人教B版必修五数列求和学案
高中数学备课精选 2.1《数列》学案 新人教B版必修5

2.1数列课程要求了解数列的概念,体会数列是一种特殊函数,能根据数列的前几项写出简单数列的通项公式. 类比函数理解数列的几种表示方法(列表、图象、通项公式等),能根据项数多少、数列的性质对数列分类.了解递推公式是给出数列的一种方法.掌握根据递推公式写出数列的前n 项的技巧.会利用一些简单的递推公式求出数列的通项. 基本概念1. 叫做数列, 叫做这个数列的项. 2. 就叫做这个数列的通项公式. 3.数列可用图象来表示,在直角坐标系中,以 来表示一个数列,图象是一些 ,它们位于 .4.根椐数列的项数可以把数列分为 和 .根据数列中项与项的大小关系可以把数列分为 、 、 和 .5. 那么这个公式就叫做这个数列的递推公式.6.若数列{}n a 的前n 项和记为n S ,即,321n n a a a a S ++++=Λ则⎪⎩⎪⎨⎧≥==).2(),1(n n a n概念深化1.数列的通项公式实际上是一个以正整数集+N 或它的有限子集{}n ,,2,1Λ为定义域的函数的表达式; 2.如果知道了数列的通项公式,那么依次用Λ,3,2,1去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可以判断某数是否是某数列中的一项,如果是的话,是第几项;3.像所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到Λ,0001.0,001.0,01.0,1.0,1所构成的数列Λ,4142.1,414.1,41.1,4.1,1就没有通项公式.4.有的数列的通项公式,在形式上不一定是唯一的,例如数列: Λ,1,1,1,1,1,1---它可以写成,)1(n n a -=也可以写成⎩⎨⎧-=.,1,,1为偶数为奇数n n a n 还可以写成2)1(+-=n n a 等.这些通项公式,形式上虽然不同,但都表示同一个数列.5.有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一.题型一 根据数列{}n a 的前几项,写出数列的通项公式. 例1 写出下列数列的一个通项公式:(1)Λ,33,17,9,5,3;(2)Λ,544,433,322,211;(3)ΛΛΛ,777,,7777,777,77,7;(4).,1337,1126,917,710,1,32Λ---命题意图:寻求规律,写出通项公式.方法提升:用观察归纳法写出数列的一个通项公式,体现了由特殊到一般的思维规律,观察、分析问题的特点是最重要的,观察要有目的,要能观察出特点,观察出项与项之间的关系、规律.这类问题就是要观察各项与对应的项数之间的联系,利用我们熟知的一些基本数列(如自然数数列、奇偶数列、自然数列的前n 项和数列、自然数的平方数列、简单的指数数列……),建立合理的联想,转换而达到问题的解决.一题一练 分别写出下列数列的一个通项公式,数列的前4项已给出. (1);,515,414,313,2122222Λ----(2);,201,121,61,21Λ--(3);9999.0,999.0,99.0,9.0Λ(4).,4,5,4,5Λ题型二 数列通项公式的简单应用例2 已知有穷数列Λ,2625,1716,109,54(1)指出这个数列的一个通项公式;(2)判定0.98是不是这个数列中的项?若是,是第几项? 命题意图:考察对通项公式的理解及应用(1)本题中极容易错误地认为122+n n 是数列的通项公式,为避免这样的错误,可验证你所写通项公式是否适合数列的前几项.(2)要判断一个数是否为该数列中的项,可由通项等于这数解出n ,根据n 是否为正整数便可确写这个数是否为数列中的项,也就是说,判定某一数是否是数列中的某一项,其实质就是看方程是否有正整数解. 一题一练 已知数列{}n a 的通项公式n n q a =,且.7224=-a a(1)求实数q 的值;(2)判断81-是否为此数列的某一项.题型三 已知n S 求n a例3 已知数列{}n a 的前n 项和n S ,求数列{}n a 的通项公式. (1);12-=n n S (2).322++=n n S n命题意图 本题为通过n S 求n a ,因为n n a a a S +++=Λ21,所以n S 与n a 有关系⎩⎨⎧≥-==-)2()1(11n S S n S a n nn 可求得.n a解 (1)由,12-=n n S 当1=n 时,;112111=-==S a 当2≥n 时, )12(1211---=-=--n n n n n S S a.22211--=-=n n n当1=n 时也适合,12111==-a 所以.21-=n n a(2)由,322++=n n S n 当1=n 时,.611==S a当2≥n 时,[].143)1()1(2)32(221-=+-+--++=-=-n n n n n S S a n n n.)2(14)1(6⎩⎨⎧≥-==∴n n n a n由n S 求n a 时,当1a 不符合1--=n n n S S a 表达式时,通项公式要分段表示. 即⎩⎨⎧≥==2)(11n n f n a a n 的形式.一题一练(1)已知数列{}n a 的前n 项和n n S n 322-=,求数列通项公式; (2)已知数列⎣⎦n a 的前n 项和35-=n n S ,求数列通项公式题型四 数列的递推公式例4 已知数列{}n a 分别满足下列条件,写出它的前五项,并归纳出各数列的一个通项公式.(1));12(,011-+==+n a a a n n (2).22,111+==+n nn a a a a 命题意图 此数列是用递推公式给出的,已知1a 就可递推出,,2Λa 依此类推,可求出它的任一项.再根据前5项归纳猜想n a 的一个通项公式. 方法提升由递推公式,求出数列前5项,再归纳出通项公式,猜想不一定正确,还需严格证明(今后学到),也可以直接求出.一、选择题1.下列说法不正确的是( )A. 数列可以用图像来表示B. 数列的通项公式不唯一C. 数列的项不能相等D. 数列可以用一群狐立的点表示2.已知数列{}n a 的通项公式为n a n 225-=,下列各数中,不是{}n a 的项的是( )A. 1B. -1C. 2D. 3 3.设数列,,11,22,5,2Λ则52是这个数列的( )A. 第六项B. 第七项C. 第八项D. 第九项4.无穷数列Λ1,3,6,10,的通项公式为( )A. 12+-=n n a nB. 12-+=n n a nC. 22nn a n +=D. 22nn a n -=5.数列{}n a ,其中,,6,31221n n n a a a a a -===++,那么这个数列的第五项为( )A. 6B. -3C. -12D. -6二、填空题6.数列{}n a 中,)2(,211≥+==-n n a a a n n ,则=10a .7.在数列Λ,55,34,,13,8,5,3,2,1,1x 中,x 的值 .8.已知数列{}n a 通项公式*)(1242N n n n a n ∈--=,则:(1)这个数列的第四项是 ;(2)65是这个数列的第 项; (3)这个数列从第 项起各项为正数. 三、解答题9.写出下列数列的一个通项公式(1);,811,271,91,31,1Λ--(2);,0,3,0,3Λ(3)Λ,1716,109,54,21-- (4);,7777.0,777.0,77.0,7.0Λ10.在数列{}n a 中,.66,2171==a a 通项公式n a 是项数n 的一次函数. (1)求数列{}n a 的通项公式; (2)88是否是数列{}n a 中的项.11.已知数列{}n a 的前n 项和)(242*∈+-=N n n n S n .(1)求{}n a 的通项公式; (2)当n 为何值时, n S 达到最大?最大值是多少?12.设数列{}n a 的通项公式为)(2+∈+=N n kn n a n ,若数列{}n a 是单调递增数列,求实数k 的取值范围. 锁定高考已知数列{}n a 的前几项和n n S n 92-=,则其通项=n a ;若它的第k 项满足85<<k a ,则k = .。
高中数学新人教版B版精品教案《人教版B高中数学必修5 本章小结》71

《数列求和》教学设计辽宁省本溪市高级中学施洋一、学情分析:学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。
本节课作为一节专题探究课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。
二、教法设计:本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。
采用以问题情景为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。
先引出相应的知识点,然后剖析需要解决的问题,在例题及变式中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。
在教学过程中采取如下方法:①诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性;②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性;③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。
三、教学设计:1、教材的地位与作用:对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。
化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。
因此,研究由递推公式求数列通项公式中的数学思想方法是很有必要的。
2、教学重点、难点:教学重点:根据数列通项求数列的前n项,本节课重点学习并项分组求和与裂项法求和。
教学难点:解题过程中方法的正确选择。
人教版高中数学必修5第二章2.5.2数列的求和问题学案

2.5.2数列的求和问题一、学习目标1.熟练掌握等差数列和等比数列的求和公式; 2.掌握数列的通项n a 与前n 项和n S 之间的关系式;3.熟练掌握求数列的前n 项和的几种常用方法;注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和.二、学习要点1、数列的前n 项和S n 的相关公式任意数列的第n 项{}n a 与前n 项和n S 之间的关系式:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列的前n 项和n S 公式:211()(1)22n n n a a n n S na d An Bn +-==+=+(A B 、为常数) 当d≠0时,S n 是关于n 的二次式且常数项为0; 当d=0时(a 1≠0),S n =na 1是关于n 的正比例式. 等比数列的前n 项和n S 公式: 当1q =时,1n a a =,1231n n S a a a a na =++++=,当1≠q 时,q q a S n n --=1)1(1或qqa a S n n --=11等比数列的求和中若q 的范围不确定,要特别注意1q =的情况. 2、求数列的前n 项和的几种常用方法 公式法:如果一个数列是等差或者等比数列,求其前n 项和可直接利用等差数列或等比数列的前n 项和公式求和;倒序相加法:等差数列前n 项和的推导方法,即将n S 倒写 后再与n S 相加,从而达到(化多为少)求和的目的,常用于组合数列求和.裂项相消法:把数列的通项拆成两项之差,然后把数列的每一项都按照这种方法拆成两项的差,以达到在求和的时候隔项正负相抵消的目的,使前n 项的和变成只剩下若干少数项的和的方法.例如对通项公式为1(1)n a n n =+的数列求和.常见的拆项公式: ①)11(1)(1kn n k k n n +-=+•;①若{}n a 为等差数列,且公差d 不为0,首项也不为0,则111111()n n n n a a d a a •++=-;①若{}n a 的通项的分子为非零常数,分母为非常数列的等差数列的两项积的形式时,则)11(1))((1CAn B An B C C An B An a n +-+-=++=.①n n nn -+=++111;)(11n k n knk n -+=++.分解求和与并项求和法:把数列的每一项拆分成两项或者多项,或者把数列的项重新组合,或者把整个数列分成两部分等等,使其转化成等差数列或者等比数列等可求和的数列分别进行求和.例如对通项公式为n n n a 32+=的数列求和.错位相减法:如果一个数列{}n a 的通项是由一个非常数列的等差数列{}n b 与等比数列{}n c 的对应项乘积组成的,求和的时候可以采用错位相减法.即错位相减法适用于通项为n n n c b a ⋅=(其中{}n b 是公差d≠0的等差数列,{}n c 是公比q≠1的等比数列)(也称为“差比数列”)的数列求前n 项和n S .例如对通项公式为(21)2n n a n =-⋅的数列求和.一般步骤:n n n n n c b c b c b c b S ++⋯++=--112211,则 1211n n n n n qS b c b c b c -+=+⋯⋯++所以有13211)()1(+-⋯⋯+++=-n n n n c b d c c c c b S q①错位相减法是基于方程思想和数列规律的一种方法.一般都是把前n 项和的两边都乘以等比数列的公比q 后,再错位相减求出其前n 项和;①在使用错位相减法求和时一定要注意讨论等比数列中其公比q 是否有可能等于1,若q=1,错位相减法会不成立.3、掌握一些常见数列的前n 项和公式 1. 2)1(321+=++++n n n ; 2. 2135(21)n n ++++-=3. 6)12)(1(3212222++=++++n n n n ;前两个公式结论最好能熟记,这样解题时会更加方便.三、典型例题复习题型一:公式法:直接利用或者转化后利用等差或等比数列求和公式【例1】.设数列{}n a 的通项为*27(),n a n n N =-∈则1215||||+||a a a ++……= 【思路点拨】对含绝对值的式子,首先去绝对值号,再考虑分组为等差或等比之和。
人教新课标版数学高二B必修5学案 等差数列的前n项和(二)

2.2.2 等差数列的前n 项和(二)明目标、知重点 1.掌握等差数列与其前n 项和S n 有关的一些性质,能熟练运用这些性质解题.2.掌握可以转化为等差数列的数列求和问题.3.会用等差数列的相关知识解决简单的实际问题.等差数列前n 项和的性质(1)等差数列{a n }的公差为d ,前n 项和为S n ,那么数列S k ,S 2k -S k ,S 3k -S 2k ,…(k ∈N +)是等差数列,其公差等于k 2d .(2)若在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若在等差数列{a n }中,a 1<0,d >0,则S n 存在最小值.(3)若等差数列的项数为2n (n ∈N +)时,则S 2n =n (a n +a n +1),且S 偶-S 奇=nd ,S 奇S 偶=a n a n +1 .(4)若等差数列的项数为2n -1(n ∈N +)时,则S 2n -1=(2n -1)a n ,且S 奇-S 偶=a n ,S 奇=na n ,S 偶=(n -1)·a n,S 奇S 偶=n n -1.在学等差数列时,我们探究了等差数列的一些性质,现在我们学习了等差数列的前n 项和,它又有哪些性质?这就是本节我们探究的主要问题. 探究点一 等差数列前n 项和的性质思考1 设{a n }是等差数列,公差为d ,S n 是前n 项和,那么S m ,S 2m -S m ,S 3m -S 2m 也成等差数列吗?如果是,它们的公差是多少?答 由S m =a 1+a 2+…+a m ,S 2m -S m =a m +1+a m +2+…+a 2m =a 1+md +a 2+md +…+a m +md =S m +m 2d .同理S 3m -S 2m =a 2m +1+a 2m +2+…+a 3m =S 2m -S m +m 2d . 所以S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,并且公差为m 2d .思考2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系?请证明之.答a nb n =S 2n -1T 2n -1. 证明:∵S 2n -1=12(2n -1)(a 1+a 2n -1)=2n -12·2a n =(2n -1)a n ; 同理T 2n -1=(2n -1)b n ; ∴S 2n -1T 2n -1=(2n -1)a n (2n -1)b n =a nb n. 即a n b n =S 2n -1T 2n -1. 例1 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.解 (1)方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列. ∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m 成等差数列,∴2S 2m 2m =S m m +S 3m3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. (2)a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512. 反思与感悟 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练1 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n . 解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n (-2)+n (n -1)2×12=14n 2-94n .探究点二 求数列{|a n |}的前n 项和例2 若等差数列{a n }的首项a 1=13,d =-4,记T n =|a 1|+|a 2|+…+|a n |,求T n . 解 ∵a 1=13,d =-4,∴a n =17-4n . 当n ≤4时,T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n=na 1+n (n -1)2d =13n +n (n -1)2×(-4)=15n -2n 2;当n ≥5时,T n =|a 1|+|a 2|+…+|a n | =(a 1+a 2+a 3+a 4)-(a 5+a 6+…+a n ) =S 4-(S n -S 4)=2S 4-S n =2×(13+1)×42-(15n -2n 2)=56+2n 2-15n .∴T n =⎩⎪⎨⎪⎧15n -2n 2,n ≤4,2n 2-15n +56,n ≥5.反思与感悟 等差数列{a n }前n 项的绝对值之和,根据绝对值的意义,应首先分清这个数列的哪些项是负的,哪些项是非负的,然后再分段求出前n 项的绝对值之和.跟踪训练2 已知数列{a n }中,S n =-n 2+10n ,数列{b n }的每一项都有b n =|a n |,求数列b n 的前n 项之和T n 的表达式.解 由S n =-n 2+10n 得a n =S n -S n -1=11-2n (n ≥2,n ∈N +). 验证a 1=9也符合上式.∴a n =11-2n ,n ∈N +. ∴当n ≤5时,a n >0,此时T n =S n =-n 2+10n ; 当n >5时,a n <0,此时T n =2S 5-S n =n 2-10n +50.即T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50(n >5).探究点三 等差数列的前n 项和公式在实际中的应用例3 李先生为今年上高中的儿子办理了“教育储蓄”,从8月1号开始,每个月的1号都存入100元,存期三年:(1)已知当年“教育储蓄”存款的月利率是2.7‰,问到期时,李先生一次可支取本息共多少元?(“教育储蓄”不需缴利息税)(2)已知当年同档次的“零存整取”储蓄的月利率是1.725‰,问李先生办理“教育储蓄”比“零存整取”多收益多少元?(“零存整取”需缴20%的利息税) 解 (1)100元“教育储蓄”存款的月利息是 100×2.7‰=0.27(元).第1个100元存36个月,得利息0.27×36(元); 第2个100元存35个月,得利息0.27×35(元); ……第36个100元存1个月,得利息0.27×1(元). 因此,到期时李先生获得利息0.27×(36+35+…+1)=179.82(元). 本息和为3 600+179.82=3 779.82(元). (2)100元“零存整取”的月利息是 100×1.725‰=0.172 5(元), 存三年的利息是0.172 5×(36+35+…+1)=114.885(元), 因此,李先生多收益179.82-114.885×(1-20%)=87.912(元). 答 (1)李先生一次可支取本息共3 779.82元.(2)李先生办理“教育储蓄”比“零存整取”多收益87.912元.反思与感悟 解决有关等差数列的实际应用题时,首先要搞清楚哪些量能成等差数列,建立等差数列的模型,然后根据题意找准首项、公差和项数或者首项、末项和项数,最后转化为等差数列问题来解决.跟踪训练3 甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m. (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇? 解 (1)设n 分钟后第1次相遇,依题意,有2n +n (n -1)2+5n =70,整理得n 2+13n -140=0.解之得n =7,n =-20(舍去). 第1次相遇是在开始运动后7分钟. (2)设n 分钟后第2次相遇,依题意,有2n +n (n -1)2+5n =3×70,整理得n 2+13n -420=0.解之得n =15,n =-28(舍去). 第2次相遇是在开始运动后15分钟.1.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12 B .2 C.14 D .4 答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3.在一个等差数列中,已知a 10=10,则S 19=________. 答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4.某人用分期付款的方式购买一件家电,价格为1 150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?解 设每次交款数额依次为a 1,a 2,…,a 20, 则a 1=50+1 000×1%=60(元), a 2=50+(1 000-50)×1%=59.5(元), …a 10=50+(1 000-9×50)×1%=55.5(元), 即第10个月应付款55.5元.由于{a n }是以60为首项,以-0.5为公差的等差数列, 所以有S 20=60+(60-19×0.5)2 ×20=1 105(元),即全部付清后实际付款1 105+150=1 255(元).1.等差数列前n 项和的性质(1)对于前n 项和形如S n =An 2+Bn 的数列一定为等差数列,且公差为2A ,记住这个结论,如果已知数列的前n 项和可以直接写出公差.(2)关于奇数项的和与偶数项的和的问题,要根据项数来分析,当项数为奇数或偶数时,S奇与S 偶的关系是不相同的.(3)数列{S n n }是等差数列,首项为a 1,公差为d2.2.等差数列{a n }与数列{|a n |}的前n 项和等差数列各项取绝对值后组成的数列{|a n |}的前n 项和,可分为以下情形:(1)等差数列{|a n |}的各项都为非负数,这种情形中数列{|a n |}就等于数列{a n },可以直接求解. (2)等差数列{a n }中,a 1>0,d <0,这种数列只有前面有限项为非负数,从某项开始其余所有项都为负数,可把数列{a n }分成两段来处理.(3)等差数列{a n }中,a 1<0,d >0,这种数列只有前面有限项为负数,其余都为非负数,同样可以分成两段处理.一、基础过关1.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( )A .10 000B .8 000C .9 000D .11 000 答案 A解析 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[(a 1+b 1)+(a 100+b 100)]2=50×(25+75+100)=10 000.2.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n 为整数的正整数n 的个数是( ) A .2 B .3 C .4 D .5 答案 D 解析a nb n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1. ∴n =1,2,3,5,11.3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.5.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1n B.n +1n C.n -1n D.n +12n答案 B解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n .6.一个等差数列共有10项,其偶数项之和是15,奇数项之和是252,则它的首项与公差分别是a 1=__________,d =________. 答案 12 12解析 S 偶-S 奇=5d =15-252=52,∴d =12. 由10a 1+10×92×12=15+252=552,得a 1=12.7.已知数列{a n }中,a 1=-7,a 2=3,a n +2=a n +2,求S 100. 解 由a 1=-7,a n +2=a n +2,可得a n +2-a n =2,∴a 1,a 3,a 5,a 7,…,a 99是以-7为首项,公差为2的等差数列,共50项.∴a 1+a 3+a 5+…+a 99=50×(-7)+50×(50-1)2×2=2 100.同理,a 2,a 4,a 6,…,a 100是以3为首项,公差为2的等差数列,共50项. ∴a 2+a 4+a 6+…+a 100=50×3+50×(50-1)2×2=2 600.∴S 100=2 100+2 600=4 700. 二、能力提升8.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29 答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.9.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6 答案 C解析 a m =2,a m +1=3,故d =1,因为S m =0,故ma 1+m (m -1)2d =0,故a 1=-m -12,因为a m +a m +1=5,故a m +a m +1=2a 1+(2m -1)d =-(m -1)+2m -1=5, 即m =5.10.有两个等差数列{a n },{b n },其前n 项和分别为S n 和T n ,若S n T n =3n -1n +7,则a 7b 7=________.答案1910解析 方法一 a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13-113+7=1910. 方法二 因为S n T n =3n -1n +7,所以设S n =(3n -1)kn ,T n =(n +7)·kn (k ≠0). 所以a 7=S 7-S 6=38k ,b 7=T 7-T 6=20k . 所以a 7b 7=38k 20k =1910.11.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和. 解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n ,则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎪⎫1 099-109×11100=-110.故此数列的前110项之和为-110.方法二 设S n =an 2+bn .∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧ a =-11100,b =11110.∴S n =-11100n 2+11110n . ∴S 110=-11100×1102+11110×110=-110. 12.数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0 (n ∈N +).(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n .解 (1)∵a n +2-2a n +1+a n =0.∴a n +2-a n +1=a n +1-a n =…=a 2-a 1.∴{a n }是等差数列且a 1=8,a 4=2,∴d =-2,a n =a 1+(n -1)d =10-2n .(2)∵a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0.∴当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n=2·(9×5-25)-9n +n 2=n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2.∴S n =⎩⎪⎨⎪⎧9n -n 2 (n ≤5)n 2-9n +40 (n >5). 三、探究与拓展13.有两个加工资的方案:一是每年年末加1 000元;二是每半年结束时加300元.如果在该公司干10年,问:(1)选择哪一种方案好?选准了较好的方案,与另一方案相比,10年中多加薪多少元?(2)如果第二方案中的每半年加300元改成每半年加a 元,问a 取何值时,总是选择第二方案比第一方案加薪多?解 按第一种方案,每年加薪数形成等差数列{a n }且a 1=1 000,d =1 000,n =10,按第二种方案,每半年加薪数形成等差数列{b n }且b 1=300,d =300,n =20.(1)第10年的年末,依第一方案可得共加薪S n =(1 000+2 000+3 000+…+10 000)=55 000(元).依第二方案可得共加薪T n =(300+300×2+300×3+300×4+…+300×20)=63 000(元),因此在公司干10年,选择第二方案好,多加薪63 000-55 000=8 000(元).(2)到第n 年年末,依第一方案可得共加薪1 000(1+2+…+n )=500n (n +1)(元).依第二方案可得共加薪a (1+2+3+4+…+2n )=an (2n +1)(元).由题意an (2n +1)>500n (n +1)对一切n ∈N +都成立,即a >500(n +1)2n +1=250+2502n +1, 又因为250+2502n +1≤250+2503, 所以a >250+2503=1 0003. 所以当a >1 0003元时, 总是选择第二方案比第一方案加薪多.。
数列求和(学案)

数列求和一、学习目标:1 进一步巩固等差数列和等比数列的求和公式。
2 会运用等差数列和等比数列的求和公式的推导方法和思想解决某些特殊数列的求和问题。
二、预习题纲:(1)等差数列的求和公式 (2)等比数列的求和公式(3)这两个公式是用何种方法推导出来的?三、基础巩固: (1)问题:通过上述练习:(1)你能总结出数列求和的哪些常用方法? (2)具体问题该如何恰当地选择方法?()()1111(2)25588113132n n =++++⨯⨯⨯-⨯+n S 234(3)234nn s x x x x nx=+++++ 11(2)(4)24n S =++++1(2n )2n++···四、能力提升:五、课后探究:六、小结与反思:通过本节课的学习你掌握了哪些数列求和的方法,以及对这些方法如何恰当选择? 七、布置作业| (1)完善本学案。
(2)预习:循环结构(见学案)()442x xf x =+3、已知:,()()1f x f x +-122010(2)201120112011S f f f =+++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111(1)112123123n=+++++++++++n S ()()()221(2)1121221222n -=+++++++++++n S 2222sin 1sin 2sin 3sin 89+++++(3)求和:{}()()1100143n n n a a n S-=--1、数列的通项公式 求{}112011112nn na a a a +=-=2、若数列满足 且,求S (1)求。
高中数学2.5数列的求和导学案(无答案)新人教版必修5

数列求和学习目标:1 •熟练掌握等差数列与等比数列的求和公式;「消等重要的数学方法进行求和运算; nd q(3)求和S【课内探究]变式:已知a n n 2n 1,求数列{a n }的前n 项和S n .2 •能运用分组求和、、问题导学 (复习回顾)(1)等差数列求和公式: S 1 uuuujujujuuuuir错位相减、裂项相 (2)等比数列求和公式: S n a n q例1、求和:(1 S n 11 31 51 2 4 8 L [(2n 1)1 1 1 1 班】;⑵S n 1 3 4 L (2n 1) 2【总结提升】1、 公式法2、 裂项相消法求和把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相 互抵消,于是前 n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
适用于类似(其中a n 是各项不为零的等差数列, c 为常数)的数列、部分无理数列等。
用裂项相消 a n a n 1法求和,常见的裂项方法:1 111 1 11 (1) ——11 1 —,特别地当k 1时,——1 1 — nnkknnknn1nn1 A A ” A _(2) _ _ 一 . n k • n ,特别地当 k 1 时 --------------------- —.n 1•. n .n k 一 n k. n 1 n 3、错位相减法若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差•比”数列,则采用错位相减法。
若 a n b n c n ,其中b n 是等差数列, c n 是公比为q 等比数列,令 S n biG b 2c 2 L b n 1c n 1 b n c n则qS n -b© b ?C 3 L b n 1C nb nCi r 两式相减并整理即得其它常用的方法还有倒序相加法、分组求和法 【课后作业】例2、已知数列 a n 的通项公式为a n n(n 2) ,求它的前n 项和S n .1 (n 1)(n 3)5.求和:S n x 2x 2 3x 3 L nx n . 1. S n 2 3 5 4 3 52 6 3 53 L 2n 3 5n 2.化简:3.数列 1,(1 2),(1 2 22),L ,(1 2 22 L 2n 1),L 的通项公式a n ,前n 项和Sn _______ 4、求和:S n 14 4 7 1 _____ (3n 2) (3n 1)。
人教版数学必修五2.5数列的求和导学案

数列求和学习目标:1熟练掌握等差数列与等比数列的求和公式;2 •能运用分组求和、错位相减、裂项相•消等重要的数学方法进行求和运算;一、问题导学(复习回顾)(1)等差数列求和公式:& == ------------------------------- \----------------------------------------- i”g(q=1)(2)等比数列求和公式:a— anq=, (q^)(3)求和足—1+_ 1 1 +1 1—+ ------ + ------ =12 23344556【课内探究】1 1 1 1 1 1 1例1、求和:(1 S n =1—+3—+5—+ ||j+[(2n— 1^—]; (2)S n =1 江一+3汉一+ 川+ (2n—1^ —2 4 8 2 2 4 2变式:已知a n = n 2nJ,求数列{a n}的前n项和S n.来源 :Z#xx#]【总结提升】1、 公式法2、 裂项相消法求和把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相 互抵消,于是前 n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
适用于类似— (其中曲是各项不为零的等差数列,c 为常数)的数列、部分无理数列等。
用裂项相消a n a n 1 法求和,常见的裂项方法:(1)一1 - i —,特别地当k =1时,一1 1 一丄 n (n +k ) k Jn n +k 丿n (n 十1) n n+1 3、错位相减法若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差•比”数列,则 米用错位相减法。
右 a n =b n c n ,其中'b n f 是等差数列, 是公比为q 等比数列,令S n — b 1c 1 b 2c ^ I H b n 」c n4 b n c n则qS n 二 b 1 c^ b 2 c^ ■ n b n c n b n c 两式相减并整理即得其它常用的方法还有倒序相加法、分组求和法来源学§科§网Z §X§ X K]【课后作业】例2、已知数列 的通项公式为 a n n(n 2) ,求它的前n 项和S n .(2) 十齐-行,特别地当 k =1时 --- 一二.n 1 -、n、、n T , n(n 1)(n 3)3.数列1,(1 2),(12 22)J||(1 2・22 •川・2nJ ), III 的通项公式 可二 _______ ,前n 项和&二1 1 14、求和:『门 W 山(3n 一2) (3n 1) 5.求和: S n = x 2x 2 3x 3 HI nx n . 来源学科网 “来源学科网学习不是一朝一夕的事情,需要平时积累,需要平时的勤学苦练。
最新-高中数学 数列的求和教案 新人教B版必修5 精品

教学课题: 数列的求和教学目的:和的常用方法,尤其是要求学生初步掌握用公式法、分组结合法、裂项相消法、错位相减法、倒序相加法求解一些特殊的数列; 教学前的准备:(1) 基本公式:① 等差数列的前n 项和公式;2)1(1dn n na s n -+= 2)(1n n a a n s +=;② 等比数列的前n 项和公式);0,1(11)1(11≠≠⎩⎨⎧--=--=n n n n a q q qa a qq a s)1(1==q na s n(2)特殊数列求和---常用数列前n 项和(记忆);2)1(321+=++++n n n;)12(5312n n =-++++;6)12)(1(3212222++=++++n n n n;4)1(321223333+=++++n n n过程: 对于非等差数列、等比数列的特殊数列,求其前n 项和的一般方法是:先求数列的通项公式,再分析数列通项公式结构的特征,然后转化为等差数列、等比数列求和或采用消项的方法求和。
知识点1:公式法(若问题可转化为等差、等比数列,则直接利用求和公式即可)例1:求2222222210099654321+--+-+-+- 之和分析:本题运用平方差公式将原数列变形为等差数列,然后用等差数列的求和公式;[解] 原式=)99100()56()34()12(22222222-++-+-+-=)99100)(99100()56)(56()34)(34()12)(12(-+++-++-++-+=1991173++++ 其中n=50;由等差数列求和公式,得:50502)1993(5050=+=s ;例2:求数列 ),2)(1(,,654,432,321++⋅⋅⋅⋅⋅⋅n n n 的前n 项和;分析:根据通项公式n n n n n n a n23)2)(1(23++=++=的结构特征,可将原数列分解为基本数列求和。
[解] :因为n n n a n2323++=,所以)321(2)321(3)321(22223333n n n s n ++++++++++++++= =2)1(26)12)(1(3)1(4122+⋅+++⋅++n n n n n n n =)3)(2)(1(41+++n n n n (利用基本求和式) 知识点2: 分组结合法(分组求和法、拆项法)若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。
高中数学人教B版必修五教案:2.2数列求和习题课

1、巡视学生作答情况。
2、公布答案。
3、评价学生作答结果。
1、小考卷上作答。
2、同桌互批。
3、独立订正答案。
检查学生对本课所学知识的掌握情况。
5分钟
6
布置下节课自主学习任务
完成章末测试卷,并分类总结试卷中的题型,标注每类题型蕴含的解题方法
(2)求数列{bn}的前n项和.
检查,评价
互查掌握情况
1、检验学生预习情况
2、明确本节课学习目标,准备学习。
3分钟
2.
承接结果
1、解读学习目标
2、校对作业卷答案
1、评价学生的展示结果
2、对学生的展示和评价要给予及时的反馈。
1、展示并讲解
2、质疑、评价
验收学生预习完成情况
5分钟
3.
做
议
讲
评
1、已知首项都是1的两个数列{an},{bn}(bn?0,n?N*)满足anbn+1-an+1bn+2bn+1bn=0.
2、会用以上两种方法求和
二、能力目标
在错位相减法求和过程中增强学生计算能力
理由:本课的重难点
教具
投影仪、教材、教辅
教学
环节
教学内容
教师行为
学生行为
设计意图
时间
1.
课前3分钟
已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.
(1)求数列{an}和{bn}的通项公式;
(1)令cn= ,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn.
2、设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n?N*).
人教B版高中数学必修五数列学案

学案(1)数列
1.理解数列及其有关概念;
2.了解数列的通项公式,并会用通项公式写出数列的任意一项;
3.对于比较简单的数列,会根据其前几项写出它的个通项公式.
1.函数的定义.
2.在学习函数的基础上,今天我们来学习数列的有关知识,首先我们来看一些例子:
观察这些例子,看它们有何共同特点?
1.数列:
2.数列的项:
3.数列的一般表示:
4.数列的通项公式:
5.有穷数列:
6.无穷数列: 例1 根据下面数列{}n a 的通项公式,写出前5项:
(1)1212--=n n a n ; (2) 2
sin πn a n =。
例2写出下面数列的一个通项公式,使它的前4项分别是下列各数:
(1)1,3,5,7 (2);2,0,2,0
(3).63
8,356,154,32----
;
例3 已知函数x
x x f 1)(-=,设:))((+∈=N n n f a n (1) 求证:<n a 1;
(2) {n a }是递增数列还是递减数列?为什么?。
高中数学 数列前 项和的求法BCA案教案 新人教B版必修5

2.5数列前n项和的求法BCA案学习目标:1、理解数列前n项和的意义,掌握等差、等比数列的前n项和的求法和前n项和的公式;2、掌握数列前n项和的常用方法.B 案【使用说明】完成以下的内容,做好疑难标记。
【自学园地】一、填空:1.数列求和的策略与思路数列的求和,其关键是先求出数列的通项公式,然后根据通项公式的结构,选择适当的求和方法.数列求和的思路:(1)首先判断数列是等差还是等比数列?若是,则代公式,这就是公式法.(2)若不是,再考虑是否可以转化为等差或等比数列求和.2.数列求和的常用方法:(1)公式法(2)分组求和(3)裂项相消法 (4)倒序求和(5)错位相减法(6) 并项法C 案【使用说明】1、将自学中遇到的问题组内交流,标记好疑难点;2、组内解决不了的问题直接提出来作为全班展示。
【合作探究】数列求和的常用方法举例:(1)公式法:必须记住几个常见数列前n 项和 等差数列:2)1(2)(11dn n na a a n S n n -+=+=;等比数列:111(1)(1)(1)11n n n na q S a a q a q q q q ⎧=⎪=⎨--=≠⎪--⎩.(2)分组求和:方法1:分组转化法(通项分解法):若通项能转化为等差数列与等比数列和(或差),即n n n c b a ±= 例1、求数列2111111,4,7,,32,222n n -++++- 的前n 项和n S .变式训练:求1+1,13a+,215a +,…,1121n n a-+-,…的前n 项和(3):裂项相消法:通项是分式结构,分母因式成等差数列关系,可以把通项写成两项之差a n =f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。
常见的拆项公式:⑴若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; ⑵()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;111)1(1+-=+n n n n , )211(21)2(1+-=+n n n n ;])2)(1(1)1(1[21)2)(1(1++-+=++n n n nn n n1a b=-.例2、已知数列{}n a 的第n 项1(1)n a n n =+ ,求其前n 项和S n .变式训练: 求数列n+++++++++++++++ 32114321132112111的前n 项和n S ; (4)错位相减法:若通项能转化为等差数列与等比数列的积,一般适用于数列{}n n a b 的前n 项求和,其中{}n a 成等差,{}n b 成等比,即n n n c b a ⋅=例3、求和21122322n n -+⋅+⋅++⋅.变式训练:求和S n =1+3x+5x 2+7x 3+……+(2n -1)x n-1(注意讨论x) (5)倒序求和:把数列正写和倒写再相加,等差数列的求和公式就是用这种方法推导出来的。
人教版高中数学高一必修五学案17常见的数列求和及应用

常见的数列求和及应用一、自主探究1、等差数列的前n 项和公式:n S = = 。
2、等比数列的前n 项和公式: ①当1q =时,n S = ;②当1q ≠时,n S = = 。
3、常见求和公式有:①1+2+3+4+…+n= ②1+3+5+…+(2n-1)= ※③2222123n ++++=()()11216n n n ++※④()233332112314n n n ++++=+ 二、典例剖析(一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。
例1 已知2n n a n =+,求数列{n a }的前n 项和。
变式练习:已知2n a n n =+,求数列{n a }的前n 项和。
(二)、裂项求和法:如果数列的通项公式可转化为()()1f n f n +-形式,常采用裂项求和的方法。
特别地,当数列形如11n n a a +⎧⎫⎨⎬⎩⎭,其中{}n a 是等差数列,可采用此法 例2 求和:22211121311n +++---(2n ≥)变式练习:已知数列的通项公式()11n a n n =+,求数列{n a }的前n 项和。
(三)、奇偶并项法:当数列通项中出现()()111nn +--或时,常常需要对n 取值的奇偶性进行分类讨论。
例3 求和:()()1357121nn S n =-+-+-+--(四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。
例4 求在区间[],a b 内分母是3的所有不可约分数之和。
变式练习:已知lg lg x y a +=且()()122lg lg lg lg n n n n n S x x y x y y --=++++.求n S(五)错位相减法:一般地,如果数列{}n a 时等差数列,{}n b 是等比数列,求数列{}n n a b 的前n 项和时,可采用此法,在等式的两边乘以q 或1q,再错一位相减。
人教新课标版数学高二-人教B版必修5学案 2.3.2 等比数列的前n项和(一)

2.3.2 等比数列的前n 项和(一)1.掌握等比数列的前n 项和公式及公式推导思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.求等差数列前n 项和用的是倒序相加法,对于等比数列{a n },当q ≠1,S n =a 1+a 1q +a 1q 2+…+a 1q n -1=a 1+q (a 1+a 1q +…+a 1q n -1-a 1q n -1)=a 1+q (S n -a 1q n -1),至此,你能用a 1和q 表示出S n 吗? 答 由S n =a 1+q (S n -a 1qn -1),得(1-q )S n =a 1-a 1q n.所以S n =a 1(1-q n )1-q.2.在等比数列{a n }中,若q ≠1,则有a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q .由等比性质,得a 2+a 3+…+a na 1+a 2+…+a n -1=q ,至此你能用a 1和q 表示出S n 吗?答 由a 2+a 3+…+a n a 1+a 2+…+a n -1=q ,得 S n -a 1S n -a n =q ,于是S n =a 1-a n q 1-q =a 1(1-q n )1-q .1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1),na 1 (q =1).(2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.要点一 前n 项和公式基本量的运算例1 在等比数列{a n }中, (1)若q =2,S 4=1,求S 8;(2)若a 1+a 3=10,a 4+a 6=54,求a 4和S 5.解 (1)方法一 设首项为a 1,∵q =2,S 4=1, ∴a 1(1-24)1-2=1,即a 1=115,∴S 8=a 1(1-q 8)1-q =115(1-28)1-2=17.方法二 ∵S 4=a 1(1-q 4)1-q=1,且q =2,∴S 8=a 1(1-q 8)1-q =a 1(1-q 4)1-q (1+q 4)=S 4·(1+q 4)=1×(1+24)=17.(2)设公比为q ,由通项公式及已知条件得 ⎩⎪⎨⎪⎧ a 1+a 1q 2=10,a 1q 3+a 1q 5=54,即⎩⎪⎨⎪⎧ a 1(1+q 2)=10,a 1q 3(1+q 2)=54.①②∵a 1≠0,1+q 2≠0,∴②÷①得,q 3=18,即q =12,∴a 1=8.∴a 4=a 1q 3=8×(12)3=1,S 5=a 1(1-q 5)1-q =8×[1-(12)5]1-12=312.规律方法 (1)在等比数列{a n }的五个量a 1,q ,a n ,n ,S n 中,已知其中的三个量,通过列方程组求解,就能求出另两个量,这是方程思想与整体思想在数列中的具体应用.(2)在解决与前n 项和有关的问题时,首先要对公比q =1或q ≠1进行判断,若两种情况都有可能,则要分类讨论.跟踪演练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列{a n }的公比为q ,因为a 2+a 4=20,a 3+a 5=40,所以⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40.解得⎩⎪⎨⎪⎧a 1=2,q =2.所以S n =a 1(q n -1)q -1=2×(2n -1)2-1=2n +1-2.要点二 错位相减法求和例2 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x. 综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1),x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).规律方法 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪演练2 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1. ① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n .②①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n+2·a (1-a n -1)1-a =1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0),n 2(a =1),1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).要点三 等比数列前n 项和的综合应用例3 借贷10 000元,月利率为1%,每月以复利计息,王老师从借贷后第二个月开始等额还贷,分6个月付清,试问每月应支付多少元(1.016≈1.061,1.015≈1.051)?解 方法一 设每个月还贷a 元,第1个月后欠款为a 0元,以后第n 个月还贷a 元后,还剩下欠款a n 元(1≤n ≤6),则a 0=10 000,a 1=1.01a 0-a , a 2=1.01a 1-a =1.012a 0-(1+1.01)a , …a 6=1.01a 5-a =…=1.016a 0-a .由题意,可知a 6=0,即1.016a 0-a =0, a =1.016×1021.016-1.因为1.016≈1.061, 所以a ≈1.061×1021.061-1≈1 739(元).故每月应支付1 739元.方法二 一方面,借款10 000元,将此借款以相同的条件存储6个月,则它的本利和为S 1=104(1+0.01)6=104×(1.01)6(元).另一方面,设每个月还贷a 元,分6个月还清,到贷款还清时,其本利和为 S 2=a (1+0.01)5+a (1+0.01)4+…+a =a [(1+0.01)6-1]1.01-1=a ×102(元).由S 1=S 2,得a =1.016×1021.016-1≈1 739(元).故每月应支付1 739元.规律方法 解决此类问题的关键是建立等比数列模型及弄清数列的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计算时每一期本金的数额是不同的,复利的计算公式为S =P (1+r )n ,其中P 代表本金,n 代表存期,r 代表利率,S 代表本利和.跟踪演练3 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度,由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为:S n =a 1+a 2+…+a n =a 1(1-q n)1-q =25×[1-(45)n]1-45=125×<125.故这个热气球上升的高度不可能超过125 m.例4 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .解(1)由已知得⎩⎨⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n , ∴b n =ln 23n =3n ln 2.又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.规律方法 利用等比数列前n 项和公式时注意公比q 的取值,同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的难度,解题时有时还需利用条件联立方程组求解.跟踪演练4 已知S n 是无穷等比数列{a n }的前n 项和,且公比q ≠1,已知1是12S 2和13S 3的等差中项,6是2S 2和3S 3的等比中项. (1)求S 2和S 3;(2)求此数列{a n }的前n 项和; (3)求数列{S n }的前n 项和.解 (1)根据已知条件⎩⎪⎨⎪⎧12S 2+13S 3=2,(2S 2)·(3S 3)=36.整理得⎩⎪⎨⎪⎧3S 2+2S 3=12,(3S 2)·(2S 3)=36.解得3S 2=2S 3=6,即S 2=2,S 3=3.(2)∵q ≠1,则⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=3.可解得q =-12,a 1=4.∴S n =4[1-(-12)n ]1+12=83-83(-12)n .(3)由(2)得S 1+S 2+…+S n =83n -83(-12)[1-(-12)n ]1-(-12)=83n +89.1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1,n ,x =1. D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1,n ,x =1.答案 C解析 当x =1时,S n =n ;当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152.3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a . ∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1).1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础达标1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q +q 2-6=0.∵q >0,∴q =2. ∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于 ( )A .11B .5C .-8D .-11答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11. 4.等比数列{a n }的前n 项和为S n ,已知 S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13 C.19 D .-19 答案 C 解析设等比数列{a n }的公比为q ,因为S 3=a 2+10a 1,a 5=9,所以⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=a 1q +10a 1,a 1q 4=9. 解得⎩⎪⎨⎪⎧q 2=9,a 1=19.所以a 1=19.故选C. 5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q ⇒q 3=3(q 3=1不合题意,舍去).∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1qn -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,∴S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9;当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9,∴2q 9-q 6-q 3=0, 解得q 3=-12,或q 3=1(舍去),∴q =-342.8.求和:1×21+2×22+3×23+…+n ·2n . 解 设S n =1×21+2×22+3×23+…+n ·2n 则2S n =1×22+2×23+…+(n -1)×2n +n ·2n +1 ∴-S n =21+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1=(1-n )·2n +1-2. ∴S n =(n -1)·2n +1+2. 二、能力提升9.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×(12)8=2993964≈300(米).10.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 因为3a n +1+a n =0,所以a n +1a n =-13,所以数列{a n }是以-13为公比的等比数列.因为a 2=-43,所以a 1=4,所以S 10=4[1-(-13)10]1+13=3(1-3-10).故选C.11. 等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________.答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3).∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13. 12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910). ∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910, ∴a ≤12.3.故2013年最多出口12.3吨.三、探究与创新13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列{a n 2n -1}的前n 项和. 解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n 2n -1, ① S n 2=a 12+a 24+…+a n 2n , ②所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n =1-(1-12n -1)-2-n 2n =n 2n . 所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n 2n -1.。
高中数学 集体备课材料——数列教案 新人教B版必修5

第一节 数列的概念一、数列的基本概念: 数列、项数、首项、末项,通项公式数列的通项公式: ;所有的数列都有通项公式吗?练习1:求数列的项数和通项公式:(1) 10......3,2,1. =n =n a , (2) 99.......9,7,5,3 =n =n a (3).901,.....121,61,21=n =n a ,(4)n 21, (4)1,21,1 ,=n a二、介绍十个基本数列:以进一步巩固求数列的项数、通项公式三、数列的分类:举例说明 (1)根据数列的单调性单增数列 例 单减数列 例 常数数列 例 摆动数列 例 方法:后一项与前一项作差比较。
(2)根据数列中项的个数 有穷(限)数列: 无穷(限)数列:练习2:判断下列数列的单调性 (1).12,7,5,3,1-n (2)1+=n na n (3) n n a )21(-=*(4) 数列n n n a )1110)(1(+=的最大项*(5)数列9897--=n n a n 的 前30项中最大项 ;最小项典型例题:一、根据数列通项公式写出数列的前几项 例1、根据数列通项公式写出数列的前五项 (1)21+=n a n (2)1+=n n a n(3))1(1+⋅=n n an(4)n a n n 2)1(⋅-= (5)bnn a212-=(6)22)55(+-=n n a n(7)n n n a a a a a +===++1221,2.1例2、一个无穷数列的前三项是1,2,3,下列可以作为其通项公式的是( )A 、671123-+-=n n n a n B 、1662+-=n n anC 、121212+-=n n a n D 、n a n = 二、根据数列的前几项写出数列通项公式 例3、根据数列的前几项写出数列通项公式 三、根据通项判断某数是不是数列中的项例4、已知数列12+=n n a ,(1)证明:数列是单增数列 (2)判断30、128是不是数列中的项?第二节 等差数列一、等差数列定义: 二、通项公式:推导方法: 推论:d n m a a n m )(-+= 例1、知三求一 1、若31,31-==d a,则na =_______ 2、若27,1261==a a,则d=_______3、若17,573==a a ,则n a =_______4、若2,21,31===d a a n ,则n=_______5、若,19,1074==a a 则=1a ______,d=______6、98,8341==a a ,则数列有多少项在300到500之间? 例2、判断某数是不是数列中的项 已知数列 ,10,7,4,1,2----,①判断49,21--是否是数列中的项;②求数列的第10项,15项,1+n 项;③判断55-,n 38-是数列的第几项? 三、通项性质(1)等差数列}{n a 中,d n m a a n m )(-+=(2)等差数列}{n a 中,如果q p n m +=+,则q p n m a a a a +=+推广一、推广二、(等距性)例3、利用数列性质求数列中的项1、若572=+a a ,则=+81a a ____,=+63a a _______。
【B版】人教课标版高中数学必修五教案2-数列-新版

2.1.1数列教学目标知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
教学重点数列及其有关概念,通项公式及其应用教学难点根据一些数列的前几项抽象、归纳数列的通项公式教学过程Ⅰ.课题导入三角形数:1,3,6,10,…正方形数:1,4,9,16,25,…Ⅱ.讲授新课1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.3.数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 51413121↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5 这个数的第一项与这一项的序号可用一个公式:na n 1=来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系4. 数列的通项公式:如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:(1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是2)1(11+-+=n n a ,也可以是|21cos |π+=n a n . (3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.从函数的观点看,数列可以看作一个定义域是正整数集*N (或它的子集},,3,2,1{n )的函数.当自变量从小到大依次取值时对应的一列函数值.而数列的项是函数值,序号就是自变量,数列的通项公式就是相应函数的解析式.其图象是一群孤立点.由于函数有三种表示法,所以数列也有三种表示法:列表法、图象法和通项公式法.通常用通项公式法表示数列.5.数列与函数的关系数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n})为定义域的函数()n a f n =,当自变量从小到大依次取值时对应的一列函数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自 学 检 测
(3)1+3+5+7+9+…+(2n+1)
(4)22 23 24 2n3
(5) x x 2 x 3 x 4 ..... x n
总结:求和的关键 1.研究通项特征,判断是什么数列,选用哪个公式; 2.注意项数(不一定总是 n 项)3.含参数的讨论
自 学 指 导
2.等比数列前 n 项和公式 sn __________ __________ ___ 说明:1、注意根据所给条件选择适当的公式 2、注意公式中每个符号的含义 3、等比数列求和注意关于公比是否为 1 的讨论 4、求和的关键是:弄清数列的项数
【目标 1】公式法的数列求和
(1)1+2+3+4+„„+n
,1 2 Βιβλιοθήκη 2 2 D.n 2n 2 n 1
4、求数列 9,99,999,9999 ,99999,……的前 n 项和
-2-
【探究二】并项求和 已知 s 1 3 5 7 (1)n .2n 1 求 (1)s20 , s21 (2)sn n
数
学 习 目 标
列
求
和
授课时间:9 月 日
新授课
1.熟练掌握等差、等比数列的前 n 项和公式,并且能用公 式法对 等差等比数列进行求和. 2.掌握非等差、等比的特殊数列求和的几种常见方法。分组法、 列项相消法、错位相减法,并且明确每种方法适合的数列类型、 操作步骤以及易错点。 3.能够通过对通项公式的研究,选择正确的求和方法进行求和 复习回顾 1.等差数列前 n 项和公式 sn _________ __________
1.求数列2 3, 22 32, 23 33, , 2n 3n , 的前n项和
1 1 1 2.求Sn 1 2 2 3 3 2 2 2
n
1 2n
3.求数列11 , 2, 1 2 2 2, 1 2 2 2 23 , 的前n项和( A.2n ) C.2n 1 n 2 B.2n n
-1-
【探究一】分组求和 例1.求数列1+2,2+22,3+23, ,n+2n的前n项和
合 作 探 究
1.适用条件:项的特征:cn an bn ,
其中 {an }和{bn }为等差或等比数列
2.操作步骤:将数列的项进行分解重组,得到等差或等比数列, 再利用求和公式分别求和 3.分组求和法的实质:转化为两个或多个等差或等比数列 ►变式训练 1
1 1 1 1.求和1 2 3 2 4 8
n
1 2n
-5-
2、已知数列 {a n }, 通项公式 a n
2n 1 ,求数列 {a n }的前项和 s n 2n
【探究四】倒序相加法求和 如果一个数列 {an },与首末两端等“距离”的两项的和相等或等 于同一常数,那么求这个数列的前 n 项和即可用倒序相加法 【思路】把数列正着写和倒着写再相加。 (即等差数列求和公式的 推导过程的推广)
规律总结:对于正负间隔的数列求和一般采用相邻项配对的方法 特别要足以 n 为奇数和偶数对于求和的影响 ►变式训练 2
sn 1 2 3 4 5 6 (1)n1.n
【探究三】 、裂项相消求和法
1.适用条件:项的特征:
bn
1 an an 1
an 为公差为d的等差数列,(an 0, d 0)
已知函数f(x)
2x
2x 2 (1)计算f(x) f (1 x)的值 (2)求f( 1 2 3 2008 ) f( ) f( ) ...... f ( ) 2009 2009 2009 2009
-6-
变式
已知函数f(x)
4x 4x 2 (1)计算f(x) f (1 x)的值 n (2)设数列{an }满足an f ( ), 求此数列的前 1000 项的和 1001
(一)求数列求和的关键
课 堂 小 结
抽取出其通项来加以分析,根据数列的通项的结构特点去 选择适当的方法. (二)数列求和的方法:
6.倒序相加法求和(与首末两端等“距离”的两项的和相等)
当 堂 检 测
-7-
1 1 1 1 提出 ,化bn ( ),得Sn d d an an1 2.操作步骤: 3.关键:拆通项,出现正负相消项
-3-
►变式训练 3
3、
-4-
【探究四】错位相减求和法
cn anbn 规律总结:1.适用条件:项的特征: a 为等差数列, n bn为等比数列
2.操作步骤:先同乘以等比数列的公比,再错位相减 3.错位相减法实质:把数列求和问题转化为等比数列求和. ►变式训练 4