2020年九年级中考数学专题之分类讨论专题复习(含解析)

合集下载

中考数学专题复习《勾股定理之折叠问题分类讨论、存在性问题》测试卷(附带答案)

中考数学专题复习《勾股定理之折叠问题分类讨论、存在性问题》测试卷(附带答案)

中考数学专题复习《勾股定理之折叠问题分类讨论存在性问题》测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 ABC 中 90A ∠= 7AB = 24AC = 点D 为边AC 上一点 将ABC 沿BD 折叠后 点A 的对应点A '恰好落在BC 边上 则线段AD 的长为( )A .407B .214C .16825D .3262.如图是一张直角三角形纸片 已知6AC = 10AB = 将纸片沿AD 折叠 使点C 落在AB 边上的点C '处 则折痕AD 长为( ).A .5B .35C .3D .323.已知2OA = 2OB = 将AOB 沿着某直线CD 折叠后如图所示 CD 与x 轴交于点C 与AB 交于点D 则点C 坐标是( )A .()0.4,0B .()0.5,0C .()0.6,0D .()0.7,04.如图 长方形纸片ABCD 中 6AB = 18AD = 将此长方形纸片折叠 使点D 与点B 重合 点C 落在点H 的位置 折痕为EF 则ABE 的面积为( )A .6B .18C .24D .485.如图 在平行四边形ABCD 中 60B ∠=︒ 4AB = 6AD = E 是AB 边的中点 F 是线段BC 上的动点 将EBF 沿EF 所在直线折叠得到EB F ' 连接B D ' 则B D '的最小值是( )A .4B .6C .2D .26.将长方形纸片ABCD 如图折叠 B C 两点恰好重合在AD 边上的同一点P 处折痕分别是MH NG 若90MPN ∠=︒ 3PM = 5MN = 分别记PHM PNG PMN 的面积为1S 2S 3S 则1S 2S 3S 之间的数量关系是 ( )A .312S S S =+B .312322S S S =+C .32155S S S =-D .2123S S S =-7.如图 直角ABC 中 90C ∠=︒ 3AC = 4BC = 将ABC 沿AB 折叠得ABD △ 点C 的对应点为点D 则点D 到BC 的距离为( )A .125B .245C .9625D .125或245 8.如图 在Rt ABC △纸片中 9043A AB AC ∠=︒==,, 将Rt ABC △纸片按图示方式折叠 使点A 恰好落在斜边BC 上的点E 处 BD 为折痕 则下列四个结论:①BD 平分ABC ∠①AD DE = ①DE EC = ①DEC 的周长为4 其中正确的个数有( )A .1B .2C .3D .4二 填空题9.如图 Rt ABC △中 90ACB ∠=︒ 30B ∠=︒ 4AC = 点P 为AB 上一个动点 以PC 为轴折叠APC △得到QPC 点A 的对应点为点Q 当点Q 落在ABC 内部(不包括边)上时 AP 的取值范围为 .10.如图 在平面直角坐标系中 长方形ABCO 的边OC OA 、分别在x 轴 y 轴上 3AB = 点E 在边BC 上 将长方形ABCO 沿AE 折叠 若点B 的对应点F 恰好是边OC 的三等分点 则点E 的坐标是 .11.如图 有一个直角三角形纸片 两直角边18cm AC = 24cm BC = 现将直角边AC 沿直线AD 折叠 使它落在斜边AB 上 且与AE 重合 则BD = cm .12.已知直线l 为长方形ABCD 的对称轴 5AD = 6AB = 点E 为射线DC 上一个动点 把ADE 沿直线AE 折叠 点D 的对应点D 恰好落在对称轴l 上.则点D 到边CD 的距离是 .13.如图 把长方形ABCD 沿直线BD 向上折叠 使点C 落在C '的位置上 BC '交AD 于E 已知4CD = 8BC = 则EC D '的面积为 .三 解答题14.如图是一张直角三角形ABC 纸片 90C ∠=︒ 6AC = 8BC =.(1)在图1中 将直角边AC 沿AD 折叠 使点C 落在斜边AB 上的点E 处 求CD 的长(2)在图2中 将BFG 沿FG 折叠 使点B 与点A 重合 求BF 的长.15.一数学兴趣小组探究勾股定理在折叠中的应用 如图 将一张长方形纸片ABCD 放在平面直角坐标系中 点A 与原点O 重合 顶点B D 分别在x 轴 y 轴上 P 为边CD 上一动点 连接BP 将BCP 沿BP 折叠 点C 落在点C '处.(1)若4AB = 3AD = 如图1 连接BD 当点C '在线段BD 上时 求点P 的坐标.(2)在(1)的条件下如图2 当点P 与点D 重合时 沿BD 将BCD △折叠得BC D '△ DC '与x 轴交于E 点 求BDE 的面积.(3)若8AB = 4BC = 当ADC '为等腰三角形时 求点P 的坐标.16.如图1 ABC 中 90,BAC AB AC ∠=︒= D E 是直线BC 上两动点 且45DAE =︒∠.探究线段BD DE EC 三条线段之间的数量关系:小明的思路是:如图2 将ABD △沿AD 折叠 得ADF △ 连接EF 看能否将三条线段转化到一个三角形中 …请你参照小明的思路 探究并解决下列问题:(1)猜想BD DE EC 三条线段之间的数量关系 并证明(2)如图3 当动点E 在线段BC 上 动点D 运动在线段CB 延长线上时 其它条件不变 (1)中探究的结论是否发生改变?请说明你的猜想并给予证明.17.已知ABC CDE △≌△ 且90B D ∠=∠=︒ 把ABC 和CDE 拼成如图所示的形状 使点B C D 在同一条直线上 若4AB = 3DE =.(1)求AE 的长(2)将ABC 沿AC 折叠 点B 落在点F 处 延长AF 与CE 相交于点G 求FG 的长.18.如图 在ABC 中 90C ∠=︒ 把ABC 沿直线DE 折叠 使ADE 与BDE 重合.(1)若38A ∠=︒ 则CBD ∠的度数为________(2)若6AC = 4BC = 求AD 的长(3)当(0)AB m m ABC =>,△的面积为24m +时 求BCD △的周长.(用含m 的代数式表示)参考答案:1.B2.B3.B4.C5.C6.C7.C8.C9.234AP <<10.25⎛- ⎝⎭或2⎛- ⎝⎭11.1512.1或9/9或113.614.(1)3CD = (2)254BF15.(1)点P 的坐标为5,32⎛⎫ ⎪⎝⎭ (2)7516(3)当ADC '为等腰三角形时 点P 的坐标为()44,或4⎫⎪⎪⎝⎭.16.(1)222DE BD EC =+(2)不变 222DE BD EC =+17.(1)AE =(2)9418.(1)14︒ (2)133AD =(3)BCD △的周长为4m +.。

2020年中考数学专题训练(四)等腰三角形中的分类讨论思想

2020年中考数学专题训练(四)等腰三角形中的分类讨论思想

专题训练(四)等腰三角形中的分类讨论思想类型一腰与底不明或顶角与底角不明时需分类讨论解题策略:先分不同情况画出图形,再进行计算.当不明确腰和底时,还要利用三角形三边关系进行检验.1.(1)等腰三角形的两边长分别为2和5,则其周长为.(2)等腰三角形的两边长分别为2,3,则其周长为;(3)等腰三角形的两边长分别为2,4,则其周长为.2.若等腰三角形的一个角为80°,则顶角为.3.若等腰三角形的一个角为110°,则顶角为.4.若等腰三角形的一个角为另一个角的两倍,则其底角为.类型二锐角与钝角不明时需分类讨论解题策略:此类题目一般与三角形的高相联系,主要的讨论点在于三角形的形状不同,高的位置不同.5.等腰三角形一腰上的高与另一腰的夹角为45°,求这个三角形的底角的度数.6.已知△ABC中,CA=CB,AD⊥BC于点D,∠CAD=50°,求∠B的度数.7.已知△ABC的高AD,BE所在的直线交于点F,若BF=AC,求∠ABC的度数.类型三画等腰三角形时的分类讨论解题策略:在平面直角坐标系中找一个点,使它与另两个定点构成一个等腰三角形的基本方法有两种:(1)以两定点中的一个为圆心,以两点之间的距离为半径作圆;(2)连接两定点,作线段的垂直平分线.8.在平面直角坐标系中,已知A(2,2),B(4,0).若在坐标轴上取点C(原点除外),使△ABC为等腰三角形,则满足条件的点C有个.9.在平面直角坐标系中,已知点A(2,3),在坐标轴上找一点P,使得△AOP是等腰三角形,则这样的点P共有个.10.已知点A和B,以点A和点B为两个顶点作等腰直角三角形,一共可以作出个.教师详解详析例112[解析] 本题在解答过程中,要分两种情况:①当2为腰长时,三角形的三边长为2,2,5,显然不能构成三角形;②当5为腰长时,三角形的三边长为5,5,2,能构成三角形,所以其周长为12.1.(1)7或8(2)102.20°或80°3.110°4.45°或72°例2(1)如图①,当△ABC是锐角三角形时,作BD⊥AC于点D.因为∠ABD=45°,所以∠BAC=45°.由三角形的内角和定理可得∠C=67.5°.(2)如图②,当△ABC是钝角三角形时,作BD⊥AC交CA的延长线于点D.因为∠ABD=45°,所以∠BAC=135°.由三角形的内角和定理可得∠C=22.5°.综上,这个三角形的底角的度数为67.5°或22.5°.5.解:当∠C为锐角时,∠B=70°;当∠C为钝角时,∠B=20°.6.解:先证△BDF≌△ADC,①当∠ABC为锐角时,∠ABC=45°;②当∠ABC为钝角时,∠ABC=135°.故∠ABC的度数为45°或135°.例34[解析] 如图,共4个点.7.88.6。

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)

中考数学复习《分类讨论问题》专项检测卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )A .7㎝B .2㎝或7㎝C .5㎝D .2㎝或7㎝2.若等腰三角形的两个角度的比是1:2,则这个三角形的顶角为( )度。

A 30 B 60 C 30或90 D 603.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.54.已知⊙O 的半径为2,点P 是⊙O 外一点,OP 的长为3,那么以P 这圆心,且与⊙O 相切的圆的半径一定是( )A .1或5B .1C .5D .不能确定5.若m 为实数,则点P (m -2,m+2)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.相交两圆公共弦长为6,两圆的半径分别为325,则这两圆的圆心距等于( )A .1B .2或6C .7D .1或77.如果关于x 的方程210x mx ++=的两个根的差为1,那么m 等于( )A .2±B .3C .5D .68.平面上A 、B 两点到直线l 的距离分别是2323与则线段AB 的中点C 到直线l 的距离是( )A .2B 3C .23D .不能确定 9.已知22(3)49x m x +-+是完全平方式,则m 的值是( )A .-3B .10C .-4D .10或-410.方程01892=+-x x 的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A 12 B 12或15 C 15 D 不能确定二、填空题1.已知AB 是⊙O 的直径,AC 、AD 是弦,且AB =2,AC 2,AD =1,则∠CAD =_______.A BC 2.已知AB 、CD 是⊙O 的两条平行线,AB =12,CD =16,⊙O 的直径为20,则AB 与CD 之间的距离为________.3.方程560x x x ⋅-+=的最大根与最小根的积为______.4.直角三角形的两条边长分别为6和8,那么这个三角形的外接圆半径等于________.5.已知ΔABC 中,∠C =90°,AC =3,BC =4,分别以A 和C 为圆心作⊙A 和⊙C ,且⊙C 与直线AB 不相交,⊙A 与⊙C 相切,设⊙A 的半径为r ,那么r 的取值范围是______. 6.已知2225,7x y x y +=+=,则x y -的值等于_______.7.在平面直角坐标系内,A 、B 、C 三点的坐标分别是(0,0),(4,0),(3,2),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在第_____象限.8.两圆的圆心距d=5,他们的半径分别是一元二次方程0452=+-x x 的两根,判断这两圆的位置关系: .9.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为10.已知点P是半径为2的⊙O外一点,PA 是⊙O 的切线,切点为A ,且PA=2,在⊙O 内作了长为22的弦AB ,连续PB ,则PB 的长为11.=+=-+-a 349332无解,求x x ax x 12. ==--+a 2112无解,求x ax13.若两圆相切,圆心距是7,其中一圆的半径为4,则另一圆的半径为_____________.14.一条绳子对折后成右图A 、B, A.B 上一点C ,且有BC=2AC,将其从C 点剪断,得到的线段中最长的一段为40cm,请问这条绳子的长度为_____三、解答题1.已知实数a ,b 分别满足221122,22,a a b b a b+=+=+求的值. 2.在劳技课上,老师请同学们在一张长为17cm ,宽16cm 的长方形纸板上剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形上的边上)请你帮助同学们计算剪下的等腰三角形的面积.3.在钝角△ABC 中,AD ⊥BC ,垂足为D 点,且Ad 与DC 的长度为27120x x -+=方程的两个根,⊙O 是△ABC 的外接圆,如果BD 长为(0)a a >.求△ABC 的外接圆⊙O 的面积.ME AB CDN 4.在直角坐标系中,有以A (-1,-1),B (1,-1),C (1,1),D (-1,1)为顶点的正方形,设正方形在直线y =x 上方及直线y=-x+2a 上方部分的面积为S ,(1)求12a =时,S 的值.(2)a 在实数范围内变化时,求S 关于a 的函数关系式.5.在直角坐标系XOY 中,O 为坐标原点,A 、B 、C 三点的坐标分别为A (5,0),B (0,4),C (-1,0),点M 和点N 在x 轴上,(点M 在点N 的左边)点N 在原点的右边,作MP ⊥BN ,垂足为P (点P 在线段BN 上,且点P 与点B 不重合)直线MP 与y 轴交于点G ,MG =BN. (1)求经过A 、B 、C 三点的抛物线的解析式.(2)求点M 的坐标.(3)设ON =t ,△MOG 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.(4)过点B 作直线BK 平行于x 轴,在直线BK 上是否存在点R ,使△ORA 为等腰三角形?若存在,请直接写出R 的坐标;若不存在,请说明理由.6.在直角坐标系xoy 中,一次函数32y =+的图象与x 轴交于点A ,与y 轴交于点B .(1)以原点O 为圆心的圆与直线AB 切于点C ,求切点C 的坐标.(2)在x 轴上是否存在点P ,使△PAB 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.8.在等腰三角形ABC 中,AB=AC,一边上的中线BD 将这个三角形的周长分为15和12两部分,则这个三角形的底边长为:.9:变换例题12,请问是否在x 轴,y 轴上存在点P,使得P,B,C 三点组成的图形为等腰三角形,请说明理由。

中考数学专题:例+练——第8课时 分类讨论题(含答案)

中考数学专题:例+练——第8课时 分类讨论题(含答案)

第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。

(完整版)中考数学分类讨论专题复习教案

(完整版)中考数学分类讨论专题复习教案

中考数学分类讨论专题复习教案本资料为woRD文档,请点击下载地址下载全文下载地址第53讲中考复习专题(三)分类讨论复习教案【内容分析】重点:从问题的实际出发进行分类讨论.难点:克服思维的片面性,防止漏解.考点解读:在中学数学的概念、定理、法则、公式等基础知识中,有不少是分类给出的,遇到涉及这些知识的问题,就可能需要分类讨论。

另外,有些数学问题在解答中,可能条件或结论不唯一确定,有几种可能性,也需要从问题的实际出发进行分类讨论。

把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题,这种解决问题的方法称为分类讨论思想方法。

它体现了化整为零与积零为整的思想,是近年来中考重点考查的思想方法。

分类讨论思想方法也是一种重要的解题策略。

分类思想方法实质上是按照数学对象的共同性和差异性,将其区分为不同的种类的思想方法,其作用是克服思维的片面性,防止漏解.要注意,在分类时,必须按同一标准分类,做到不重不漏.【复习目标】通过复习能够掌握从问题的实际出发进行分类讨论的思想方法.当问题中存在不确定因素时,能够把被研究的对象分成若干种情况,然后对各种情况逐一进行讨论,最终得以解决整个问题.【教学环节安排】环节教学问题设计教学活动设计知识回顾在初中阶段数学教学中已经渗透了分类思想:如..在实数,,,,中,无理数有()A.1个B.2个c.3个D.4个2.下列根式中,不是最简二次根式的是()A.B.c.D.3.在式子,,,x,,32,,2x-y中单项式有,多项式有,整式有.教师与学生共同回顾,同时根据情况,可让学生适当举例说明.综合应用【典例分析】几何类讨论【例1】如图1,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端在CD、AD上滑动,当Dm= 时,△ABE与以D、m、N为顶点的三角形相似.【分析】已知∠B=∠D,要使两三角形相似,必须还得使夹边对应成比例。

这就牵涉到找对应边的问题,Dm到底是和哪那条边对应边,我们不能确定,所以就要分情况来讨论:△ABE与以D、m、N为顶点的三角形相似时,Dm可以与BE 是对应边,也可以与AB是对应边,所以本题分两种情况.【思路点拨】当问题中存在不确定因素时,就要分情况进行讨论.【例2】如图2,在Rt△ABc中,∠BAc=90°,AB=Ac=2,点D在Bc上运动(不能到达点B、c),过D作∠ADE=45°,DE交Ac于E。

2020中考数学试题分项版解析汇编(第02期)专题4.4 圆(含解析)

2020中考数学试题分项版解析汇编(第02期)专题4.4 圆(含解析)

2020专题4.4 圆一、单选题1.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A. 4 B. 2 C. D. 2【来源】湖北省襄阳市2018年中考数学试卷【答案】B【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.2.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35° B.45° C.55° D.65°【来源】江苏省盐城市2018年中考数学试题【答案】C【解析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠2020 CAB=90°-∠B即可求得.详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故选C.点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.3.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A. B. C. 2π D.【来源】湖北省黄石市2018年中考数学试卷【答案】D【解析】分析:先计算圆心角为120°,根据弧长公式=,可得结果.详解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.点睛:本题考查了弧长的计算和圆周角定理,熟练掌握弧长公式是关键,属于基础题.4.如图,点A、B、C都在⊙O上,若∠A OC=140°,则∠B的度数是()A.70° B.80° C.110° D.140°【来源】江苏省淮安市2018年中考数学试题【答案】C【解析】分析:作对的圆周角∠APC,如图,利用圆内接四边形的性质得到∠P=40°,然后根据圆周角定理求∠AOC的度数.详解:作对的圆周角∠APC,如图,∵∠P=∠AOC=×140°=70°∵∠P+∠B=180°,∴∠B=180°﹣70°=110°,故选:C.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A. 0 B. 1 C. 2 D. 3【来源】江苏省无锡市2018年中考数学试题【答案】C详解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OD,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.点睛:本题考查了三角形外接圆与外心:三角形的外心到三角形三个顶点的距离相等;三角形的内心是三角形三边垂直平分线的交点.也考查了切线的判定与矩形的性质.6.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为()A.56° B.62° C.68° D.78°【来源】山东省烟台市2018年中考数学试卷【答案】B【解析】分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.详解:∵点I是△ABC的内心,∴∠BAC=2∠IAC、∠ACB=2∠ICA,∵∠AIC=124°,∴∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(∠IAC+∠ICA)=180°﹣2(180°﹣∠AIC)=68°,又四边形ABCD内接于⊙O,∴∠CDE=∠B=68°,故选:C.点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.7.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A. B. C. D.【来源】湖北省随州市2018年中考数学试卷【答案】A【解析】【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【详解】如图,连接PA、PB、OP,则S半圆O=,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为,故选A.【点睛】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.8.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L 与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2 B.﹣2 C.﹣8 D.﹣7【来源】台湾省2018年中考数学试卷【答案】A【解析】分析:连接AC,根据线段垂直平分线的性质得到AC=BC,根据勾股定理求出OA,得到答案.详解:连接AC,点睛:本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键.9.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A. B. C. D.【来源】台湾省2018年中考数学试卷【答案】C点睛:本题考查扇形的面积公式、三角形内角和定理等知识,解题的关键是记住扇形的面积公式:S=.10.如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A. 18+36π B. 24+18π C. 18+18π D. 12+18π【来源】山东省威海市2018年中考数学试题【答案】C【解析】分析:作FH⊥BC于H,连接FH,如图,根据正方形的性质和切线的性质得BE=CE=CH=FH=6,则利用勾股定理可计算出AE=6,通过Rt△ABE≌△EHF得∠AEF=90°,然后利用图中阴影部分的面积=S正方形ABCD+S半圆﹣S△ABE ﹣S△AEF进行计算.点睛:本题考查了正多边形和圆:利用面积的和差计算不规则图形的面积.11.如图,是⊙的直径,弦⊥于点,,则( )A. B. C. D.【来源】湖南省张家界市2018年初中毕业学业考试数学试题【答案】A【解析】分析:根据垂径定理可得出CE的长度,在Rt△OCE中,利用勾股定理可得出OE的长度,再利用AE=AO+OE 即可得出AE的长度.详解:∵弦CD⊥AB于点E,CD=8cm,∴CE=CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE==3cm,∴AE=AO+OE=5+3=8cm.故选:A.点睛:本题考查了垂径定理以及勾股定理,利用垂径定理结合勾股定理求出OE的长度是解题的关键.12.如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A. B. C. D.【来源】湖北省武汉市2018年中考数学试卷【答案】B【详解】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D,∴弧AC和弧CD所在的圆为等圆,∴,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3,故选B.【点睛】本题考查了圆周角定理、垂径定理、切线的性质,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系,熟练掌握相关的定理和性质是解题的关键.13.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于().【来源】四川省眉山市2018年中考数学试题【答案】A【解析】分析:直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.详解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=27°.故选:A.点睛:此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.14.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I'的坐标为()A.(﹣2,3) B.(﹣3,2) C.(3,﹣2) D.(2,﹣3)【来源】湖北省荆门市2018年中考数学试卷【答案】A【解析】【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3﹣1=2,OE=4﹣1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(﹣2,3),故选A.【点睛】本题考查了直角三角形的内心、旋转的性质,根据直角三角形内心的性质得出其内心I的坐标是解题的关键.15.如图,在中,,,,以点B为圆心,BC长为半径画弧,交AB于点D,则的长为A. B. C. D.【来源】浙江省宁波市2018年中考数学试卷【答案】C【点睛】本题考查了弧长公式的运用和含30度角的直角三角形性质,熟练掌握弧长公式是解题的关键.弧长公式:弧长为l,圆心角度数为n,圆的半径为.16.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C. 2 D. 2【来源】广西钦州市2018年中考数学试卷【答案】D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.17.⊙O1和⊙O2的半径分别为5和2,O1O2=3,则⊙O1和⊙O2的位置关系是()A.内含 B.内切 C.相交 D.外切【来源】江苏省徐州巿2018年中考数学试卷【答案】B【解析】【分析】根据两圆圆心距与半径之间的数量关系即可判断⊙O1与⊙O2的位置关系.【详解】∵⊙O1和⊙O2的半径分别为5和2,O1O2=3,则5﹣2=3,∴⊙O1和⊙O2内切,故选B.【点睛】本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.18.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定【来源】湖南省湘西州2018年中考数学试卷【答案】B【解析】【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d <r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.二、填空题19.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D=_____度.【来源】浙江省台州市2018年中考数学试题【答案】26【解析】分析:连接OC,根据圆周角定理得到∠COD=2∠A,根据切线的性质计算即可.详解:连接OC,点睛:本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.20.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【来源】浙江省宁波市2018年中考数学试卷【答案】3或【解析】【分析】分两种情况:与直线CD相切、与直线AD相切,分别画出图形进行求解即可得.【详解】如图1中,当与直线CD相切时,设,在中,,,,,;如图2中当与直线AD相切时,设切点为K,连接PK,则,四边形PKDC是矩形,,,,在中,,综上所述,BP的长为3或.【点睛】本题考查切线的性质、正方形的性质、勾股定理等知识,会用分类讨论的思想思考问题,会利用参数构建方程解决问题是关键.21.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.【来源】湖北省荆门市2018年中考数学试卷【答案】【解析】【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.【详解】如图,连接OE、AE,∵AB是⊙O的直径,∴∠AEB=90°,∵四边形ABCD是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S阴影=S扇形OBE﹣S△BOE==,故答案为:.【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.22.用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是_____cm.【来源】山东省聊城市2018年中考数学试题【答案】50【解析】分析:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.和弧长公式得到2πr=,解得r=R,然后利用勾股定理得到402+(R)2=R2,最后解方程即可.详解:设这个扇形铁皮的半径为Rcm,圆锥的底面圆的半径为rcm,根据题意得2πr=,解得r=R,因为402+(R)2=R2,解得R=50.所以这个扇形铁皮的半径为50cm.故答案为50.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.23.已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.【来源】湖北省孝感市2018年中考数学试题【答案】2或14详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.24.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为_____.【来源】山东省烟台市2018年中考数学试卷【答案】(-1,-2)【解析】分析:连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点O的坐标即可.详解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD═DB=DA=,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),点睛:此题考查垂径定理,关键是根据垂径定理得出圆心位置.25.如图,点,,,在上,,,,则________.【来源】北京市2018年中考数学试卷【答案】70°【解析】分析:根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.详解:∵=,∴,∴,∵,∴.故答案为:点睛:考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.26.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为_____.(结果不取近似值)【来源】湖北省恩施州2018年中考数学试题【答案】π+.【解析】分析:先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,第三部分为△ABC的面积;然后根据扇形的面积公式计算点B所经过的路径与直线l所围成的封闭图形的面积.详解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;第三部分为△ABC的面积.∴点B所经过的路径与直线l所围成的封闭图形的面积=.故答案为.点睛:本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.27.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC=2,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是________.【来源】四川省眉山市2018年中考数学试题【答案】点睛:本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了等腰直角三角形的性质和旋转的性质.28.如图,△ABC中,∠ACB=90°,sinA=,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为_____.【来源】江苏省泰州市2018年中考数学试题【答案】或【解析】分析:分两种情形分别求解:如图1中,当⊙P与直线AC相切于点Q时,如图2中,当⊙P与AB相切于点T时,详解:如图1中,当⊙P与直线AC相切于点Q时,连接PQ.设PQ=PA′=r,∵PQ∥CA′,∴,∴,∴r=.如图2中,当⊙P与AB相切于点T时,易证A′、B′、T共线,∵△A′BT∽△ABC,∴,∴,∴A′T=,∴r=A′T=.综上所述,⊙P的半径为或.点睛:本题考查切线的性质、勾股定理、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.29.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是_____.【来源】浙江省湖州市2018年中考数学试题【答案】70°【解析】分析:先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.详解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°-∠OBD=70°.故答案为70°.点睛:本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.30.如图,在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为__.【来源】山东省威海市2018年中考数学试题【答案】135°.【解析】分析:如图,连接EC.首先证明∠AEC=135°,再证明△EAC≌△EAB即可解决问题.详解:如图,连接EC.点睛:本题考查三角形的内心、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、解答题31.已知:如图,AB是⊙O的直径,AB=4,点F,C是⊙O上两点,连接AC,AF,OC,弦AC平分∠FAB,∠BOC=60°,过点C作CD⊥AF交AF的延长线于点D,垂足为点D.(1)求扇形OBC的面积(结果保留);(2)求证:CD是⊙O的切线.【来源】湖南省怀化市2018年中考数学试题【答案】(1)S扇形OBC=;(2)证明见解析.【解析】分析:(1)由扇形的面积公式即可求出答案.(2)易证∠FAC=∠ACO,从而可知AD∥OC,由于CD⊥AF,所以CD⊥OC,所以CD是⊙O的切线.详解:(1)∵AB=4,∴OB=2∵∠COB=60°,∴S扇形OBC=.(2)∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC,∵CD⊥AF,∴CD⊥OC∵C在圆上,∴CD是⊙O的切线点睛:本题考查圆的综合问题,解题的关键是熟练运用扇形面积公式以及切线的判定方法,本题属于中等题型.32.如图,AB是⊙O的直径,AC切⊙O于点A,BC交⊙O于点D.已知⊙O的半径为6,∠C=40°.(1)求∠B的度数.(2)求的长.(结果保留π)【来源】吉林省长春市2018年中考数学试卷【答案】(1)50°;(2).【解析】【分析】(1)根据切线的性质求出∠A=90°,根据三角形内角和定理求出即可;(2)根据圆周角定理求出∠AOD,根据弧长公式求出即可.【详解】(1)∵AC切⊙O于点A,∠BAC=90°,∵∠C=40°,∴∠B=50°;(2)如图,连接OD,∵∠B=50°,∴∠AOD=2∠B=100°,∴的长为.【点睛】本题考查了切线的性质、圆周角定理、弧长公式等,熟练掌握切线的性质、圆周角定理以及弧长公式等知识是解题的关键.33.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.【来源】湖南省郴州市2018年中考数学试卷【答案】(1)证明见解析;(2).【解析】【分析】(1)先求出∠ABC=30°,进而求出∠BAD=120°,即可求出∠OAB=30°,结论得证;(2)先求出∠AOC=60°,用三角函数求出AM,再用垂径定理即可得出结论.(2)连接OA,∵∠AEC=30°,∴∠AOC=60°,∵BC⊥AE于M,∴AE=2AM,∠OMA=90°,在Rt△AOM中,AM=OA•sin∠AOM=4×sin60°=2,∴AE=2AM=4.【点睛】本题考查了等腰三角形的性质,垂径定理,切线的判定,锐角三角函数,三角形内角和定理,圆周角定理等,熟练掌握和运用相关的定理与性质是解本题的关键.34.如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.【来源】山东省东营市2018年中考数学试题【答案】(1)证明见解析;(2)CD=2.【解析】分析:(1)连接OD,由OB=OD可得出∠OBD=∠ODB,根据切线的性质及直径所对的圆周角等于180°,利用等角的余角相等,即可证出∠CAD=∠BDC;(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根据相似三角形的性质结合BD=AD、AC=3,即可求出CD 的长.详(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴.∵BD=AD,∴,∴,∴CD=2.点睛:本题考查了相似三角形的判定与性质、圆周角定义以及切线的性质,解题的关键是:(1)利用等角的余角相等证出∠CAD=∠BDC;(2)利用相似三角形的性质找出.35.如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,∠AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.【来源】云南省昆明市2018年中考数学试题【答案】(1)证明见解析;(2)⊙O的半径为.【解析】分析:(1)连接OC,如图,先证明OC∥AD,然后利用切线的性质得OC⊥DE,从而得到AD⊥ED;(2)OC交BF于H,如图,利用圆周角定理得到∠AFB=90°,再证明四边形CDFH为矩形得到FH=CD=4,∠CHF=90°,利用垂径定理得到BH=FH=4,然后利用勾股定理计算出AB,从而得到⊙O的半径.详(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴AD⊥ED;点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了垂径定理和圆周角定理.36.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE;(2)求证:BC2﹣AC2=AB•AC;(3)已知⊙O的半径为3.①若=,求BC的长;②当为何值时,AB•AC的值最大?【来源】浙江省台州市2018年中考数学试题【答案】(1)证明见解析;(2)证明见解析;(3)①BC=4;②【解析】分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF ∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(3)①设AB=5k、AC=3k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=3k、MC=BC=k求得DM==k,可知OM=OD-DM=3-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=3-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=36-4d2、AC2=DC2=DM2+CM2=(3-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.详解:(1)∵四边形EBDC为菱形,∴∠D=∠BEC,∵四边形ABDC是圆的内接四边形,∴∠A+∠D=180°,又∠BEC+∠AEC=180°,∴∠A=∠AEC,∴AC=CE;(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,∴CF=CG=AC,∵四边形AEFG是⊙C的内接四边形,∴∠G+∠AEF=180°,又∵∠AEF+∠BEF=180°,∴∠G=∠BEF,∵∠EBF=∠GBA,∴△BEF∽△BGA,∴,即BF•BG=BE•AB,∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;(3)设AB=5k、AC=3k,∵BC2﹣AC2=AB•AC,∴BC=2k,连接ED交BC于点M,∵四边形BDCE是菱形,∴DE垂直平分BC,则点E、O、M、D共线,在Rt△DMC中,DC=AC=3k,MC=BC=k,∴DM=,∴OM=OD﹣DM=3﹣k,在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,解得:k=或k=0(舍),∴BC=2k=4;点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.37.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA上运动时,求的最大值.【来源】浙江省宁波市2018年中考数学试卷【答案】(1)直线l的函数表达式,;证明见解析;E;最大值为.【解析】【分析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.【详解】(1)直线l:与x轴交于点,,,直线l的函数表达式,,,,在中,;如图2,连接DF,,,,,,四边形CEFD是的圆内接四边形,,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,;如图,设的半径为r,过点O作于G,,,,,,【点睛】本题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理等,熟练掌握相似三角形的判定与性质、锐角三角函数等知识,运用数理结合思想,正确添加辅助线进行图形构建是解本题的关键.38.如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.【来源】湖北省荆门市2018年中考数学试卷【答案】(1)证明见解析;(2)①⊙O的半径为4;②FN=.【解析】【分析】(1)连接OC,如图,利用切线的性质得OC⊥DE,则判断OC∥AD得到∠1=∠3,加上∠2=∠3,从而得到∠1=∠2;(2)①利用圆周角定理和垂径定理得到,则∠COE=∠FAB,所以∠FAB=∠M=∠COE,设⊙O的半径为r,然后在Rt△OCE中利用余弦的定义得到,从而解方程求出r即可;②连接BF,如图,先在Rt△AFB中利用余弦定义计算出AF=,再计算出OC=3,接着证明△AFN∽△AEC,然后利用相似比可计算出FN的长.【详解】(1)连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE=,即,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×,在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵,∴∠1=∠2,∴△AFN∽△AEC,∴,即,∴FN=.【点睛】本题考查了切线的性质、垂径定理、圆周角定理和相似三角形的判定与性质等,综合性较强,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.39.如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点.。

部编版2020年中考数学试题分项版解析汇编第期专题图形的变换含解析

部编版2020年中考数学试题分项版解析汇编第期专题图形的变换含解析

专题04 图形的变换一、选择题1.(2017山东德州市第11题)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a >b),M在边BC上,且BM=b,连AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF。

给出以下五种结论:①∠MAD=∠AND;②CP=2-bba;③ΔABM≌ΔNGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共线其中正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】考点:正方形、全等、相似、勾股定理2.(2017重庆A卷第2题)下列图形中是轴对称图形的是()【答案】C.【解析】试题解析:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意; C 、是轴对称图形,符合题意; D 、不是轴对称图形,不合题意. 故选C .考点:轴对称图形.3.(2017甘肃庆阳第1题)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .【答案】B .考点:中心对称图形.4.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠=o,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=o ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 【答案】B 【解析】试题解析:如图连接PC .在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.考点:旋转的性质.5.(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE 交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【答案】C.【解析】考点:翻折变换(折叠问题);矩形的性质.6.(2017江苏无锡第4题)下列图形中,是中心对称图形的是()A.B.C. D.【答案】C.【解析】试题解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.考点:中心对称图形.7.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A .2B .54 C .53 D .75【答案】D . 【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴2234+=5,∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC, ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH, ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,22222475()55BC BE -=-= . 故选D .考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8.(2017江苏盐城第3题)下列图形中,是轴对称图形的是()【答案】D.【解析】试题解析:D的图形沿中间线折叠,直线两旁的部分可重合,故选D.考点:轴对称图形.9. (2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x−2)2−2 B.y=12(x−2)2+7 C.y=12(x−2)2−5 D.y=12(x−2)2+4【答案】D.【解析】试题解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,112), ∴AC=4-1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分), ∴AC•AA′=3AA′=9, ∴AA′=3, 即将函数y=12(x-2)2+1的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是y=12(x-2)2+4. 故选D .考点:二次函数图象与几何变换.10.(2017甘肃兰州第14题)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )26313236【答案】AA 【解析】试题解析:作G′I⊥CD 于I ,G′R⊥BC 于R ,E′H⊥BC 交BC 的延长线于H .连接RF′.则四边形RCIG′是正方形.∵∠DG′F′=∠IGR=90°, ∴∠DG′I=∠RG′F′, 在△G′ID 和△G′R F 中,DG I RG G D G I G G F F R '=∠''''⎧=⎪∠''⎨=⎪⎩∴△G′ID≌△G′RF, ∴∠G′ID=∠G′RF′=90°, ∴点F 在线段BC 上,在Rt △E′F′H 中,∵E′F′=2,∠E′F′H=30°, ∴E′H=123 易证△RG′F′≌△HF′E′, ∴RF′=E′H,RG′RC=F′H, ∴CH=RF′=E′H, 2 3 26 ∴CE′+26 故选A .考点:旋转的性质;正方形的性质.11.(2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是( )【答案】A.考点:中心对称图形;轴对称图形.12.(2017四川宜宾第7题)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.245C.5 D.8916【答案】C.【解析】试题解析:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C.考点:1. 翻折变换(折叠问题);2.矩形的性质.13.(2017四川自贡第6题0下列图形中,是轴对称图形,但不是中心对称图形的是()【答案】A.考点:1.轴对称图形;2.中心对称图形.14.(2017江苏徐州第题0下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C.【解析】试题解析:A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选C.考点:1.中心对称图形;2.轴对称图形.15.(2017浙江嘉兴第7题)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位-个单位,再向上平移1个单位B.向左平移(221)C.向右平移2个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【答案】D.【解析】试题解析:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作DH⊥x轴于H,∵B(1,1),22+1=1220),∴C(21)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,考点:1.菱形的性质;2.坐标与图形变化-平移.16.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .2【答案】A .【解析】试题解析:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=2DC′=2,故选A .考点:矩形的性质.17.(2017山东德州第2题)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】D【解析】试题分析:选项A 和B 是中心对称图形,但不是轴对称图形;选项C 是轴对称图形,但不是中心对称图形;选项D 既是轴对称图形又是中心对称图形。

中考数学专题复习一分类讨论思想PPT课件

中考数学专题复习一分类讨论思想PPT课件
过点A作AD⊥BC,垂足为D, ∵∠ACB=75°-∠B=45°, sinACD AD,
AC
∴AD=AC×sin 45°, 在Rt△ABD中,∠B=30°,
∴AB=2AD=2AC×sin 45°=750 2 m.
答案:750 2 m
【知识归纳】解直角三角形实际应用的两点技能 1.转化:利用直角三角形或构造直角三角形解决实际问题,一 般先把实际问题转化为数学问题,若题目中无直角三角形,需 要添加辅助线(如作三角形的高等)构造直角三角形,再利用解 直角三角形的知识求解. 2.前提:解直角三角形时结合图形分清图形中哪个三角形是直 角三角形,哪条边是角的对边、斜边、邻边,此外正确理解俯 角、仰角、坡度、坡角等名词术语是解答此类题目的前提条件.
5.一次函数:已知一次函数与坐标轴围成的三角形的面积,求k 的值,常分直线交于坐标轴正半轴和负半轴讨论;确定反比例函 数与一次函数交点个数,常分一、三象限或二、四象限两种情 况讨论. 6.圆:圆的一条弦(直径除外)对两条弧,常分优弧和劣弧两种情 况讨论;求圆中两条平行弦的距离,常分两弦在圆心的同旁和两 旁两种情况讨论;圆与圆的相切,此时要考虑分外切和内切两种 情况讨论.
4.在几何中的应用:对于几何问题,我们常通过图形,找出边、 角的数量关系,通过边、角的数量关系,得出图形的性质等.
【例2】(2013·兰州中考)已知反比例函数y1= k 的图象与
x
一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2). (1)求这两个函数的解析式. (2)视察图象,当x>0时,直接 写出y1>y2时自变量x的取值范围. (3)如果点C与点A关于x轴对称, 求△ABC的面积.
5.(2013·十堰中考)如图,在小山的东侧A点有一个热气球,由

2020年九年级数学中考复习——常用数学思想方法之【分类讨论思想】

2020年九年级数学中考复习——常用数学思想方法之【分类讨论思想】

2.几何类:几何有各种图形的位置关系,未明确对应关系的全等或相似的可能对应情 况等.
3.综合类:代数与几何类分类情况的综合运用.
在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这 种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.
分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想 方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决 问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.
e
故答案为:5;
m
1 2
m s;
11. 24或 6 或 8
解:已知三角形的周长为 3 e 4 e m 12, 设另一个与它相似的三角形的周长为 x,
2 与 3 是对应边时, 两三角形相似,
m 2,
12 3
解得 m h; 与 4 是对应边时,
两三角形相似,
12
m
2,
4
解得 m ;
2 与 5 是对应边时,
A. 34
B. 30
C. 30 或 34
D. 30 或 36
【解】: 当 m 4 时, t h, 、b 是关于 x 的一元二次方程 2
4 e m 12, m h 不符合;
同理, m 4 时,不符合题意; 当 m 时, 、b 是关于 x 的一元二次方程 2
12 e s e 2 m 0 的两根, 12 e s e 2 m 0 的两根,
m
1 2
e 3 与坐标轴分别交于点 A、B,与直线
m
交于点 C,
线段 OA 上的点 Q 以每秒 1 个长度单位的速度从点 O 出发向点 A 作匀速运动,运动时

2020年中考数学总复习(解析版)-分类讨论性问题

2020年中考数学总复习(解析版)-分类讨论性问题

2020年中考数学总复习巅峰冲刺专题06 分类谈论问题【难点突破】着眼思路,方法点拨, 疑难突破;1.分类讨论是重要的数学思想,也是一种重要的解题策略,很多数学问题很难从整体上去解决,若将其划分为所包含的各个局部问题,就可以逐个予以解决.分类讨论在解题策略上就是分而治之各个击破.2.一般分类讨论的几种情况:(1)由分类定义的概念必须引起的讨论;(2)计算化简法则或定理、原理的限制,必须引起的讨论;(3)相对位置不确定,必须分类讨论;(4)含有多种不定因素,且直接影响完整结论的取得,必须分类讨论.3.分类讨论要根据引发讨论的原因,确定讨论的对象及分类的方法,分类时要做到不遗漏、不重复,善于观察,善于根据事物的特性与规律,把握分类标准,正确分类.应用分类讨论思想解决问题,必须保证分类科学、统一、不重复、不遗漏,并力求最简.运用分类的思想,通过正确的分类,可以使复杂的问题得到清晰、完整、严密的解答.分类讨论应当遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清层次应逐级进行,不越级讨论,其中最重要的一条是“不漏不重”.分类讨论的基本方法是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对各个分类逐步进行讨论,分层进行,获取阶段性结果;最后进行归纳小结,综合得出结论.【名师原创】原创检测,关注素养,提炼主题;【原创1】阅读下列解方程的过程,并完成(1)、(2)小题的解答.解方程:|x﹣2|=3解:当x﹣2<0,即x<2时,原方程可化为:﹣(x﹣2)=3,解得x=﹣1;当x﹣2≥0,即x≥2时,原方程可化为:x﹣2=3,解得x=5;综上所述,方程|x﹣2|=3的解为x=﹣1或x=5.(1)解方程:|2x+1|=5.(2)解方程:|2x+3|﹣|x﹣1|=1.【原创2】已知点P 为线段CB 上方一点,CA ⊥CB ,PA ⊥PB ,且PA =PB ,PM ⊥BC 于M ,若CA =1,PM =4.求CB 的长是 .此题分以下两种情况:①如图1,过P 作PN ⊥CA 于N ,∵PA ⊥PB ,∴∠APB =90°,∵∠NPM =90°,∴∠NPA =∠BPM ,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N =∠BMP ∠NPA =∠BPM PA =PB,∴△PMB ≌△PNA ,∴PM =PN =4=CM ,BM =AN =3,∴BC =7;②如图2,过P 作PN⊥CA 于N ,∵PA⊥PB,∴∠APB=90°,∵∠NPM=90°,∴∠NPA=∠BPM,在△PMB 和△PNA 中,⎩⎪⎨⎪⎧∠N=∠BMP ∠NPA=∠BPM PA =PB,∴△PMB≌△PNA,∴PM=PN=4=CM,BM=AN=5,可得BC=9.学!科网综上所述,CB=7或9【原创3】如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q 从点A出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是()A. B. C. D.【原创4】如图所示,在平面直角坐标系中,一次函数 y=kx+b的图像和正比例函数y=3x相交于点A(1,m),且与y轴的交点为C为(0,5),在一次函数y=kx+b图像上存在点B,点B到x轴的的距离为6.(1)求A点的坐标和一次函数的解析式;(2)求△AOB的面积.分析:(1)因为点A的坐标在正比例函数上,利用正比例函数关系求得m的值,又根据一次函数经过点C (0,5),则列二元一次方程组可以解得k、b的值,从而得到一次函数的解析式;(2)点B 到x 轴的的距离为6. 故存有这样的B 点有两种情况,一种在x 轴的上方,一种在x 轴的下方,故连接OB 之后分别得到如图2所示的两种情况,根据三角形面积公式计算即可得到答案.(2)∵一次函数的解析式为y=-2x+5,故与x 轴的交点为(52,0),则OD=52, 第一种情况:当点B 在x 轴上方时,点B 到x 轴的的距离为6.则点B 在第二象限,如图所示,三角形AOB 的面积=三角形OBD 的面积-三角形OAD 的面积,即AOB S =15622⨯⨯-15322⨯⨯=154.第二种情况:当点B 在x 轴下方时,点B 到x 轴的的距离为6,则点B 在第四象限,如图所示,三角形AOB 的面积=三角形OBD 的面积+三角形OAD 的面积,即AOB S =15622⨯⨯+15322⨯⨯=454.故△AOB 的面积为154或454. 【原创5】如图所示,平面直角坐标中一边长为4的等边△AOB ,抛物线L 经过点A 、O 、B 三点。

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)

2019-2020年初三数学《分类讨论题》复习(含练习及答案)(苏科版)在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型一 概念型分类讨论题有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】若m n n m -=-,且4m =,3n =,则2()m n += .类型二 性质型分类讨论题 有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2 【例3】已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( )A .1y <-B .1y ≤-C .1y ≤- 或0y >D .1y <-或0y ≥类型三 参数型分类讨论题 解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题. 【例4】若0ab <,则正比例函数y ax =与反比例函数by x=在同一坐标系中的大致图象可能是( )【例5】对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限【例6】关于x 的方程ax 2-(a +2)x +2=0只有一解(相同解算一解),则a 的值为 ( )O-1-1X(A)a=0. (B)a=2. (C)a=1. (D)a=0或a=2.类型四解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式290x->.解:∵29(3)(3)x x x-=+-,∴(3)(3)0x x+->.由有理数的乘法法则“两数相乘,同号得正”,有(1)3030xx+>⎧⎨->⎩(2)3030xx+<⎧⎨-<⎩解不等式组(1),得3x>,解不等式组(2),得3x<-,故(3)(3)0x x+->的解集为3x>或3x<-,即一元二次不等式290x->的解集为3x>或3x<-.问题:求分式不等式5123xx+<-的解集.类型五统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.类型六方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A.4种 B.3种 C.2种 D.1种类型七综合型分类讨论题【例10】在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(3,0),点P在反比例函数2yx=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为( )A. 2个B. 4个C. 5个D. 6个.几何中的分类讨论类型之一:与等腰三角形有关的分类讨论与角有关的分类讨论:1.已知等腰三角形的一个内角为75°则其顶角为________考点1 与边有关的分类讨论2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.与高有关的分类讨论3.一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.4.等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角是______度.30m的草皮铺设一块一边长为10m的等腰三角形绿地,5.为美化环境,计划在某小区内用2请你求出这个等腰三角形绿地的另两边长.6. 如图建立了一个由小正方形组成的网格(每个小正方形的边长为1).(1)在图1中,画出△ABC关于直线l对称的△A′B′C′;(2)在图2中,点D,E为格点(小正方形的顶点),则线段DE=;若点F也是格点且使得△DEF是等腰三角形,标出所有的点F.综合应用7.在直角坐标系中,O为坐标原点,已知A(-2,2),试在x轴上确定点P,使△AOP为等腰三角形,求符合条件的点P的坐标类型之二:与直角三角形有关的分类讨论8. 已知x轴上有两点A(﹣3,0),B(1,0),在直线l:x+y+1=0上取一点C(x,y),使得△ABC为直角三角形.求点C的坐标.9.如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P ,使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标是 。

2020九年级中考数学分类讨论题型精选20题含答案

2020九年级中考数学分类讨论题型精选20题含答案

12020九年级中考数学分类讨论题型精选20题题型1.考查数学概念及定义的分类规律提示:熟练掌握数学中的概念及定义,其中以绝对值、方程及根的定义,函数的定义尤为重要,必须明确讨论对象及原因,进而确定其存在的条件和标准。

考题1.求函数251()(3)22y k x k x =-+-+的图象与x 轴的交点? 名师点拔:二次项系数中含有参数k ,此函数可能是二次函数,也可能是一次函数,故应对52k -分类讨论. 解:(1)当502k -=时,即52k =时,此函数为1122y x =-+,故其与x 轴只有一个交点(1,0) (2)当55022k k -≠≠,即时,此函数为二次函数,2251(3)4()(2)22k k k ∆=--⨯-⨯=-.①当2k =时,Δ=0.抛物线与x 轴的交点只有一个.212110,122x x x x -+===,交点坐标为(1,0)②当2k ≠时,Δ>0,函数与x 轴有两个不同的交点.1(1,0)(,0)52k-和. 综合所述:当52k =或2k =时,函数图像与x 轴只有一个交点(1,0);当52k ≠且2k ≠时,函数图像与x 轴有两个不同交点1(1,0),(,0)52k -. 变式思考1已知关于x 的方程22(4)(4)0kx k x k +++-=(1)若方程有实数根,求k 的取值范围(2)若等腰三角形ABC 的边长a=3,另两边b 和c 恰好是这个方程的两个根,求ΔABC 的周长.易误点睛:根据方程定义确定方程到底是一次方程还是二次方程,同时应注意的是第(2)问中并无说明哪两边是ΔABC 的腰,故应考虑其所有可能情况.题型2:考查字母的取值情况或范围的分类.规律提示:此类问题通常在函数中体现颇多,考查自变量的取值范围的分类,解题中应十分注意性质、定理的使用条件及范围.考题2.如图(1)边长为2的正方形ABCD 中,顶点A 的坐标是(0,2)一次函数y x t =+的图像l 随t 的不同取值变化时,位于l 的右下方由l 和正方形的边围成的图形面积为S (阴影部分).(1)当t 取何值时,S =3?(2)在平面直角坐标系下(图2),画出S 与t 的函数图像.2名师点拔:设l 与正方形ABCD 的交点为M ,N ,易知ΔDMN 是等腰Rt Δ,只有当MD =2时,1MDN S ∆=,那么3ABCD MDN S S S =-=W V ,此时求得42t =-,第(2)问中,随着t 的变化,S 的表达式发生变化,因而须分类讨论t 在不同取值时S 的表达式,进而作出图像.解:(1)设l 与正方形ABCD 的交点为M ,N ,∵l 的解析式y x t =+,在x 轴,y 轴上所截线段相等.∴ΔDMN 为等腰Rt ΔDMN∵S =3,∴2231DMN ABCD S S S ∆=-=⨯-=又∵21122DMN S MD ND ND ∆=⋅= ∴MD =ND =2,∴ON =OD -DM =4-2,即D 点的坐标为(0,4-2)∴42t =-,即当42t =-时,S =3.(2)∵直线l 与y 轴的交点M 的坐标为(0,)t∴当0≤t <2时,21122S B B t =M ⋅N = 当2≤t <4时,21(4)42ABCD DMN S S S t ∆=-=--+ 当t ≥4时,S =4根据以上解析式,作图如下图(图2)变式思考2 如图所示,在平行四边形ABCD 中, 4AD cm =, ∠A =60°,BD ⊥AD ,一动点P 从A 出发,以每秒1cm 的速度沿A B C →→的路线匀速运动,过点P 作直线PM ,使PM ⊥AD.(1)当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE的面积;(2)当点P 运动2秒时,另一动点Q 也从A 出发沿A B C→→的路线运动,且在AB 上以每秒1cm 的速度匀速运动,在BC 上以每秒图(2)3 2cm 的速度匀速运动.过Q 作直线QN ,使QN//PM.设点Q 运动的时间为t 秒(0≤t ≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为Scm 2.①求S 关于t 的函数关系式;②(附加题)求S 的最大值.易误点睛:讨论变量t 的取值范围,是解本题的关键,解此类题应十分注意变量的取值须符合题意,逐层分析.题型3.考查图形的位置关系或形状的分类.规律提示:熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决.考题3.在ΔABC 中,∠BAC =90°,AB =AC =22,圆A 的半径为1,如图所示,若点O 在BC 边上运动,(与点B 和C 不重合),设BO =x ,ΔAOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O ,求当圆O与圆A 相切时ΔAOC 的面积.名师点拔:(1)过点A 作AD ⊥BC 于D 点 ∵AB =AC =22∴AD =AB sin 45⋅︒=2 445AB BC Sin ==︒ ∴OC=BC -BO=4-x ,故ΔAOC 的面积y 与x 的函数解析式为12y OC AD =⋅即1(4)242y x x =-⨯=- (2)由于圆与圆相切有两种情况:外切和内切,故解题中须分类讨论. 解:(1)过点A 作AD ⊥BC 于点D.∵∠BAC=90° AB=AC=22 ∴BC=4 AD =12BC =2 ∴112(4)422AOC S OC AD x x ∆=⋅=⨯⨯-=- 即4(04)y x x =-+<<(2)当点O 与点D 重合时,圆O 与圆A 相交,不合题意;当点O 与点D 不重合时,在Rt ΔAOD 中,222224248AO AD OD x x x =+=+-=-+∵⊙A 的半径为1,⊙O 的半径为x∴①当⊙A 与⊙O 外切时 22(1)48x x x +=-+ 解得76x =此时,ΔAOC 的面积717466y =-= ②当⊙A 与⊙O 内切时,22(1)48x x x +=-+ 解得72x =4 此时ΔAOC 的面积71422y =-= ∴当⊙A 与⊙O 相切时,ΔAOC 的面积为17162或. 变式思考3如图,直线443y x =-+与x 轴,y 轴分别交于点M ,N (1)求M ,N 两点的坐标;(2)如果点P 在坐标轴上,以点P 为圆心,125为半径的圆与直线443y x =-+相切,求点P 的坐标. 易误点睛:本题是一道函数与圆的综合题,注意第(2)小问涉及到分类讨论,与直线相切时的情况,本题可分为两大类,四小类,切勿漏掉,解决此类问题关键是把握标准,正确的分类.题型4.考查图形的对应关系可能情况的分类规律提示:图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论.考题4如图所示,抛物线2()y x m =--的顶点为A ,直线:33l y x m =-与y 轴的交点为B ,其中m >0.(1)写出抛物线对称轴及顶点A 的坐标(用含有m 的代数式表示)(2)证明点A 在直线l 上,并求∠OAB 的度数.(3)动点Q 在抛物线的对称轴上,则抛物线上是否存在点P ,使以P 、Q 、A 为顶点的三角形与△OAB 全等?若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,说明理由.名师点拨:(1)对称轴x m =,顶点A (m,0)(2)把x =m 代入33y x m =-得330y m m =-= ∴点A (m,0)在直线l 上,直线l 与y 轴相交,则B 点的横坐标为:3y m =-;B 点坐标为(0,3)m -,由三角函数知识可得:3tan 3OB m OAB OA ∠=== 即∠OAB =60° (3)因为全等的对应关系,因而需进行分类论,找准对应关系,从而解决问题。

九年级数学中考复习 等腰三角形中的分类讨论 专题提升训练

九年级数学中考复习 等腰三角形中的分类讨论 专题提升训练

九年级数学中考复习《等腰三角形中的分类讨论》专题提升训练(附答案)一.选择题1.一个等腰三角形的两条边分别是2cm和5cm,则第三条边的边长是()A.2cm B.5cm C.2cm或5cm D.不能确定2.一个等腰三角形的一个内角为70°,则它的顶角的度数为()A.40°B.55°C.70°D.40°或70°3.如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,AC所在直线为y 轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.5个B.6个C.7个D.8个4.如图,在3×3的网格中,每个网格线的交点称为格点.已知图中A,B两个格点,请在图中再寻找另一个格点C,使△ABC成为等腰三角形,则满足条件的点C有()个.A.6B.8C.10D.125.如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角为()A.22°50′B.67.5°C.22°50′或67°50′D.22.5°或67.5°6.已知一个等腰三角形的三边长分别为3x﹣2,4x﹣3,7,则这个等腰三角形的周长为()A.23B.19.5或23C.9或23D.9或19.5或23二.填空题7.已知(a﹣4)2+|b﹣3|=0,则以a,b为两边长的等腰三角形的周长为.8.如图,在平面直角坐标系中,点A,B的坐标分别是(1,5)、(5,1),若点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C点共有个.9.如图,△ABC,∠C=90°,将△ABC沿DE折叠,使得点B落在AC边上的点F处,若∠CFD=60°且△AEF为等腰三角形,则∠A的度数为.10.等腰三角形一腰上的中线将这个三角形的周长分成了12和18两部分,这个三角形的底边长为.11.如图,在等腰△ABC中,AB=AC,∠BAC=120°,BC=30cm,一动点P从B向C以每秒2cm的速度移动,当P点移动秒时,P A与△ABC的腰垂直.12.如图,在Rt△ABC中,∠ACB=Rt∠,AC=8,AB=10,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连结AF,CD.设点D运动时间为t秒.当△ABF是等腰三角形时,则t=秒.13.如图,四边形OABC是一张放在平面直角坐标系中的正方形纸片,点O与坐标原点重合,点A在x轴上,点C在y轴上,OC=5,点E在边BC上,点N的坐标为(3,0),过点N且平行于y轴的直线MN与EB交于点M.现将纸片折叠,使顶点C落在MN上的点G处,折痕为OE.在x轴正半轴上存在一点P,使得以P,O,G为顶点的三角形为等腰三角形,则点P的坐标为.14.如图,在等腰梯形ABCD中,AD∥BC,BC=7AD=7,∠B=45°,等腰直角三角形EMN中,含45°角的顶点E放在BC边上移动,直角边EM始终经过点A,斜边EN 与CD交于点F,若△ABE为等腰三角形,则CF的长为.三.解答题15.已知关于x的方程x2﹣(k+2)x+2k=0.(1)求证:无论k取何值,该方程总有实数根;(2)若等腰△ABC的一边长a=1,另两边b、c恰好是该方程的两个根,求三角形另外两边的长.16.如图矩形ABCD中,AB=2,AD=4,点P是边AD上一点,联结BP,过点P作PE⊥BP,交DC于E点,将△ABP沿直线PE翻折,点B落在点B′处,若△B′PD为等腰三角形,求AP的长.17.在△ABC中,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交线段BC于点F.(1)如图1,当∠BAC=90°,DE∥AC时.①AE和BC有怎样的位置关系,为什么?②若BF=8,EF=4,求线段AB的长.(2)如图2,若∠C=3∠B,折叠后要使△DEF和△AFC,这两个三角形其中一个是直角三角形而另一个是等腰三角形.求此时∠B的度数.18.如图,直线y=﹣x+10与x轴、y轴分别交于点B和点C,点A的坐标为(8,0),点P (x,y)是直线上第一象限内的一个动点.(1)求△OP A的面积S与x的函数关系式,并直接写出自变量x的取值范围;(2)当△OP A的面积为10时,求点P的坐标;(3)在直线BC上是否存在点M,使以O,B,M为顶点的三角形是等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.19.综合与探究如图1,抛物线y=ax2+bx+6与x轴交于A(2,0),B(8,0)两点与y轴交于点C.(1)求抛物线的表达式.(2)E是线段BC上的动点.过点E作x轴的垂线交抛物线于点F,当EF的长度最大时,求E点坐标.(3)点P从点B出发沿BC以1个单位长度/秒的速度向终点C运动,同时点Q从点O 出发以相同的速度沿x轴的正半轴向终点B运动,点Q到达终点B时,两点同时停止运动连接PQ,当△BPQ是等腰三角形时,请求出运动的时间.20.如图1,点C是半圆AB上一点(不与A、B重合),OD⊥BC交弧BC于点D,交弦BC 于点E,连接AD交BC于点F.(1)如图1,如果AD=BC,求∠ABC的大小;(2)如图2,如果AF:DF=3:2,求∠ABC的正弦值;(3)连接OF,⊙O的直径为4,如果△DFO是等腰三角形,求AD的长.参考答案一.选择题1.解:分两种情况:当等腰三角形的腰长为2cm,底边长为5cm时,∵2+2=4<5,∴不能组成三角形;当等腰三角形的腰长为5cm,底边长为2cm时,∴等腰三角形的三边长分别为5cm,5cm,2cm,综上所述:等腰三角形的第三条边的边长是5cm,故选:B.2.解:分两种情况:当等腰三角形的一个底角为70°时,另一个底角也是70°,∴等腰三角形的顶角=180°﹣2×70°=40°;当等腰三角形的顶角为70°时,∴等腰三角形的两个底角都=×(180°﹣70°)=55°;综上所述:等腰三角形的顶角的度数为40°或70°,故选:D.3.解:(1)当AB是底边时,作AB的垂直平分线分别与AC,x轴负半轴相交,共两个交点,都符合条件;(2)当AB是腰时,①以点A为圆心AB长为半径画圆分别与y轴正半轴,负半轴,x 轴负半轴相交,共三个交点,都符合条件;②以点B为圆心AB长为半径画圆分别与x轴正半轴,负半轴,y轴负半轴相交,共三个交点,都符合条件,因此共有8个符合条件的点.故选:D.4.解:如图:分三种情况:当BA=BC时,以点B为圆心,以BA长为半径作圆,交网格线的格点为C1,C2,当AB=AC时,以点A为圆心,以AB长为半径作圆,交网格线的格点为C3,C4,当CA=CB时,作AB的垂直平分线,交网格线的格点为C5,C6,C7,C8,综上所述:使△ABC成为等腰三角形,则满足条件的点C有8个,故选:B.5.解:分两种情况:当等腰三角形是锐角三角形时,如图:∵BD⊥AC,∴∠ADB=90°,∵∠ABD=45°,∴∠A=90°﹣∠ABD=45°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=67.5°,∴这个等腰三角形的底角为67.5°;当等腰三角形是钝角三角形时,如图:∵BD⊥AC,∴∠ADB=90°,∵∠ABD=45°,∴∠DAB=90°﹣∠ABD=45°,∴∠BAC=180°﹣∠DAB=135°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠BAC)=22.5°,∴这个等腰三角形的底角为22.5°;综上所述:这个等腰三角形的底角为22.5°或67.5°,故选:D.6.解:①当3x﹣2是底边时,则腰长为:4x﹣3,7,∴4x﹣3=7,∴x=2.5,∴3x﹣2=5.5,∴等腰三角形的周长=7+7+5.5=19.5;②当4x﹣3是底边时,则腰长为:3x﹣2,7,∴3x﹣2=7,∴x=3,∴4x﹣3=9,∴等腰三角形的周长=7+7+9=23;③当7是底边时,则腰长为:3x﹣2,4x﹣3,∴3x﹣2=4x﹣3,∴x=1,∴3x﹣2=1,4x﹣3=1,∵1+1<7,∴不能构成三角形.则三角形的周长为19.5或23.故选:B.二.填空题7.解:∵(a﹣4)2+|b﹣3|=0,∴a﹣4=0,b﹣3=0,∴a=4,b=3,分两种情况:当等腰三角形的腰长为4,底边长为3时,∴等腰三角形的周长=4+4+3=11;当等腰三角形的腰长为3,底边长为4时,∴等腰三角形的周长=3+3+4=10;综上所述:等腰三角形的周长为11或10,故答案为:11或10.8.解:如图:分三种情况:当BA=BC时,以点B为圆心,以BA长为半径作圆,交x轴于点C1,C2,当AB=AC时,以点A为圆心,以AB长为半径作圆,交x轴于点C3,C4,当CA=CB时,作AB的垂直平分线,交x轴于点C5,综上所述:若点C在x轴上,且A,B,C三点构成的三角形是等腰三角形,则这样的C 点共有5个,故答案为:5.9.解:当AE=AF时,∠AFE=∠AEF=(180°﹣∠A),∵∠B=∠EFD=90°﹣∠A,∠CFD=60°,∴∠AFD=120°,∴(180°﹣∠A)+90°﹣∠A=120°,∴∠A=40°,当AF=EF时,∠AFE=180°﹣2∠A,则180°﹣2∠A+90°﹣∠A=120°,∴∠A=50°.当AE=EF时,点F与C重合,不符合题意,综上所述,∠A=40°或50°,故答案为:40°或50°.10.解:如图:在△ABC中,AB=AC,BD是AC边上的中线,∴AD=DC=AC,分两种情况:当时,解得:,∴这个三角形的底边长为14;当时,解得:,∴这个三角形的底边长为6;综上所述:这个三角形的底边长为14或6,故答案为:14或6.11.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=30°,分两种情况:当P A⊥AC时,如图:∴∠CAP=90°,∴CP=2AP,∠BAP=∠BAC﹣∠P AC=30°,∴∠B=∠BAP=30°,∴BP=AP,∴CP=2BP,∵BC=30cm,∴BP=BC=10(cm),∴t=10÷2=5,∴当P点移动5秒时,P A与△ABC的腰AC垂直;当AP⊥AB时,∴∠BAP=90°,∴BP=2AP,∠CAP=∠BAC﹣∠P AB=30°,∴∠C=∠CAP=30°,∴CP=AP,∴BP=2CP,∵BC=30cm,∴BP=BC=20(cm),∴t=20÷2=10,∴当P点移动10秒时,P A与△ABC的腰AB垂直;综上所述:当P点移动5或10秒时,P A与△ABC的腰垂直,故答案为:5或10.12.解:在Rt△ABC中,∠ACB=90°,AC=8,AB=10,由勾股定理得:BC===6.当F A=FB时,DF⊥AB,∴AD=AB=×10=5,∴t=;当AF=AB=10时,∠ACB=90°,则BF=2BC=12,∴AB•DF=BF•AC,即×10×DF=×12×8,解得:DF=,由勾股定理得:AD===,∴t=÷2=;当BF=AB=10时,∵BF=10,BC=6,∴CF=BF﹣BC=10﹣6=4,由勾股定理得:AF===4,∵BF=BA,FD⊥AB,AC⊥BF,∴DF=AC=8,∴AD===4,∴t=4÷2=2;综上所述,△ABF是等腰三角形时,t的值为或或2.故答案为:或或2.13.解:由题意得,C(0,5),N(3,0),∴ON=3,由折叠得,OG=OC=5,∵∠ONG=90°,∴NG===4,∴G(3,4),设P(x,0),当x<0时,如图4,由OP=OG=5,得x=﹣5,∴P(﹣5,0);当x>0时,如图5,PO=PG=x,则PN=x﹣3,∵∠PNG=90°,∴PG2=PN2+GN2,∴x2=(x﹣3)2+42,解得x=,∴P(,0);如图6,OP=OG=5,∴P(5,0);如图7,PG=OG,∵GN⊥PO,∴PN=ON=3,∴OP=6,∴P(6,0).综上所述,点P的坐标为(﹣5,0)或(,0)或(5,0)或(6,0).故答案为:(﹣5,0)或(,0)或(5,0)或(6,0).14.解:如图,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵等腰梯形ABCD中,AD∥BC,BC=7AD=7,∴BM=(BC﹣AD)=(7﹣)=3,∠C=∠B=45°,∵∠B=45°,∴AB=BM×=6,①如图1,AE=BE时,∵∠B=45°,∴∠BAE=∠B=45°,∴△ABE是等腰直角三角形,∴BE=AB=3,∴CE=BC﹣BE=7﹣3=4,又∵∠CEF=180°﹣∠AEB﹣∠AEF=180°﹣90°﹣45°=45°,∴△CEF是等腰直角三角形,∴CF=CE=4;②如图2,AB=BE时,∵∠B=45°,∴∠AEB=(180°﹣∠B)=(180°﹣45°)=67.5°,∴∠CEF=180°﹣∠AEB﹣∠AEF=180°﹣67.5°﹣45°=67.5°,∴∠CFE=180°﹣∠C﹣∠CEF=180°﹣45°﹣67.5°=67.5°,∴∠CEF=∠CFE,∴CF=CE,∵BC=7,AB=6,∴CF=CE=BC﹣BE=7﹣6;③如图3,AB=AE时,∠AEB=∠B=45°,∴∠CEF=180°﹣∠AEB﹣∠AEF=180°﹣45°﹣45°=90°,∴△ABE、△CEF都是等腰直角三角形,∴BE=AB=6,∴CE=BC﹣BE=7﹣6=,∴CF=CE=×=2;综上所述,CF的长为4或7﹣6或2.故答案为:4或7﹣6或2.三.解答题15.(1)证明:Δ=(k+2)2﹣4×2k=k2+4k+4﹣8k=(k﹣2)2≥0,所以此方程是有实根.(2)①若b=c,则此方程有两个相等实根,此时k﹣2=0,则k=2,原方程为:x2﹣4x+4=0,x1=x2=2,∴另外两边长为2和2,②若a=c,则a=1是方程x2﹣(k+2)x+2k=0的根,∴12﹣(k+2)+2k=0,∴k=1,原方程为x2﹣3x+2=0,x1=1,x2=2,因为以1、1、2为边不能构成三角形.由①②得,三角形另外两边长2,2.16.解:设AP=x,则PD=4﹣x,∵PE⊥BP,∴翻折后,PE⊥BB’,∵矩形ABCD中,∠A=90°,AB=2,∴BP==,①若B'P=PD即BP=PD,∴=4﹣x,解得:x=;②若B'P=B'D,过B'作B'F⊥AD于F,则PF=DF=(4﹣x),又∵B'P=BP,∠A=∠B'FP=90°,∠APB=∠B'PF,∴△ABP≌△FB'P(AAS),∴AP=PF,即x=(4﹣x),解得:x=;③若PD=B'D,同②可得△ABP≌△FB'P,∴PF=AP=x,B'F=AB=2,∴FD=4﹣2x,PD=B'D=4﹣x,在Rt△FB'D中,B'D2=B'F2+FD2,即(4﹣x)2=(4﹣2x)2+22,整理,得:3x2﹣8x+4=0,解得:x=2或x=,综上所述,AP的长为或或或2.17.解:①AE垂直BC,理由如下:由折叠可知,∠B=∠E,∵DE∥AC,∴∠E=∠EAC,∵∠DFE=∠AFC,∴∠EDF=∠C,∵∠BAC=90°,∴∠B+∠C=90°,∴∠E+∠EDF=90°,∴∠DFE=90°,∴AE⊥BC;②设BD=x,则DF=8﹣x,由折叠可知,DE=BD=x,在Rt△DEF中,DE2=DF2+EF2,∴x2=(8﹣x)2+42,解得x=5,∴BD=5,DF=3,∵∠B=∠E,∴tan∠E==,∴AF=6,在Rt△ABF中,AB==10;(2)∵∠C=3∠B,∴设∠B=α,则∠C=3α,由折叠可知,∠E=∠B=α,当∠DFE=90°时,△DEF是直角三角形,则△AFC是等腰三角形,∴∠C=45°,∴∠B=15°;当∠FDE=90°时,△DFE是直角三角形,则△ACF是等腰三角形,∴∠DFE=90°﹣α,∴∠AFC=90°﹣α,当AC=FC时,2(90°﹣α)+3α=180°,此时α=0°,不符合题意,舍去;当AF=AC时,3α=90°﹣α,此时α=22.5°,∴∠B=22.5°;当AF=FC时,3α+3α+90°﹣α=180°,此时α=18°,∴∠B=18°;当∠E=90°时,此时∠B=90°,∠C=270°,不成立;当∠C=90°时,△ACF是直角三角形,此时△DEF不能是等腰三角形,否则AE与BC 边没有交点;当∠AFC=90°时,△ACF是直角三角形,则△DEF是等腰三角形,∴∠E=45°,∴∠B=45°,此时∠C=135°,与题意不符合,不成立;当∠F AC=90°时,△ACF是直角三角形,则△DEF是等腰三角形,∴∠AFC=90°﹣3α,∴∠DFE=90°﹣3α,当DF=EF时,α+α+90°﹣3α=180°,此时α=﹣90°,不成立;当DF=DE时,90°﹣3α=α,此时α=22.5°,∴∠B=22.5°;当DE=EF时,90°﹣3α=(180°﹣α),此时α=0°,不成立;当DE=EF时,∠C=3α=90时,α=30°,此时△DEF是等腰三角形,△ACF是直角三角形;综上所述,∠B的值为15°、18°、22.5°、30°.18.解:(1)∵点P在直线y=﹣x+10上,且点P在第一象限内,∴x>0且y>0,即﹣x+10>0,解得,0<x<10,∵点A的坐标为(8,0),∴OA=8,∴S=•OA•y=×8(﹣x+10),即S=﹣4x+40,自变量的取值范围是:0<x<10;(2)当S=10时,﹣4x+40=10,解得x=,把x=代入y=﹣x+10,得x=,∴P();(3)存在,理由:令y=0,则﹣x+10=0,解得:x=10,∴点B(10,0),点M在直线y=﹣x+10上,设M(m,﹣m+10),点O(0,0),B(10,0),当OB=OM时,102=m2+(﹣m+10)2,解得:m1=0,m2=10(不合题意,舍去),∴M(0,10);当OB=BM时,102=(10﹣m)2+(m﹣10)2,解得:,,∴M(10﹣5,5)或(10+5,﹣5);当OM=BM时,m2+(﹣m+10)2=(10﹣m)2+(m﹣10)2,解得:m=5,∴M(5,5);综上所述,M(5,5)或(0,10)或(10﹣5,5)或(10+5,﹣5).19.解:(1)把A(2,0),B(8,0)代入抛物线y=ax2+bx+6,得:,解得:,∴抛物线的表达式为:;(2)设直线BC的函数表达式是y=kx+6,∵直线BC过点B(8,0),∴0=8k+6,解得,∴直线BC的函数表达式是.设点E的坐标是,∵EF⊥x轴,∴点F的坐标是,∴EF=(﹣m+6)﹣(m+6)=﹣3m=﹣+6,∵﹣<0,∴当m=4时,EF取最大值6,此时E点坐标为(4,3);(3)设运动的时间为t秒,则BP=OQ=t,∴BQ=OB﹣OQ=8﹣t.①当PQ=PB时,过点P作PD⊥QB于D,如图,∵点C的坐标是(0,6),点B(8,0),∴OC=6,OB=8,∴CB==10.∵PQ=PB,PD⊥QB,∴BD=BQ=(8﹣t).∵PD⊥OB,OC⊥OB,∴OC∥PD,∴,即,∴;②当QP=QB时,过Q作QE⊥PB于E,如图,∵QP=QB,QE⊥PB,∴BE=BP=t,∵∠EBQ=∠OBC,∠BEQ=∠BOC=90°,∴△BEQ∽△BOC,∴,∴,∴;③当PB=QB时,如图,则8﹣t=t,解得:t=4.综上所述,当t的值为4或或时,△PBQ为等腰三角形.20.解:(1)连接OC,如图,∵AD=BC,∴,∴∠AOD=∠BOC.∴∠AOC=∠BOD.∵OD⊥BC,∴∠COD=∠BOD,∴∠AOC=∠COD=∠BOD.∵∠COD+∠BOD+∠AOC=180°∴∠AOC=60°.∴∠ABC=∠AOC=30°;(2)连接AC,如图,∵OD⊥BC,∴E是BC中点,∵OA=OB,∴OE∥AC,AC=2OE,∵AF:DF=3:2,∴AC:DE=AF:DF=3:2.设AC=3x,则DE=2x,∴OE=x,∴OD=OB=x.∴sin∠ABC=OE:OB=;(3)①当DF=OF时,如图,∵FE⊥DO,∴DE=OE=OD=1,∴AC=2OE=2,BE==.∴CE=BE=.∴BC=2BE=2.∵OD∥AC,∴CF:EF=AC:DE=AF:DF=2:1.∴EF=CE=.∴DF==,∴AF=2DF=.∴AD=AF+DF=2;②当DF=OD=2时,如图,设OE=x,则DE=2﹣x,AC=2x,∵OD∥AC,∴DF:AF=DE:AC,∴AF=.∴AD=.过点O作OH⊥AD于H,则AD=2DH.在△DHO和△DEF中,,∴△DHO≌△DEF(AAS).∴DH=DE,∴AD=2DE,∴.解得:或(舍去),∴AD=2DE=﹣1.综上所述,AD长或2.。

中考数学专题复习《三角形中的分类讨论、存在性问题》测试卷(带答案)

中考数学专题复习《三角形中的分类讨论、存在性问题》测试卷(带答案)

中考数学专题复习《三角形中的分类讨论 存在性问题》测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 EF 是ABC 的中位线 BD 平分ABC ∠交EF 于点D 若31AE DF ==, 则边BC 的长为( )A .7B .8C .9D .102.如图 三个村庄A B C 构成ABC 供奶站须到三个村庄的距离都相等 则供奶站应建在( )A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三角形三条高的交点D .三角形三条中线的交点3.若等腰三角形一个外角等于100︒ 则与它不相邻的两个内角的度数分别为( ) A .40,40︒︒ B .80,20︒︒ C .50,50︒︒ D .80,20︒︒或50,50︒︒ 4.一根30 m 长的绳子 折成三段 围成一个三角形 其中一条边的长度比较短边长7m 比较长边短1m 则它是( )A .钝角三角形B .直角三角形C .锐角三角形D .无法判断 5.如图 在ABCD 中 点M N 分别是,AB AD 上的点 且BN DM = 其交点为P 设,CPB CPD αβ∠=∠= 则( ).A .αβ>B .αβ=C .αβ<D .不能确定 6.如图 ACB A CB ''△≌△ 30BCB '∠=︒ 则ACA ∠'的度数为( )A .20︒B .30︒C .35︒D .40︒二 填空题7.如图 长为8cm 的橡皮筋放置在x 轴上 固定两端A 和B 然后把中点C 向上拉升3cm 到D 则橡皮筋被拉长了 cm .8.如图 已知AD 为ABC 的中线 10cm 7cm AB AC ==, ACD 的周长为20cm 则ABD △的周长为 cm .9.在ABC 中 9068C AC BC ∠=︒==,, 则AB 边上的中线CD = .10.如图 ABC 是一张直角三角形的纸片 90C ∠=︒ 6AC = 8BC = 现将ABC 折叠 使点B 与点A 重合 折痕为DE 则DE 的长为 .11.如图 在三角形ABC 中 ,AB AC AD BC ⊥⊥ 垂足为D 3,4,5AB AC BC === 则AD = .12.如图 已知ABC 是等边三角形 6AB = BD AC ⊥ 延长BC 到点E 使CE CD = 则BE 的长为 .三 解答题13.如图 DE AB ⊥于E DF AC ⊥于F 若BD CD = BE CF =(1)求证:AD 平分BAC ∠(2)已知20AC = 4BE = 求AB 的长.14.如图 已知△ABD CAE ≌ A E D 在同一直线上 试探究当BD CE ∥时 AD 与EC 的位置关系 并证明.15.将ABC 沿BC 方向平移 得到DEF .(1)若74,26B F ∠=︒∠=︒ 求A ∠的度数(2)若 4.5cm, 3.5cm BC EC == 求ABC 平移的距离. 16.如图 AB 交CD 于点O 在AOC 与BOD 中 有下列三个条件:△OC OD = △AC BD = △A B ∠=∠.请你在上述三个条件中选择两个为条件 另一个能作为这两个条件推出来的结论 并证明你的结论.(只要求写出一种正确的选法)(1)你选的条件为________ ________ 结论为________(2)试说明你的结论.17.如图 在四边形ABCD 中 已知90B 30ACB ∠=︒ 3AB = 10AD = 8CD =.(1)求证:ACD 是直角三角形(2)求四边形ABCD 的面积.18.如图 在四边形ABCD 中 90B 2AB BC == 1AD = 3CD =.(1)求DAB∠的度数(2)求四边形ABCD的面积.参考答案:1.B2.A3.D4.B5.B6.B7.28.239.510.15 411.12 512.9 13.(2)12AD EC⊥15.(1)80°(2)1cm 16.(1)△ △ △17.(2)932418.(1)135︒(2)2+。

2020年中考数学专题复习卷:几何图形的动态问题精编(含解析)

2020年中考数学专题复习卷:几何图形的动态问题精编(含解析)

几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。

2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。

2019-2020年中考数学二轮复习-分类讨论(附答案)

2019-2020年中考数学二轮复习-分类讨论(附答案)

2019-2020年中考数学二轮复习-分类讨论(附答案)Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】(南充,11分)如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0). 设一次函数解析式为y =kx +b . 点A ,B 在一次函数图象上, ∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k则一次函数解析式是 .121--=x y点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为my x=. 点C 在反比例函数图象上,则41-=m ,m =-4.故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】(武汉实验,12分)如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D. (1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度; (3)将⊙O 2沿x 轴向右平移,在平移的过程中与x 轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

2020年中考数学复习考点解密 分类讨论(含解析)

2020年中考数学复习考点解密 分类讨论(含解析)

2020年中考数学二轮复习考点解密 分类讨论Ⅰ、专题精讲:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解.提高分析问题、解决问题的能力是十分重要的.正确的分类必须是周全的,既不重复、也不遗漏.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行. Ⅱ、典型例题剖析【例1】如图3-2-1,一次函数与反比例函数的图象分别是直线AB 和双曲线.直线AB 与双曲线的一个交点为点C ,CD ⊥x 轴于点D ,OD =2OB =4OA =4.求一次函数和反比例函数的解析式.解:由已知OD =2OB =4OA =4,得A (0,-1),B (-2,0),D (-4,0).设一次函数解析式为y =kx +b .点A ,B 在一次函数图象上,∴⎩⎨⎧=+--=,02,1b k b 即⎪⎩⎪⎨⎧-=-=.1,21b k 则一次函数解析式是 .121--=x y 点C 在一次函数图象上,当4-=x 时,1=y ,即C (-4,1). 设反比例函数解析式为m y x=. 点C 在反比例函数图象上,则41-=m ,m =-4. 故反比例函数解析式是:xy 4-=.点拨:解决本题的关键是确定A 、B 、C 、D 的坐标。

【例2】如图3-2-2所示,如图,在平面直角坐标系中,点O 1的坐标为(-4,0),以点O 1为圆心,8为半径的圆与x 轴交于A 、B 两点,过点A 作直线l 与x 轴负方向相交成60°角。

以点O 2(13,5)为圆心的圆与x 轴相切于点D.(1)求直线l 的解析式;(2)将⊙O 2以每秒1个单位的速度沿x 轴向左平移,同时直线l 沿x 轴向右平移,当⊙O 2第一次与⊙O 2相切时,直线l 也恰好与⊙O 2第一次相切,求直线l 平移的速度;(3)将⊙O 2沿x 轴向右平移,在平移的过程中与x轴相切于点E ,EG 为⊙O 2的直径,过点A 作⊙O 2的切线,切⊙O 2于另一点F ,连结A O 2、FG ,那么FG ·A O 2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分类讨论专题复习分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.本讲主要三个内容: 1、 代数中的分类讨论 2、 几何中的分类讨论 3、 数学综合问题中的分类讨论代数中的分类讨论类型一 概念型分类讨论题有一些中考题中所涉及到的数学概念是按照分类的方法进行定义的,如a 的定义分a <0、a =0和a >0三种情况描述的.解决这一类问题,往往需要分类讨论,这一类问题我们称之为概念型分类讨论题.【例1】若,且,,则 .类型二 性质型分类讨论题有一些数学定理、公式以及性质等等具有使用范围或者是分类给出的,这就要求我们在运用它们时一定要分情况讨论.这一类问题我们称之为性质型分类讨论题.【例2】已知二次函数c bx ax y ++=2的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N (-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2的图象上,则下列结论正确的是 ( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2m n n m -=-4m =3n =2()m n +=【例3】已知函数1yx=的图象如下,当1x≥-时,y的取值范围是()A.1y<-B.1y≤-C.1y≤-或0y>D.1y<-或0y≥类型三参数型分类讨论题解答含有字母系数(参数)的题目时,需要根据字母(参数)的不同取值范围进行讨论,这一类分类讨论问题我们称之为参数型分类讨论题.【例4】若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()【例5】对任意实数,点一定不在..()A.第一象限B.第二象限C.第三象限D.第四象限【例6】关于x的方程ax2-(a+2)x+2=0只有一解(相同解算一解),则a的值为( )(A)a=0.(B)a=2.(C)a=1.(D)a=0或a=2.类型四解集型分类讨论题求一元二次不等式及分式不等式的解集时,可以利用有理的乘(除)法法则“两数相乘(除),同号得正,异号得负”来分类,把它们转化为几个一元一次不等式组来求解.我们把这一类问题我们称之为解集型分类讨论题.【例7】先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式.解:∵,∴.由有理数的乘法法则“两数相乘,同号得正”,有ab<y ax=byx=x2(2)P x x x-,290x->29(3)(3)x x x-=+-(3)(3)0x x+->O-1-1X(1) (2)解不等式组(1),得,解不等式组(2),得, 故的解集为或, 即一元二次不等式的解集为或. 问题:求分式不等式的解集. 类型五 统计型分类讨论题有一类问题在求一组数据的平均数、众数或中位数时,由于题设的不确定性,往往需要分类讨论才能获得完整的答案.这一类问题我们称之为统计型分类讨论题.【例8】已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为 .类型六 方案设计型分类讨论题在日常生活中,针对同一问题,借助于分类讨论的思想往往可以得出不同的解决方案,这一类问题我们称之为方案设计型分类讨论题.【例9】一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,且每个房间都住满,租房方案有 ( )A .4种B .3种C .2种D .1种 类型七 综合型分类讨论题【例10】在平面直角坐标系中,点A ,B 的坐标分别为(﹣3,0),(3,0),点P 在反比例函数的图象上,若△P AB 为直角三角形,则满足条件的点P 的个数为( )A. 2个B. 4个C. 5个D. 6个.3030x x +>⎧⎨->⎩3030x x +<⎧⎨-<⎩3x >3x <-(3)(3)0x x +->3x >3x <-290x ->3x >3x <-51023x x +<-2y x=几何中的分类讨论类型之一:与等腰三角形有关的分类讨论与角有关的分类讨论:1.已知等腰三角形的一个内角为75°则其顶角为________与边有关的分类讨论2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.与高有关的分类讨论3.一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.4.等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角是______度.30m的草皮铺设一块一边长为10m的等腰三角形绿地,请你5.为美化环境,计划在某小区内用2求出这个等腰三角形绿地的另两边长.6. 如图建立了一个由小正方形组成的网格(每个小正方形的边长为1).(1)在图1中,画出△ABC关于直线l对称的△A′B′C′;(2)在图2中,点D,E为格点(小正方形的顶点),则线段DE=;若点F也是格点且使得△DEF是等腰三角形,标出所有的点F.综合应用7.在直角坐标系中,O为坐标原点,已知A(-2,2),试在x轴上确定点P,使△AOP为等腰三角形,求符合条件的点P的坐标类型之二:与直角三角形有关的分类讨论8. 已知x轴上有两点A(﹣3,0),B(1,0),在直线l:x+y+1=0上取一点C(x,y),使得△ABC为直角三角形.求点C的坐标.9.如图,在平面直角坐标系xoy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形.那么所有满足条件的点P的坐标是。

baxAO类型之三:与相似三角形有关的分类讨论对应边不确定10.如图,已知矩形ABCD的边长AB=3cm,BC=6cm..某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:是否存在时刻t,使以A,.M,N为顶点的三角形与ΔACD相似?若存在,求t的值;若不存在,请说明理由.对应角不确定11.如图1,∠A=500,∠B=600,一直线l与△ABC的边AC、AB边相交于点D、E两点,当∠ADE为________度时,△ABC与△ADE相似.图形的位置不确定12. Rt△ABO在平面直角坐标系中的位置如图,AO=2,BO=2,∠ABO=30°,在坐标轴上是否存在点D,使以A,B,D为顶点的三角形与△ABO相似(不含全等三角形)?若存在,则写出坐标;若不存在,说明理由.AB CEDl图1类型之四:与圆有关的分类讨论圆既是轴对称图形,又是中心对称图形,还具有旋转不变性,圆的这些特性决定了关于圆的某些问题会有多解.由于点与圆的位置关系的不确定而分类讨论13. 已知点P到⊙O的最近距离为3 cm,最远距离为9 cm,求⊙O的半径.由于点在圆周上位置关系的不确定而分类讨论14.A、B是⊙O上的两点,且∠AOB=136o,C是⊙O上不与A、B重合的任意一点,则∠ACB的度数是___________.由于弦所对弧的优劣情况的不确定而分类讨论15.已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cm,求下水道中水的最大深度.由于两弦与直径位置关系的不确定而分类讨论16.⊙O的直径AB=2,过点A有两条弦AC=2,AD=3,求∠CAD的度数.由于直线与圆的位置的不确定而分类讨论17.已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移个单位时,它与x轴相切.18.如图,直线443y x=-+与x轴,y轴分别交于点M,N(1)求M,N两点的坐标;(2)如果点P在坐标轴上,以点P为圆心,125为半径的圆与直线443y x=-+相切,求点P的坐标.由于圆与圆的位置的不确定而分类讨论19.已知⊙O 1与⊙O 2相切,⊙O 1的半径为3 cm ,⊙O 2的半径为2 cm ,则O 1O 2的长是 cm .20.如图,在8×4的方格(每个方格的边长为1个单位长)中,⊙A 的半径为1,⊙B 的半径为2,将⊙A 由图示位置向右平移 个单位长后,⊙A 与⊙B 相切.21.如图,小圆的圆心在原点,半径为3,大圆的圆心坐标为(a ,0),半径为5,如果两圆内含,那么a 的取值范围是_________.22.如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆,B 为半圆上一点,连接AB 并延长至C ,使BC =AB ,过C 作CD ⊥x 轴于点D ,交线段OB 于点E ,已知CD =8,抛物线经过O 、E 、A 三点. (1)∠OBA = °; (2)求抛物线的函数表达式;(3)若P 为抛物线上位于第一象限内的一个动点,以P 、O 、A 、E 为顶点的四边形面积记作S ,则S 取何值时,相应的点P 有且只有....3个?A Byx53(a ,0)O综合问题中的分类讨论类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°2.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. 如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二圆中的分类讨论:圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.在Rt△ABC中,∠C=900,AC=3,BC=4.若以C点为圆心,r为半径所作的圆与斜边AB 只有一个公共点,则r的取值范围是___ __.5.在△ABC中,AB=AC=5,3cos5B .如果圆O的半径为10,且经过点B、C,那么线段AO的长等于.6.如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?类型之三方程、函数中的分类讨论:方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.9. 分式方程无解的分类讨论问题 (1)=+=-+-a 349332无解,求x x ax x (2)猜想:把“无解”改为“有增根”如何解?10. 已知方程01)12(22=+++x m x m 有实数根,求m 的取值范围。

相关文档
最新文档