盖梁计算书

合集下载

盖梁模板支撑受力计算书_secret

盖梁模板支撑受力计算书_secret

盖梁模板支撑受力计算书某大桥墩柱盖梁模板支撑受力计算,取左4#墩进行受力计算。

一、荷载计算1、盖梁荷载:系梁钢筋砼自重:G=61m3×25KN/m3=1525KN墩柱顶面部分的混凝土由墩柱承载,故不计算G´=1525-3.14×1²×(1.9×2.1)×25=1227偏安全考虑,以全部重量作用于底板上计算单位面积压力:F1=G´÷S=1227KN÷(2.1m×16.05m)=38.23KN/m22、施工荷载:取F2=1.5KN/m23、振捣混凝土产生荷载:取F3=2.0KN/m24、3mm厚钢模板:取F5=0.5KN/m25、方木:取F6=7.5KN/m36、45b号工字钢:取F7=0.87KN/m二、底模强度计算底模采用组合钢模板,面板厚t=3mm,肋板高h=50mm,厚b=4mm,面板及肋板总高H=53mm,验算模板强度采用宽B=300mm平面钢模板。

1、钢模板力学性能(1)弹性模量E=2.1×105MPa。

(2)截面惯性矩:I=[by23+By13-(B-b)(y1-t)3]/3 (公式1)其中:y1=[bH2+(B-b)t2]/[2(Bt+bh)]=[4×532+(300-4)×32]/[2(300×3+4×55)]=6.205mm y2=H-y1=53-6.205=46.795mm将y1=6.205mm,y2=46.795mm代入公式1得:I=[4×46.7953+300×6.2053-(300-4)(6.205-3)3]/3=15.73cm4(3)截面抵抗矩:W=I/y2=15.73/4.6795=3.36cm3(4)截面积:A=Bt+bh=300×3+4×50=11cm22、钢模板受力计算(1)底模板均布荷载:F= F1+F2+F3=38.23+2+1.5=41.73KN/m2q=F×B=41.73×0.3=12.51KN/m(2)跨中最大弯矩:M=qL2/8=12.51×0.32/8=0.14KN·m(3)弯拉应力:σ=M/W=0.14×103/3.36×10-6=41.7MPa<[σ]=140MPa 钢模板弯拉应力满足要求。

盖梁计算书

盖梁计算书

盖梁计算书一、计算说明、参数本标段盖梁累计71个,均为双柱盖梁。

总体分一般构造盖梁和框架墩盖梁(即预应力盖梁)两种。

其中一般构造盖梁种尺寸。

普通盖梁采用C35土,框架墩盖梁采用C50混凝土。

一般构造盖梁共18个;15.736*2.1*1.5个;11.2*2.2*1.6共12个;11.595*2.2*1.6共18个,适用于松林大桥5#墩;24.2*2.4*2.2个,适用于松林大桥4#、6#墩。

由于11.2*1.9*1.4(1.595*1.9*1.4为斜交)盖梁具有代表性,故以下计算按11.2*1.9*1.4盖梁进行受力计算分析。

盖梁采用大块定型钢模板施工方法。

模板设置横加劲楞,横向加劲楞直接焊接在模板上;竖向][12加劲楞则布置在外侧,间距为0.8m,且其上安装对拉螺杆。

计算参数:A3钢强度设计值:抗拉、抗压、抗弯:[σ]=12.5KN/cm2二、计算依据和参考资(1)揭阳至惠来高速公路A7标合同段两阶段施工图设计(2)公路桥涵施工技术规范(JTJ041-2000)(3)公路桥涵钢结构及木结构设计规范(JTJ025-86)(4)路桥施工计算手册.人民交通出版社.2002(5)公路桥涵施工技术规范实施手册.人民交通出版社.2002(6)机械工程师手册.机械工业出版社.2004三、模板计算荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的揭惠高速公路A7一个数值。

对永久荷载和可变荷载,规定了不同的分项系数。

永久荷载分项系数γG:当永久荷载对结构产生的效应对结构不利时,对由可变荷载效应控制的组合取G=1.35。

当产生的效应对结构有利时,—般情况下取γG=1.0;当验算倾覆、滑移或漂浮时,取γG=0.9;对其余某些特殊情况,应按有关规范采用。

可变荷载分项系数γQ:—般情况下取γQ=1.4。

1、荷载分析:盖梁底板面积为:(11.2-2.9)m1.4m=11.62m2(最不利状态下,偏于保守计算)盖梁砼自重:G=27.1m326KN/m3=704.6KN;q1=704.611.62=60.6KN/m2注:含筋量>2%。

普通钢筋混凝土桥墩盖梁计算书

普通钢筋混凝土桥墩盖梁计算书

普通钢筋混凝土桥墩盖梁计算书范本一(正式风格):1. 混凝土桥墩盖梁计算书1.1 引言此计算书旨在详细描述普通钢筋混凝土桥墩盖梁的设计和计算过程,以确保结构的安全性和稳定性。

1.2 结构概述桥墩盖梁由混凝土桥墩以及上部预应力混凝土梁组成。

计算书将分别讨论桥墩和盖梁的设计和计算。

2. 桥墩设计和计算2.1 材料特性2.1.1 混凝土特性参考标准:GB 50010《混凝土结构设计规范》参数:抗压强度、抗拉强度、弹性模量等2.1.2 钢筋特性参考标准:GB 50010《混凝土结构设计规范》参数:屈服强度、抗拉强度、弹性模量等2.2 桥墩尺寸2.2.1 基础尺寸根据设计要求和现场条件确定桥墩基础的宽度、长度和高度。

2.2.2 桥墩截面尺寸根据设计要求和荷载计算结果确定桥墩的截面尺寸和形状。

2.3 桥墩荷载计算2.3.1 水平荷载考虑车辆荷载、风荷载、温度荷载等对桥墩的影响。

2.3.2 垂直荷载考虑自重、活荷载、附加荷载等对桥墩的影响。

2.4 桥墩设计方案根据荷载计算结果,选择合适的桥墩设计方案,包括墩身形状、墩身厚度、墩台的形式等。

3. 盖梁设计和计算3.1 材料特性参考第2.1节中的混凝土特性和钢筋特性。

3.2 盖梁尺寸根据设计要求和荷载计算结果确定盖梁的宽度、长度和高度。

3.3 盖梁荷载计算考虑自重、活荷载、预应力等对盖梁的影响。

3.4 盖梁设计方案根据荷载计算结果,选择合适的盖梁设计方案,包括预应力筋的布置、截面形状等。

4. 结论经过详细设计和计算,桥墩盖梁结构满足设计要求,并具备足够的安全性和稳定性。

5. 附件本文档涉及的附件如下:- 绘图文件:包括桥墩截面图、盖梁截面图等。

6. 法律名词及注释1) 抗压强度:混凝土在受压状态下能够承受的最大应力。

2) 抗拉强度:混凝土在受拉状态下能够承受的最大应力。

3) 弹性模量:材料在弹性变形范围内,应力与应变之间的比值。

...(根据实际情况添加其他法律名词和注释)。

盖梁计算书

盖梁计算书

盖梁计算书注:横向加载位置仅按左偏、右偏、里对称、外对称加载。

注:1、加载方式为自动加载。

重要性系数为1.1。

2、横向布载时车道、车辆均采用1到2列(辆)分别加载计算。

注:集中荷载Pk已经乘以1.2系数,使得竖直力效应最大。

双孔加载按左孔或右孔的较大跨径作为计算跨径。

注:盖梁与立柱线刚度比小于或等于5,按刚架计算盖梁。

注:外边柱之间盖梁截面按钢筋混凝土盖梁构件配筋计算。

其余按钢筋混凝土一般构件配筋计算。

注:1、“人群/每米”指横向1米宽度的支反力,不是总宽度对应的支反力。

总宽度为0米。

2、“总轴重”指一联加载长度内(双孔或左孔或右孔加载)的轮轴总重。

计算水平制动力使用。

3、“左、右支反力”未计入汽车冲击力的作用。

4、车道荷载均布荷载为10.5kN/m,集中荷载为:双孔加载284.448kN,左孔加载284.448kN,右孔加载284.448kN。

5、双孔支反力合计:人群荷载60.021kN/m,1辆车辆荷载436.682kN,1列车道荷载499.987kN。

6、左孔(或右孔)加载时同1辆车的前后轮轴可作用在另一孔内,保证单孔支反力最大,另一孔即便有轮轴支反力仍未计。

7、左孔、右孔冲击系数同双孔加载冲击系数。

注:1、线荷载为54kN/m,指盖梁的总重量除以盖梁长度得到的每延米重量。

2、车道和车辆双孔、左孔、右孔加载均指1列荷载作用,采用值已计冲击系数。

3、车道双孔加载控制,车辆双孔加载控制。

注:1、表中横向分配系数采用“杠杆法(支点)过渡到偏心受压法(1/4跨)”,即纵向荷载位于支点与1/4跨之间按“杠杆法”与“偏心受压法”插值计算,1/4跨之间按“偏心受压法”计算。

2、车道荷载布载两列及以上时横向分配系数值已经计入车列数和横向折减系数。

注:1、“过渡法”由纵向影响值结合横向分配系数由杠杆法过渡偏心法计算得到。

点击“纵向影响线”看详细计算。

注:1、耳墙、背墙、盖梁比重均按25kN/m3取用。

注:1、耳墙、背墙、盖梁比重均按25kN/m3取用。

盖梁课程设计计算书

盖梁课程设计计算书

盖梁课程设计计算书一、课程目标知识目标:1. 学生能够掌握盖梁的基本结构及其在桥梁工程中的作用。

2. 学生能够理解并运用盖梁设计的相关公式,进行简单的盖梁计算。

3. 学生能够了解盖梁施工过程中的质量控制要点。

技能目标:1. 学生能够运用所学知识,独立完成盖梁设计的计算书编写。

2. 学生能够运用盖梁设计软件,进行盖梁的模拟分析和计算。

3. 学生通过实际案例分析,提高解决问题的能力。

情感态度价值观目标:1. 学生培养对桥梁工程事业的热爱和责任感,关注桥梁工程的质量和安全。

2. 学生在学习过程中,培养团队协作和沟通交流的能力,增强集体荣誉感。

3. 学生通过本课程的学习,认识到理论知识在实际工程中的重要性,形成积极向上的学习态度。

课程性质:本课程为桥梁工程专业课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生已具备一定的桥梁工程基础知识,具有较强的学习能力和动手能力。

教学要求:教师需引导学生将理论知识与实际工程相结合,注重培养学生的实际操作能力和解决问题的能力。

在教学过程中,关注学生的情感态度价值观的培养,提高学生的综合素质。

通过本课程的学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。

二、教学内容1. 盖梁结构概述:介绍盖梁的定义、分类、作用及其在桥梁结构中的位置。

教材章节:第一章 桥梁结构概述2. 盖梁设计原理:讲解盖梁设计的基本原理、设计方法和步骤。

教材章节:第二章 桥梁设计原理3. 盖梁设计计算:详细讲解盖梁设计计算书编写过程,包括受力分析、内力计算、配筋计算等。

教材章节:第三章 桥梁结构计算4. 盖梁施工技术:分析盖梁施工过程中的关键技术、质量控制及安全管理。

教材章节:第四章 桥梁施工技术5. 盖梁设计软件应用:介绍盖梁设计软件的使用方法,让学生通过软件进行模拟分析和计算。

教材章节:第五章 桥梁设计软件应用6. 实际案例分析:通过分析实际工程案例,让学生了解盖梁设计在实际工程中的应用。

盖梁计算书

盖梁计算书

计算书一、钢管柱抱箍施工方法1、工程概况盖梁宽为3.32m,中间1.42m宽混凝土结构最高为3.9m,下部混凝土结构最高为2.1m。

双层H700型钢间距为1.9m,30工字钢间距为0.6m,长度为7.5m 标准段H700型钢中间钢管柱跨度为10m,两侧跨度为6m,外侧悬臂3.3m(有2m为工作面)2、施工荷载中间1.42m混凝土均布荷载为3.9*2.6=10.14t/m两侧各0.95m范围混凝土均布荷载为2.1*2.6=5.46t/m施工人员,机具、材料荷载:=2.5kN/m2P1砼冲击及振捣砼时产生的荷载:P=2.5kN/m22模板自重荷载:=1.5kN/m2P43、30工字钢计算:中间1.42m 101.4+2.5+2.5+1.5=107.6kN/m2*0.6=64.56kN/m两侧0.95m 54.6+2.5+2.5+1.5=61.1kN/m2*0.6=36.66kN/m结果最大应力为40.5MPa<210MPa,符合要求。

最大变形为0.3mm<3320/400=8.3mm支点反力为80.351KN.80.351+1.2=81.551KN4、H700型钢计算:最大应力为160.2 MPa<210MPa,符合要求。

最大变形为19mm<10000/400=25mm,符合要求。

抱箍处支点反力为846.163KN,钢管柱支点反力为1125.719KN。

5、钢管柱计算钢管柱最大应力为84.952 MPa<210MPa,符合要求。

最大变形为4mm钢管柱基础计算:1125.719/(3.14*0.3*0.3)=3983.4KPa=4MPa<20MPa(混凝土强度),符合要求。

6、抱箍计算抱箍受竖向力为846.2KN,即该值为抱箍需产生的摩擦力,螺栓数目计算:M24螺栓的允许承载力:[NL]=Pμn/K式中P为高强螺栓的预拉力,取225kNμ摩擦系数取0.3传力接触数目取1.6*1.6*0.5=1.28K为安全系数取1.7[NL]=50.82KN螺栓数目m=846.2/50.82=16.6≈17,实际布置螺栓为24个。

盖梁托架计算书(改)

盖梁托架计算书(改)

盖梁托架计算书一、荷载标准值钢筋砼容重取26kN/m 3。

(1)盖梁每延米砼为:9.25m 3/m ,宽度3.7m 。

盖梁自重标准值:()=⨯=33219.25/26//3.765/k g m m kN m m kN m(2)模板结构自重标准值:220.5/k g kN m =(3)计算模板时均布活荷载:21 2.5/k q kN m =;计算模板纵横梁时均布活荷载21 1.5/k q kN m =;计算支架立柱时均布活荷载21 1.0/k q kN m =;(4)水平面模板:22 2.0/k q kN m = 垂直面模板22 4.0/k q kN m =(5)23 2.0/k q kN m =荷载计算简图二、次梁、主梁检算盖梁模板采用大块钢模,因此不进行模板的强度、刚度检算。

2.1、次梁计算次梁横向支撑采用25a 工字钢,计算跨度为3.7m ,间距40cm 。

经查,25a 工字钢截面特性如下:==435020,402,I cm W cm =⨯5v 2.0610,f =205Mpa ,f =120Mpa 。

E MPa①强度计算模板上的均布荷载设计值为:k1k2123[1.2() 1.4()]*0.4/k k k q g g q q q KN m =++++[1.2(650.5) 1.4(1.522)]0.4/34.52/x x x kN m kN m =++++=最大弯矩:22max =0.1=0.1x34.52x3.7=47.3M ql kN m kN m ••3M /W=47.3/402c =117.56MPa 205MPa?kN m m σ=•<[满足要求]②挠度计算刚度验算采用标准荷载,同时不考虑振动荷载作用。

()()=+⨯=+⨯=k1k20.4650.50.4/2// 6.2q g g KN m kN m kN m最大挠度为:--⨯⨯⨯=⨯⨯⨯⨯⨯4433max 1155ql 526.2 3.710f ==6.1810384384 2.0610 5.0210EI <δ-33.7===9.25x10400400lm[满足要求]③抗剪强度计算最大剪力:==⨯⨯=max 0.60.634.52 3.776.63V ql kN kN 最大剪应力:τ⨯⨯===<=⨯3max 3376.6310pa 23.71202248.5v V MPa f MPa A[满足要求]2.2主梁验算2.1、主梁计算主梁拟采用双排单层贝雷梁;计算跨度为7.0m 。

盖梁抱箍计算书

盖梁抱箍计算书

盖梁抱箍计算书1.1抱箍材料采用两块半圆弧型钢板(板厚t=10mm)制成,M24的高强螺栓连接,抱箍高50cm,采用16个高强螺栓连接。

抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。

为了提高墩柱与抱箍间的摩擦力,同时对墩柱砼面保护,在墩柱与抱箍之间设一层0.5cm厚的橡胶皮。

1.2荷载计算每个盖梁按墩柱设三个抱箍体支承上部荷载,取28#右幅最大方量(64.5m3)的盖梁验算。

盖梁砼自重:G1=64.5×26=1677kN盖梁模板自重:G2=72KN钢管外撑自重:G3=2.77×4.65*12=0.154kN横梁工字钢:双40b,长度26米,G4=21kN施工荷载与其它荷载:G5=20kN横梁上的总荷载:GH=G1+G2+G3+G4+G5=1790.15kN支座反力R A=R B=1790.15/3=596.71kN以最大值为抱箍体需承受的竖向压力N进行计算,该值即为抱箍体需产生的摩擦力。

1.3抱箍受力计算1.3.1螺栓数目计算抱箍体需承受的竖向压力N=596.71kN抱箍所受的竖向压力由M24的高强螺栓的抗剪力产生,查《路桥施工计算手册》第426页:M24螺栓的允许承载力:[NL]=Pμn/K式中:P---高强螺栓的预拉力,取200kN;μ---摩擦系数,取0.35;n---传力接触面数目,取1;K---安全系数,取1.7。

则:[NL]= 200×0.35×1/1.7=41.18kN螺栓数目m计算:m=N’/[NL]=596.71/41.18=14.5≈15个,取计算截面上的螺栓数目m=16个。

则每条高强螺栓提供的抗剪力:P′=N/8=596.71/16=37.3KN<[NL]=41.18kN故能承担所要求的荷载。

1.3.2螺栓轴向受拉计算砼与钢之间设一层橡胶皮,查摩擦系数表:按橡胶皮与砼之间的摩擦系数取μ=0.6,橡胶皮与钢的的摩擦系数取μ=0.6,综合摩阻系数按0.45计算。

盖梁计算书

盖梁计算书

盖梁托架计算书根据该桥的工程特点,结合本单位施工技术水平、机具设备等,确定该桥盖梁的施工方案为:在墩身离柱顶0.473m(内),0.613m(外)处预埋直径120mm的PVC管,盖梁施工时通长穿入Φ100高强度锰钢穿心棒(Q345),钢棒长2.8m,首先在钢棒上铺设两道I45a的工字钢作为纵梁,然后沿垂直于工字钢的方向满铺4m长C16槽钢,最后在槽钢上安装定型钢模,具体搭设见盖梁底模及平台的平面布置图。

采用空间有限元分析软件Midas civil建立盖梁托架模型如下:一、荷载计算1、混凝土自重荷载W1=38.4×2.6=99.84t;2、模板荷载定型钢模板,每平米按0.12t计算。

侧模重量W2=(2.4×1.5×2+12.5×1.5×2)×0.12=5.36t3、施工人员、机械重量。

按每平米1kN,则该荷载为:W3=13×1×0.1=1.3t4、振捣器产生的振动力。

盖梁施工采用50型插入式振动器,设置2台,每台振动力5kN。

施工时振动力:W4=0.5×2=1t上部恒荷载:F1= W1 +W2×10/12.5×4=21.04KN/m2,分析时取恒荷载系数1.2上部活荷载:F2= W3 +W4×10/12.5×4=0.46KN/m2,分析时取活荷载系数1.4软件进行有限元分析时包含托架自重,故此处不再计算托架重量,分析时自重取恒荷载系数1.2。

二、强度分析1、工字钢1)变形分析,工字钢主梁最大位移位于工字钢梁中部工字钢最大位移7.37mm<L/400=32mm(主梁最大允许挠度),刚度满足要求2)剪应力分析剪应力图:剪应力分布图如下:最大剪应力34.74Mpa<[τ]=125MPa,满足要求3)弯曲应力分析弯曲应力图弯曲应力分布图如下最大弯曲应力127.73Mpa<[σ]=215MPa,满足要求2、槽钢1)变形分析,槽钢整体位移如下图:由图示可以看出,最大位移位于托架中部,提取位移最大的槽钢如下图:最大位移20.63mm<L/150=26.67mm(其他梁最大允许挠度),刚度满足要求2)剪应力分析剪应力图由图示可以看出最大剪切应力发生在工字钢与工字钢接触部位,槽钢内剪应力分布图如下:最大剪应力6.62Mpa<[τ]=125MPa,满足要求3)弯曲应力分析弯曲应力图由图示可以看出最大弯曲应力发生在槽钢跨径中心,工字钢内弯曲应力分布图如下最大弯曲应力163.83Mpa<[σ]=215MPa,满足要求3、穿心棒穿心棒作为主要承重构件,承受来自上部结构的全部荷载,为保证其安全稳定,对钢棒的抗剪和抗弯强度进行验算。

盖梁支撑(型钢平台)计算书

盖梁支撑(型钢平台)计算书

盖梁⽀撑(型钢平台)计算书盖梁⽀撑(型钢平台)计算书计算依据:1、《建筑施⼯模板安全技术规范》JGJ162-20082、《混凝⼟结构设计规范》GB 50010-20103、《建筑结构荷载规范》GB 50009-20124、《钢结构设计标准》GB 50017-20175、《建筑结构可靠性设计统⼀标准》GB50068-2018⼀、基本参数1、基本构造参数2、盖梁墩柱参数⼆、荷载设计⾯板及⼩梁0.5楼板模板0.75 混凝⼟⾃重标准值G2k(kN/m3) 25盖梁钢筋⾃重标准值G3k(kN/m3) 2施⼯⼈员及设备荷载标准值Q k(kN/m2) 3结构重要性系数γ0 1.1可变荷载调整系数γL0.9盖梁⽀撑简图如下:盖梁抱箍纵向⽴⾯图盖梁抱箍横向⽴⾯图三、⾯板验算⾯板材料类型组合钢模板盖梁底膜钢模板⼩楞布置⽅式井字型布置钢模板纵向⼩楞间距(mm)300 钢模板横向⼩楞间距(mm)300钢板厚度(mm) 6 钢板抗弯强度设计值f(N/mm2)215钢板弹性模量E(N/mm2) 206000单位长度钢板截⾯抵抗矩:W=bt2/6=1000×6×6/6=6000mm3单位长度钢板截⾯惯性矩:I=bt3/12=1000×6×6×6/12=18000mm3单位长度钢⾯板所受均布线荷载:q=γ0×[1.3(G1k+(G2k+G3k)×h)+1.5×γL×Q k]×1=1.1×[1.3×(0.3+(25+2)×1.8)+1.5×0.9×3]×1=74.382kN/m由于钢⾯板纵横向楞间距⽐值300/300=1<3,钢⾯板按双向板(两边固⽀,两边铰⽀)计算依据《建筑施⼯⼿册》(第四版),单位长度钢板最⼤弯矩值:M xmax=0.0234×74.382×0.32=0.157kN·mM ymax=0.0234×74.382×0.32=0.157kN·m钢的泊桑⽐为µ=0.3,对弯矩进⾏修正:M x=M xmax+µM ymax=0.157+0.3×0.157=0.2036kN·mM y=M ymax+µM xmax=0.157+0.3×0.157=0.2036kN·mM=max(M x,M y)=max(0.2036,0.2036)=0.2036kN·m1、强度验算σ=M/W=0.2036×106/6000=33.941N/mm2≤[f]=215N/mm2钢板强度满⾜要求!2、挠度验算钢板刚度:Bc=Et3/(12(1-µ2))=206000×63/(12×(1-0.32))=4074725.275N·mm钢板最⼤挠度:f max=ωmax ql4/Bc=0.00215×74.382×10-3×3004/4074725.275=0.318mm<1 /400=300/400=0.75mm 钢板挠度满⾜要求!四、横向分布梁计算横向分布梁截⾯惯性矩I(cm4) 563.7承载能⼒极限状态:q1=γ0×[1.3(G1k+(G2k+G3k)×h)+1.5×γL×Q k]×S=1.1×[1.3×(0.75+(25+2)×1.8)+1.5×0.9×3]×0.3=22.508kN/m横向分布梁⾃重q2=1.1×1.3×0.145=0.208kN/m梁左侧模板传递给横向分布梁荷载F1=1.1×1.3×0.75×1.8×0.3=0.579kN梁左侧模板传递给横向分布梁荷载F2=1.1×1.3×0.75×1.8×0.3=0.579kN正常使⽤极限状态:q1'=[(G1k+(G2k+G3k)×h)+Q k]×S=[(0.75+(25+2)×1.8)+3]×0.3=15.705kN/m横向分布梁⾃重q2'=1×0.145=0.145kN/m梁左侧模板传递给横向分布梁荷载F1'=1×0.75×1.8×0.3=0.405kN梁左侧模板传递给横向分布梁荷载F2'=1×0.75×1.8×0.3=0.405kN计算简图如下:1、抗弯验算横向分布梁弯矩图(kN·m)σ=M max/W=6.73×106/80500=83.599N/mm2≤[f]=205N/mm2满⾜要求!2、抗剪验算横向分布梁剪⼒图(kN)V max=12.004kNτmax=V max/(8I zδ)[bh02-(b-δ)h2]=12.004×1000×[58×1402-(58-6)×1212]/(8×5637000×6)=1 6.658N/mm2≤[τ]=125N/m m2满⾜要求!3、挠度验算横向分布梁变形图(mm)νmax=1.117mm≤[ν]=L/400=1650/400=4.125mm满⾜要求!4、⽀座反⼒计算承载能⼒极限状态⽀座反⼒:R max=12.004kN正常使⽤极限状态⽀座反⼒:R’max=8.377kN五、纵向承重梁计算纵向承重梁类型贝雷梁是否为加强贝雷梁否梁⽚组合形式单排单层贝雷梁容许弯矩[M](kN.m) 788.2 贝雷梁容许剪⼒[V](kN) 245.2 贝雷梁⾃重线荷载标准值(kN/m) 0.33 纵向承重梁⾃重线荷载标准值:q’=0.33kN/m纵向承重梁⾃重线荷载设计值:q=1.1×1.3×0.33=0.472kN/m横向分布梁传递的⽀座反⼒(纵向承重梁中间部位):集中荷载标准值:F1’=8.377kN集中荷载设计值:F1=12.004kN横向分布梁传递的⽀座反⼒(纵向承重梁两端部位):集中荷载标准值:F2’=8.377/2=4.189kN集中荷载设计值:F2=12.004/2=6.002kN计算简图如下:由于纵向承重梁为贝雷梁,抗弯抗剪验算⽤容许值,则相应荷载⽤标准值计算。

桥墩盖梁计算书

桥墩盖梁计算书

桥墩盖梁计算书一、设计依据1、《公路工程技术标准》(JTG B01-2003);2、《公路桥涵设计通用规范》(JTG D60-2004);3、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004);4、《公路桥涵地基与基础设计规范》(JTG D63-2007);5、《公路桥梁抗震设计细则》(JTG-TB02-01-2008);6、《公路桥涵施工技术规范》(JTG TF50-2011);7、《公路桥涵设计通用规范》(JTG D60-2004);8、现行的其他《规范》、《规程》、《办法》。

二、技术指标1、路线等级:城市次干路,双向4车道;2、计算行车速度:40公里/小时;3、抗震设防烈度:地震设防烈度7度,地震峰值加速度取0.15g;4、环境类别:Ⅱ类;5、桥面布置:5m(人非混行道)+7.5m(机动车道)+ 0.5m(防撞墙)=13m;6、设计荷载:城-A级;人群集度3.5KN/m2。

7、结构体系:简支梁;构件类别:预应力钢筋混凝土构件。

8、计算跨径:(9×20)m。

三、材料参数1、混凝土:a、盖梁采用C30混凝土:容重26 KN/m³;b、沥青混凝土铺装10cm,容重24 KN/m³;c、调平层混凝土采用10cmC50混凝土。

2、普通钢筋:箍筋采用HRB335,直径12mm、受力主筋采用HRB335钢筋,直径25mm。

四、盖梁计算1、盖梁全长12.60m,盖梁宽度1.7m,盖梁高度1.5m2、计算图式:3、斜筋计算方式a、砼和箍筋共同承担分配系数0.8,侧面筋间距15cm, 裂缝计算中钢筋直径系数1.34、计算结果根据以上计算结果显示,以上盖梁计算满足截面承载能力要求、截面抗裂缝要求和截面抗剪要求。

盖梁计算

盖梁计算

施工平台受力计算书一、工程概况盖梁设计尺寸:双柱式盖梁设计为长11.86m,宽2.1m,高1.8m,混凝土方量为43.56方,悬臂长2.23m,两柱中心距7.4m。

1、荷载计算1) 混凝土自重荷载W1=43.56×26=1133kN;2)模板荷载A、定型钢模板,每平米按1.2kN计算。

W2=(11.86×1.8×2+1.8×2.1×2)×1.2=60.3kN;3)施工人员、机械重量按每平米1kN,则该荷载为:W3=11.86×2.1×1=25kN;4)振捣器产生的振动力盖梁施工采用50型插入式振动器,设置3台,每台振动力5kN。

施工时振动力:W4=5×3=15kN;总荷载:W=W1+ W2+ W3+ W4 =1133+60.3+25+15=1233.3kN 5)荷载集度计算横桥向最大荷载集度:q h1=(W+0.9×1.23×2.1×26)/11.86=(1233.3+60.4)/11.86=109kN/m;最小荷载集中度q h2= q h1/2=55kN/m 顺桥向荷载集度取跨中部分计算:q s= q h1/2.1=109/2.1=51.9kN/m 2、强度、刚度计算1)木材强度验算取盖梁跨中横向一米段对木方进行计算,其中横向一米荷载共有2根方木2根10#槽钢承担,顺桥向荷载集度:q s= q h1/2.1=109/2.1=51.9kN/m,受力图:弯矩图剪力图其中最大弯矩为:M=20.4kN·m,最大剪力为:Q=46.7kN单条10cm×10cm的方木的抗弯模量W x=166.67×10-6m3,抗剪面积A=0.01m2单条10#槽钢抗弯模量W x=39.4×10-6m3,抗剪面积A=12.74×10-4m2根据应力公式可以得出最大拉应力:σ=M/W x=20.4×1000/39.4/3=172MPa <[σ]=200MPa;根据剪应力公式可以得出剪切应力:τ=1.5Q/A=70×1000/12.74/3=18.3MPa <[σ]=85MPa;2)纵梁45b工字钢计算实际施工中盖梁两端部分模拟为梯形荷载,最小值为55kN/m,最大值为109kN/m,跨中模拟均布荷载109kN/m,实际施工中立柱顶部混凝土完全由立柱承受,但为安全起见,计算模型将此部分混凝土考虑在内,工字钢计算模拟图形如下图:弯矩图(荷载组合)剪力图(荷载组合)荷载组合其中荷载组合后最大弯矩为:M=-562kN·m,最大剪力为:Q=48.7kN,最大支撑力F=78.7kN2)工字钢强度验算单片45b工字钢抗弯模量W x=1500×10-6m3,单片工字钢抗剪面积A=111.4×10-4m2实际为两片工字钢受力,工字钢弯拉应力为:σ=M/W x=562×103/1500/2=187MPa[σ]=200MPa;3)工字钢剪力验算τ=1.5Q/A=1.5×48.7×1000/2/111.4/2=1.6MPa <[σ]=85MPa; 三、穿心棒法施工钢棒验算钢棒作为主要承重构件,承受来自上部结构的全部荷载,保证安全稳定,对钢棒的抗剪和抗弯强度进行验算。

盖梁计算书

盖梁计算书

顶盖梁计算表I.计算说明和参数此投标部分中的71顶盖梁均为双列弯曲顶盖。

它通常分为两种类型:通用结构顶盖梁和框架墩顶盖梁(即预应力顶盖梁)。

一般结构有7种尺寸的封盖梁,框架墩有2种尺寸的封盖梁。

C35混凝土用于普通盖梁,C50混凝土用于框架墩盖梁。

通用结构封盖梁有7种尺寸,分布如下:11.2 * 1.9 * 1.4,6; 11.2 * 2.1 * 1.9; 11.595 * 1.9; 15.736 * 2.1 * 1.5; 7.8 * 1.9 * 1.3;11.2 * 2.2 * 1.6; 11.595 * 2.2 * 1.6; 11.595 * 2.2 * 1.6; 11.595 * 2.2 * 1.6。

框架墩盖梁有两种尺寸,其分布如下(根据长x宽x高);有一个24.2 * 2.4 * 2.2,适用于松林大桥5墩。

有2 24.2 * 2.4 * 2.2,适用于松林大桥4×6墩。

以11.2 * 1.9 * 1.4(1.595 * 1.9 * 1.4为斜交)为代表,因此根据11.2 * 1.9 * 1.4覆盖光束进行以下计算。

顶梁采用大套型钢模板的施工方法。

模板上设有横向加劲肋[8加劲肋,它直接焊接在模板上;垂直] [12根加强筋在外侧以0.8m的间距布置,并在其上安装了一对拉动螺钉。

计算参数:A3钢的设计值强度:抗张强度,抗压强度和弯曲强度:[σ] = 21.5kn / cm2 = 215mpa,不包括系数,[σ] = 145mpa,剪切强度:[τ] = 12.5kn /平方厘米II。

计算依据与参考(1)揭阳惠来高速公路A7标段二期施工图设计(2)公路桥涵施工技术规范(JTJ 041-2000)(3)钢构结构设计规范公路桥梁和涵洞(jtj025-86)(4)用于道路和桥梁建设的计算手册。

人民交通出版社。

2002(5)公路桥涵施工技术规范实施手册。

人民交通出版社。

2002(6)机械工程师手册。

盖梁预应力计算书

盖梁预应力计算书

盖梁预应力计算书一、工程概述本工程为_____桥梁工程,其中盖梁采用预应力混凝土结构。

盖梁的设计参数如下:盖梁长度:_____m盖梁宽度:_____m盖梁高度:_____m预应力钢束的布置形式:_____二、设计荷载1、恒载盖梁自重:根据混凝土的容重和盖梁的尺寸计算得出。

上部结构恒载:由桥梁的上部结构传递至盖梁的恒载。

2、活载汽车荷载:按照相关规范确定的车道荷载和车辆荷载进行计算。

人群荷载:根据规范规定的人群荷载标准值计算。

3、温度荷载考虑整体升降温和梯度温度的影响。

4、支座沉降假设支座发生不均匀沉降,计算由此产生的附加内力。

三、材料参数1、混凝土强度等级:_____弹性模量:_____泊松比:_____2、预应力钢绞线规格:_____抗拉强度标准值:_____弹性模量:_____四、预应力钢束布置1、钢束的数量和规格根据盖梁的受力要求和规范规定,确定预应力钢束的数量和规格。

2、钢束的曲线布置考虑盖梁的受力特点和施工方便,确定钢束的曲线形状和控制点坐标。

3、钢束的锚固和张拉端布置合理设置钢束的锚固和张拉端,确保预应力的有效施加和传递。

五、预应力损失计算1、锚具变形和钢筋回缩引起的损失根据锚具的类型和相关规范,计算锚具变形和钢筋回缩引起的预应力损失。

2、摩擦损失考虑钢束与管道壁之间的摩擦,计算摩擦损失。

3、温差损失由于混凝土在养护过程中的温差变化,导致钢束的预应力损失。

4、松弛损失根据钢绞线的松弛特性和时间因素,计算松弛损失。

六、盖梁正截面承载力计算1、计算截面的选取选取盖梁的关键截面进行正截面承载力计算。

2、内力组合将恒载、活载等各种荷载进行最不利组合,确定截面的内力。

3、承载能力计算根据混凝土和钢筋的强度,计算盖梁截面的承载能力。

七、盖梁斜截面承载力计算1、斜截面的选取考虑盖梁可能发生斜截面破坏的位置,选取相应的截面进行计算。

2、剪力计算计算截面的剪力值。

3、抗剪承载力计算确定混凝土和箍筋的抗剪承载力。

盖梁计算书

盖梁计算书

贵龙经济带贵龙大道吴家庄特大桥盖梁结构受力计算书计算:复核:审核:编制时间:二O一三年三月盖梁计算书一、结构形式考虑到大桥盖梁最大平面尺寸为 2.2m×14.5m,最大高度为2.5m,本计算书盖梁计算模型计算尺寸为2.2m×14.5m×2.5m。

盖梁模板采用钢板侧模及2cm厚竹胶板底模。

为保证3#墩至7#墩(墩柱最大高度为39.068m)等较高桥墩施工,盖梁底部支架从下到上分别为15cm径墩身穿心钢棒,顺桥向双支I56a工字钢纵梁,横桥向I18工字钢分配梁(间距30cm),10cm×10cm方木。

在实际计算中以右幅15#墩盖梁为例。

二、荷载布置1、上部结构恒重⑴盖梁混凝土:2.5m×2.6×103kg/m3=6.5×103kg/m2q1=65×103N/m2⑵2cm厚竹胶板:0.9×103kg/m3×0.02m=18kg/m2q2=180N/m2⑶I18工字钢分配梁:24.13kg/m q3=241.3N/m⑷I56a工字钢纵梁:106.27kg/m q4=1062.7N/m2、活荷载⑴施工荷载及人群荷载:q5=3.5kN/m2三、结构内力计算〈一〉I18分配梁内力计算计算跨径为l=2.32m(按简支计算,I56a工字钢顶板宽16cm),间距d1=0.3m。

〈1〉弯矩M:上部荷载q=(q1+q2+q5)×d1+q3+q5=(65000+180+3500)×0.3+241.3=20845.3N/m弯矩M=ql2/4=0.25×20845.3×2.322=28049.436N•m〈2〉对支点剪力Q:Qmax1=ql/2=20845.3×2.28/2=26515.26N内力计算:σ=M/W=28049.436/185.4=151.291MPa<[σ]=175MPaQmax/A=26515.26N/30.74cm2=8.626MPa<[τ]=73MPa满足。

盖梁计算书

盖梁计算书

附件:盖梁计算书一、计算说明、参数本标段盖梁累计71个,均为双柱盖梁。

总体分一般构造盖梁和框架墩盖梁(即预应力盖梁)两种。

其中一般构造盖梁7种尺寸,框架墩盖梁2种尺寸。

普通盖梁采用C35混凝土,框架墩盖梁采用C50混凝土。

一般构造盖梁共7种尺寸,分布如下(按长x宽x高统计):11.2*1.9*1.4共 6个;11.2*2.1*1.9共6个;11.595*1.9*1.4共18个;15.736*2.1*1.5共4个;7.8*1.9*1.3共4个;11.2*2.2*1.6共12个;11.595*2.2*1.6共18个。

框架墩盖梁共两种尺寸,分布如下(按长x宽x高统计);24.2*2.4*2.2共1个,适用于松林大桥5#墩;24.2*2.4*2.2共2个,适用于松林大桥4#、6#墩。

由于11.2*1.9*1.4(1.595*1.9*1.4为斜交)盖梁具有代表性,故以下计算按11.2*1.9*1.4盖梁进行受力计算分析。

盖梁采用大块定型钢模板施工方法。

模板设置横向][8加劲楞,横向加劲楞直接焊接在模板上;竖向][12加劲楞则布置在外侧,间距为0.8m,且其上安装对拉螺杆。

计算参数:A3钢强度设计值:抗拉、抗压、抗弯:[σ] =21.5KN/cm2=215Mpa,不计入系数时[σ] =145Mpa 抗剪:[τ]=12.5KN/cm2二、计算依据和参考资(1)揭阳至惠来高速公路A7标合同段两阶段施工图设计(2)公路桥涵施工技术规范(JTJ 041-2000)(3)公路桥涵钢结构及木结构设计规范(JTJ025-86)(4)路桥施工计算手册. 人民交通出版社. 2002(5)公路桥涵施工技术规范实施手册. 人民交通出版社. 2002(6)机械工程师手册. 机械工业出版社. 2004三、模板计算荷载分项系数是在设计计算中,反映了荷载的不确定性并与结构可靠度概念相关联的一个数值。

对永久荷载和可变荷载,规定了不同的分项系数。

盖梁抱箍法施工计算书

盖梁抱箍法施工计算书

盖梁抱箍法施工设计及计算第一部分盖梁抱箍法施工设计一、施工设计说明1、工程概况本工程主要分部分项工程包括桩基础、承台(系梁)、立柱、墩盖梁(台帽)、预制小箱梁安装、整体化层及附属工程等。

桥墩采用双柱式及三柱式墩。

本次计算只选择下安立交PY6桥墩盖梁,其为本桥跨度最大的盖梁,墩柱中心距离为8.1595m,盖梁长度22.219m,宽1.8m,高1.6m ,悬臂长度2.95m,墩柱直径1.3m,砼浇筑方量为62.9m3。

2、设计依据(1)交通部行业标准,公路桥涵钢结构及木结构设计规范(JTJ025-86)(2)汪国荣、朱国梁编著施工计算手册(3)公路施工手册,桥涵(上、下册)(4)路桥施工计算手册人民交通出版社(5)盖梁模板提供厂家提供的模板有关数据。

(6)施工图设计文件。

(7)我单位的桥梁施工经验。

二、盖梁抱箍法结构设计1、侧模与端模支撑侧模为特制大钢模,面模厚度为δ6mm,肋板高为8cm,在肋板外设[14背带。

在侧模外侧采用间距0.75m的[14作竖带,竖带高2m;在竖带上下各设一条φ18的栓杆作拉杆,上下拉杆间间距1.8m。

2、底模支撑底模为特制大钢模,面模厚度为δ6mm,肋板高为8cm。

在底模下部采用间距0.3m[8型钢作横梁,横梁长1.8m。

盖梁悬出端底模下设三角支架支撑,三角架放在横梁上。

横梁底下设纵梁。

横梁上设钢垫块以调整盖梁底的横向坡度与安装误差。

与墩柱相交部位采用特制型钢支架作支撑。

3、纵梁在横梁底部采用两根贝雷片连接形成纵梁,长24m,纵梁在墩柱外侧采用[10型槽钢使纵梁形成整体,增加稳定性。

贝雷片之间采用销连接。

纵、横梁以及纵梁与联接梁之间采用U型螺栓连接;纵梁下为抱箍和千斤顶。

4、千斤顶和抱箍为方便施工,抱箍与纵梁之间采用6个50T的螺旋千斤顶。

采用两块半圆弧型钢板(板厚t=16mm)制成, M24的高强螺栓连接,抱箍高60cm,采用20根高强螺栓连接。

抱箍紧箍在墩柱上产生摩擦力提供上部结构的支承反力,是主要的支承受力结构。

盖梁预应力计算书

盖梁预应力计算书

盖梁预应力计算书一、工程概述本次设计的盖梁为_____桥梁的重要组成部分。

该盖梁采用预应力混凝土结构,其主要作用是支撑上部结构的荷载,并将其传递到下部墩柱。

盖梁的尺寸为长_____米,宽_____米,高_____米。

预应力钢束采用_____型号的高强度钢绞线,其抗拉强度标准值为_____MPa。

二、设计依据1、《公路桥涵设计通用规范》(JTG D60-2015)2、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG 3362-2018)3、桥梁的总体设计方案及相关技术要求三、材料参数1、混凝土强度等级:C50弹性模量:_____MPa轴心抗压强度标准值:_____MPa轴心抗压强度设计值:_____MPa2、预应力钢绞线规格:_____抗拉强度标准值:_____MPa抗拉强度设计值:_____MPa弹性模量:_____MPa3、普通钢筋规格:_____抗拉强度设计值:_____MPa四、荷载计算1、恒载盖梁自重:根据盖梁的尺寸和混凝土容重计算。

上部结构恒载:根据桥梁的上部结构形式和尺寸计算。

2、活载汽车荷载:按照规范要求的车道荷载进行计算。

人群荷载:根据规范规定的取值计算。

3、荷载组合承载能力极限状态组合:恒载+活载正常使用极限状态组合:恒载+活载(频遇值)+活载(准永久值)五、预应力钢束布置1、钢束数量和位置根据盖梁的受力情况和设计要求,确定预应力钢束的数量和布置位置。

钢束通常布置在盖梁的顶部和底部,以提高盖梁的抗弯和抗剪能力。

2、钢束曲线方程根据盖梁的形状和预应力钢束的布置要求,确定钢束的曲线方程。

钢束的曲线通常采用抛物线或圆弧线。

六、预应力损失计算1、锚具变形和钢筋回缩引起的损失根据锚具的类型和规格,按照规范公式计算锚具变形和钢筋回缩引起的预应力损失。

2、摩擦损失考虑预应力钢束与管道壁之间的摩擦,根据钢束的曲线长度、管道偏差系数和摩擦系数,按照规范公式计算摩擦损失。

3、温差损失由于混凝土在浇筑和养护过程中的温度变化,会导致预应力钢束产生温差损失。

盖梁计算书

盖梁计算书

盖梁计算书盖梁两大计算方法1 传统简化算法以桥梁通为代表2 盖梁影响线直接加载法以桥梁博士为代表桥梁通盖梁计算与绘图一盖梁计算原理⑴以交通部颁布现行的桥涵规范作为编程依据。

⑵斜桥以桥孔斜长为计算跨径,按正交桥的方法计算。

⑶顺桥向按简支梁加载计算荷载支反力。

⑷横向分配系数对称布载按杠杆法,偏载按刚性横梁法。

⑸三跨及以上时盖梁视为刚性支承的双悬臂多跨连续梁,两跨时为双悬臂简支梁。

⑹建立柱(肋)支承反力影响线和每个计算截面内力影响线。

⑺横桥向荷载经横向分配传递给每片梁(板),再由每片梁(板)按内力影响线加载得出各计算截面人群、汽车、挂车引起的最不利内力值。

⑻对荷载内力进行组合,求出各计算截面内力最大值和最小值,形成内力包络图。

⑼弯矩控制正截面强度和主筋根数,剪力控制斜截面抗剪强度和斜筋根数以及箍筋间距和根数,裂缝由弯矩控制。

二绘图编制原理⑴根据盖梁外廓尺寸按纵、横方向分别计算确定钢筋构造图的绘图比例,绘图比例按2增减,同时计算出立面、平面、侧面、钢筋大样等图上控制座标。

⑵根据斜交角、弯起钢筋种类、箍筋环数、盖梁等高或悬臂段变高计算钢筋编号。

⑶绘制钢筋立面、平面、侧面及钢筋大样,并计算钢筋根数和长度(含平均长度)。

⑷计算并绘制钢筋明细表和材料数量表以及弯起钢筋D值表。

⑸生成*.SCR钢筋图形文件,用户进入AutoCAD图形平台,即可将其显示在屏幕上,并进行编辑和修改,绘图机输出。

三盖梁设计1样板文件的使用系统为用户提供了文件名为n2.qlt、n3.qlt的样板文件,桥墩编号为1号桥墩的数据是完整的,分别对应2柱式、3柱式盖梁结构,该数据文件既可计算又可绘图。

2建立用户工程文件名有两种方法,一是在桥梁通主菜单的工程管理下拉式菜单的“创建工程”下建立,另一种是在桥梁通主菜单的“桥墩盖梁计算与绘图”下拉式菜单的“打开文件”按钮下建立。

3输入盖梁尺寸打开桥梁通主菜单的“桥墩计算与绘图”下拉式菜单的“盖梁计算与绘图”,弹出“桥墩盖梁计算与绘图”数据输入窗体,选择盖梁计算,再点击“盖梁尺寸”按钮,弹出数据输入窗体,根据提示输入盖梁的基本数据,数据输入完毕关闭该窗体。

盖梁计算书

盖梁计算书

排架桩墩:
指的是在成排的桩的桩顶以盖梁联结构成的桥墩。

排架桩墩【pile bent pier】指的是在成排的桩的桩顶以盖梁联结构成的桥墩。

盖梁:
盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。

又称帽梁。

在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。

主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。

有桥桩直接连接盖梁的,也有桥桩接立柱后再连接盖梁的。

设计计算:
桥梁设计中,柱式桥墩是普遍采用的结构型式。

对于简支桥梁,盖梁是一个承上启下的重要构件,上部结构的荷载通过盖梁传递给下部结构和基础,盖梁是主要的受力结构。

在设计中的跨径、斜度、桥宽、车辆荷载标准的变化梁设计的影响很大,很难完全套用标准图和通用图。

盖梁设计的标准化程度很高,需要对盖梁进行较多的计算,所以盖梁设计是桥梁设计的一个关键部分。

受力特点:
受力特点
盖梁的主要荷载是由其上梁体通过支座传递过来的集中力,盖梁作为受弯构件,在荷载作用下在各截面除了引起弯矩外,同时伴随着剪力的作用。

此外,盖梁在施工过程中和活载作用下,还会承受扭矩,
产生扭转剪应力。

扭转剪应力的数值很小且不是永久作用,一般不控制设计。

实际计算中一般只考虑弯剪的组合,因为考虑弯、剪、扭三种内力同时组合,需要空间分析,计算工作会很繁琐,而且实际意义也不大。

可见盖梁是一种典型的以弯剪受力为主的构件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盖梁指的是为支承、分布和传递上部结构的荷载,在排架桩墩顶部设置的横梁。

又称帽梁。

在桥墩(台)或在排桩上设置钢筋混凝土或少筋混凝土的横梁。

主要作用是支撑桥梁上部结构,并将全部荷载传到下部结构。

有桥桩直接连接盖梁的,也有桥桩接立柱后再连接盖梁的。

计算要点
盖梁的计算要点是如何建立准确而且简化的计算模型。

3.1 盖梁的平面简化
3.1.1 关于盖梁平面基本简化的规定
《公路桥涵设计手册》中规定:多柱式墩台的盖梁可近似地按多跨连续梁计算;对于双柱式墩台,当盖梁的刚度与柱的刚度之比大于5时,可忽略桩柱对盖梁的约束作用,近似地按简支(悬臂)梁计算。

柱顶视为铰支承,柱对盖梁的嵌固作用被完全忽略,这种计算图式是以往设计实践中用得最多、最普遍的一种。

目前一些盖梁计算程序,如“中小桥涵CAD系统”等一些平面计算的软件,基本上都是采用这种简化计算模式来分析盖梁内力的,这是一种基本的简化模式,但是对计算结果一般要作削峰处理。

3.1.2 盖梁平面基本简化模式存在的问题
上述的简化模式有些粗糙且有一定的局限性,使得计算结果偏大,按此进行的配筋设计往往过于保守。

对于独柱式盖梁,常规的计算方法是将其视为一端嵌固的单悬臂梁,该简化使得悬臂根部的弯矩
计算结果偏大;对于双柱式盖梁按简支(悬臂)梁计算,使得跨中弯矩计算结果明显偏大。

而当盖梁的刚度与柱的刚度之比小于5时,《公路桥涵设计手册》并未做明确说明。

该简化模式的问题在于将墩柱与盖梁的连接等效成点支撑,将墩梁框架结构简单等效为简支(悬臂)梁来处理。

这虽然使计算得到简化,但与实际结果偏差过大。

而且无论墩柱尺寸及盖梁尺寸如何,皆按简支(悬臂)梁来处理,使得其适用范围受到限制。

多柱式盖梁也存在同样的问题。

现在有一种修正的计算方法是将单点铰支模型转化为两点铰支模型,此时墩顶负弯矩要比基本的简化模式(单点铰支模型)小,以达到削峰处理的作用。

两点铰支模型的弯矩值与所模拟的两铰支点间的距离有关,但对这个距离目前还缺乏足够的依据。

这种计算方法现在多用在独柱式盖梁的计算上,对于双柱式及多柱式盖梁,因计算结果差别很大,是不可取的。

3.1.3 平面简化的其他方法—整体图式法
本方法属于平面计算图式,但是属于超静定结构,手算比较繁琐,一般采用平面计算程序如“桥梁综合计算程序”,将墩柱及盖梁一起模拟,形成整体图式进行计算。

此时墩柱与盖梁可以看成是一个平面刚架,边界条件可以简化为固端支承,将墩柱范围的区域考虑为受力而不变形的“刚域”。

这种计算结果与空间计算结果比较接近,因为盖梁空间的计算都是整体图式的。

如果考虑了基础周围介质(土体)对基础的作用,较准确地模拟出弹性支承,则盖梁计算结果会更精确,但是计算量也会增加。

以独柱式盖梁为例,笔者经过计算比较得
出:整体图式法计算出的墩顶最大负弯矩,一般相当于基本简化模式计算结果的75%左右。

但是这个结果仍然是有峰值的,峰值往往比实际值大,而如果利用墩柱边缘的数值往往又偏小。

与实际受力接近的数值应该在墩柱边缘以内,位于墩柱中心与边缘之间。

3.1.4 结论
盖梁的几何外形简单,且是以弯矩、剪力及轴力为主,受力特点明确。

将它模拟成平面杆单元比模拟成空间体单元计算要简单许多,而且能满足控制要求。

空间计算结果虽然准确,但是计算复杂,对于盖梁计算必要性不大。

采用盖梁平面基本的简化模式进行计算是最简单且比较实用的,但使用时要对局部区域的峰值如墩顶截面进行适当的折减削峰处理,因为盖梁的实际控制截面往往不在墩顶而在墩柱边缘附近,这样能避免造成较大的浪费。

盖梁的刚度与柱的刚度之比越大,简化计算结果越准确。

当相对刚度比大于10时,误差已经控制在10%以内了,在精度要求不很高的结构工程中是允许的,且偏于安全。

此时可忽略桩柱对盖梁的弹性约束作用,把盖梁简化成简支或连续梁的型式。

当然,整体图式法是计算最为准确的平面简化计算方法,计算简单且符合实际,建议有条件时尽量采用。

3.2 盖梁荷载的分析及简化
3.2.1 盖梁荷载组成及特征
盖梁的恒载包括:盖梁自重、预应力荷载、上部主梁重量以及桥面系荷载等,这些都比较明确且易于计算。

人群荷载由于位置固定,可按均布的恒载考虑;盖梁活载为桥上车载通过主梁及支座时传递下
来的,与计算主梁不同,活载作用在盖梁上的位置不是随机移动的,因为支座位置是固定的。

同时,作用于桥面的活载位置却又是随机移动的,因此,要准确算出盖梁最不利内力情况下活载引起的各支座的反力,就需要正确的方法。

归纳起来,盖梁活载布置分为纵桥向布载与横桥向布载两大步骤。

3.2.2 盖梁纵桥向布载
求出主梁的支座反力影响线,根据主梁的支座反力影响线纵桥向布置活载车队。

对于简支桥梁的桥墩盖梁采用双孔布载,桥台盖梁采用单孔布载。

纵桥向活载最大值根据桥梁计算跨径、车道数量和荷载等级的不同而不同。

以下是笔者总结的几种常见跨径简支梁板桥双车道纵向布载的计算结果。

在一些盖梁计算程序里,纵向布载数据有时需要自己手算输入,如人们常用的“桥梁综合计算程序”,在进行盖梁横向计算时,需要输入一个“横向分配系数”,用表中的数值除以2得到单车道数值,再除以加重车后轴重量即得。

3.2.3 盖梁横桥向布载
横桥向按车轮最不利位置布置活载,然后根据车轮横向位置求出相应各片主梁的荷载横向分布系数。

在盖梁横向布载计算中,一般采用杠杆法或者偏心受压法来计算活载横向分布影响线。

盖梁不同位置对应的最不利车轮横桥向的布置也不相同,活载对称布置时用杠杆法,非对称布置时用偏心受压法。

大部分盖梁计算程序都能自动计算活载横向分布影响线,原理都是一样的。

计算主梁的横向分布系数时要注意:盖梁某个位置的最不利内力,在求解各T梁的剪力横向分布
系数时,车轮横桥向的位置是固定不变的,而车轮不同的横向布置对应各T梁不同的剪力横向分布系数。

相关文档
最新文档