23.55(立方米)
答:大棚内的空间有23.55立方米。

【解析】【分析】观察图可知,大棚的形状是一个圆柱的一半,要求大棚内的空间大小,用圆柱的体积÷2=大棚内的空间大小,据此列式解答.
2.看图计算.
(1)求圆柱的表面积(单位:dm)
(2)求零件的体积(单位:cm)
【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2
=628+3.14×25×2
=628+157
=785(平方分米)
答:圆柱的表面积是785平方分米。

(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4
= ×3.14×1×3+3.14×1×4
=3.14+12.56
=15.7(立方厘米)
答:零件的体积是15.7立方厘米。

【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算
出底面积,用底面周长乘高求出侧面积;
(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。

3.如下图,爷爷的水杯中部有一圈装饰,是悦悦怕烫伤爷爷的手特意贴上的。

这条装饰圈宽5cm,装饰圈的面积是多少cm2?
【答案】解:3.14×6×5=94.2(cm²)
答:装饰圈的面积是94.2cm2。

【解析】【分析】解:装饰圈的面积就是高5cm的圆柱的侧面积,用底面周长乘5即可求出装饰圈的面积。

4.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?
【答案】解: ×3.14×32×2
=3.14×6
=18.84(立方厘米)
答:这个零件的体积是18.84立方厘米。

【解析】【分析】圆锥的体积=底面积×高×,根据公式计算体积即可。

5.一个圆锥形沙堆,高是1.8米,底面半径是5米,每立方米沙重1.7吨,这堆沙约重多少吨?
【答案】解:沙堆的体积: ×3.14×52×1.8= ×3.14×25×1.8=47.1(立方米)
沙堆的重量:1.7×47.1≈80.07(吨)
答:这堆沙约重80.07吨。

【解析】【分析】根据圆锥的体积公式先计算出沙堆的体积,再乘每立方米沙的重量即可求出这堆沙的重量。

6.下图是一个圆柱体“牛肉罐头”的表面展开图。

请你算一算,这个圆柱体“牛肉罐头”的容积是多少?(铁皮的厚度忽略不计)
【答案】解:25.12÷3.12÷2=4(厘米)
3.14×4²×10
=3.14×160
=502.4(立方厘米)
答:这个圆柱体“牛肉罐头”的容积是502.4立方厘米。

【解析】【分析】圆柱的底面周长是25.12厘米,用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高求出容积。

7.一个圆锥形沙滩,底面周长是25.12m,高是3m,如果每立方米沙重1.7吨,这椎沙重多少吨?(得数保留整数)
【答案】解:
=
=50.24×1.7
≈85(吨)
答:这堆沙重约85吨。

【解析】【分析】要计算沙的重量先计算体积,圆锥的体积=底面积×高× ,底面周长=2 r,根据公式计算出结果要根据题中的要求用四舍五入的方法保留整数。

8.要制作一个无盖的圆柱形水桶,提供下面几种型号的铁皮搭配选择。

(单位:dm)
(1)你选择的材料是图________和图________.
(2)你选择的材料制成水桶需要多少平方分米的铁皮?
【答案】(1)②;③
(2)解:12.56×5+3.14×(4÷2)2
=62.8+12.56
=75.36(平方分米)
答:选择的材料是75.36平方分米的铁皮。

【解析】【分析】(1)观察图可知,圆柱的侧面沿高展开,展开图是一个长方形,长方形的长是圆柱的底面周长,图③的底面周长是3.14×4=12.56(dm),与图②的长相等,所以要制作一个无盖的圆柱形水桶,选择图②和图③;
(2)要求无盖圆柱的表面积,用公式:无盖圆柱的表面积=侧面积+底面积,据此列式解答.
9.一个圆柱形的金鱼缸,底面半径是40cm,里面有一座假山石全部浸没在水中(水没有溢出),取出假山石后,水面下降了5cm。

这座假山的体积是多少?
【答案】解:3.14×402×5
=3.14×1600×5
=5024×5
=25120(cm3)
答:这座假山的体积是25120cm3.
【解析】【分析】根据题意可知,将假山从鱼缸中取出来时,下降的水的体积就是假山的体积,用底面积×下降的水的高度=这座假山的体积,据此列式解答.
10.如图,有一个圆柱形的零件,高是10cm,底面直径是6cm,零件的一端有一个圆柱形的孔,圆柱形孔的直径是4cm,孔深5cm,如果将这个零件接触空气的部分涂上防锈漆,一共需涂多少平方厘米?
【答案】解:3.14×6×10+3.14×(6÷2)2×2+3.14×4×5=307.72(平方厘米)
答:一共需涂307.72平方厘米。

【解析】【分析】涂防锈漆的面是圆柱形孔的侧面和一个底面;故根据圆柱的侧面积公式:S=πdh和圆柱的底面积公式即圆的面积公式:S=πr²,求出这两个面积;最后求和。

11.把一个体积是565.2cm3的圆柱形铁块溶成一个底面半径是6cm的圆锥形铅锤,铅锤的高是多少?(损耗忽略不计)
【答案】解:565.2×3÷(3.14×62)
=1695.6÷113.04
=15(厘米)
答:铅锤的高是15厘米。

【解析】【分析】熔铸前后体积是不变的。

圆锥的体积=底面积×高×,所以:高=圆锥的体积×3÷底面积,由此根据公式计算高即可。

12.一种压路机的滚筒是圆柱形的筒宽1.5米,直径是0.8米.这种压路机每分钟向前滚动5周.这种压路机1分钟压路多少平方米?
【答案】解:3.14×0.8×5×1.5
=2.512×7.5
=18.84(平方米)
答:这种压路机1分钟压路18.84平方米。

【解析】【分析】滚动一周压路的面积就是滚筒的侧面积,因此用底面周长乘高即可求出侧面积,再乘5即可求出1分钟压路的面积。

13.用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长10厘米.
(1)扎这个盒子至少用去塑料绳多少厘米?
(2)在它的整个侧面贴上商标和说明,这部分的面积至少多少平方厘米?
【答案】(1)解:20×4+40×4+10
=80+160+10
=250(厘米)
答:扎这个盒子至少用去塑料绳250厘米。

(2)解:面积:3.14×40×20
=125.6×20
=2512(平方厘米)
答:在它的整个侧面贴上商标和说明,这部分的面积是2512平方厘米。

【解析】【分析】(1)扎这个盒子至少用去塑料绳的长度=蛋糕的直径×4+蛋糕的高×4+打结处的长度;
(2)侧面贴上商标和说明这部分的面积=蛋糕的侧面积=蛋糕的底面周长×蛋糕的高,其中蛋糕的底面周长=蛋糕的底面直径×π。

14.压路机的滚筒是个圆柱,它的宽是2米,滚筒横截面半径是0.6米,如果滚筒每分钟滚动5周,那么1小时可压路多少平方米?
【答案】解:1小时=60分
0.6×2×3.14×5×60
=18.84×60
=1130.4(米)
1130.4×2=2260.8(平方米)
答:压过的路面是2260.8平方米。

【解析】【分析】1小时=60分钟,1小时可以压路的平方米数=滚筒的侧面积×每分钟滚筒滚动的周数×60,其中滚筒的侧面积=滚筒的半径×2×π×滚筒的宽,据此代入数据作答即可。

15.一个圆柱形游泳池,底面周长为62.8米,深2米。

(1)在池内侧面和池底抹上水泥,抹水泥的面积多少平方米?
(2)水面离池口0.5米,这时池里的水有多少立方米?
【答案】(1)解:62.8÷3.14÷2=10(米)
3.14×10²+62.8×2
=314+125.6
=439.6(平方米)
答:抹水泥的面积是439.6平方米。

(2)解:3.14×10²×(2-0.5)
=314×1.95
=612.3(立方米)
答:这时池里的水有612.3立方米。

【解析】【分析】(1)用底面周长除以3.14再除以2求出底面半径,用底面积加上侧面积就是抹水泥部分的面积;(2)用底面积乘水面的高度即可求出水的体积。

相关文档
最新文档