塑胶产品结构设计--卡扣

合集下载

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣塑胶产品结构设计卡扣在塑胶产品的结构设计中,卡扣是一种常见且重要的连接方式。

它不仅能够实现产品的快速装配和拆卸,还能在一定程度上保证产品的结构稳定性和密封性。

接下来,让我们深入了解一下塑胶产品结构设计中的卡扣。

一、卡扣的定义与作用卡扣,简单来说,是通过塑胶部件自身的弹性变形,实现两个或多个部件之间的连接或固定。

其作用主要体现在以下几个方面:1、装配便捷性:相较于传统的螺丝连接或胶水粘接,卡扣能够大大提高装配效率,减少装配时间和成本。

2、可拆卸性:在需要维修、更换部件或回收产品时,卡扣连接允许部件轻松分离,而不会对产品造成损坏。

3、增强结构稳定性:合理设计的卡扣可以在产品使用过程中提供一定的支撑和固定,增强整体结构的稳定性。

4、降低成本:减少了螺丝、胶水等附加连接件的使用,降低了材料和生产成本。

二、卡扣的分类根据不同的结构和工作原理,卡扣可以分为多种类型,常见的有以下几种:1、悬臂卡扣这是最常见的一种卡扣类型。

它通常由一个悬臂梁和一个卡钩组成。

在装配时,悬臂梁发生弹性变形,卡钩卡入对应的卡槽中,实现连接。

2、环形卡扣环形卡扣呈环状结构,通过自身的弹性收缩或扩张来实现与其他部件的连接。

3、扭转卡扣这种卡扣通过部件的扭转来实现连接和固定,具有较好的抗振动和抗松动性能。

4、插销式卡扣类似于插销的工作原理,通过插入和拔出动作实现连接和分离。

三、卡扣设计的要点1、材料选择塑胶材料的特性对卡扣的性能有着重要影响。

一般来说,应选择具有较高弹性模量和良好韧性的材料,如 ABS、PC 等。

同时,还需要考虑材料的耐疲劳性和耐环境性。

2、尺寸设计卡扣的尺寸包括悬臂长度、厚度、卡钩尺寸等。

这些尺寸的设计需要综合考虑材料的力学性能、装配力的大小以及连接的可靠性。

过长或过短的悬臂、过大或过小的卡钩都可能导致卡扣失效。

3、脱模斜度在模具设计中,要为卡扣设计合适的脱模斜度,以保证产品能够顺利脱模,同时不影响卡扣的功能。

卡扣设计

卡扣设计

产品结构设计准则--扣位( Snap Joints )基本设计手则扣位提供了一种不但方便快捷而且经济的产品装配方法,因为扣位的组合部份在生产成品的时候同时成型,装配时无须配合其他如螺丝、介子等紧锁配件,只要需组合的两边扣位互相配合扣上即可。

扣位的设计虽可有多种几何形状,但其操作原理大致相同:当两件零件扣上时,其中一件零件的勾形伸出部份被相接零件的凸缘部份推开,直至凸缘部份完结为止;及後,藉着塑胶的弹性,勾形伸出部份即时复位,其後面的凹槽亦即时被相接零件的凸缘部份嵌入,此倒扣位置立时形成互相扣着的状态,请参考扣位的操作原理图。

扣位的操作原理如以功能来区分,扣位的设计可分为成永久型和可拆卸型两种。

永久型扣位的设计方便装上但不容易拆下,可拆卸型扣位的设计则装上、拆下均十分方便。

其原理是可拆卸型扣位的勾形伸出部份附有适当的导入角及导出角方便扣上及分离的动作,导入角及导出角的大小直接影响扣上及分离时所需的力度,永久型的扣位则只有导入角而没有导出角的设计,所以一经扣上,相接部份即形成自我锁上的状态,不容易拆下。

请叁考永久式及可拆卸式扣位的原理图。

永久式及可拆卸式扣位的原理若以扣位的形状来区分,则大致上可分为环型扣、单边扣、球形扣等等,其设计可参阅下图。

球型扣(可拆卸式)扣位的设计一般是离不开悬梁式的方法,悬梁式的延伸就是环型扣或球型扣。

所谓悬梁式,其实是利用塑胶本身的挠曲变形的特性,经过弹性回复返回原来的形状。

扣位的设计是需要计算出来,如装配时之受力,和装配後应力集中的渐变行为,是要从塑料特性中考虑。

常用的悬梁扣位是恒等切面的,若要悬梁变形大些可采用渐变切面,单边厚度可渐减至原来的一半。

其变形量可比恒等切面的多百分之六十以上。

不同切面形式的悬梁扣位及其变形量之比较扣位装置的弱点是扣位的两个组合部份:勾形伸出部份及凸缘部份经多次重覆使用後容易产生变形,甚至出现断裂的现象,断裂後的扣位很难修补,这情况较常出现於脆性或掺入纤维的塑胶材料上。

塑胶件卡扣设计1

塑胶件卡扣设计1

塑胶件卡扣设计1塑胶卡扣是连接两个零件的一种非常简单、经济且快速的连接锁定方式;所有类型的卡扣接头都有一个共同的原理,即一个部件的突出部分,如卡钩、螺柱或珠,在连接操作过程中会短暂地偏转,并在配合部件的凹陷(咬边)处卡住。

在连接操作后,卡合功能应该恢复到无应力状态。

根据卡扣扣合面的形状,卡扣可以是可分离的或不可分离的;根据不同的设计,分离卡扣所需的力有很大的不同。

在设计卡扣时,特别需要考虑以下几个因素:▪装配过程中的操作力▪拆除过程中的拆除力卡扣设计有很大的灵活性,由于在配合过程中需要一定的弹性,故卡扣连接结构常用在塑胶零件上。

卡扣主要有如下几种基本形式:▪悬臂卡扣悬臂卡扣装配时主要承受弯曲力▪U型卡扣U型卡扣是由悬臂卡扣衍生的卡扣结构▪扭力卡扣装配时卡扣主要承受扭力(剪切力)▪环形卡扣轴对称结构,卡扣装配时承受多方向应力▪球形卡扣一整圈连续的卡扣,实现两个零件的连接悬臂卡扣:图1面板模块上的四个悬臂卡扣可将模块牢牢地固定在底座上,同时扣合面带有一定斜度,在需要时仍可将模块移除。

(图1)图2面板通过一侧的刚性卡扣与另一侧的弹性悬臂卡扣结合,也可以实现经济可靠的卡扣连接。

(图2)图3所示的卡扣连接方式具有很大的保持力。

同时从箭头处缺口按压弹臂卡扣,也可以实现轻松拆卸。

(图3)图4所示非连续环形卡扣设计,与后面所说环形卡扣近似;在环形卡扣上增加一些切口,使卡扣具有更好的弹性,同时安装时卡扣受力也变为主要承受弯曲力;所以这种卡扣我们也归类为悬臂弹性卡扣。

(图4)U 型卡扣属于悬臂弹性卡扣的一种,在简单悬臂卡扣基础上,增加U 型结构,进一步增加卡扣弹性。

U 型卡扣可以具有很大的扣合保持力,同时,U 型槽的存在,使得拆卸时可以手动拨动卡扣,方便拆卸。

这种卡扣结构常见于电池盖及一些需要多次拆卸的卡扣结构。

扭力卡扣常用于需要多次拆卸的卡扣结构,如连接器扣合。

不同于U 型卡扣,扭力弹性卡扣,主要是通过一个转轴(或扭转支点)传递力矩实现卡扣的扣合与拆卸。

最新4.塑料卡扣设计思想

最新4.塑料卡扣设计思想
4.塑料卡扣设计思想
•卡扣是定位件、锁紧件和增强件 的协调配置,以起到在零件间形 成机械连接的作用。
•扣位提供了一种不但方便快捷而且经济的产品装配方 法,因为扣位的组合部份在生产成品的时候同时成型, 装配时无须配合其他如螺丝、介子等紧锁配件,只要 需组合的两边扣位互相配合扣上即可。
•扣位的设计一般是离不开悬梁式的方法 •悬梁式的延伸就是环型扣或球型扣 •所谓悬梁式,其实是利用塑胶本身的挠曲变形 的特性,经过弹性回复返回原来的形状。 •扣位的设计是需要计算出来,如装配时之受力, 和装配後应力集中的渐变行为,是要从塑料特性 中考虑。
不同切面形式的悬梁扣位及其变形量之比较
•当两件零件扣上时,其中 一件零件的勾形伸出部份 被相接零件的凸缘部份推 开,直至凸缘部份完结为 止; •及后,藉着塑胶的弹性, 勾形伸出部份即时复位倒扣位置立时形成互相 扣着的状态。
工设101-16 李丹
结束语
谢谢大家聆听!!!
21

塑胶螺柱卡扣设计

塑胶螺柱卡扣设计
骨位靠顶部位置旳构造,左边比右边好,因为பைடு நூலகம்边省 模轻易,当然走胶也轻易. 尺寸A,提议先取小值,最小能够先做到0.75MM,假 如产品壳体胶厚本身在2.0以上,能够先取1.0MM, 待试模后,如有痕迹(非缩水印),再考虑加胶.
二.螺丝规格
1.螺絲通用技術條件 如無其他規定,則按下列要求:
• 外觀質量檢查: 表面鍍層/氧化層均勻致密, 無露底、脫落、變形、缺口、裂紋和披鋒等 不良.
扣位旳操作原理
2.扣位分类
2.1 以功能来区别,扣位旳设计可分为成永久型 和可拆卸型两种.
永久型扣位旳设计以便装上但不轻易拆下,
可拆卸型扣位旳设计则装上、拆下均十分以便。 其原理是可拆卸型扣位旳勾形伸出部份附有合适 旳导入角及导出角以便扣上及分离旳动作,导入 角及导出角旳大小直接影响扣上及分离时所需旳 力度,永久型旳扣位则只有导入角而没有导出角 旳设计,所以一经扣上,相接部份即形成自我锁 上旳状态,不轻易拆下。请叁考下图.
• 3.4. 构造设计,确保模具旳构造强度。
• 3.5.卡钩旳近似等强度设计&防止应力集中 .
4.常用旳三种卡扣构造.
2.5 设计解析 1.卡扣尺寸定义
缺陷设计
2.梁根部旳厚度 *梁从壁面伸出,
Tb =50%~60%Tw
*梁是 壁面旳延伸 Tb =Tw
2.梁旳长度 梁旳长度至少是5倍旳壁厚,最佳是10倍旳壁厚
永久式及可拆卸式扣位旳原理
2.2 以扣位旳形状来区别,则大致上可分为环型扣、单边扣、 球形扣等等
3.轻易忽视旳问题
• 3.1. 卡钩处未避开模具斜顶所需要旳构造尺寸. (一般要让 6~8mm甚至更多,能够根据实际模型与模厂讨论)
• 3.2.多种装配件旳卡钩特征位置旳选择

产品结构设计准则--卡扣设计 ( Snap Joints )

产品结构设计准则--卡扣设计 ( Snap Joints )

产品结构设计准则--扣位( Snap Joints )基本设计手则扣位提供了一种不但方便快捷而且经济的产品装配方法,因为扣位的组合部份在生产成品的时候同时成型,装配时无须配合其他如螺丝、介子等紧锁配件,只要需组合的两边扣位互相配合扣上即可。

扣位的设计虽可有多种几何形状,但其操作原理大致相同:当两件零件扣上时,其中一件零件的勾形伸出部份被相接零件的凸缘部份推开,直至凸缘部份完结为止;及後,藉着塑胶的弹性,勾形伸出部份即时复位,其後面的凹槽亦即时被相接零件的凸缘部份嵌入,此倒扣位置立时形成互相扣着的状态,请参考扣位的操作原理图。

扣位的操作原理如以功能来区分,扣位的设计可分为成永久型和可拆卸型两种。

永久型扣位的设计方便装上但不容易拆下,可拆卸型扣位的设计则装上、拆下均十分方便。

其原理是可拆卸型扣位的勾形伸出部份附有适当的导入角及导出角方便扣上及分离的动作,导入角及导出角的大小直接影响扣上及分离时所需的力度,永久型的扣位则只有导入角而没有导出角的设计,所以一经扣上,相接部份即形成自我锁上的状态,不容易拆下。

请叁考永久式及可拆卸式扣位的原理图。

永久式及可拆卸式扣位的原理若以扣位的形状来区分,则大致上可分为环型扣、单边扣、球形扣等等,其设计可参阅下图。

球型扣(可拆卸式)扣位的设计一般是离不开悬梁式的方法,悬梁式的延伸就是环型扣或球型扣。

所谓悬梁式,其实是利用塑胶本身的挠曲变形的特性,经过弹性回复返回原来的形状。

扣位的设计是需要计算出来,如装配时之受力,和装配後应力集中的渐变行为,是要从塑料特性中考虑。

常用的悬梁扣位是恒等切面的,若要悬梁变形大些可采用渐变切面,单边厚度可渐减至原来的一半。

其变形量可比恒等切面的多百分之六十以上。

不同切面形式的悬梁扣位及其变形量之比较扣位装置的弱点是扣位的两个组合部份:勾形伸出部份及凸缘部份经多次重覆使用後容易产生变形,甚至出现断裂的现象,断裂後的扣位很难修补,这情况较常出现於脆性或掺入纤维的塑胶材料上。

卡扣-止口

卡扣-止口

产品结构设计注意事项第一章塑胶结构设计规范一、结构设计材料及壁厚1、材料选择2、壳体厚度3、零件厚度设计实例二、产品结构设计脱模斜度1、脱模斜度要点三、产品结构设计加强筋1、加强筋与壁厚的关系2、加强筋设计实例四、产品结构设计螺丝柱和螺丝孔1、柱子的问题2、孔的问题3、“减胶”的问题五、螺丝柱的设计六、产品结构设计止口应用1、止口的作用2、壳体止口的设计需要注意的事项3、面壳与底壳断差的要求七、产品结构设计卡扣应用1、卡扣设计的关键点2、常见卡扣设计第一章塑胶结构设计规范1、材料及厚度1.1、材料的选取a.ABS塑料:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。

ABS电镀附着性能好,普遍用在产品电镀的零部件上(如按钮、侧键、装饰件)导航键、电镀装饰件等)。

b.PC+ABS塑料:流动性好,强度不错,价格适中。

适用于作高刚性、高冲击韧性的制件,如框架、壳体等。

常用材料代号:拜尔T85、T65。

c.PC塑料:高强度,价格贵,流动性不好。

适用于对强度要求较高的外壳、按键、传动机架、镜片等。

常用材料代号如:帝人L1250Y、PC2405、PC2605。

d.POM塑料:具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。

常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。

e.PA塑料:坚韧、吸水、但当水份完全挥发后会变得脆弱。

常用于齿轮、滑轮等。

受冲击力较大的关键齿轮,需添加填充物。

材料代号如:CM3003G-30。

f.PMMA塑料:有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。

机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。

塑胶产品结构设计卡扣

塑胶产品结构设计卡扣

2.4,扣位2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.2.4.3,卡扣常见形式及尺寸a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.图2.4.3ab.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.图2.4.3bc.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.图2.4.3cd.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.图2.4.3de.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.F.其他常见扣:2.4.4,卡扣设计考虑要素卡扣需要考虑布局数量位置,安装形式,安装强度,注意事项:a.规则外形,布局按右图方形圆形卡扣分布,方形壳体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2个扣位;圆形壳体一般扣位会均布,如做防呆,可以将扣位稍微移动,保证扣位分布均匀.b.不规则外形,按装配方向选择安装形式,曲线边凸凹处易出现翘曲,受力错位脱开问题,常做扣位+管位骨结构;c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合组装;卡扣一般在保证强度情况下尽量作少.d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;e.卡扣处注意防止缩水与熔接痕;f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;g.在卡扣上非安装边做R角,不要干涉扣合过程.h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

2.4,扣位2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.2.4.3,卡扣常见形式及尺寸a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.图2.4.3ab.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.图2.4.3bc.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.图2.4.3cd.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.图2.4.3de.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.F.其他常见扣:2.4.4,卡扣设计考虑要素卡扣需要考虑布局数量位置,安装形式,安装强度,注意事项:a.规则外形,布局按右图方形圆形卡扣分布,方形壳体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2个扣位;圆形壳体一般扣位会均布,如做防呆,可以将扣位稍微移动,保证扣位分布均匀.b.不规则外形,按装配方向选择安装形式,曲线边凸凹处易出现翘曲,受力错位脱开问题,常做扣位+管位骨结构;c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合组装;卡扣一般在保证强度情况下尽量作少.d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;e.卡扣处注意防止缩水与熔接痕;f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;g.在卡扣上非安装边做R角,不要干涉扣合过程.h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。

扣位与止口设计标准

扣位与止口设计标准

止口的配合尺寸说明: 1.尺寸A为配合面间隙尺寸,取0.05mm。 2.尺寸B为壳体外观面胶厚尺寸,应≥0.80mm。 3.尺寸C是过渡圆角,主要是胶位突变的圆滑过渡,也不能太大,防止装配时干涉。 4.尺寸D为止口纵向避让尺寸,常用0.10-0.20mm,建议0.20mm,防止尺寸偏差计基本原则 2.扣位的强度要够,避免组装损坏。 3.扣合量(扣位配合量)要够,不然作用不明显。 4.扣位要有拆装的变形空间。 5.整机的扣位分布要均匀。 6.胶壳强度较弱的地方,增加扣位有补强作用。 7. 扣位分公扣与母扣,与止口的关系为: 8.正常布扣方法:母扣布在公止口的壳上,同理, 公扣就布在母止口的壳上。
胶厚2.4mm以上时止口类型及尺寸: 1.尺寸A为公止口宽度,一般取0.6mm左右。 2.尺寸B为母止口边的档墙宽度,应≥0.40mm较好成型。 3.尺寸C是母止口外观面骨位宽度,根椐胶件厚度取0.8-1.2mm之间,以防厚薄印问题。 4.配合面应有1度左右的拔模角。 5.止口高度一般在2mm左右。
反扣:母扣布在母止口的那一侧,就叫反扣。做反扣时要注意,要把公扣两侧的公止口单 边切掉至少6MM,否则扣位不能变形,失去作用,成了死扣。
扣位横向配合尺寸如下图 1.尺寸A为公扣宽度(扣位宽度),一般在2-6mm,常用4mm。 2.尺寸B为母扣宽度,由公扣宽度加间隙决定。 3.尺寸C为扣位面配合间隙0.2mm。 4.尺寸D为母扣面封胶厚度0.3mm。 5.尺寸E为母扣侧柱尺寸,需保证强度,一般在0.8-1.0mm。
止口与反止口关系: 1.止口与反止口配合使用。反止口的作用与止口相反,如下图所示:反止口是 防止上(下) 壳朝外变形,同时防止下(上)壳朝内缩。 2.反止口是做在母止口的那个壳上。 3.设计反止口时要注意离公扣单边8.0mm,至少6.0mm,因为扣位要变形。

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣

塑胶产品结构设计--卡扣塑胶产品结构设计卡扣在塑胶产品的结构设计中,卡扣是一种常见且重要的连接方式。

它不仅能够实现部件的快速装配和拆卸,还能在一定程度上节省成本、提高生产效率。

接下来,让我们深入了解一下塑胶产品结构设计中的卡扣。

卡扣设计的基本原理是利用塑胶材料的弹性变形来实现连接和固定。

通常,卡扣由卡勾和卡槽两部分组成。

当卡勾插入卡槽时,塑胶材料发生弹性变形,产生一定的扣合力,从而将两个部件牢固地连接在一起。

在设计卡扣时,首先要考虑的是材料的选择。

常用的塑胶材料如聚丙烯(PP)、聚乙烯(PE)、丙烯腈丁二烯苯乙烯共聚物(ABS)等都具有一定的弹性和强度,适合用于卡扣设计。

但不同材料的性能差异较大,例如 PP 的柔韧性较好,但强度相对较低;ABS 的强度较高,但成本也相对较高。

因此,需要根据产品的具体要求和使用环境来选择合适的材料。

卡扣的形状和尺寸设计也至关重要。

卡勾的形状可以是直勾、斜勾或者弯勾等,不同的形状会影响扣合力的大小和稳定性。

卡槽的形状和深度则需要与卡勾相匹配,以确保良好的连接效果。

同时,卡扣的尺寸要合理设计,过大可能导致装配困难,过小则扣合力不足,容易松脱。

在设计过程中,还需要考虑卡扣的装配方向和拆卸方向。

一般来说,装配方向应该尽量简单、直接,避免复杂的操作。

拆卸方向则要考虑是否需要特殊的工具或者操作方式,以防止在使用过程中意外松脱。

另外,卡扣的分布位置也需要精心规划。

如果卡扣分布不均匀,可能会导致部件受力不均,影响连接的稳定性和产品的整体性能。

通常,在受力较大的部位应该适当增加卡扣的数量和密度,以增强连接强度。

为了确保卡扣的可靠性,还需要进行力学分析和测试。

通过有限元分析等方法,可以模拟卡扣在装配和使用过程中的受力情况,预测可能出现的问题,并进行优化设计。

在实际生产中,还需要进行样品测试,验证卡扣的扣合力、耐久性等性能是否满足要求。

在塑胶产品结构设计中,卡扣的设计还需要考虑模具制造的可行性。

结构设计中的卡扣知识

结构设计中的卡扣知识
在设计时,要保证A部分的弹性体有0.5~1mm的回弹量, 扳金与卡扣在C处平直段配合。具体数值根据卡扣的形式 和扳金料厚而定。
该卡扣的优点是紧固力较大,安装稳定性好,可以多次重 复使用,但是由于其补偿量比较少,对扳金和内饰件加工 精度要求较高。有些卡扣在A处增加一个海棉弹性体,在 使用中增大补偿量,并起一定的减震缓冲作用,其断面如 图:
c、用于遮阳板安装
2、卡扣的组成: 卡扣一般来说,卡扣由定位件、紧固件组成。
定位件作用是在安装时,引导卡扣顺利、正确、 快速的到达安装位置。而紧固件作用是将卡扣锁 紧与基体上,并保证使用过程中不脱落。根据使 用场合和要求的不同,紧固件又分可拆卸紧固件 和不可拆卸紧固件。可拆卸紧固件通常被设计成 当施加一定的分离力后,卡扣会脱开,两个连接 件分离。这种卡扣,常用于连接两个需要经常拆 开的零件。不可拆卸紧固件需要人为将紧固件偏 斜,方能将两零件拆开,多用于使用过程中不拆 开零件的连接固定。
2、门护板、侧围护板安装卡扣 门护板和侧围护板安装卡扣从头部断面形 状来看,主要有两种:
1)
其断面形式为: A
B
C
这种卡扣,具体的头部形式有很多种,但其原理和图片所 示基本上是相似的。以上图所示卡扣主要参数为:
钣金开孔比部分最大直径小1.5mm,以使在安装时, B部分有1.5 mm的变形量,同时,可以防止卡扣从扳金 上脱落。
3)、设计时,注意卡扣的约束数量,不能出现过约束的 情况。约束过多,对零件的加工精度要求较高。在实际装 配过程,容易导致安装不到位或不能安装。
4、下面介绍几种目前公司所做项目中的 卡扣形式。1243
此种类型的卡扣多用于门槛护板的安装,其 有三个用途:
A、1处为线束通过孔,作用是将线束固定于 门槛上; B、2处为门槛护板安装结构 ,作用为将门 槛护板固定于门槛上; C、3 处为地毯固定结构,作用为固定地 毯。 整个卡扣通过4处的结构固定于门槛上。在 安装之后,4处的结构会向两面张开,防止卡扣 脱落。

卡扣设计

卡扣设计

卡扣设计产品结构设计准则--扣位( Snap Joints )基本设计手则扣位提供了一种不但方便快捷而且经济的产品装配方法,因为扣位的组合部份在生产成品的时候同时成型,装配时无须配合其他如螺丝、介子等紧锁配件,只要需组合的两边扣位互相配合扣上即可。

扣位的设计虽可有多种几何形状,但其操作原理大致相同:当两件零件扣上时,其中一件零件的勾形伸出部份被相接零件的凸缘部份推开,直至凸缘部份完结为止;及後,藉着塑胶的弹性,勾形伸出部份即时复位,其後面的凹槽亦即时被相接零件的凸缘部份嵌入,此倒扣位置立时形成互相扣着的状态,请参考扣位的操作原理图。

扣位的操作原理如以功能来区分,扣位的设计可分为成永久型和可拆卸型两种。

永久型扣位的设计方便装上但不容易拆下,可拆卸型扣位的设计则装上、拆下均十分方便。

其原理是可拆卸型扣位的勾形伸出部份附有适当的导入角及导出角方便扣上及分离的动作,导入角及导出角的大小直接影响扣上及分离时所需的力度,永久型的扣位则只有导入角而没有导出角的设计,所以一经扣上,相接部份即形成自我锁上的状态,不容易拆下。

请叁考永久式及可拆卸式扣位的原理图。

永久式及可拆卸式扣位的原理若以扣位的形状来区分,则大致上可分为环型扣、单边扣、球形扣等等,其设计可参阅下图。

球型扣(可拆卸式)扣位的设计一般是离不开悬梁式的方法,悬梁式的延伸就是环型扣或球型扣。

所谓悬梁式,其实是利用塑胶本身的挠曲变形的特性,经过弹性回复返回原来的形状。

扣位的设计是需要计算出来,如装配时之受力,和装配後应力集中的渐变行为,是要从塑料特性中考虑。

常用的悬梁扣位是恒等切面的,若要悬梁变形大些可采用渐变切面,单边厚度可渐减至原来的一半。

其变形量可比恒等切面的多百分之六十以上。

不同切面形式的悬梁扣位及其变形量之比较扣位装置的弱点是扣位的两个组合部份:勾形伸出部份及凸缘部份经多次重覆使用後容易产生变形,甚至出现断裂的现象,断裂後的扣位很难修补,这情况较常出现於脆性或掺入纤维的塑胶材料上。

塑胶件的结构设计:卡扣篇(下)

塑胶件的结构设计:卡扣篇(下)

塑胶件的结构设计:卡扣篇(下)卡扣设计的原则卡扣设计的最终目标是要实现两个零件之间的成功连接固定,要达到连接固定的效果,卡扣设计时需要从以下几方面进行考虑:连接可靠性、约束完整性和装配协调性,它们是卡扣连接成功的关键要求,其他要求还应该包括制造工艺的可行性、成本的高低等。

1. 连接可靠性连接可靠性最核心的一点就是卡扣需要保证有足够的保持强度,以下为悬臂梁卡扣保持力的一般公式:由以上公式可知,保持力Fr 跟Wb、E、Tb、Lb、μs、βe有关;其中Wb:卡扣的宽度;E:卡扣的弹性模量;Tb:卡扣的厚度;Lb:卡扣的长度;Y:卡扣保持面的深度;μs:卡扣的摩擦系数;βe:卡扣的保持面角度。

上面参数,除了弹性模量E、摩擦系数μs跟卡扣所用的材料有关外,其他参数跟卡扣的结构设计相关;通过增大Wb、Tb/Lb的比值、Y、βe都可以增强卡扣的保持强度。

1)增大Wb增大卡扣的宽度Wb,可以增大梁的刚度以及卡扣保持面与配合件的面积,理论上卡扣宽度越大,卡扣的保持强度就越大,但是实际设计中,考虑到制造与装配,常常通过设计多个小卡扣代替一个大卡扣。

卡扣的排布:卡扣应均匀设置在零件的四周,以均匀承受载荷,对于容易变形的地方(如零件的角落),可以考虑尽量让卡扣靠近这些地方。

整圈卡扣一般用在卡合量不大的零件或设计在较软材料上的零件上,常常采用强脱出模,比如常见的一些日化产品的瓶盖。

对于一些宽度较大的卡扣,为了提高母扣的强度,可以在大卡扣中设计两个小卡扣,如下图。

2)增大Tb/Lb的比值增大Tb或减小Lb都可以增大Tb/Lb的比值,实际上也是增大梁的刚度,但是Tb不宜过大,否则会引起外观不良,合理的方式是通过增加加强筋或者局部淘胶,如下图。

Lb也不宜过小,否则难于装配(虽然保持强度增大了),如果因空间限制,Lb过小的情况下,需适当减小Tb,但为了兼顾卡扣的强度,可以考虑在卡扣根部添加加强筋,如下图。

3)增大YY这里指的是卡扣保持面的深度,实际上卡扣的保持强度应该是跟卡合量有关,理论上Y值可以等于卡合量,但是在实际结构设计中,为了便于装配以及后续的调整,一般预留一定的间隙或余量,比如以下某卡扣的设计,前后都预留了0.2-0.5的间隙,预留空间方便后续通过改模增大Y值。

塑胶零件-加强筋-壁-卡扣设计及经验

塑胶零件-加强筋-壁-卡扣设计及经验

三 塑胶零件及产品设计---卡扣篇
卡扣的使用时机
➢ 两部品结合后,仍具有活动性,如滑动键,电池盖…等; ➢ 弥补主壳螺丝锁附后,强度之不足; ➢ 使产品组装更具方便性,降低工时; ➢ 适用于可换外观饰片之固定设计.
卡扣的操作原理
主壳卡扣的基本形式
主壳卡扣的基本形式
可以将扣的孔设计成盲孔
塑胶零件及产品设计
基本纲要: ➢ 塑胶零件中加强筋的应用与设计; ➢ 塑胶零件中壁厚的选择与设计; ➢ 塑胶零件中卡扣强度计算及其应用.
塑膠制品設計原則
1、在选料方面需考虑: (1) 塑料的物理机械性能,如强度,刚性,韧性,弹性,吸水性以及对应力的敏感性等; (2) 塑料的成型工艺性,如流动性,结晶速率,对成型温度,压力的敏感性等; (3) 塑料制品在成型后的收缩情况,及各向收缩率的差异.
热塑性塑料的胶厚设计叁考表
不同的塑胶物料有不同的流动性, 胶位过厚的地方会有收缩现象, 胶位过薄的地方 塑料不易流过, 以下是一些建议的胶料厚度可供叁考.
其实大部份厚胶的设计可从使用加强筋及改变横切面形状取缔之, 除了可减省物料 以致减省生产成本外, 取缔后的设计更可保留和原来设计相若的刚性, 强度及功用, 下图的金属齿轮如改成使用塑胶物料,更改后的设计理应如图一般, 此塑胶齿轮设计 相对原来金属的设计不但减省材料, 消取因厚薄不均引致的内应力增加及齿冠部份 收缩引致整体齿轮变形的情况发生.
转角处的壁厚设Βιβλιοθήκη 不当后果及改善措施转角位的设计准则亦适用於悬梁式扣位:
因这种扣紧方式是需要将悬梁臂弯曲嵌入,转角位置的设计图说明如果转角弧位 R太小时会引致其应力集中系数(Stress Concentration Factor)过大, 产品弯曲 时容易折断, 弧位R太大的话则容易出现收缩纹和空洞, 因此, 圆弧位和壁厚是有 一定的比例, 一般介乎0.2至0.6之间, 理想数值是在0.5左右.

结构设计-卡扣设计

结构设计-卡扣设计
卡入力(W):与装配方向相同的力
精选课件
9
直臂卡扣设计---参数计算
精选课件
10
直臂卡扣设计---参数计算
精选课件
11
卡扣 1.通常上盖设置跑滑块的卡勾,下盖设置跑斜顶卡勾。 因为上盖的筋比较多,而且上盖的壁通常比下盖深,为避免斜顶无空间脱出。
2.上下盖装饰线的选择
3.卡勾不可以间隔太远, 否则容易开缝。
卡入力(W):与装配方向相同的力
精选课件
8
直臂卡扣设计---参数计算
许用过盈量(y):许用过盈量(y)即许用挠度(Y),也就是卡入时悬臂前端产生的弹性变形的尺 寸。 挠曲力(P):挠曲力即当卡入时施加在悬臂前端的垂直力,当悬臂产生弹性变形( 不是塑性变形) ,此时的变形李被称之为许用挠曲力。 (计算挠曲力是计算卡入力的需要,实际上有的悬臂卡扣连接的装配和拆开就是施加卡入力而完成 的挠曲力。)
许用应变:根据胡克定律: E
式中:σ为应力,ε为应变 , E为弹性模 量。
在卡扣连接弯曲弹性模量用正割模数来代替 故而:
对需要经常拆装的连接,许用应变之选取应该留有余量,可将实际使用值取需用应变的0.5倍,
精选课件
5
直臂卡扣设计---参数计算
精选课件
6
直臂卡扣设计---参数计算
精选课件
7பைடு நூலகம்
直臂卡扣设计---参数计算
精选课件
2
卡扣设计--直臂卡扣
Tb-壁面处的粱厚度
对于梁与壁面垂直的情况;梁根部厚度约为壁厚的0.5~0.6T,厚度太大可能出现冷却问题,造成较大的残余应力、收缩、凹陷等。太小可能存在对充模和 流动性问题。
对于梁时壁面的延伸:Tb应该等于壁厚,若不等于应该逐渐过度。

塑料卡扣密封设计原则和方法

塑料卡扣密封设计原则和方法

塑料卡扣密封设计原则和方法以塑料卡扣密封设计原则和方法为标题,本文将介绍塑料卡扣密封的设计原则和方法,以帮助读者更好地理解和应用于实际生产中。

一、塑料卡扣密封的设计原则1. 密封性原则:塑料卡扣密封的设计首要考虑因素是确保密封性能。

密封性能直接影响产品的质量和使用寿命,因此在设计中需要合理选择密封材料、结构和尺寸,以保证密封效果。

2. 结构原则:塑料卡扣密封的结构设计应简洁合理,便于加工和安装。

同时,结构设计应考虑到产品的使用环境和应力分布,以提高产品的耐用性和使用寿命。

3. 可靠性原则:塑料卡扣密封的设计应考虑产品的可靠性,即在正常使用条件下能够长期保持良好的密封性能。

为此,设计中需要充分考虑材料的选择、加工工艺和使用环境等因素,以确保产品的可靠性。

4. 经济性原则:塑料卡扣密封的设计应尽可能降低成本,提高生产效率。

在保证密封性能和可靠性的前提下,设计中应选择合适的材料和工艺,以减少材料和加工成本,并提高产品的竞争力。

二、塑料卡扣密封的设计方法1. 材料选择:在塑料卡扣密封的设计中,需要选择合适的密封材料。

常见的密封材料包括橡胶、硅胶、聚氨酯等,应根据产品的使用环境和要求选择适当的材料。

同时,还需要考虑材料的耐磨性、耐腐蚀性和耐高温性等特性。

2. 结构设计:塑料卡扣密封的结构设计应考虑到产品的功能和使用要求。

根据产品的用途和工作原理,确定卡扣的形状、尺寸和布局等。

同时,还需要充分考虑产品的装配性和可维修性,以方便生产和维护。

3. 加工工艺:塑料卡扣密封的加工工艺直接影响产品的质量和性能。

在设计中应充分考虑加工工艺的可行性和经济性,选择合适的生产方法和工艺流程。

同时,还需要注意加工工艺对产品尺寸和形状的影响,以确保产品的一致性和稳定性。

4. 检测方法:塑料卡扣密封的设计中需要考虑到产品的检测方法。

通过合适的检测方法,可以对产品的密封性能和可靠性进行评估和验证。

常用的检测方法包括压力测试、渗透测试和抗拉强度测试等。

结构设计中扣合量如何留

结构设计中扣合量如何留

【一】塑胶件与塑胶件扣合塑胶件与塑胶件扣合,扣合量如何留?这个得分常规的弹力扣,潜装扣与推力扣,以及特殊不考虑拆装的扣。

1,什么是弹力扣?弹力扣指的是具备自身形变让其勾合的方式。

通常这种扣,都是属于双向形变的,所以,一般扣合量设计在0.4-0.6之间,然后预留0.4的增加余量。

问:为什么需要预留0.4的增加余量?答:因为双向形变的扣在反止口离的太远的时候,或者扣的塑性形变量更大的时候会松动,而且在跌落测试时张口,达不到理想的状态,所以需要预留0.4的余量来增加扣合量,做到想要的状态。

问:卡扣的形变量如何计算或者模拟?答:都是能够计算与模拟的,那如何计算与模拟呢?抱歉,一木不会,大部分情况都是根据经验去设计的,比如扣的壁厚都是设计在1.0以内,扣的厚度在1.2-2.0之间的厚度,这个看设计空间。

可见以下参考图。

2,什么是潜装扣?潜装扣指的是需要一定的倾斜角度才能完全装配进去勾合的方式。

潜装扣一般用在不锁螺丝的一头,所以一般需要大量的扣合理来保证跌落时不会张口,扣合量一般在1.0-1.5之间,预留0.4的增加余量。

问:潜装扣的勾合平面为什么要设计一个斜角?答:从上图看,斜角在扣的前端一小部分,主要用于在潜装的时候能够更好的装配,否则很难潜装进去,另外,潜装扣的斜角设计有多种方式,除了上图,还有下图这种。

勾合面均设计成15-45度的斜角去装配,能够更好的方便拆装,如果想扣的更紧,则采用上面的方式。

3,什么是推力扣?推力扣指的是通过外力推进壳子勾合的方式。

这种方式最早用在功能手机的电池盖上,一推电池盖就打开了。

由于这类扣都是属于经常活动的,所以扣合量一般设计在0.2-0.4之间,常规取0.3设计值。

而且扣的8-15mm左右就要设置一个反止口,用于更好的调节手感与防止断差。

除了上面这种,还有电池盖2侧的卡勾,或者需要推动扣合的卡勾。

这种推扣扣合量一般在1.5-5.0之间,主要取决于结构强度与空间及后推行程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.4,扣位
2.4.1,扣位也称卡扣,是塑胶件连接固定的常用结构,在强度要求不高的情况下可以用于代替螺丝固定.扣位设计在于“扣”,需要结合紧密,保证测试强度,达到安装目的即可.卡扣常做在装饰件固定,面底壳组装,屏固定,按键限位,盖体扣合,方向球等结构处.
2.4.2,卡扣分公扣,母扣,公扣为凸,母扣为凹.卡扣原理:
扣合前:有导向斜角引导扣合方向,公母扣均做导入角,一般取60°,45°.
扣合中:公扣弹性臂变形压入,弹性臂要保证变形,强度要足够,一般变形量≧扣合量.
扣合后:公扣凸与母扣凹贴合,分离方向不易取出,要求扣合面或扣合角小于导向斜角.
2.4.3,卡扣常见形式及尺寸
a.装饰件扣合,一般为一端插入,另一端扣合,扣合量0.3-0.7mm,插入0.6-1.5mm,如装饰片,电池盖,屏固定及充电器面底壳扣合等,也有全扣位结构,扣位较多,还会增加辅助导向骨.如手机盖,在此不做介绍.
图2.4.3a
b.下图结构常见内部隐藏扣,不易拆卸,死扣结构;在公扣部件上做插穿结构,可通过插穿孔方便拆卸.
如路由器将公扣结构作在面壳壁厚内侧,母扣做在底壳内部,很难拆卸.液晶显示屏外壳也做类似死扣.
图2.4.3b
c.下图结构常见面底壳组装,第一组图在组合后常会在公扣端加管位骨限制错开,第二组则可以不用特别要求.母扣与公止口组合,公扣与母止口组合;和母扣与母止口组合,公扣与公止口组合的两种情况可以按下面两组图结构进行相应修改即可,安装方式类似.
图2.4.3c
d.强脱扣位,由材质,韧性决定,材质越软可以强脱越多.一般单边强脱ABS:0.3mm,PC:0.5,PP:0.8, TPE:1.5等,强脱同所承载的壁厚韧性有关,韧性足可以稍微加大强脱深度.具体依结构实际情况定.
图2.4.3d
e.手感扣,通常作在滑动结构上,如电池盖,旋转环等结构.一端为弹扣状,另一端为齿或圆柱.
另一种不作弹扣,直接强扣强出,扣合量一般在0.3-0.8之间.
F.其他常见扣:
2.4.4,卡扣设计考虑要素
卡扣需要考虑布局数量位置,安装形式,安装强度,
注意事项:
a.规则外形,布局按右图方形圆形卡扣分布,方形壳
体宽度≤20,宽度不做扣位;20<壳体宽度≤50,作1至2
个扣位;圆形壳体一般扣位会均布,如做防呆,可以
将扣位稍微移动,保证扣位分布均匀.
b.不规则外形,按装配方向选择安装形式,曲线边凸
凹处易出现翘曲,受力错位脱开问题,常做扣位+管
位骨结构;
c.扣位位置尽量靠近转角,防止翘曲,并与螺钉配合
组装;卡扣一般在保证强度情况下尽量作少.
d.卡扣安装形式与正反扣,要考虑组装,拆卸的方便,考虑模具的制作;
e.卡扣处注意防止缩水与熔接痕;
f.卡扣斜顶运动空间不小于5,一般取值8,退位不能有干涉,最好为平面,;
g.在卡扣上非安装边做R角,不要干涉扣合过程.
h.扣位导正,特征:止口,管位骨等,止口,管位骨在上述有说明.。

相关文档
最新文档