2015年深圳市中考数学试卷-(附答案)

合集下载

届深圳市校第二次中考联考数学试卷含答案

届深圳市校第二次中考联考数学试卷含答案

2015-2016 学年第二学期初三质量检测数学试题一、选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上) 1.给出四个数0,,π,﹣1,其中最小的是( )A .0B .C .πD . ﹣1 2.据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖。

华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT 三家2014年收入的两倍以上。

其中818亿美元可用科学记数法表示为( )美元A .8.18×109B . 8.18×1010C .8.18×1011D .0.818×10113.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是( )A B C D4.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是( )A. a 8÷a 4=a 2B .a 3•a 4=a 12C .24±= D. 232x x ⋅ =52x5.下列各图中,描述∠1与∠2互为余角关系最准确的是( )A B C D 6.如图,正三棱柱的主视图为( )A .B .C .D . 第8题图7 . 2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x 场,则可列方程为( )A 3x+(29-x )=67B x+3(29-x )=67C 3 x+(30-x )=67D x+3(30-x )=67 8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD ;②AC ⊥BD ;③四边形ABCD 的面积= AC•BD 其中正确的结论有( )A 0个B 1个C .2个D .3个9.深圳空气质量优良指数排名近年来一直排在全国城市前十。

2015年广东省深圳市中考数学试卷(含解析)

2015年广东省深圳市中考数学试卷(含解析)

2015年广东省深圳市中考数学试卷一、选择题:D4.(3分)(2015•深圳)下列图形既是中心对称又是轴对称图形的是()D5.(3分)(2015•深圳)下列主视图正确的是()DD8.(3分)(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.>9.(3分)(2015•深圳)如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()11.(3分)(2015•深圳)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()D12.(3分)(2015•深圳)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽BEF ;④S △BEF =.在以上4个结论中,正确的有( )GBE=וGBE==二、填空题:13.(3分)(2015•深圳)因式分解:3a2﹣3b2=3(a+b)(a﹣b).14.(3分)(2015•深圳)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.两种.因此概率为=.故答案为:.15.(3分)(2015•深圳)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21个太阳.16.(3分)(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=16.∴,∴三、解答题:17.(2015•深圳)计算:|2﹣|+2sin60°+﹣.﹣×18.(2015•深圳)解方程:.=都为分式方程的解.19.(2015•深圳)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调差的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.20.(2015•深圳)小丽为了测旗杆AB的高度,小丽眼睛距地图1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.×=5AB=1.5+51.5+5)米.(单位:元/m3).元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(2015•深圳)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.t==2AO=cm3∴=,23.(2015•深圳)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.∴,解得ADE=∴(﹣﹣ADE=∴(,﹣,﹣OB=,或的坐标是(,。

广东省2015年中考数学试卷(含参考答案)

广东省2015年中考数学试卷(含参考答案)

2015年广东省初中毕业生学业考试数学满分120分,考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1.2-= ( )A.2 B.-2 C.12D.12-【答案】A2.据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109【答案】B3.一组数据2,6,5,2,4,则这组数据的中位数是( )A.2 B.4 C.5 D.6【答案】B【解答过程】解:先将所给的一组数据按从小到大的顺序排列,得:2,2,4,5,6,∵处在最中间的数是4,∴这5个数据的中位数是4,因此,本题选B.4.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°【答案】C【解答过程】解:∵直线a∥b,∴∠1=∠4.∵∠4=∠2+∠3,∴∠1=∠2+∠3.∵∠1=75°,∠2=35°,∴∠3=40°,故选择C.5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形【答案】A【解答过程】解:对各个支项逐一加以分析、讨论.显然,平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合,故选择A.6.(-4x)2= ( )A.-8x2B.8x2C.-16x2D.16x2【答案】D【解答过程】解:原式=(-4x)2=(-4)2x2=16x2,故选择D.7.在0,2,(-3)0,-5这四个数中,最大的数是( )A.0 B.2 C.(-3)0D.-5 【答案】B【解答过程】解:∵(-3)0=1,∴在0,2,(-3)0,-5这四个数中,最大的数为2,故选择B.8.若关于x的方程290 4x x a+-+=有两个不相等的实数根,则实数a的取值范围是( )A.a≥2 B.a≤2 C.a>2 D.a<2【答案】C【解答过程】解:由题意得:b2-4ac=12-4×1×(94a-+)>0,即1+4a-9>0,解得a>2,故选择C.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6 B.7 C.8 D.9【解答过程】解:由条件可知:扇形的弧DCB的长就是正方形的BC与CD长的和为6,半径为3,则16392S=⨯⨯=扇形,故选择D.10.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )【答案】D【解答过程】解:由题意知:AE=BF=CG,且正三角形ABC的边长为2,则BE=CF=AG=2-x,所以可得△AEG、△BEF、△CFG这三个三角形都是全等的.在△AEG中,AE=x,AG=2-x,则S△AEG =12AE×AG×sin A3(2-x),所以y=S△ABC-3S△AEG=34×22-3⨯3x(2-x3(3x2-6x+4),故可得其图象为二次函数,且开口向上,故选择D .二、填空题(本大题6小题,每小题4分,共24分) 11.正五边形的外角和等于 度 . 【答案】36012.如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.【答案】6【解答过程】解:由菱形的性质可知AB =BC ,并根据“∠ABC =60°”可得△ABC 为等边三角形,从而知道AC =BC =6,故答案为6.13.分式方程321x x =+的解是. 【答案】x =2【解答过程】解:去分母,得:3x =2x +2,解得:x =2.经检验:当x =2时,x (x +1)≠0,所以原分式方程的解为x =2,故答案为x =2.14.若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9【解答过程】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,它们的面积比是4:9,故答案为4:9.15.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是. 【答案】1021【解答过程】解:分母为奇数,分子为自然数,所以,它的规律用含n 的代数式表示为21nn +,则n =10时可得结果为1021,故答案为1021.16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若S △ABC =12,则图中阴影部分面积是.【答案】4【解答过程】解:由三角形的重心性质,可得AG =2GD ,则S △BGF =11212111222232326ABG ABD ABC S S S =⨯=⨯⨯=⨯=△△△,同理,S △CGE 11212111222232326ACG ACD ABC S S S =⨯=⨯⨯=⨯=△△△,∴阴影部分的面积为4,故答案为4.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程:2320x x -+=.【解答过程】方法1:原方程可化为(x -1)(x -2)=0,∴x -1=0或x -2=0,因此x 1=1,x 2=2;方法2:将a =1,b =-3,c =2代入24b b ac x -±-=得:x 1=1,x 2=2;方法3:由方程x 2-3x +2=0,得:x 2-3x =-2, 则x 2-3x +49=-2+49, (x -23)2=41,开方得,x -23=±21, ∴ x 1=1,x 2=2,【易错点津】此类问题容易出错的地方是方法不当、公式记忆不清.18.先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【解答过程】原式=1(1)(1)x x x x x -⋅+-=11x +当21x =+时,原式=2211=-+. 【易错点津】此类问题容易出错的地方是分式运算顺序出错或结果未化简或二次根式化简错误.19.如图,已知锐角△ABC .(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【解答过程】(1)如图所示,MN 为所作;(2)在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =BC -BD =5-3=2.【易错点津】此类问题容易出错的地方是不会应用基本的尺规作图进行画图.四、解答题(二)(本大题3小题,每小题7分,共21分)20.老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【解答过程】(1) 如图,补全树状图;(2) 从树状图可知,共有9种等可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P(积为奇数)=49.【易错点津】此类问题容易出错的地方是误认为是不放回式试验.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2) 求BG的长.【解答过程】(1) ∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B,又AG=AG,∴△ABG≌△AFG(HL);(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =x +3,∴32+(6-x )2=(x +3)2, 解得x =2, ∴BG =2.【易错点津】此类问题容易出错的地方是不能从图形折叠前后寻找相等的边或角.22.某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答过程】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,,解得4256x y =⎧⎨=⎩,, 答:A ,B 两种型号计算器的销售价格分别为42元、56元; (2) 设需要购进A 型号的计算a 台,得:30a +40(70-a )≤2500,解得a ≥30.答:最少需要购进A 型号的计算器30台.【易错点津】此类问题容易出错的地方是审题不清,找错不等关系.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.【解答过程】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD ,∴BD =1, ∴D (1,1), ∴k =1×1=1;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,,得33x y ⎧=⎪⎨⎪=⎩,或33x y ⎧=-⎪⎨⎪=-⎩,(舍去), ∴点C 的坐标为(3,3); (3) 如图,作点D 关于y 轴对称点E ,则E (-1,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则331k b k b ⎧+=⎪⎪-+=⎩,,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).【易错点津】此类问题容易出错的地方是不能探求某条直线上一个点到直线同旁的两点距离和最小24.⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,PB .(1)如图①,若D 是线段OP 的中点,求∠BAC 的度数;(2)如图②,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3)如图③,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB .① ② ③【解答过程】(1) 连接OC .∵AB 为⊙O 直径, ⌒BP =⌒PC , ∴∠COP =∠BOP .∵在⊙O 中,OC =OB ,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥AB.【易错点津】此类问题容易出错的地方是不能综合应用图形中所涉基本图形的相关性质25.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°62+sin15°62-【解答过程】(1) 在Rt △ABC 中, AB =BC =4cm , AC =22AB BC +=2244+=42,在Rt △ADC中,cos ∠CAD =AD AC ,AD =AC ·cos ∠CAD =42×32=26;在Rt △ADC 中,sin ∠CAD =CD AC,CD =AC ·sin ∠CAD =42×12=22,故答案为26,22;(2)如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,∴sin15°=FCNC,又NC =x ,∴62FC -=, ∴NE =DF 6222-+. ∴点N 到AD 6222-+cm ; (3) ∵sin75°=FNNC,∴62FN +=, ∵PD =CP 2, ∴PF 622- ∴162621162(26)(22)(26)2(2)222y x x +--=++-·62()+ 即226732223y ---=+∵2-68<0,当73224262x --=-⨯=732262---时,y 有最大值为6673102304246+---=83+236+92-1616.【易错点津】此类问题容易出错的地方是不能灵活应用三角函数和二次函数的数学模型进行解答.。

2015届九年级下学期数学下第一次月考试卷及答案【广东省深圳市北环中学】

2015届九年级下学期数学下第一次月考试卷及答案【广东省深圳市北环中学】

A. B. C. D. 广东省深圳市北环中学2015届九年级数学下学期第一次月考试题说明:1. 答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上。

2. 考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效。

全卷23题,共6页,考试时间90分钟,满分100分。

第一部分 选择题一、选择题(本部分共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确..的) 1.-2015的绝对值是( ) A .2015, B. -2015, C.20151, D. 20151-2. 下面四张扑克牌中,图案属于中心对称的是( )3.今年参加我市初中毕业生学业考试的考生总数大约有83720人,将这个数字保留两个有效....数字..,用科学记数法表示为( ) A .84×104 B .8.4×104 C .8.4×105 D .8.372×1047. 如图,现分别旋转两个标准的转盘,则转盘所转到的两个 数字之积为奇数的概率是( ). A .53, B.31, C. 21, D. 618. 对于一组数据:75,73,75,71,76,下列说法正确..的是:( ) A .这组数据的平均数是75, B.这组数据的中位数是74, C.这组数据的方差是3.2, D.这组数据的众数是76.9.在同一直角坐标系中,函数k kx y -=与xk y = (k ≠0)的图象大致是( )10.某校学生暑假乘汽车到外地参加夏令营活动,目的地距学校120km 。

一部分学生乘慢车先行,出发1h 后,另一部分学生乘快车前往,结果他们同时到达目的地。

已知快车速度是慢车速度的1.5倍,如果设慢车的速度为hxkm ,那么可列方程为( )A.x120-15.1120=x B.x 120-15.1120=+xC.11205.1120=-xx D.11205.1120=-+xx 11.二次函数2y ax bx c =++的图象如图所示,下列结论正确的有....( ) ①.0ab <, ②.0ac <, ③.当2x <时,函数值随x 增大而增大; 当2x >时,函数值随x 增大而减小, ④.二次函数2y ax bx c =++的 图象与x 轴交点的横坐标就是方程20ax bx c ++=的根 A .1个 B. 2个 C. 3个 D. 4个12.如图,E 、F 分别是平行四边形ABCD 的边AB ,CD 上的点,与DE点P ,BF 与CE 相交于点Q ,若,cm 15S 2APD =∆,2BQ C cm 25S =∆,则阴影部分的面积为( ).A .40cm 2, B.10cm 2, C. 20cm 2, D. 30cm 2.第二部分 非选择题 二、填空题(本题共4小题,每小题3分,共12分) 13.因式分解:x 3y -xy = ▲ .14.如图小明在楼上点A 处测得旗杆BC 顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面高AD 为12m ,旗杆的高度为 ▲ m. 15. 观察下列一组数的排列:1,1,2,3,5,8,13,21,34,…, 前2015个数中,有 ▲ 个偶数.16. 如图,在平面直角坐标系中,直线y=-3x+3与x 轴,y 轴分别交于A , B 两点,以AB 为边在第一象限作正方形ABCD ,点D 在双曲线)0k (x ky ≠=上。

2005年-2015年深圳中考数学试卷真题及答案解析(缺2010年)

2005年-2015年深圳中考数学试卷真题及答案解析(缺2010年)

2005年深圳市初中毕业生学业考试数学试卷考试时间90分钟,满分100分一、选择题:(本大题共10题,每小题3分,共30分)每小题给出四个答案,其中只有一个符合题目的要求,请把选出的答案编号填在下面的答题表一内,否则不给分.1、在0,-1,1,2这四个数中,最小的数是A 、-1B 、0C 、1D 、22、我们从不同的方向观察同一物体时,可以看到不同的平面图形,如图,从图的左面看这个几何体的左视图是A B C D 3、方程x 2 = 2x 的解是A 、x=2B 、x 1=2 ,x 2= 0C 、x 1=2,x 2=0D 、x = 0 4、长城总长约为6700010米,用科学记数法表示是(保留两个有效数字)A 、6.7³105米B 、6.7³106米C 、6.7³107米D 、6.7³108米 5、函数y=xk(k ≠0)的图象过点(2,-2),则此函数的图象在平面直角坐标系中的 A 、第一、三象限 B 、第三、四象限 C 、A 、第一、二象限 D 、第二、四象限 6、图所列图形中是中心对称图形的为A B C D7、中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。

参加这个游戏的观众有三次翻牌的机会。

某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是 A 、41 B 、61 C 、51 D 、203 8、实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-2a 的结果是A 、2a -bB 、bC 、-bD 、-2a+b9、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是 A 、106元 B 、105元 C 、118元 D 、108元 10、如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则图中阴影部分的面积是 A 、334-π B 、π32 C 、332-π D 、π31二、填空题:(本大题共5小题,每小题3分,共15分,请将答案填入答题表二内,否则不给分)答题表二11、一组数据3、8、8、19、19、19、19的众数是。

2015年广东省深圳市中考数学试卷解析版

2015年广东省深圳市中考数学试卷解析版

2015年广东省深圳市中考数学试卷解析版一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−115【解答】解:﹣15的相反数是15,故选:A.2.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【解答】解:将316000000用科学记数法表示为:3.16×108.故选:B.3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选:C.4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.下列主视图正确的是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.4【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴−b2a>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选:B.9.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°,∴∠DBA=∠ACD=70°.故选:D.10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【解答】解:设商品的进价为每件x元,售价为每件0.8×200元,由题意,得0.8×200=x+40,解得:x=120.故选:B.11.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG =∠A =90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x +6)2=62+(12﹣x )2, 解得:x =4∴AG =GF =4,BG =8,BG =2AG ,②正确;BE =EF =6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,③错误; S △GBE =12×6×8=24,S △BEF =EF EG •S △GBE =610⋅24=725,④正确. 故选:C .二、填空题:13.因式分解:3a 2﹣3b 2= 3(a +b )(a ﹣b ) . 【解答】解:原式=3(a 2﹣b 2)=3(a +b )(a ﹣b ), 故答案为:3(a +b )(a ﹣b )14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是 13.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为26=13.故答案为:13.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有 21 个太阳.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳, 第二行小太阳的个数是1、2、4、8、…、2n ﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳. 故答案为:21.16.如图,已知点A 在反比例函数y =k x(x <0)上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E .若△BCE 的面积为8,则k = 16 .【解答】解:∵△BCE 的面积为8, ∴12BC ⋅OE =8,∴BC •OE =16,∵点D 为斜边AC 的中点, ∴BD =DC ,∴∠DBC =∠DCB =∠EBO , 又∠EOB =∠ABC , ∴△EOB ∽△ABC , ∴BC OB=AB OE,∴AB •OB •=BC •OE ∴k =AB •BO =BC •OE =16. 故答案为:16. 三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.【解答】解:原式=2−√3+2×√32+2﹣1=3.18.(6分)解方程:x2x−3+53x−2=4.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=13 7,经检验x1=1与x2=137都为分式方程的解.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20%,参加调查的总人数为400,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400人.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×√32=5√3,∴AB=1.5+5√3.答:旗杆AB的高度为(1.5+5√3)米.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【解答】(1)解:由题意可得:BO=4cm,t=42=2(s);(2)解:如图2,连接O与切点H,则OH⊥AC,又∵∠A=45°,∴AO=√2OH=3√2cm,∴AD=AO﹣DO=(3√2−3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴CFCG =CECF,∴CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.【解答】解:(1)∵二次函数y =﹣x 2+bx +c 经过点A (﹣3,0),点C (0,3),∴{c =3−9−3b +c =0,解得{b =−2c =3, ∴抛物线的解析式y =﹣x 2﹣2x +3,(2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P (﹣1,m ),则PM =PD •sin ∠ADE =√55(4﹣m ),PE =m ,∵PM =PE ,∴√55(4﹣m )=m ,m =√5−1, ∴P 点坐标为(﹣1,√5−1);当P 在∠DAB 的外角平分线上时,如图2,作PN ⊥AD ,设P (﹣1,n ),则PN =PD •sin ∠ADE =√55(4﹣n ),PE =﹣n ,∵PN =PE ,∴√55(4﹣n )=﹣n ,n =−√5−1, ∴P 点坐标为(﹣1,−√5−1);综上可知存在满足条件的P 点,其坐标为(﹣1,√5−1)或(﹣1,−√5−1);(3)∵抛物线的解析式y =﹣x 2﹣2x +3,∴B (1,0),∴S △EBC =12EB •OC =3,∵2S △FBC =3S △EBC ,∴S △FBC =92,过F 作FQ ⊥x 轴于点H ,交BC 的延长线于Q ,过F 作FM ⊥y 轴于点M ,如图3,∵S △FBC =S △BQH ﹣S △BFH ﹣S △CFQ =12HB •HQ −12BH •HF −12QF •FM =12BH (HQ ﹣HF )−12QF •FM =12BH •QF −12QF •FM =12QF •(BH ﹣FM )=12FQ •OB =12FQ =92,∴FQ =9,∵BC 的解析式为y =﹣3x +3,设F (x 0,﹣x 02﹣2x 0+3),∴﹣3x 0+3+x 02+2x 0﹣3=9,解得:x 0=1−√372或1+√372(舍去), ∴点F 的坐标是(1−√372,3√37−152), ∵S △ABC =6>92, ∴点F 不可能在A 点下方,综上可知F 点的坐标为(1−√372,3√37−152).2015年广东省深圳市中考数学试卷一、选择题:1.﹣15的相反数是()A.15B.﹣15C.115D.−1152.用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106 3.下列计算错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4 4.下列图形既是中心对称又是轴对称图形的是()A.B.C.D.5.下列主视图正确的是()A.B.C.D.6.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80B.80,80C.80,85D.80,90 7.解不等式2x≥x﹣1,并把解集在数轴上表示()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1B.2C.3D.49.如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°10.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.10011.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC=BC,则下列选项正确的是()A.B.C.D.12.如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF=725.在以上4个结论中,正确的有()A.1B.2C.3D.4二、填空题:13.因式分解:3a2﹣3b2=.14.在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.如图,已知点A在反比例函数y=kx(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.三、解答题:17.(5分)计算:|2−√3|+2sin60°+(12)−1−(√2015)0.18.(6分)解方程:x2x−3+53x−2=4.19.(7分)11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.(8分)小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.(8分)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.(9分)如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B与O重合的时候,求三角板运动的时间;(2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.(9分)如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F 的坐标,若不存在请说明理由.。

2011-2015深圳中考数学历年真题试卷(校订无误版)

2011-2015深圳中考数学历年真题试卷(校订无误版)

B F O E 图4
B. 2 :1
A
二、填空题(本题共 4 小题,每小题 3 分,共 12 分)
13.分解因式:a3-a=__________________。 14.如图 5,在⊙ O 中,圆心角∠AOB=120° ,弦 AB= 2 3 cm, 则 OA=_______cm。 O A B
图5 15.如图 6,这是由边长为 1 的等边三角形摆出的一系列图形,按这种方式摆下去,则第 n 个图形的周长是=______________。 …… (1) (2) (3) 图6 16.如图 7,△ ABC 的内心在 y 轴上,点 C 的坐标为(2,0) ,点 B 的 坐标为(0,2) ,直线 AC 的解析式为: y 是___________。 图7 三、解答题(本题共 7 小题,其中第 17 小题 5 分,第 18 小题 6 分,第 19 小题 7 分, (4) ……
18. (本题 6 分)解分式方程: 2 x 3 2 。 x 1 x 1
19. (本题 7 分)某校为了了解本校八年级学生课外阅读的喜欢,随机抽取了该校八年级部 分学生进行 问卷调查(每人只选一种书籍) 。图 8 是整理数据后绘制的两幅不完整的统计图,请你 根据图中 提供的信息,解答下列问题:

3 2
C.
3 a 1 2
D. a
3 2
11.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图 3,此时测得 地面上的影长为 8 米,坡面上的影长为 4 米,已知斜坡的坡角为 30 ,同一时刻,一根长为 1 米、垂直于地面放置的标杆在地面上的影长为 2 米,则树的高度为( A . (6 3 ) 米 B.12 米 C . (4 2 3 ) 米 D.10 米 )

2015年广东省中考数学试题及解析

2015年广东省中考数学试题及解析

2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.(3分)|﹣2|=()A.2B.﹣2 C.D.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×1093.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形6.(3分)(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣58.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。

请将下列各题的正确答案填写在答题卡相应的位置上。

2015年深圳市初中毕业生学业考试十二

2015年深圳市初中毕业生学业考试十二

第9题第15题第16题2015年深圳市初中毕业生学业考试十二一、选择题(本大题12小题,每小题3分,共36分) 1.2015的相反数是( ★ ) A . 2015B . ﹣2015C . 20151D . 201512、下列二次根式中,不能与合并的是( ★ ) A .B .C .D . 3、关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围为( ★ ) A .B .C .D .4、不等式的解集在数轴上表示正确的是( ★ )A .B .C .D .5、将一次函数y=x 的图象向上平移2个单位,平移后,若y >0,则x 的取值范围是(★ )A .x >4 B . x >﹣4 C . x >2 D . x >﹣2 6、已知反比例函数y =,当1<x <2时,y 的取值范围是( ★ )A . 0<y <5B . 1<y <2C . 5<y <10D . y >107、如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ★ ) A .B .C . 4D . 58、如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 、C 两点的坐标分别是( ★ )A .(,3)、(﹣,4)B .(,3)、(﹣,4)C .(,)、(﹣,4)D .(,)、(﹣,4)9、如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( ★ )10、已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( ★ ) A . 选①②B . 选②③C . 选①③D . 选②④11、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,且关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,有下列结论:①b 2﹣4ac >0;②abc <0;③m >2.其中,正确结论的个数是( ★ )A . 0 B .1 C .2 D .3 12、在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ★ ) A . (66,34)B . (67,33)C . (100,33)D . (99,34)二、选择题:(本大题有4小题,每小题3分,共12分)13、某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y = ★ . 14、过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是 ★ .15、如图,已知矩形ABCD ,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE 、BE ,若△ABE 是等边三角形,则= ★ .16、如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 ★ .(把所有正确结论的序号都填在横线上)①∠DCF =∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .A . ①②B . ②③C . ①③D . ①④第7 题第8题第9题三、解答题:17、计算:2tan30°﹣|1﹣|+(2014﹣)0+.18、某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?19、如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.20、某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:⑴本次共随机抽查了名学生,并补全条形统计图;⑵若把每组听写正确的个数用这组数据的组中值代替,则被抽查学生听写正确的个数的平均数是多少?⑶该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数. 21、如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).22、如图,已知一次函数y1=x+b的图象l与二次函数y2=﹣x2+mx+b的图象C′都经过点B(0,1)和点C,且图象C′过点A(2﹣,0).(1)求二次函数的最大值;(2)设使y2>y1成立的x取值的所有整数和为s,若s是关于x 的方程=0的根,求a的值;(3)若点F、G在图象C′上,长度为的线段DE在线段BC上移动,EF与DG始终平行于y轴,当四边形DEFG的面积最大时,在x轴上求点P,使PD+PE最小,求出点P的坐标.23、如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F 为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年广东省深圳市中考数学试卷一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C .D .2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×1063.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a44.(3分)下列图形既是中心对称又是轴对称图形的是()A .B .C .D .5.(3分)下列主视图正确的是()A .B .C .D .6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,907.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A .B .C .D .8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.49.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A.50° B.20° C.60° D.70°10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140 B.120 C.160 D.10011.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A .B .C .D .12.(3分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S△BEF =.在以上4个结论中,正确的有()A.1 B.2 C.3 D.4二、填空题:13.(3分)因式分解:3a2﹣3b2= .14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有个太阳.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .三、解答题:17.计算:|2﹣|+2sin60°+﹣.18.解方程:.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为,参加调查的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有人.20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B和O 重合的时候,求三角板运动的时间;(2)如图2,当AC和半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.23.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的分析式;(2)DE上是否存在点P到AD的距离和到x轴的距离相等?若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBC=3S△EBC?若存在求出点F的坐标,若不存在请说明理由.2015年广东省深圳市中考数学试卷--答案一、选择题:1.(3分)﹣15的相反数是()A.15 B.﹣15 C.D.【解答】解:﹣15的相反数是15,故选:A.2.(3分)用科学记数法表示316000000为()A.3.16×107B.3.16×108C.31.6×107D.31.6×106【解答】解:将316000000用科学记数法表示为:3.16×108.故选B.3.(3分)下列说法错误的是()A.a•a=a2B.2a+a=3a C.(a3)2=a5D.a3÷a﹣1=a4【解答】解:A、a•a=a2,正确,故本选项错误;B、2a+a=3a,正确,故本选项错误;C、(a3)2=a3×2=a6,故本选项正确;D、a3÷a﹣1=a3﹣(﹣1)=a4,正确,故本选项错误.故选C.4.(3分)下列图形既是中心对称又是轴对称图形的是()A .B .C .D .【解答】解:A、∵此图形旋转180°后不能和原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.B、∵此图形旋转180°后不能和原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能和原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能和原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.5.(3分)下列主视图正确的是()A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形.故选:A.6.(3分)在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.7.(3分)解不等式2x≥x﹣1,并把解集在数轴上表示()A .B .C .D .【解答】解:2x≥x﹣1,2x﹣x≥﹣1,x≥﹣1.故选:B.8.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线和y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线和x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.9.(3分)如图,AB为⊙O直径,已知∠DCB=20°,则∠DBA为()A .50°B .20°C .60°D .70° 【解答】解:∵AB 为⊙O 直径, ∴∠ACB=90°,∴∠ACD=90°﹣∠DCB=90°﹣20°=70°, ∴∠DBA=∠ACD=70°. 故选D .10.(3分)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .140 B .120 C .160 D .100【解答】解:设商品的进价为每件x 元,售价为每件0.8×200元,由题意,得 0.8×200=x+40, 解得:x=120. 故选:B .11.(3分)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )A .B .C .D .【解答】解:∵PB+PC=BC , 而PA+PC=BC , ∴PA=PB ,∴点P 在AB 的垂直平分线上,即点P 为AB 的垂直平分线和BC 的交点. 故选D .12.(3分)如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB=2AG ;③△GDE ∽△BEF ;④S △BEF =.在以上4个结论中,正确的有( )A .1B .2C .3D .4【解答】解:由折叠可知,DF=DC=DA ,∠DFE=∠C=90°, ∴∠DFG=∠A=90°, ∴△ADG ≌△FDG ,①正确; ∵正方形边长是12, ∴BE=EC=EF=6,设AG=FG=x ,则EG=x+6,BG=12﹣x , 由勾股定理得:EG 2=BE 2+BG 2, 即:(x+6)2=62+(12﹣x )2, 解得:x=4∴AG=GF=4,BG=8,BG=2AG ,②正确;BE=EF=6,△BEF 是等腰三角形,易知△GED 不是等腰三角形,③错误; S △GBE=×6×8=24,S △BEF=•S △GBE==,④正确.故选:C .二、填空题:13.(3分)因式分解:3a 2﹣3b 2= 3(a+b )(a ﹣b ) . 【解答】解:原式=3(a 2﹣b 2)=3(a+b )(a ﹣b ), 故答案为:3(a+b )(a ﹣b )14.(3分)在数字1,2,3中任选两个组成一个两位数,则这个两位数能被3整除的概率是.【解答】解:如图所示:共有6种情况,能被3整除的有12,21两种.因此概率为=.故答案为:.15.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有21 个太阳.【解答】解:第一行小太阳的个数为1、2、3、4、…,第5个图形有5个太阳,第二行小太阳的个数是1、2、4、8、…、2n﹣1,第5个图形有24=16个太阳,所以第5个图形共有5+16=21个太阳.故答案为:21.16.(3分)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= 16 .【解答】解:∵△BCE的面积为8,∴,∴BC•OE=16,∵点D为斜边AC的中点,∴BD=DC,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE∴k=AB•BO=BC•OE=16.故答案为:16.三、解答题:17.计算:|2﹣|+2sin60°+﹣.【解答】解:原式=2﹣+2×+2﹣1=3.18.解方程:.【解答】解:去分母得:3x2﹣2x+10x﹣15=4(2x﹣3)(3x﹣2),整理得:3x2﹣2x+10x﹣15=24x2﹣52x+24,即7x2﹣20x+13=0,分解因式得:(x﹣1)(7x﹣13)=0,解得:x1=1,x2=,经检验x1=1和x2=都为分式方程的解.19.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x值为20% ,参加调查的总人数为400 ,补全统计图;(2)三本以上的圆心角为72°.(3)全市有6.7万学生,三本以上有13400 人.【解答】解:(1)40÷10%=400(人),x=100%﹣10%﹣25%﹣45%=20%,400×20%=80(人),故答案为:20%,400;如图所示;(2)20%×360°=72°,故答案为:72°;(3)67000×20%=13400(人),故答案为:13400.20.小丽为了测旗杆AB的高度,小丽眼睛距地面1.5米,小丽站在C点,测出旗杆A的仰角为30°,小丽向前走了10米到达点E,此时的仰角为60°,求旗杆的高度.【解答】解:如图,∵∠ADG=30°,∠AFG=60°,∴∠DAF=30°,∴AF=DF=10,在Rt△FGA中,AG=AF•sin∠AFG=10×=5,∴AB=1.5+5.答:旗杆AB的高度为(1.5+5)米.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?【解答】解:(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.22.如图1,水平放置一个直角三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当B和O重合的时候,求三角板运动的时间;(2)如图2,当AC和半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2=CG•CE.【解答】(1)解:由题意可得:BO=4cm,t==2(s);(2)解:如图2,连接O和切点H,则OH⊥AC,又∵∠A=45°,∴AO=OH=3cm,∴AD=AO﹣DO=(3﹣3)cm;(3)证明:如图3,连接EF,∵OD=OF,∴∠ODF=∠OFD,∵DE为直径,∴∠ODF+∠DEF=90°,∠DEC=∠DEF+∠CEF=90°,∴∠CEF=∠ODF=∠OFD=∠CFG,又∵∠FCG=∠ECF,∴△CFG∽△CEF,∴=,∴CF2=CG•CE.23.如图1,关于x 的二次函数y=﹣x 2+bx+c 经过点A (﹣3,0),点C (0,3),点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的分析式;(2)DE 上是否存在点P 到AD 的距离和到x 轴的距离相等?若存在求出点P ,若不存在请说明理由;(3)如图2,DE 的左侧抛物线上是否存在点F ,使2S △FBC =3S △EBC ?若存在求出点F 的坐标,若不存在请说明理由.【解答】解:(1)∵二次函数y=﹣x 2+bx+c 经过点A (﹣3,0),点C (0,3), ∴,解得,∴抛物线的分析式y=﹣x 2﹣2x+3, (2)存在,当P 在∠DAB 的平分线上时,如图1,作PM ⊥AD ,设P (﹣1,m ),则PM=PD •sin ∠ADE=(4﹣m ),PE=m ,∵PM=PE ,∴(4﹣m )=m ,m=﹣1, ∴P 点坐标为(﹣1,﹣1);当P 在∠DAB 的外角平分线上时,如图2,作PN ⊥AD ,设P (﹣1,n ),则PN=PD •sin ∠ADE=(4﹣n ),PE=﹣n ,∵PN=PE ,∴(4﹣n )=﹣n ,n=﹣﹣1, ∴P 点坐标为(﹣1,﹣﹣1);综上可知存在满足条件的P 点,其坐标为(﹣1,﹣1)或(﹣1,﹣﹣1);(3)∵抛物线的分析式y=﹣x 2﹣2x+3, ∴B (1,0), ∴S △EBC =EB •OC=3, ∵2S △FBC =3S △EBC , ∴S △FBC =,过F作FQ⊥x轴于点H,交BC的延长线于Q,过F作FM⊥y轴于点M,如图3,∵S△FBC=S△BQH﹣S△BFH﹣S△CFQ=HB•HQ﹣BH•HF﹣QF•FM=BH(HQ﹣HF)﹣QF•FM=BH•QF﹣QF•FM=QF•(BH﹣FM)=FQ •OB=FQ=,∴FQ=9,∵BC的分析式为y=﹣3x+3,设F(x0,﹣x02﹣2x0+3),∴﹣3x0+3+x02+2x0﹣3=9,解得:x0=或(舍去),∴点F的坐标是(,),∵S△ABC=6>,∴点F不可能在A点下方,综上可知F点的坐标为(,).。

相关文档
最新文档