合肥琥珀中学七年级下册数学期末试卷达标训练题(Word版 含答案) (2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥琥珀中学七年级下册数学期末试卷达标训练题(Word版含答案)一、解答题
1.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.
2.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即
∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为
O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
3.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.
(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.
4.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系:;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
5.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.
二、解答题
6.已知:直线1l∥2l,A为直线1l上的一个定点,过点A的直线交2l于点B,点C在线段BA的延长线上.D,E为直线2l上的两个动点,点D在点E的左侧,连接AD,AE,满足∠AED=∠DAE.点M在
l上,且在点B的左侧.
2
(1)如图1,若∠BAD=25°,∠AED=50°,直接写出 ABM的度数;
(2)射线AF为∠CAD的角平分线.
① 如图2,当点D在点B右侧时,用等式表示∠EAF与∠ABD之间的数量关系,并证明;
② 当点D与点B不重合,且∠ABM+∠EAF=150°时,直接写出∠EAF的度数.
7.综合与探究(问题情境)
王老师组织同学们开展了探究三角之间数量关系的数学活动.
(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;
(问题迁移)
(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点
A、D,直线n分别交OM、ON于点
B、C,点P在射线OM上运动.
①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;
②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.
8.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.
(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;
(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示). 9.已知两条直线l 1,l 2,l 1∥l 2,点A ,B 在直线l 1上,点A 在点B 的左边,点C ,D 在直线l 2上,且满足115ADC ABC ∠=∠=o .
(1)如图①,求证:AD ∥BC ;
(2)点M ,N 在线段CD 上,点M 在点N 的左边且满足MAC BAC ∠=∠,且AN 平分∠CAD ;
(Ⅰ)如图②,当30ACD ∠=o 时,求∠DAM 的度数; (Ⅱ)如图③,当8CAD MAN ∠=∠时,求∠ACD 的度数.
10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .
(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;
(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;
(4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .
三、解答题
11.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出A ∠、B 、C ∠、D ∠之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在ABC ∆中,BD 、CD 分别平分ABC ∠和ACB ∠,请直接写出A ∠和D ∠的关系 ;
②如图4,A B C D E F ∠+∠+∠+∠+∠+∠= .
(4)如图5,BAC ∠与BDC ∠的角平分线相交于点F ,GDC ∠与CAF ∠的角平分线相交于点E ,已知26B ∠=︒,54C ∠=︒,求F ∠和E ∠的度数.
12.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.
(1)将图①中的三角板OMN 沿BA 的方向平移至图②的位置,MN 与CD 相交于点E ,求∠CEN 的度数;
(2)将图①中的三角板OMN 绕点O 按逆时针方向旋转,使∠BON =30°,如图③,MN 与CD 相交于点E ,求∠CEN 的度数;
(3)将图①中的三角板OMN 绕点O 按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN 恰好与直线CD 垂直.(直接写出结果) 13.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;
(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规
律.若不变,求出这个比值;
(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.
14.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.
(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,
CDE ∠=__________︒;
(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;
(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 15.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.
(1)l 2与l 3的位置关系是 ;
(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;
(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N:∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、解答题
1.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后
∠HAP;理由见解
解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣1
2
析.
【分析】
(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=
∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得
∠HAF,∠FCG,最后便可求得结果;
(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=
∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BM//HD,则HD//GE//BM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PK//HD//GE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,
∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=1
2∠HAP+1
2
∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣1
2
∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣1
2∠HAP﹣1
2
∠PCG﹣90°+1
2
∠PCG=90°﹣1
2
∠HAP,
即:∠N=90°﹣1
2
∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
2.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QP B.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而
∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×1
2=(180°-82°)×1
2
=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×1
2=(180°-92°)×1
2
44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
3.(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′
【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根
解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】
(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;
(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.
【详解】
解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=
3°×10=30°,
过O作OE∥AB,
∵AB∥CD,
∴AB∥OE∥CD,
∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,
∴∠POQ=90°,
∴PB′⊥QC′,
故答案为:PB′⊥QC′;
(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠PEC=∠CQC′,
即12t=45+3t,
解得,t=5;
②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣180=45+3t,
解得,t=25;
③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,
∵AB∥CD,PB′∥QC′,
∴∠BPB′=∠BEQ=∠CQC′,
即12t﹣360=45+3t,
解得,t=45;
综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.
【点睛】
本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.
4.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即
解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1
2
(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=1
2
∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=1
2
∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=1
2∠BMH+1
2
∠GND=1
2
(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=1
2
(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH +∠HNC =180°﹣∠BMH +180°﹣∠HND =360°﹣(∠BMH +∠HND ). 又∵∠AMH +∠HNC =∠MHI +∠NHI =∠MHN ,
∴∠BMH +∠HND =360°﹣∠MHN .
即2∠MEN +∠MHN =360°.
故答案为:2∠MEN +∠MHN =360°.
②:由①的结论得2∠MEN +∠MHN =360°,
∵∠H =∠MHN =140°,
∴2∠MEN =360°﹣140°=220°.
∴∠MEN =110°.
过点H 作HT ∥MP .如答图2
∵MP ∥NQ ,
∴HT ∥NQ .
∴∠ENQ +∠ENH +∠NHT =180°(两直线平行,同旁内角互补).
∵MP 平分∠AMH ,
∴∠PMH =12∠AMH =12(180°﹣∠BMH ).
∵∠NHT =∠MHN ﹣∠MHT =140°﹣∠PMH .
∴∠ENQ +∠ENH +140°﹣12(180°﹣∠BMH )=180°.
∵∠ENH =1
2∠HND .
∴∠ENQ +12∠HND +140°﹣90°+12∠BMH =180°.
∴∠ENQ +12(HND +∠BMH )=130°.
∴∠ENQ +12∠MEN =130°.
∴∠ENQ =130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强. 5.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质
解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC =3∠DBE =3α,
∴∠AFC =3α+β,
∵∠AFC +∠NCF =180°,∠FCB +∠NCF =180°,
∴∠FCB =∠AFC =3α+β,
△BCF 中,由∠CBF +∠BFC +∠BCF =180°得:2α+β+3α+3α+β=180°,
∵AB ⊥BC ,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE =15°,
∴∠EBC =∠ABE +∠ABC =15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
二、解答题
6.(1);(2)①,见解析;②或
【分析】
(1)由平行线的性质可得到:,,再利用角的等量代换换算即可;
(2)①设,,利用角平分线的定义和角的等量代换表示出对比即可;②分类讨论点在的左右两侧的情况,
解析:(1)125︒;(2)①2ABD EAF ∠=∠,见解析;②30或110︒
【分析】
(1)由平行线的性质可得到:DEA EAN =∠∠,MBA BAN =∠∠,再利用角的等量代换换算即可;
(2)①设EAF α∠=,AED=DAE=β∠∠,利用角平分线的定义和角的等量代换表示出ABD ∠对比即可;②分类讨论点D 在B 的左右两侧的情况,运用角的等量代换换算即可.
【详解】
.
解:(1)设在1l 上有一点N 在点A 的右侧,如图所示:
∵12//l l
∴DEA EAN =∠∠,MBA BAN =∠∠
∴50AED DAE EAN ==︒∠=∠∠
∴255050125BAN BAD DAE EAN =++=︒+︒+︒=︒∠∠∠∠
125BAM =︒∠
(2)①2ABD=EAF ∠∠.
证明:设EAF α∠=,AED=DAE=β∠∠.
∴+=+FAD EAF DAE αβ=∠∠∠.
∵AF 为CAD ∠的角平分线,
∴22+2CAD FAD αβ==∠∠.
∵12l l ,
∴EAN=AED=β∠∠.
∴2+22CAN CAD DAE EAN αβββα=--=--=∠∠∠∠.
∴=22ABD CAN EAF α∠∠==∠.
②当点D 在点B 右侧时,如图:
由①得:2ABD EAF ∠=∠
又∵180ABD ABM +=︒∠∠
∴2180ABM EAF +=︒∠∠
∵150ABM EAF ∠+∠︒=
∴18015030EAF =︒-︒=︒∠
当点D 在点B 左侧,E 在B 右侧时,如图:
∵AF 为CAD ∠的角平分线 ∴12DAF CAD =∠∠ ∵1
2l l
∴AED NAE =∠∠,CAN ABE =∠∠
∵DAE AED NAE ==∠∠∠
∴11()22
DAE DAE NAE DAN =+=∠∠∠∠ ∴11()(360)22
EAF DAF DAE CAD DAN CAN =+=+=︒-∠∠∠∠∠∠ 11802
ABE =︒-∠ ∵180ABE ABM +=︒∠∠
∴11180(180)9022
EAF ABM ABM =︒-︒-=︒+∠∠∠ 又∵150EAF ABM +=︒∠∠
∴1190(150)16522
EAF EAF EAF =︒+⨯︒-=︒-∠∠∠ ∴110EAF =︒∠
当点D 和F 在点B 左侧时,设在2l 上有一点G 在点B 的右侧如图:
此时仍有12DAE DAN =∠∠,12
DAF CAD =∠∠ ∴11(360)1802211180(180)9022EAF DAE DAF CAN ABG ABM ABM =+=
︒-=︒-=︒-︒-=︒+∠∠∠∠∠∠∠ ∴110EAF =︒∠
综合所述:30EAF ∠=︒或110︒
【点睛】
本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键.
7.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或
【分析】
(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠
解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠
【分析】
(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°;
(2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;
②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.
【详解】
解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:
作PC ∥EF ,如图1,
∵PC ∥EF ,EF ∥MN ,
∴PC ∥MN ,
∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,
∴∠PAF +∠APC +∠PBN +∠CPB =360°,
∴∠PAF +∠PBN +∠APB =360°;
(2)①CPD αβ∠=∠+∠,
理由如下:如答图,过P 作PE ∥AD 交ON 于E ,
∵AD ∥BC ,
∴PE ∥BC ,
∴EPD α∠=∠,CPE β∠=∠,
∴CPD αβ∠=∠+∠
②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:
如备用图1,过P 作PE ∥AD 交ON 于E ,
∵AD ∥BC ,
∴PE ∥BC ,
∴EPD α∠=∠,CPE β∠=∠,
∴CPD αβ∠=∠-∠;
当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:
如备用图2,过P 作PE ∥AD 交ON 于E ,
∵AD ∥BC ,
∴PE ∥BC ,
∴EPD α∠=∠,CPE β∠=∠,
∴CPD βα∠=∠-∠;
综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.
【点睛】
本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.
8.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)
18021n α︒--或18021n α︒-+ 【分析】
(1)根据平行线的性质可得CBD ∠的度数,再根据角平分线的性质可得ABE 的度数,应用三角形内角和计算BAC ∠的度数,由已知条件BAE CAE ∠=∠,可计算出CAE ∠的度数; (2)根据题意画出图形,先根据:5:1BAE CAE ∠∠=可计算出CAE ∠的度数,由100BAE ∠=︒可计算出BAC ∠的度数,再根据平行线的性质和角平分线的性质,计算出CBD ∠的度数,即可得出结论;
(3)根据题意可分两种情况,①若点E 运动到1l 上方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠+∠,列出等量关系求解即可等处结论;②若点E 运动到1l 下方,根据平行线的性质由α可计算出CBD ∠的度数,再根据角平分线的性质和平行线的性质,计算出BAC ∠的度数,再:BAE CAE n ∠∠=,BAE BAC CAE ∠=∠-∠列出等量关系求解即可等处结论.
【详解】
解:(1)30α=︒,//AC BD ,
30CBD ∴∠=︒, BC 平分ABD ∠,
30ABE CBD ∴∠=∠=︒,
1801803030120BAC ABE α∴∠=︒-∠-=︒-︒-︒=︒,
又BAE CAE ∠=∠,
111206022
CAE BAC ∴∠=∠=⨯︒=︒; (2)根据题意画图,如图1所示,
100BAE ∠=︒,:5:1BAE CAE ∠∠=,
20CAE ∴∠=︒,
1002080BAC BAE CAE ∴∠=∠-∠=︒-︒=︒,
//AC BD ,
180100ABD BAC ∴∠=︒-∠=︒,
又BC 平分ABD ∠,
111005022
CBD ABD ∴∠=∠=⨯︒=︒, 50CBD α∴=∠=︒;
(3)①如图2所示,
//AC BD ,
CBD ACB α∴∠=∠=, BC 平分ABD ∠,
22ABD CBD α∴∠=∠=,
1801802BAC ABD α∴∠=︒-∠=︒-,
又:BAE CAE n ∠∠=,
():BAC CAE CAE n ∴∠+∠∠=,
(1802):CAE CAE n α︒-+∠∠=, 解得18021
CAE n α︒-∠=-;
②如图3所示,
//AC BD ,
CBD ACB α∴∠=∠=,
BC 平分ABD ∠,
22ABD CBD α∴∠=∠=,
1801802BAC ABD α∴∠=︒-∠=︒-,
又:BAE CAE n ∠∠=,
():BAC CAE CAE n ∴∠-∠∠=,
(1802):CAE CAE n α︒--∠∠=,
解得18021CAE n α︒-∠=
+.
综上CAE ∠的度数为
18021n α︒--或18021
n α︒-+. 【点睛】 本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键. 9.(1)证明见解析;(2)(Ⅰ);(Ⅱ).
【分析】
(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得 解析:(1)证明见解析;(2)(Ⅰ)5DAM ∠=︒;(Ⅱ)25ACD ∠=︒.
【分析】
(1)先根据平行线的性质可得65BAD ∠=︒,再根据角的和差可得180BAD ABC ∠+∠=︒,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得30BAC ACD ∠=∠=︒,从而可得30MAC ∠=︒,再根据角的和差可得35DAC ∠=︒,然后根据DAM DAC MAC ∠=∠-∠即可得;
(Ⅱ)设MAN x ∠=,从而可得8CAD x ∠=,先根据角平分线的定义可得
142
CAN CAD x ∠=∠=,再根据角的和差可得5BAC MAC x ∠=∠=,然后根据65CAD BAC BAD ∠+∠=∠=︒建立方程可求出x 的值,从而可得BAC ∠的度数,最后根据平行线的性质即可得.
【详解】
(1)12//,115l l ADC ∠=︒,
18065BAD ADC ∴∠=︒-∠=︒,
又115ABC ∠=︒,
180BAD ABC ∴∠+∠=︒,
//AD BC ∴;
(2)(Ⅰ)12//,30l l ACD ∠=︒,
30BAC ACD ∴∠=∠=︒,
MAC BAC ∠=∠,
30MAC ∴∠=︒,
由(1)已得:65BAD ∠=︒,
35DAC BAD BAC ∴∠=∠-∠=︒,
35305DAM DAC MAC ∴∠=∠-∠=︒-︒=︒;
(Ⅱ)设MAN x ∠=,则8CAD x ∠=, AN 平分CAD ∠,
142
CAN CAD x ∴∠=∠=, 5MAC CAN MAN x ∴∠=∠+∠=,
MAC BAC ∠=∠,
5BAC x ∴∠=,
由(1)已得:65BAD ∠=︒,
65CAD BAC BAD ∴∠+∠=∠=︒,即8565x x +=︒,
解得5x =︒,
525BAC x ∴∠==︒,
又12//l l ,
25ACD BAC ∴∠=∠=︒.
【点睛】
本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.
10.(1)① ②;(2);(3)不变,,理由见解析;(4)
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的
解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒
【分析】
(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;
(2)由角平分线的定义可以证明∠CBD =1
2∠ABN ,即可求出结果;
(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.
【详解】
解:(1)①∵AM//BN ,∠A =64°,
∴∠ABN =180°﹣∠A =116°,
故答案为:116°;
②∵AM//BN ,
∴∠ACB =∠CBN ,
故答案为:CBN ;
(2)∵AM//BN ,
∴∠ABN+∠A =180°,
∴∠ABN =180°﹣64°=116°,
∴∠ABP+∠PBN =116°,
∵BC 平分∠ABP ,BD 平分∠PBN ,
∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,
∴2∠CBP+2∠DBP=116°,
∴∠CBD=∠CBP+∠DBP=58°;
(3)不变,
∠APB:∠ADB=2:1,
∵AM//BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1;
(4)∵AM//BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,
则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN
∴∠ABC=∠DBN,
由(1)∠ABN=116°,
∴∠CBD=58°,
∴∠ABC+∠DBN=58°,
∴∠ABC=29°,
故答案为:29°.
【点睛】
本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.
三、解答题
11.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1)D A B C
∠=∠+∠+∠,理由详见解析;(2)A D B C
∠+∠=∠+∠,理由详见解
析:(3)①
1
90
2
D A
∠=︒+∠;②360°;(4)124
E
∠=︒;=14
F
∠︒.
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.【详解】
(1)D A B C ∠=∠+∠+∠.理由如下:
如图1,BDE B BAD ∠=∠+∠,CDE C CAD ∠=∠+∠,
BDC B BAD C CAD B BAC C ∴∠=∠+∠+∠+∠=∠+∠+∠,D A B C ∴∠=∠+∠+∠;
(2)A D B C ∠+∠=∠+∠.理由如下:
在ADE ∆中,180AED A D ∠=︒-∠-∠,在BCE ∆中,180BEC B C ∠=︒-∠-∠,
AED BEC ∠=∠,A D B C ∴∠+∠=∠+∠;
(3)①180A ABC ACB ∠=︒-∠-∠,180D DBC DCB ∠=︒-∠-∠,BD 、CD 分别平分ABC
∠和ACB ∠,∴1122ABC ACB DBC DCB ∠+∠=∠+∠,
1111180()180(180)902222D ABC ACB A A ∴∠=︒-∠+∠=︒-︒-∠=︒+∠. 故答案为:1902D A ∠=︒+∠.
②连结BE .
∵C D CBE DEB ∠+∠=∠+∠,360A B C D E F A ABE F BEF ∴∠+∠+∠+∠+∠+∠=∠+∠+∠+∠=︒. 故答案为:360︒;
(4)由(1)知,BDC B C BAC ∠=∠+∠+∠,
26B ∠=︒,54C ∠=︒,80BDC BAC ∴∠=︒+∠,402CDF CAE ∴∠=︒+∠,4BAC CAE ∠=∠,2BDC CDF ∠=∠,1902
GDE CDF ∴∠=︒-∠,26180AGD B GDB CDF ∠=∠+∠=︒+︒-∠,3GAE CAE ∠=∠,
3336064(2)644012422
E GAE AGD GDE CAE CD
F ∴∠=︒-∠-∠-∠=︒-∠-∠=︒+⨯︒=︒; 180180(206)2262264014F AGF GAF CDF CAE CDF CAE ∠=︒-∠-∠=︒-︒-∠-∠=-︒+∠-∠=-︒+︒=︒.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
12.(1)105°;(2)135°;(3)5.5或11.5.
【分析】
(1)在△CEN 中,用三角形内角和定理即可求出;
(2)由∠BON =30°,∠N=30°可得MN ∥CB ,再根据两直线平行,同旁内角 解析:(1)105°;(2)135°;(3)5.5或11.5.
【分析】
(1)在△CEN 中,用三角形内角和定理即可求出;
(2)由∠BON =30°,∠N =30°可得MN ∥CB ,再根据两直线平行,同旁内角互补即可求出∠CEN 的度数.
(3)画出图形,求出在MN ⊥CD 时的旋转角,再除以30°即得结果.
【详解】
解:(1)在△CEN 中,∠CEN =180°-∠ECN -∠CNE =180°-45°-30°=105°;
(2)∵∠BON =30°,∠N =30°,
∴∠BON =∠N ,
∴MN ∥CB .
∴∠OCD +∠CEN =180°,
∵∠OCD =45°
∴∠CEN =180°-45°=135°;
(3)如图,MN ⊥CD 时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN 恰好与直线CD 垂直.
【点睛】
本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM 放在四边形DOMF 中,用四边形内角和求解,第二种情况是用周角减去∠DOM 的度数.
13.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出
∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;
(2
解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为1
2;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而
得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据
∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.
(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的
一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=1
2(∠AOF+∠COF)=1
2
∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
14.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,
∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC
解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出
∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;
(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,
∠ADE=∠AED=180
2n
︒-
.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=
100
2
n-︒
,再由
∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;
(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,
∠ADE=∠AED=180
2n
︒-
.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=100
2
n
︒+
,再由
∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】
解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.
∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,
∴∠ABC=∠ACB=40°,
∴∠ADC=∠ABC+∠BAD=40°+60°=100°.
∵∠DAC=40°,∠ADE=∠AED,
∴∠ADE=∠AED=70°,
∴∠CDE=∠ADC-∠ADE=100°-70°=30°.
故答案为60,30.
(2)∠BAD=2∠CDE,理由如下:
如图②,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=180
2n
︒-
,∵∠ACB=∠CDE+∠AED,
∴∠CDE=∠ACB-∠AED=40°-180
2n
︒-
=
100
2
n-︒
,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=n-100°,
∴∠BAD=2∠CDE.
(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°,∴∠ACD=140°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=180
2n
︒-
,∵∠ACD=∠CDE+∠AED,
∴∠CDE=∠ACD-∠AED=140°-180
2n
︒-
=100
2
n
︒+
,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=100°+n,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行
解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,1
2
【分析】
(1)根据平行线的判定定理即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据角平分线的定义和平行线的性质即可得到结论;
(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.
【详解】
解:(1)直线l2⊥l1,l3⊥l1,
∴l2∥l3,
即l2与l3的位置关系是互相平行,
故答案为:互相平行;
(2)∵CE平分∠BCD,
∴∠BCE=∠DCE=1
2
∠BCD,
∵∠BCD=70°,
∴∠DCE=35°,
∵l2∥l3,
∴∠CED=∠DCE=35°,
∵l2⊥l1,
∴∠CAD=90°,
∴∠ADC=90°﹣70°=20°;
故答案为:35,20;
(3)∵CF平分∠BCD,
∴∠BCF=∠DCF,
∵l2⊥l1,
∴∠CAD=90°,
∴∠BCF+∠AGC=90°,
∵CD⊥BD,
∴∠DCF+∠CFD=90°,
∴∠AGC=∠CFD,
∵∠AGC=∠DGF,
∴∠DGF=∠DFG;
;理由如下:
(4)∠N:∠BCD的值不会变化,等于1
2
∵l2∥l3,
∴∠BED=∠EBH,
∵∠DBE=∠DEB,
∴∠DBE=∠EBH,
∴∠DBH=2∠DBE,
∵∠BCD+∠BDC=∠DBH,
∴∠BCD+∠BDC=2∠DBE,
∵∠N+∠BDN=∠DBE,
∴∠BCD+∠BDC=2∠N+2∠BDN,
∵DN平分∠BDC,
∴∠BDC=2∠BDN,
∴∠BCD=2∠N,
∴∠N:∠BCD=1
.
2
【点睛】
本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。