有理数的混合运算练习题1
有理数四则混合运算专练习题试题全难
有理数的混合运算一典型例题1.计算题:(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题: (1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A.甲刚好亏盈平衡;B.甲盈利1元;C.甲盈利9元;D.甲亏本1.1元.有理数的四则混合运算知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1B.5C.11D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4ob aA.3个B.4个C.2个D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷1412.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3(3)(10-4)×3-(-6)有理数的混合运算三一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的四则混合运算练习(含答案)
有理数的四则混合运算练习◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是() A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0 (3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b 11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)] (3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a1 / 2◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________答案:课堂测控1.(1)-80 (2)5352.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.2 / 2。
有理数的混合运算(好题1)
C、买两站的都可以D、先买甲站的1罐,以后再买乙站的
10、(2002•扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数( )
A、A种包装的洗衣粉B、B种包装的洗衣粉
C、C种包装的洗衣粉D、三种包装的都相同
9、(2005•潍坊)某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是( )
解答:解:因为填入“﹣”后,平方的值最大,
所以计算出来的值是最小的.
故选B
点评:任何数的平方都是非负数.
6、(2006•安顺)规定一种新的运算“*”:对于任意实数x,y,满足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,则2*1=( )
A、4B、3
C、2D、1
考点:有理数的混合运算。
专题:新定义。
分析:根据混合运算的顺序,先算较高级的运算,再算较低级的运算,如果有括号,就先算括号里面的.本题要把括号内的分数先通分计算,再把除法转化为乘法.
解答:解:48÷( + )
=48÷( )
=48
=
= .
故选C.
点评:含有有理数的加、减、乘、除、乘方多种运算的算式,根据几种运算的法则可知:减法、除法可以分别转化成加法和乘法,所以有理数混合运算的关键是加法和乘法.异分母相加要先通分.
有理数混合运算经典习题与答案
12有理数的混合运算习题一•选择题31. 计算(-2 5)=()A.1000B. —1000C.302. 计算-2 32 -(-2 32)=()A.0B. — 54C. — 721 13. 计算—(-5p :- ( )5 =5 5A.1B.25C. — 5 4. 下列式子中正确的是()A. -24 ::(-2)2 :::(-2)3B. D. — 30D. — 18D.35(一2)3 ::: -24 ::: (-2)2D. (-2)2 ::: (一3)3:: -24D. — 2K那么一 ■ 1的值是()a1 2C. -24 :::(-2)3 ::(-2)2 5. -24“(-2)2 的结果是()A.4B. — 4C.26. 如果 a_1| =0,(b+3)2 =0A. — 2B. — 3C. — 4 二.填空题1. _____________________________ 有理数的运算顺序是先算 __________ ,再算 __________________________________ ,最算 __________ ;如果有括号,那么先算 ________________________________2. 一个数的101次幕是负数,则这个数是3. -7.2-0.9-5.6 1.7 -5.( - 色)(丄)-5二13 136. 一2一(一丄)+ _1丄=722234. -2 -(-1)2 1 8.( - 50) (& 神二-(--)-(--) (--)2 3 5 2 3(—1.5) 4 丄2.75 (―5-)4 2-8 (-5) -63 4-5 (--)32 (訂5—6(-10)2-:-5(¥)5 (-5)3(一弓2525 (-6) -(-4)亠(-8)24 ^|r:(2-2)4 7 2 (-16 -50 32),(-2)53 2(-6) 8-(-2) -(-4) 5G)2 - (3 1_2)W O.5)3-2 [-32(£2-2]-仁(5) 1 [+2]2)2)中16(-4)2(彳1)1 -[-4(1—0.2)-■■ ( -2)]5(-5) (-3号)(-7) (一3号)12 (一3号)5 2 3()(-4)2-0.25 (-5) (-4)38 (*)3 |-6<-,1 一 3 4 1—1x — X8 4 3 2(-8)(-7.2) (-2.5)—7.8 汉(£1)汉0讨一19.6-5 (-启)-(-2丄)亠77 5 43、下列各数对中,数值相等的是( )1 5四、1、已知 x+2 + y —3 = 0,求一 2 — x — —y +4xy 的值。
有理数的混合运算练习题(含答案)(共17套)
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
《有理数》混合运算专题训练
第1章《有理数》:混合运算专题训练考试范围:有理数混合运算;练习时间:每天15分钟;命题人:黄小芬学校:___________姓名:___________班级:___________考号:___________【第1天】1.计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.2.计算(1)﹣×3+6×(﹣)(2)(﹣1)2÷×[6﹣(﹣2)3].3.(﹣1)2018÷.4.计算:(﹣+﹣)×(﹣24).5.计算:(1)(2).6.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)7.计算:(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5|8.计算:(1)(﹣)×(﹣24).(2)﹣.9.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.10.计算:(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.【第2天】11.计算:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.12.计算:(1)(﹣1)3﹣×[2﹣(﹣3)2](2)﹣22+|5﹣8|+24÷(﹣3)×.13.计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].14.计算:﹣32+(﹣12)×||﹣6÷(﹣1).15.计算:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]16.计算:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5| (2)﹣16+42﹣(﹣1)×(﹣)÷﹣.17.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.18.计算(1)40÷(﹣8)+(﹣3)×(﹣2)2+17 (2)﹣42×+|﹣2|3×(﹣)3.【第3天】19.计算:(1)8+(﹣10)﹣(﹣5)+(﹣2)(2).20.计算下列各题:(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×21.计算:(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.22.计算:(1)(﹣7)+(+5)﹣(﹣13)﹣(+10)(2)1.5÷×(﹣)﹣(﹣8)23.计算:(1)﹣1+5÷(﹣)×2;(2)(﹣+﹣)×(﹣36).24.计算:(1)(2)25.计算:(1)(1﹣+)×(﹣24);(2).26.计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].【第4天】27.计算:(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).28.计算:(1)﹣20+14﹣18﹣13(2)3×(﹣)÷(﹣)29.计算:(1)22+(﹣33)﹣4×(﹣11)(2)|﹣36|×(﹣)+(﹣8)÷(﹣2)230.计算:(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).31.计算:(1)2+(﹣7)﹣(﹣13)(2)5+(﹣7)×(+3)﹣(﹣4÷)(3)(﹣)×(﹣24)﹣4(4)(﹣)×(﹣4)2﹣(﹣1)201832.计算下列各式:(1)12×(2)﹣12﹣×[2﹣(﹣3)2].33.计算(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8 (3)(﹣1)3﹣×[2﹣(﹣3)2].【第5天】34.计算:(1)(﹣3)2×5﹣(﹣2)3÷4(2)(﹣12)×(﹣+﹣)35.计算:(1)(﹣3)+7+8+(﹣9).(2)(﹣1)10×2+(﹣2)3÷4.36.计算:(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)337.计算:(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)38.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).39.计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.40.计算题:(1)30×()(2)10+8×.【第6天】41.计算:(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣)×(﹣2)2﹣(﹣3)3÷(﹣﹣)2÷(﹣0.25).42.计算:.43.计算:﹣12018÷(﹣5)2×(﹣)﹣|0.8﹣1|.44.计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×245.计算:(﹣2)3﹣×(3﹣7)×﹣(﹣7﹣8)+(﹣5)46.﹣32+(﹣﹣)×(﹣12).【第7天】47.计算(1)(﹣2)3×0.5﹣(﹣1.6)2÷(﹣2)2(2)23÷[(﹣2)3﹣(﹣4)]48.计算:(1)1+(﹣2)﹣|﹣2﹣3|﹣5;(2)﹣22×7﹣(﹣3)×6+5.49.计算(1)﹣20+(+3)﹣(﹣5)﹣(+7)(2)()×12+(﹣2)3÷(﹣4)50.计算①﹣22×(﹣)+54÷(﹣3)3②(﹣2)2+[18﹣(﹣3)×2]÷4.第1章《有理数》:混合运算专题训练参考答案与试题解析一.解答题(共50小题)1.计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.【分析】(1)根据有理数混合运算的运算顺序进行计算即可得出结论;(2)利用乘法的分配律进行计算即可得出结论.【解答】解:原式=1﹣64×(﹣),=1﹣64×(﹣),=1+8,=9;(2)原式=7×(2.6+1.5)﹣4.1×8,=7×4.1﹣8×4.1,=(7﹣8)×4.1,=﹣4.1.2.计算(1)﹣×3+6×(﹣)(2)(﹣1)2÷×[6﹣(﹣2)3].【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据幂的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(1)﹣×3+6×(﹣)=﹣1+(﹣2)=﹣3;(2)(﹣1)2÷×[6﹣(﹣2)3]=1×2×[6﹣(﹣8)]=1×2×14=28.3.(﹣1)2018÷.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:原式=1××(﹣8)=﹣3.4.计算:(﹣+﹣)×(﹣24).【分析】利用乘法对加法的分配律,能使运算简便.【解答】解:原式=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=8﹣20+9=﹣35.计算:(1)(2).【分析】(1)根据有理数运算的运算法则求值即可得出结论;(2)利用乘法分配律及有理数运算的运算法则,即可求出结论.【解答】解:(1)原式=﹣1+2﹣16×(﹣)×,=﹣1+2+4,=5;(2)原式=6×﹣6×﹣9×(﹣),=2﹣3+,=﹣.6.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)【分析】(1)减法转化为加法,计算可得;(2)先计算乘方,再计算乘法,最后计算加法即可得;(3)将除法转化为乘法,再利用乘方分配律计算可得;(4)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.7.计算:(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5|【分析】(1)利用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=×(﹣48)﹣×(﹣48)+×(﹣48)=﹣8+36﹣4=24;(2)原式=﹣1+4+4×5=3+20=23.8.计算:(1)(﹣)×(﹣24).(2)﹣.【分析】(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=18+15﹣18=15;(2)原式=﹣4+2×+×16=﹣4+3+1=0.9.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算除法运算即可求出值.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.10.计算:(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.【分析】(1)运用乘法分配律计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣40+55﹣16=﹣1;(2)原式=﹣×(﹣8)÷4﹣2×|(﹣1)×+1|=1×﹣2×=﹣=﹣.11.计算:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.【分析】(1)根据幂的乘方、有理数的乘除法和加减法可以解答本题;(2)根据有理数的加减法可以解答本题.【解答】解:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)=﹣1×2+4÷4+3=﹣2+1+3=2;(2)12+(﹣7)﹣(﹣18)﹣32.5=12+(﹣7.5)+18+(﹣32.5)=﹣10.12.计算:(1)(﹣1)3﹣×[2﹣(﹣3)2](2)﹣22+|5﹣8|+24÷(﹣3)×.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣1﹣×(﹣7)=﹣1+=;(2)原式=﹣4+3﹣=﹣.13.计算:(1)26﹣17+(﹣6)﹣33(2)﹣14×[3﹣(﹣3)2].【分析】(1)原式结合后,相加即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=26﹣17﹣6﹣33=26﹣56=﹣30;(2)原式=﹣1﹣×(﹣6)=﹣1+1=0.14.计算:﹣32+(﹣12)×||﹣6÷(﹣1).【分析】根据幂的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.15.计算:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]=﹣1﹣÷×(2﹣9)=﹣1﹣×7×(2﹣9)=﹣1﹣×7×(﹣7)=﹣1+=.16.计算:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|(2)﹣16+42﹣(﹣1)×(﹣)÷﹣.【分析】(1)根据有理数的乘除法和加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|=135+(﹣2)﹣20=113;(2)﹣16+42﹣(﹣1)×(﹣)÷﹣=﹣16+16+1×(﹣)×6﹣=﹣16+16+(﹣1)﹣=.17.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.【分析】(1)根据有理数的乘除法和乘法分配律可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13.18.计算(1)40÷(﹣8)+(﹣3)×(﹣2)2+17(2)﹣42×+|﹣2|3×(﹣)3.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣5﹣12+17=0;(2)原式=﹣1﹣1=﹣2.19.计算:(1)8+(﹣10)﹣(﹣5)+(﹣2)(2).【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=8﹣10+5﹣2=13﹣12=1;(2)原式=﹣8﹣(﹣2)=﹣8+2=﹣6.20.计算下列各题:(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×【分析】(1)根据乘法分配律可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)(﹣+﹣)×(﹣48)=﹣44+56+(﹣36)+26=2;(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×=1﹣=1﹣=0.21.计算:(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.【分析】(1)根据有理数的混合运算顺序和运算法则计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣0.5+6﹣7+4=(﹣0.5﹣7.5)+(6+4)=﹣8+11=3;(2)原式=[25×(﹣)+8]×(﹣8)÷7=[﹣15+8]×(﹣8)÷7=﹣7×(﹣8)÷7=56÷7=8.22.计算:(1)(﹣7)+(+5)﹣(﹣13)﹣(+10)(2)1.5÷×(﹣)﹣(﹣8)【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和减法可以解答本题.【解答】解:(1)(﹣7)+(+5)﹣(﹣13)﹣(+10)=(﹣7)+5+13+(﹣10)=1;(2)1.5÷×(﹣)﹣(﹣8)=1.5×+8=(﹣3)+8=5.23.计算:(1)﹣1+5÷(﹣)×2;(2)(﹣+﹣)×(﹣36).【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【解答】解:(1)原式=﹣1﹣20=﹣21;(2)原式=12﹣30+21=3.24.计算:(1)(2)【分析】(1)原式先计算乘方运算,再计算乘除运算即可求出值;【解答】解:(1)原式=﹣2××=﹣2;(2)原式=﹣9﹣6+1+8=﹣6.25.计算:(1)(1﹣+)×(﹣24);(2).【分析】(1)运用乘法分配律计算可得;(2)先计算乘方和括号内的减法,再计算乘法,最后计算加减可得.【解答】解:(1)原式=﹣24+9﹣14=﹣29;(2)原式=﹣8×﹣(﹣4)=﹣6+4=﹣2.26.计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].【分析】(1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣1+=.27.计算:(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=4+1=5;(2)原式=1+7=8.28.计算:(1)﹣20+14﹣18﹣13(2)3×(﹣)÷(﹣)【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题.【解答】解:(1)﹣20+14﹣18﹣13=(﹣20)+14+(﹣18)+(﹣13)=﹣37;(2)3×(﹣)÷(﹣)=3×=29.计算:(1)22+(﹣33)﹣4×(﹣11)(2)|﹣36|×(﹣)+(﹣8)÷(﹣2)2【分析】(1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣11+44=33;(2)原式=36×(﹣)+(﹣8)÷4=﹣3+(﹣2)=﹣5.30.计算:(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).【分析】(1)根据幂的乘方、有理数的乘除法和加减法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)﹣22﹣9×(﹣)2+4÷|﹣|=﹣4﹣9×+4×=﹣4﹣1+6=1;(2)(﹣24)×(﹣+﹣)=20+(﹣9)+2=13.31.计算:(1)2+(﹣7)﹣(﹣13)(2)5+(﹣7)×(+3)﹣(﹣4÷)(3)(﹣)×(﹣24)﹣4(4)(﹣)×(﹣4)2﹣(﹣1)2018【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题;(3)根据有理数的乘法和减法可以解答本题;(4)根据有理数的乘法和减法可以解答本题.【解答】解:(1)2+(﹣7)﹣(﹣13)=2+(﹣7)+13=8;(2)5+(﹣7)×(+3)﹣(﹣4÷)=5+(﹣21)+4×2=5+(﹣21)+8=﹣8;(3)(﹣)×(﹣24)﹣4=()×(﹣24)﹣4=3﹣4=﹣1;(4)(﹣)×(﹣4)2﹣(﹣1)2018=(﹣)×16﹣1=(﹣10)+(﹣1)=﹣11.32.计算下列各式:(1)12×(2)﹣12﹣×[2﹣(﹣3)2].【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=12﹣6﹣4=2;(2)原式=﹣1﹣×(﹣7)=﹣1+=.33.计算(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8(3)(﹣1)3﹣×[2﹣(﹣3)2].【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式逆用乘法分配律计算即可求出值;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣+5+4=﹣+10=9;(2)原式=﹣×(5+9+8)=﹣7;(3)原式=﹣1﹣×(﹣7)=﹣1+=.34.计算:(1)(﹣3)2×5﹣(﹣2)3÷4(2)(﹣12)×(﹣+﹣)【分析】(1)先计算乘方,再计算乘除,最后计算加减即可得;(2)运用乘法分配律计算可得.【解答】解:(1)原式=9×5+8÷4=45+2=47;(2)原式=9﹣7+10=12.35.计算:(1)(﹣3)+7+8+(﹣9).(2)(﹣1)10×2+(﹣2)3÷4.【分析】(1)原式结合后,相加即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣12+15=3;(2)原式=2﹣2=0.36.计算:(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)3【分析】(1)除法转化为乘法,再运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(1﹣1﹣+)×(﹣24)=﹣24+36+9﹣14=7;(2)原式=﹣32×(﹣)×﹣12×(﹣15+16)3=2﹣12×1=2﹣12=﹣10.37.计算:(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=﹣3+2+7=6;(2)原式=﹣1+10﹣2=7.38.计算:(1)(﹣)×(﹣8)+(﹣6)2;(2)﹣14+(﹣2).【分析】(1)根据有理数的乘法和加法可以解答本题;(2)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣)×(﹣8)+(﹣6)2=4+36=40;(2)﹣14+(﹣2)=﹣1+2×3﹣9=﹣4.39.计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.【分析】(1)根据幂的乘方、有理数的乘法和加减法可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)22+2×[(﹣3)2﹣3+]=4+2×[9﹣3+]=4+2×=4+13=17;(2)﹣0.25÷×(﹣1)3+(﹣3.75)×24=﹣×(﹣1)+33+56﹣90=1+33+56﹣90=0.40.计算题:(1)30×()(2)10+8×.【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=15﹣20﹣24=﹣29;(2)原式=10+2﹣10=2.(1)(﹣2)×(﹣2.5)+(﹣2)×3÷1.5;(2)(﹣)×(﹣2)2﹣(﹣3)3÷(﹣﹣)2÷(﹣0.25).【分析】(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=5﹣4=1;(2)原式=﹣10﹣27÷÷0.25=﹣10﹣27××4=﹣10﹣=﹣.42.计算:.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:原式=﹣1+0+12﹣6+3=8.43.计算:﹣12018÷(﹣5)2×(﹣)﹣|0.8﹣1|.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式=1÷25×﹣0.2=﹣=﹣.44.计算:(1)(﹣+﹣)×(﹣24);(2)﹣14+2×(﹣3)2﹣5÷×2【分析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式=18﹣4+9=23;(2)原式=﹣1+18﹣20=﹣3.45.计算:(﹣2)3﹣×(3﹣7)×﹣(﹣7﹣8)+(﹣5)【分析】根据幂的乘方、有理数的乘法和减法可以解答本题.【解答】解:(﹣2)3﹣×(3﹣7)×﹣(﹣7﹣8)+(﹣5)=(﹣8)﹣=(﹣8)+4+15+(﹣5)=6.46.﹣32+(﹣﹣)×(﹣12).【分析】根据幂的乘方、乘法分配律可以解答本题.【解答】解:﹣32+(﹣﹣)×(﹣12)==﹣9+(﹣10+4+9)=﹣6.47.计算(1)(﹣2)3×0.5﹣(﹣1.6)2÷(﹣2)2(2)23÷[(﹣2)3﹣(﹣4)]【分析】(1)根据有理数混合运算顺序和运算法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣8×0.5﹣2.56÷4=﹣4﹣0.64=﹣4.64;(2)原式=23÷(﹣8+4)=23÷(﹣4)=﹣48.计算:(1)1+(﹣2)﹣|﹣2﹣3|﹣5;(2)﹣22×7﹣(﹣3)×6+5.【分析】(1)原式利用绝对值的代数意义化简,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=1﹣2﹣5﹣5=﹣11;(2)原式=﹣28+18+5=﹣5.49.计算(1)﹣20+(+3)﹣(﹣5)﹣(+7)(2)()×12+(﹣2)3÷(﹣4)【分析】(1)根据有理数的加减法可以解答本题;(2)根据乘法分配律、幂的乘方、有理数的除法和加法可以解答本题.【解答】解:(1)﹣20+(+3)﹣(﹣5)﹣(+7)=(﹣20)+3+5+(﹣7)=﹣19;(2)()×12+(﹣2)3÷(﹣4)=3+2﹣6+(﹣8)÷(﹣4)=3+2﹣6+2=1.50.计算①﹣22×(﹣)+54÷(﹣3)3②(﹣2)2+[18﹣(﹣3)×2]÷4.【分析】①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值;②原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:①原式=﹣4×(﹣)+54÷(﹣27)=2﹣2=0;②原式=4+[18﹣(﹣6)]÷4=4+24÷4=4+6=10.考点卡片1.有理数的乘法(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同零相乘,都得0.(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0.(4)方法指引:①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.2.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,即:a÷b=a•(b ≠0)(2)方法指引:(1)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.(2)有理数的除法要分情况灵活选择法则,若是整数与整数相除一般采用“同号得正,异号得负,并把绝对值相除”.如果有了分数,则采用“除以一个不等于0的数,等于乘这个数的倒数”,再约分.乘除混合运算时一定注意两个原则:①变除为乘,②从左到右.3.有理数的乘方(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.a n读作a的n次方.(将a n看作是a 的n次方的结果时,也可以读作a的n次幂.)(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.(3)方法指引:①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.4.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.。