火箭设计







火箭设计

大型火箭的设计继承了飞机设计的理论和方法,在现代先进科学技术和工业的基础上已发展成为一门新兴的工程技术。它是航天工程的重要组成部分(见飞行器设计)。

设计特点 火箭由于自身的特点,它的设计不完全同于其他的飞行器设计。火箭设计的特点是:①火箭因无人驾驶,需要为它设计十分完善的自动控制系统,并且将火箭整体作为弹性体设计(见火箭试验)。②火箭以巨大推力工作和以极高速度在大气层内飞行,它的工作环境比其他飞行器恶劣(见火箭工作环境),火箭的各种设备和结构承受这种环境的能力也需要相应提高,适应环境的设计是火箭设计的一项十分艰巨的工作。③火箭自身不需要人的生命和生活保障系统。④多数火箭的箭体设计只考虑运输、发射和飞行载荷,不考虑返回和着陆,结构可设计得轻些,以增大有效载荷。⑤设计对先进科学技术预研的依赖性较大。导弹弹头以比其他返回飞行器大得多的速度在大气层内飞行,高速气流的冲刷和上万度的高温,使弹头的防热设计必须以先进的材料和工艺的预研为基础。没有高精度的敏感元件、测量仪器和精确制导方法的预先研究,就设计不出圆公算偏差近百米的洲际导弹;要设计航天飞机,必须预先造出能多次使用的高性能火箭发动机,解决复杂的气动、载荷、姿态控制、返回回收等技术。⑥火箭设计受运载任务的制约较大。火箭的轨道、结构、外形和控制等是按照运载任务的特殊要求专门设计的,导弹更是如此。通常,运载任务的要求就是火箭设计的依据。

总体设计 在火箭研制中,总体设计将各部分的设计综合成一个整体,保证综合性能最佳、花费少和周期短。火箭设计一般分为指标论证、方案设计、初步设计、技术设计4个阶段。

指标论证 在方案设计前进行,把需要与可能结合起来,制定出切合实际的指标。运载火箭的技术指标一般包括:典型轨道的运载能力,入轨精度,对重量不同的有效载荷的适应性和可靠性。导弹不仅有技术指标,还有战术指标(统称战术技术指标)。它包含射程、战斗部重量和威力、命中精度、突防能力、可靠性、发射方式和发射准备时间、运输条件和使用环境条件等。

方案设计 方案设计包括选择总体参数、确定总体方案和对分系统提出初样研制任务书。在选择总体参数前须确定推进剂和发动机类型、级数、连接方式、操纵机构型式、分离方式、箭体各段结构型式、火箭外形和部位安排。

①推进剂选择:推进剂占火箭起飞重量的80~95%,直接影响火箭的运载能

力、发动机型式、弹道特性和使用性能。液体推进剂性能高、推力控制方便。固体推进剂可使火箭尺寸小、系统简单、发射准备时间短、起飞加速快。选择推进剂是为了获得尽可能大的热值和密度,要求液体推进剂的腐蚀性和毒性小、固体推进剂的机械强度高。用于导弹的推进剂,要求在使用温度范围内和长期贮存中物理和化学性能稳定。

②级数选择:采用多级火箭可以把飞行期间无用的火箭结构依次抛掉,从而减少能量损失,提高运载能力。每级的发动机推力、工作时间和分离高度可以灵活调整。过多的级数会使火箭结构和控制变得复杂,降低可靠性和使用性能。火箭的最佳级数通常应少于按最小起飞重量所选择的级数,一般选二级、三级或四级。多级火箭的连接有串联式、并联式或混合式三种型式。

③火箭的总体布局:又称部位安排(见图)。合理安排火箭各部段和组件的位置,要使火箭结构紧凑,传力合理,具有良好的气动外形和飞行稳定性,有利于安装敏感元件、实现控制、减小偏差和级间的分离,而且使用方便。

④设计参数选择:根据给定的入轨点参数(或射程)、有效载荷和推进剂选择一组最佳的总体设计的参数,用这组参数来确定火箭的重量、推力和几何尺寸等。总体设计参数主要有:发动机真空比推力(火箭理想速度与它成正比)、火箭质量比(反映火箭结构重量减轻的水平和推进剂的装填程度)、推重比(起始推力与起飞重量之比,表示火箭加速性)、比冲比(即真空比冲与地面比冲之比,与发动机喷管的面积比有关,按照飞行高度变化选取)、火箭最大单位横截面上的起飞载荷(反映火箭粗细程度)、多级火箭级间起飞质量比(它影响火箭尺寸及运载能力)。

为选择总体设计参数需要进行重量分析和轨道(弹道)分析。重量分析是利用统计数据和分析计算方法找出组成火箭各部分重量与设计参数的内部联系,从而建立火箭起飞重量与设计参数之间的关系。轨道(弹道)分析是研究火箭主动段终点速度(或射程)与主要设计参数的关系。作为初步估算,主动段终点速度用齐奥尔科夫斯基公式求出,用各种因素引起的速度损失加以修正并考虑地球旋转的影响。不同运载任务对终点速度和轨道形状要求不同。将航天器送入轨道的方法一般有三种(见发射弹道与入轨)。发射低轨道卫星时,通常终点选在轨道的近地点,速度取水平方向。弹道导弹设计往往按射程和所要求的弹头再入条件来确定停火点速度的大小和方向。精确计算时通过分析建立火箭运动方程和控制方程组,利用计算机

对不同设计参数的组合进行计算,一般选择使火箭起飞重量最小的一组设计参数。

⑤参数分配:根据已选定的火箭技术指标、总体方案和设计参数,通过设计和分析提出分系统设计的参数。这项工作包括:计算初始参数,确定火箭的尺寸、容积、重量、重心、转动惯量和各种偏差,对火箭的空气动力特性、气动加热、飞行轨道程序、标准轨道和偏差、箭体的动力特性和液体晃动特性、载荷、输送系统的增压、飞行稳定性、制导精度和可靠性等进行计算和综合分析。

初步设计 初步设计是基于初样产品试验的又一轮总体设计,为分系统技术设计提供依据。初步设计与方案设计类似,只不过计算公式和计算方法更加细致和精确,并在试验和反复协调的基础上拟制供分系统技术设计的任务书。

技术设计 在初步设计的基础上编制用于指导产品生产、试验、验收的工程图纸和技术文件。总体设计协调各个分系统的设计,使其符合总体的要求。同时编制整个火箭的地面大型试验和飞行试验的技术文件。

分系统设计是根据总体设计所提出的要求和设计参数,以类似总体设计的方法进行的,并依此处理它与下层系统和单机(组件)的关系。在研制的各个阶段,设计、生产和试验的信息不断反馈回总体设计中,经过几个设计阶段的反复协调、试验和修改设计,最终完成火箭设计。



运载火箭如何设计更合理

运载火箭是指以往太空发射卫星或者运送物资宇航员为主的火箭,通常这种火箭是用来发射卫星和空间部件的。按照所用的推进剂来分,运载火箭包括固体火箭、液体火箭和固液混合型火箭三种类型。如中国的长征三号运载火箭是一种三级液体火箭;长征一号运载火箭则是一种固液混合型的三级火箭,其第一级、第二级是液体火箭,第三级是固体火箭;美国的“飞马座”运载火箭则是一种三级固体火箭。

按照级数来分,运载火箭包括单级火箭和多级火箭两种类型。多级火箭又可分为串联型、并联型和串并联混合型三种。串联型多级火箭级与级之间的连接分离机构简单,但串联后火箭总长较长、火箭的长细比(长度与直径之比)大,给设计带来一定的困难。而且发射时,这种火箭竖起来后太高,给发射操作带来不便。同时其上面级的火箭发动机要在高空点火,点火的可靠性差。并联型多级火箭采用横向捆绑连接,连接分离机构稍复杂,但其中间芯级第一级火箭采用横向捆绑的火箭可在地面同时点火。避免了高空点火,点火的可靠性高。

运载火箭的设计特点是通用性、经济性和不断进行小的改进

,这和大型导弹不同。大型导弹是为满足军事需要而研制的,起支配作用的因素是保持技术性能和数量上的优势。因此导弹的更新换代较快,几乎每5年出一种新型号。运载火箭则要在商业竞争的环境中求发展,作为商品,它必须具有通用性。能适应各种卫星重量和尺寸的要求,能将有效载荷送入多种轨道。经济性也要好,也就是既要性能好又要发射耗费少。订购运载火箭的用户通常要支付两笔费用。一笔是付给火箭制造商的发射费,另一笔是付给保险公司的保险费。发射费代表火箭的生产成本和研制费用,保险费则反映火箭的可靠性。火箭制造者一般都尽量采用成熟可靠的技术,并不断通过小风险的改进来提高火箭的性能。运载火箭不像导弹那样要定型和批生产。而是每发射一枚都可能引进一点新技术,作一点小改进。这种小改进不影响可靠性,也不必进行专门的飞行试验。这些小改进 积累起来就有可能导致大的方案性变化,使运载能力能有成倍的增长。

80年代以来,一次使用的运载火箭已经面临航天飞机的竞争,这两种运载工具各有特长,在今后一段时间内都将获得发展。航天飞机是按照运送重型航天器 进入低轨道的要求设计的,运送低轨道航天器比较有利。对于同步轨道航天器,航天飞机还要携带一枚一次使用的运载器,用以把航天器从低轨道发射出去,使之进入过渡轨道。这样有可能导致入轨精度和发射可靠性的下降。

一次使用的运载火箭在发射同步轨道卫星时可以一次送入过渡轨道,比航天飞机稍为有利,这两种运载工具之间的竞争将促进可靠性的提高和成本的降低。但是由于近期发现航天飞机的安全性和成本控制的缺陷,因此航天飞机已经推出了商业发射活动。

作者:高博



现在单级火箭也能达到宇宙速度吗?

2004年05月09日

火箭是指用火箭发动机向后喷射高温高压燃气产生反作用力,以获得前进动力,向前运动的飞行器。运载火箭是其中的一种,还有军用火箭和导弹,以及气象火箭、地球物理火箭和生物火箭等民用火箭和烟火等。

所谓火箭发动机是指自带推进剂(燃料和氧化剂),其工作不依赖外界空气的喷气发动机。其他喷气发动机,如飞机上使用的空气喷气发动机,只携带燃料,燃料燃烧所需的氧要从大气中获取,因而只能在大气层中工作。由于火箭既携带了燃料,又携带了氧化剂,所以火箭发动机在真空的太空中也能工作,并成为使火箭能够航天飞行的动力。

那么,火箭飞行如何能产生战胜地球引力的宇宙速度呢?理论研究和迄今的实践都证明,火箭飞行速度取决

于火箭发动机的喷气速度和火箭的质量比。发动机的喷气速度越高,火箭飞行的速度越高;火箭的质量比越大,火箭飞行的速度也就越高。

火箭的质量比是火箭起飞时的质量(包括推进剂在内的质量)与发动机关机(熄火)时刻的火箭质量(火箭的结构质量,即净重)之比。因此,质量比大,就意味着火箭的结构质量小,所携带的推进剂多。

火箭发动机的喷气速度,取决于推进剂的性能和发动机的设计水平。推进剂的能量越高,可获得的喷气速度越高;设计水平越高,所获得的能量效率越高。

能量效率是指推进剂燃烧的热化学能转变为高速排气的动能的效率。它包括推进剂的燃烧效率、发动机喷管效率和发动机的循环效率。能量效率越高,排气速度越高。

在齐奥尔科夫斯基提出火箭公式的1903年,自然无从谈及火箭发动机的设计水平,就是公认的理想燃料液氢在当时也制造不出来。计算表明,用液氧、煤油等作推进剂的单级火箭是无法达到宇宙速度的。即使用液氢氧作推进剂,喷气速度也只能达到4.2千米/秒,其单级火箭还是无法达到约8千米/秒的第一宇宙速度。因为考虑到空气阻力,从地面起飞的火箭,实际上应达到9.5千米/秒以上的速度。这样一来,火箭的质量比应达到11以上才行,也就是说,推进剂应占火箭总质量的91%以上。但是,科学的思想不应钻牛角尖,退一步或拐个弯就海阔天空。齐奥尔科夫斯基正是这样,他设想用多级火箭接力的办法来达到宇宙速度,就是在火箭垂直发射时,让最下面一级先工作,完成任务后脱离,接着启动上面一级,进一步提高速度,这样轻装前进,逐级提高,就能达到所需要的宇宙速度。

采用多级火箭发射航天器,现在看来似乎是很平常的事,但在一百年前,却是了不起的思想突破,是航天史上的里程碑。

当然,火箭的级数不可能无限制地增加,因为对下面一级火箭来说,前面的各级火箭都是它的有效载荷。理论计算和实践经验表明,每增加1份有效载荷,火箭需要增加10份以上的质量来承受,随着火箭级数的增加,最下面的一级和随后的几级将变得越来越庞大,以致于无法起飞。所以,多级火箭一般不超过4级。

那么,现在为什么又在谈论甚至实施单级入轨技术呢?

因为现在的科学技术水平已比百年前大大提高了,我们不仅有了理想的液体火箭推进剂液氢/液氧,而且火箭的设计和制造技术已非常成熟。例如,发动机燃烧室的设计已可使推进剂最大限度地减少不完全燃烧的损失和燃气的离解损失,极大地提高了燃烧效率;发动机喷管设计,

可使燃气在收缩和膨胀过程中,最大限度地减少摩擦损失、总压损失、化学不平衡损失、激波损失、散热损失和两相流动损失,极大地提高了喷管效率;发动机推进剂供应系统的设计,已经使它给发动机带来的损失减少到最低程度,从而最大地提高了循环效率。

同时,火箭的形态也有了发展变化。如航天飞机和空天飞机就是一种变形的运载火箭。还有垂直起降的“三角快帆”和罗顿号等飞行器,也是形态发展了的火箭。目前的航天飞机还不是单级入轨的,但已有设想和筹划中的单级入轨空天飞机。它从地面水平起飞,除有火箭发动机的推力外,还可像飞机一样凭借巨大的翅膀产生空气动力上升。

垂直起降、单级入轨的“三角快帆”和罗顿号飞行器,其形态变成了矮粗的锥体。它们除了借助于高性能的推进剂和高水平的设计制造技术外,还得益于高强度和质量轻的新型材料,这可以在满足结构强度需要的前提下减轻火箭的结构质量。同时,由于它们采用了垂直起降方式,所以能省去航天飞机和空天飞机的巨大翅膀,这就大大地减轻了自身的结构质量。这些结构质量的减少,大大提高了它们的质量比,从而使它们可以单级入轨。(国家航天局网)

本文编辑:李迁

相关文档
最新文档