九年级数学上册第22章一元二次方程22.1一元二次方程教案新版华东师大版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22章一元二次方程
22.1 一元二次方程
1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a≠0).
2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.
重点
判定一个数是否是方程的根.
难点
由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.
一、情境引入
教师展示多媒体,引导学生列出方程,解决问题.
问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?
【分析】设长方形绿地的宽为x米,不难列出方程
x(x+10)=900
整理可得
x2+10x-900=0.(1)
问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册,求这两年的年平均增长率.
解:设这两年的年平均增长率为x.
我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,
同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册,
可列得方程5(1+x)2=7.2,
整理可得
5x2+10x-2.2=0. (2)
二、探究新知
教师指出问题,学生小组讨论,归纳.
问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程,那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?
共同特点:
(1)都是整式方程;
(2)只含有一个未知数;
(3)未知数的最高次数是2.
【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程,通常可写成如下的一般形式ax2+bx+c=0(a,b,c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项,b叫做一次项系数,
c 叫做常数项.
例1 判断下列方程是否为一元二次方程:
①1-x 2=0; ②2(x 2-1)=3y ;
③2x 2-3x -1=0; ④1x 2-2x
=0; ⑤(x +3)2=(x -3)2; ⑥9x 2
=5-4x.
解:①是;②不是;③是;④不是;⑤不是;⑥是.
【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断. 例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
解:2x 2-13x +11=0;2,-13,11.
三、练习巩固
1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
(1)5x 2-1=4x ;
(2)4x 2=81;
(3)4x(x +2)=25;
(4)(3x -2)(x +1)=8x -3.
解:(1)5x 2-4x -1=0;5,-4,-1;
(2)4x 2-81=0;4,0,-81;
(3)4x 2+8x -25=0;4,8,-25;
(4)3x 2-7x +1=0;3,-7,1.
2.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.
(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;
(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;
(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.
解:(1)4x 2=25;4x 2-25=0;
(2)x(x -2)=100;x 2-2x -100=0;
(3)x =(1-x)2;x 2-3x +1=0.
3.若x =2是方程ax 2+4x -5=0的一个根,求a 的值.
解:∵x=2是方程ax 2+4x -5=0的一个根.
∴4a +8-5=0,
解得a =-34
. 四、小结与作业
小结
1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.
2.一元二次方程的一般形式为ax 2+bx +c =0(a≠0),一元二次方程的项及系数都是根
据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.
3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.
布置作业
从教材相应练习和“习题22.1”中选取.
学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.