大学物理光电效应(1)
普朗克常量测量(光电效应)

姓名:; 学号; 班级 ;教师________;信箱号:______ 预约时间:第_____周、星期_____、第_____~ _____节; 座位号:_______《大学物理实验》报告一、实验名称 光电效应测定普朗克常量二、实验目的(1) 了解光电效应的规律,加深对光的量子性的理解.(2) 验证爱因斯坦光电效应方程,求普朗克常量 h.(3) 测定光电管的伏安特性曲线.三、实验原理 (基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材)当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电效应,逸出的电子称为光电子。
光电效应实验原理如图1所示。
其中S 为真空光电管,K 为阴极,A 为阳极。
当无光照射阴极时,由于阳极与阴极是断路,所以检流计G 中无电流流过,当用一波长比较短的单色光照射到阴极K 上时,形成光电流,光电流随加速电位差U 变化的伏安特性曲线如图2所示。
图1 光电效应实验原理图 图2 光电管的伏安特性曲线1. 光电流与入射光强度的关系光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后,光电流达到饱和值,饱和电流与光强成正比2.光电子的初动能与入射光频率之间的关系预习操作 实验报告 总分 教师签字光电子从阴极逸出时,具有初动能。
当U=U A-U K为负值时,光电子逆着电场力方向由K极向A极运动,随着U的增大,光电流迅速减小,当光电流为零,此时的电压的绝对值称为遏止电位差U a.在减速电压下,当U=U a时,光电子不再能达到A极,光电流为零。
所以电子的初动能等于它克服电场力所作的功。
即根据爱因斯坦关于光的本性的假设,光是一种微粒,即为光子。
每一光子的能量为,其中h为普朗克常量,v为光波的频率。
所以不同频率的光波对应光子的能量不同。
光电子吸收了光子的能量h v之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子初动能。
光电效应

图1 实验原理图 光电效应摘要:电效应是指一定频率的光照射在某些金属表面上使电子从金属表面逸出的现象。
本文介绍了光电效应的基本原理和三种测量截止电压的方法,用“减速电位法”测量光电子的动能来实验验证爱因斯坦光电方程并用零电流法测量了普朗克常量。
关键词:光电效应、普朗克常量、截止电压一、光电效应原理光电效应是指一定频率的光照射在金属表面时会有电子从金属表面逸出的现象。
基本的实验事实为:(1)饱和光电流与光强成正比;(2)光电效应存在一个域频率v 0(截止频率),当入射光的频率低于域频率时,不论光的强度如何,都没有光电效应产生;(3)光电子的动能与光强无关,但与入射光的频率成线性关系;(4)光电效应是“瞬时”的,当入射光的频率大于域频率时,一经光照射,立刻产生光电子[2]。
按照爱因斯坦的光量子理论,光能不是分布在波阵面上,它和电磁波理论所想象的不一样,光的能量集中在光子(光量子)的粒子上。
如果光子的频率为ν,那么它所具有的能量E 则为hν,其中h 为普朗克常数。
当光照在某些金属表面上,如果其所获得能量大于金属的逸出功的话,那么可以使电子从金属表面逸出,这种现象称为光电效应,所产生的电子为光电子。
当光子照射到金属表面上时,一次为金属中的电子全部吸收,而无需积累能量的时间。
电子把能量一部分用来克服金属表面对它的吸引力,余下就变为电子离开金属表面后的动能。
按照能量守恒原理,爱因斯坦提出了著名的光电效应方程:hν=12mV m 2+A (1)式中12mV m 2为光电子逸出金属表面的最大初动能, m 为电子的质量,V m 为光电子逸出金属表面的初速度,ν为光电子的频率,A 为光照射的金属材料的逸出功。
二、普朗克常数由该式可见,射到金属表面的光的频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零。
此时有关系:12mV m 2=eU a (2)当光子的能量hν0<A 时,电子不能脱离金属。
大学物理教程112 光电效应 康普顿散射

用于弱光电信号的放大——可将光电流放大数 百万倍。
第11章 量子光学基础
11.2 光电效应 康普顿散射
3 光的波粒二象性
• 光的干涉和衍射现象是光的波动性的直接证据,光电效应 又说明了光具有粒子行为。这就是说,在某些情况下光突
出显示出波动性,而在另一些情况下则突出显示出粒子性 ,将这种现象称为光的波粒二象性。
1 v 1 v2
c
c2
v c 不可能!
自由电子不可能吸收光子,只能散射光子。
第11章 量子光学基础
11.2 光电效应 康普顿散射
例 已知入射波长为0。
(1)求在 方向观测到的散射光波长
(2)计算相应康普顿散射反冲电子的动量与动能。
解:在 方向观测到的散射光波长的增量为
电子逸出功、光电子的动能、和光子的能量满足关
系:
Ephoton
1 mv2 2
A
其中Ephoton为吸收的电磁波能量
第11章 量子光学基础
11.2 光电效应 康普顿散射
1 经典物理学所遇到的困难
Ephoton
1 2
mv2
A
按照光的经典电磁理论:光波的强度与频率无关,电 子吸收的能量也与频率无关,不存在截止频率!
11.2 光电效应 康普顿散射
3 康普顿效应的理论解释
1) 定性解释
康普顿认为:X光的散射 应是光子与原子内层和外 层电子的碰撞的结果。
• X射线光子与原子“内层电子”的弹性碰撞 内层电子与核结合较为紧密(keV),他认为碰撞实际上 可以看作是发生在光子与质量很大的整个原子间的碰 撞——光子基本上不失去能量——保持原性质不变(波 长不变)。
光电效应的研究(大学近代物理实验)

3. 测普朗克常量
将“电压”选择按键置于-2V _ +2V档, “电流量程”选择在10-11A档并重新调零。将直径 为4mm的光阑及波长为365.0nm的滤光片插在光电 管暗箱光输入口,调节电压UAK ,使得光电流I为 零,此时测试仪中显示的电压值即可认为是该入 射光频率对应的截止电压(零电流法)。重复测 量。 依次更换其余四个滤光片,测出各自对应的截 止电压。
数据处理:求h
用线性回归法求U0~v直线的斜率 逐差法求k 作图法求k
2. 测光电管的伏安特性曲线(I~UAK曲线)
将“电压”选择按键置于-2V_+30V档,将“电 流量程”选择开关置于10-11A,将直径为2mm的 光阑及波长435.8nm的滤光片插在光电管暗箱光 输入口上 (1)从截止电压开始由低到高调节电压,记录对应 电压值。 (2)电压为30V时,电流量程放至10-10A ,记录不 同光阑下电流值 (3)换上直径为4mm的光阑,重复步骤(1)(2)。
用波长较短的单色光照 射阴极时,形成光电流,光 电流随加速电势差U变化的 伏安特性曲线如右图。 光电流很小,实验干扰 电流有:暗电流、本底电流、 反向电流。 由于上述干扰存在,实 验确定Us可用拐点法、零电 流法、补偿法。
实验内容
1、测试前准备: (1) 盖上光电管暗箱和汞灯的遮光盖,将光电管与 汞灯距离调整并保持在40cm,接通测试仪及汞灯 电源,预热约20min。 (注意:汞灯一旦开启,不要随意关闭) (2)测试仪调零:盖上光电管暗箱和汞灯的遮光盖, 选择适宜电压电流后,旋转“电流 调零” 旋钮 使“电流表”指示为零。 (注意:每次调换“电流量程”,都应重新调 零)
光电效应的研究
学号 姓名
实验目的
(1)了解光的量子性,光电效应的规律,深 入理解光的量子性。 (2)测量光电管的伏安特性曲线,找出不同 光频率下的截止电压。 (3)验证爱因斯坦方程,并求出普朗克常量。
大学物理实验光电效应

光电效应当光束照射到某些金属表面上时,会有电子从金属表面即刻逸出,这种现象称为光电效应”。
1905年爱因斯坦圆满地解释了光电效应的实验现象,使人们进一步认识到光的波粒二象性的本质,促进了光的量子理论的建立和近代物理学的发展,爱因斯坦因此获得了1921年的诺贝尔奖。
现在利用光电效应制成的各种光电器件(如光电管、光电倍增管、夜视仪等)已经被广泛应用于工农业生产、科研和国防等领域。
[实验目的]1. 加深对光的量子性的认识;2. 验证爱因斯坦方程,测定普朗克常数;3•测定光电管的伏安特性曲线。
[实验原理]当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应。
所产生的电子,称为光电子。
根据爱因斯坦的光电效应方程有2h v1/2 mv m2+ W (1)其中V为光的频率,h为普朗克常数口和V m是光电子的质量和最大速度,W%电子摆脱金属表面的约束所需要的逸出功。
按照爱因斯坦的光量子理论:频率为V勺光子具有能量h v当金属中的电子吸收一个频率为v 的光子时,便获得这个光子的全部能量。
如果光子的能量h大于电子摆脱金属表面的约束所需要的逸出功W,电子就会从金属中逸出,1/2mv m是光电子逸出表面后所具有的最大动能;光子能量h V小于W时,电子不能逸出金属表面,因而没有光电效应产生。
能产生光电效应的入射光最低频率v,称为光电效应的截止(或极限)频率。
由方程(1)可得v o=W/h (2)不同的金属材料有不同的逸出功,因而v也是不同的。
利用光电管可以进行研究光电效应规律、测量普朗克常数的实验,实验原理可参考图1。
图中K为光电管的阴极,A为阳极,微安表用于测量微小的光电流,电压表用于测量光电管两极间的电压丘为电源,R提供的分压可以改变光电管两极间的电势差。
单色光照射到光电管的阴极K上产生光电效应时,逸出的光电子在电场的作用下由阴极向阳极运动,并且在回路中形成光电流。
当阳极A电势为正,阴极K电势为负时,光电子被加速。
南昌大学物理实验报告光电效应

南昌大学物理实验报告姓名:李小龙学号:5710116068学院:材料科学与工程学院班级:材料162实验时间:第一周指导老师:张德建一、实验名称:光电效应二、实验目的:1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。
三、实验仪器:光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪四、实验原理:1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。
为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为γ的光波,每个光子的能量为E=hμ,其中为普朗克常数。
按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。
爱因斯坦提出了著名的光电方程: hν=12mv2+w式中,ν为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,W为被光线照射的金属材料的逸出功,1/2mv2 为从金属逸出的光电子的最大初动能。
由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。
这个相对于阴极为负值的阳极电位0U被称为光电效应的截止电压。
显然,有e u0-1/2m v2=0 (2)代入上式即有hν=eu0+ w (3)由上式可知,若光电子能量h+ν<W,则不能产生光电子。
产生光电效应的最低频率是ν0=W/h,通常称为光电效应的截止频率。
不同材料有不同的逸出功,因而ν0也不同。
由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。
大学物理《光电效应》精品课件

在一定频率的光照射下,电子从金属或金属 化合物表面逸出的现象称为光电效应,逸出的 电子称为光电子。由光电子形成的电流叫光电 流,使电子逸出某种金属表面所需的功称为该 种金属的逸出功。
•外光电效应
由于金属表面的电子吸收外界的光子,克服金属的束缚而逸出金属表面 的现象。
量子”理论的正确。
实验内容
1、测量I-U伏安特性曲线(3650A、4047A) 先测3650A的伏安特性曲线 顺时针旋转“电压调节”旋钮,使电压由-3V逐 渐升高到30V,观察光电流的变化(每隔1V记一 个电流值),记下一组I-U值,然后再将电压从 30V降到-3V。换上4047A的滤色片,再测一遍。 2、测量五个光频率的抬头电压 电压由-3V升高到6V,间隔1V测一个点。当电流 开始变化(急剧变化)时细测几个点(间隔0.1V 或0.2V)。电流起始点所对应的电压值为反向遏 止电压,即抬头电压。
光子的能量和频率成正比:
E h
h 6.631034 J·s
爱因斯坦对光电效应的解释(1905年)
光束由光子构成,频率为v的光束,光子能量为 E h
当光子照到金属表面时,其能量一次为金属中的电子全部吸收, 而不需积累能量的时间。
电子把这能量的一部分用来克服金属表面对它的束缚而作功,余 下的就成为电子离开金属表面后的动能。
和值;对于不同的光强,饱和电流与光强成正比。
(3)当加反向电压时,存在遏止电压,遏止电压的大小反映
光电子初动能的大小。截止电压U0 与入射光频率具有线性关
系。
E k max
1 2
mv
2
e|
U0
|
(4)光电效应是瞬时效应。当光照射到金属表面时, 几乎立即就有光电子逸出,不超过10–9秒。
大学物理 光电效应详解

O P
Q S
物理学
第五版
15-2
光电效应
4. 在光电效应实验中,测得某金属的遏止电 压|Ua|与入射光频率的关系曲线如图所示, 由此可知该金属的红限频率=___________Hz; 逸出功 =___________eV.
物理学
第五版
15-2 光电效应在近代技术中的应用 光控继电器、自动控制、
物理学
第五版
15-2
光电效应
(3)
h 的测定
(1)
U 0 k U b eU 0 ke eU b
1 m 2
2
遏止电势差和入射光 频率的关系
Uo
h W (2)
比较(1)、(2)
W eUb ( h 0 )
0
Ub
U o h ke e
物理学
第五版
光电效应
三
自动计数、自动报警等.
光控继电器示意图 光 放大器
接控件机构
光电倍增管
物理学
第五版
15-2 光子的能量、质量和动量
m0 v 1 2 c
2
光电效应
四
m
由于光子速度恒为c,所以
光子的“静止质量”为零.
光子能量:
E h
E h h 光子的动量: p c c
物理学
第五版
逸出功与 材料有关
对同一种金属, 一定, W
Ek ,与光强无关,
由 eU o Ek 知:遏止电势差 U o 与入射光频率具有 线性关系,与光强无关。 U k U o b
几种金属的逸出功
金属 钠 铝 锌 4.31 铜 银 铂 6.35
W / eV
南昌大学物理实验报告光电效应

南昌大学物理实验报告姓名:李小龙学号:5710116068学院:材料科学与工程学院班级:材料162实验时间:第一周指导老师:张德建一、实验名称:光电效应二、实验目的:1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。
三、实验仪器:光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪四、实验原理:1、光电效应与爱因斯坦方程用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。
为了解释光电效应现象,爱因斯坦提出了“光量子”的概念,认为对于频率为γ的光波,每个光子的能量为E=hμ,其中为普朗克常数。
按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。
爱因斯坦提出了著名的光电方程: hν=12mv2+w式中,ν为入射光的频率,m为电子的质量,v为光电子逸出金属表面的初速度,W为被光线照射的金属材料的逸出功,1/2mv2 为从金属逸出的光电子的最大初动能。
由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零。
这个相对于阴极为负值的阳极电位0U被称为光电效应的截止电压。
显然,有e u0-1/2m v2=0 (2)代入上式即有hν=eu0+ w (3)由上式可知,若光电子能量h+ν<W,则不能产生光电子。
产生光电效应的最低频率是ν0=W/h,通常称为光电效应的截止频率。
不同材料有不同的逸出功,因而ν0也不同。
由于光的强弱决定于光量子的数量,所以光电流与入射光的强度成正比。
高考物理光电效应

010.07-08学年清华大学附中高考模拟试题 7
7.a、b两种色光以相同的入射角从某种介质射向真 空,光路如图所示,则以下描述错误的是( A ) A.a光的频率大于b光的频率 B.a光在真空中的波长大于b光在真空中的波长 C.a光在介质中的传播速度大于 b光在介质中的传 播速度 a D.如果a光能使某种金属 b 真空 发生光电效应,b光也一定能 介质
使该金属发生光电效应
065.08年南京一中第三次模拟13(2) 13. (2) (3-5模块 )( 3分)如图所示是使用光电管的 原理图。当频率为 的可见光照射到阴极K上时,电 流表中有电流通过。如果将变阻器的滑动端 P由A向 B滑动,通过电流表的电流强度将会 _______( 减小 填“增 加”、“减小”或“不变”)。当电流表电流刚减小 到零时,电压表的读数为 U ,则光电子的最大初动 eU 能为 ________(已知电子电量为e)。 如果不改变入射光的频率,而 增加入射光的强度,则光电子 K G V 的最大初动能将_________( 填 不变 P “增加”、“减小”或“不变”) 。 B A S
光 电 效 应
1.光电效应现象 光照使物体发射电子的现象叫光电效应现象;所发射的 电子叫光电子;光电子定向移动所形成的电流叫光电流. 2. 光电效应现象的实验规律
( 1)对于任何一种金属,入射光的频率必须大于某一 极限频率才能产生光电效应,低于这个极限频率,无论强 度如何,无论照射时间多长,也不能产生光电效应; (2)在单位时间里从金属极板中发射出的光电子数 跟入射光的强度成正比; (3)发射出的光电子的最大初动能与入射光强度无 关,只随入射光频率的增大而增大; (4)只要入射光的频率高于金属极板的极限频率, 无论其强度如何,光电子的产生都几乎是瞬时的,不超 过10-9s.
大学物理实验:光电效应

当高能光子(高频率光)照射在物质上时 ,物质可以吸收一个光子并释放一个正离 子和多个电子的现象。
光电效应的应用
光电倍增管
利用光电效应原理制成的器件, 可以将微弱的光信号转换成电信 号,广泛应用于高能物理、天文
学和医学等领域。
太阳能电池
利用光电效应将太阳能转换成电能, 是太阳能利用的重要方式之一。
光电器件
THANKS
感谢观看
为了更好地研究光电效应的规律,可 以尝试改变光源的波长、光强等条件, 观察其对光电效应的影响。
07
参考文献
参考文献
光电效应实验原理
详细介绍了光电效应的基本原理,包括光子、电子、 能量转换等概念。
实验操作步骤
提供了实验的具体操作步骤,包括实验设备、实验操 作流程、数据记录等。
实验数据处理
介绍了如何处理实验数据,包括数据整理、图表绘制、 误差分析等。
普朗克效应
里德堡效应
当光照射在物质上时,物质吸收光的能量 并释放电子,电子的能量与光的频率有关 ,与光的强度无关。
Hale Waihona Puke 当高能光子(高频率光)照射在物质上时 ,物质可以吸收一个光子并释放多个电子 的现象。
光电子发射
光离子化
当光照射在物质上时,物质吸收光的能量 并释放电子,电子的能量与光的频率和物 质的功函数有关。
2
光电效应的应用广泛,如太阳能电池、光电倍增 管等。
3
光电效应的发现和研究对现代物理学的发展产生 了深远的影响。
02
实验原理
光电效应概念
光电效应
当光照射在物质上时,物质可以 吸收光的能量并释放电子的现象 。
光电效应的发现
19世纪末,德国物理学家赫兹和 勒纳德在实验中发现了光电效应 。
大学物理实验报告——光电效应_1(nh5

大学物理实验报告
3. 实验原理(请用自己的语言简明扼要地叙述,注意原理图需要画出,测试公式需要写明)
光电效应的实验示意图如图所示,无光照射阴极时,由于阳极和阴极是断路的,所以G中无电流通过.用光照射阴极时,由于阴极释放出电子而形成阴极光电流(简称阴极电流).加速电压Ux越大,阴极电流越大,当U增加到一定数值后,阴极电流不再增大而达到某一饱和值IH,IH的大小和照射光的强度成正比。
加速电位差U变为负值时,阴极电流会迅速减少,当加速电压Uxs负到一定数值时,阴极电流变为0,与此对应的电压称为遏止电压.这一电压用Ua来表示. Ua的大小与光的强度无关,而是随着照射光的频率的增大而增大.
5. 实验记录(注意:单位、有效数字、列表)请粘贴“原始数据模板”照片(有教师盖章)
以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩。
大学物理实验光电效应实验报告

大学物理实验光电效应实验报告实验报告
大学物理实验光电效应实验报告
实验目的:
1.了解光电效应的基本原理
2.通过实验可视化效应的产生与电子动能的关系
实验原理:
在实验过程中,我们使用光电效应来分析实验。
光电效应回答
了以下问题:当金属表面照射一个光子时,会发生什么?光电效
应证明了,光子的能量可以传递到金属中的原子或分子中,并损
失自己的能量,使原子或分子中的电子从能级跃迁到另一个能级。
如果电子具有足够的能量,它将被释放出来,并参与金属导电过程,以产生电流。
实验材料:
1. 物理实验室
2. 光电效应实验箱
3. 光源
4. 电压电流模拟器
5. 物理仪器计时器
实验步骤:
1. 连接电路,插上光源并调节电流设定
2. 选择不同的光强度和波长进行照射
3. 通过计时器测量电子飞离金属表面的时间
4. 记录相应的电压和电流成像
实验结果:
1. 随着光的增强,电子飞离金属的时间减少
2. 随着波长缩短,电子飞离金属的时间减少
3. 如果升压器电压过高,会导致光电效应两边的电流变得相等
总结:
本次实验在亲眼观察光学效应的同时,也充分展示了电子运动过程产生的电流。
本次实验彰显了这个过程与量子物理学之间的紧密联系,并展示了光电效应的应用与可能的未来发展。
大学物理15.2光电效应

• 电子波动性的理论 研究
1、单位时间内从阴极逸出 的光电子数与入射光的强
I
饱 和
Is2
度成正比。 2、存在遏止电势差
截 止
电 流
I s1
电
压
光强较强 光强较弱
U
Ua
O
3 截止频率:对于给定的金属,当照射光频率小于金属 的红限频率,则无论光的强度如何,都不会产生光电效 应。
红限频率:能够产生光电效应最小的频率
4 光电效应瞬时响应性质
实验发现,无论光强如何微弱,从光照射到光 电子出以光速 c 运动的微粒流,称为光量子(光子)
光子的能量 h
金属中的自由电子吸收一个光子能量h以后,一 部分用于电子从金属表面逸出所需的逸出功A ,一
部分转化为光电子的动能。
h
1m 2
2 m
A
爱因斯坦光电效应方程
12.2 0 A
2meV
V
0
V 100V 1.22 A
E eV
例题
• 波长为450nm的单色光入射到逸出功为 3.7×10^(-19)J的钠表面上,求
• (1)入射光子的能量 • (2)逸出电子的最大动能 • (3)钠的红限频率 • (4)入射光的动量
(1)入射光子能量 h h c 4.4 10 19 2.8(eV )
(2)逸出子的最大能量h A 2.8
(3)极限
=A min h
5.6 1014 Hz
(4) p h 1.5 10 27 (kg * m / s)
3.7 10 19 1.6 10 19
0.5(eV )
1921诺贝尔物理学奖
• A.爱因斯坦 • 对现物理方面的贡
大学物理12-2光电效应

就连量子物理创始人普朗克也认为太过分 了。他在1907年给爱因斯坦的信中写到: “我为基本量子(光量 子)所寻找的不是它在 真空中的意义,而是它 在吸收和发射地方的意 义,并且我认为真空中 过程已由麦克斯韦方程 作了精辟的描述”。直 到1913年他还对光子持 否定态度。
§2.光电效应光的波粒二象性 / 四、爱因斯坦方程
I Im2 I m1
光强大 光强小
I
大
小
U0 o
U
不变
§2.光电效应光的波粒二象性 / 一、实验规律
o
U
光强不变
② 截止频率0 ----红限 •当入射光频率 > 0 时,电子才能逸出金属表面;
ቤተ መጻሕፍቲ ባይዱ
•当入射光频率 < 0 时,无论光强多大也无电
子逸出金属表面。
| U0|
③ 当 > 0 时,
Cs K Cu
§2.光电效应光的波粒二象性 / 一、实验规律 金
1. 光电效应实验 光线经石英窗照
W 石英窗
在阴极上,便有电子 阳极 A 逸出----光电子。
K 阴极
光电子在电场作用下 形成光电流。
将换向开关反接,电 场反向,则光电子离 开阴极后将受反向电 场阻碍作用。
G V
§2.光电效应光的波粒二象性 / 一、实验规律
0
6.3 1.6 10 19 6.6 10 34
9.6 1014 Hz
§2.光电效应光的波粒二象性 / 四、爱因斯坦方程
例2:钾的截止频率0 =4.621014Hz,以波 长=435.8nm的光照射,求钾放出光电子
的初速度。
解:
Ek0 W
h
1 2
mV 2
h 0
大学物理仿真实验--光电效应资料

大学物理仿真实验--光电效应实验名称:光电效应实验专业班级:核工程实验日期: 2012 年 5 月 25 日姓名:学号:光电效应实验简介:当光照在物体上时,光的能量仅部分的以热的形式为物体吸收,而另一部分则转换为物体中某些电子的能量,使电子溢出物体表面,这种效应称为光电效应,溢出的电子称为光电子。
根据爱因斯坦理论,每个光子的能量为其中h为普朗克常数,是近代量子物理中的重要常数。
而本实验就是利用光电效应法来测得普朗克常数。
一.实验目的:1.了解光电效应的基本规律。
2. 验证爱因斯坦光电方程。
3.熟悉普朗克常数测定仪的操作比并用光电效应方法测量普朗克常数。
二.实验仪器:包括GD-5光电管、单色仪、水银灯、检流计、直流电源、直流电压表、滑线变阻器、临界电阻箱。
三.实验步骤:1.连接电路根据测量光电管正向特性的电路图将实验电路接好;根据测量光电管反向特性的电路图将实验电路接好。
线路连接好后,鼠标右键单击,弹出主菜单,选中接线检查。
若连线正确,就可以正式开始实验,否则需要继续连线。
2.调整仪器通过接线检查后,双击各仪器弹出其放大窗口,调整该仪器。
(1)检流计的调零。
(2)临界电阻箱的调节。
(3)调节单色仪,得到合适波长的单色光,实验中将用到5770埃、5461埃、4358埃、4047埃四种波长的单色光。
四.测量内容及数据处理:(1)分别对四种波长的光进行实验,得到光电管在各种波长的单色光照射下的正向、反向电压特性,一共八组数据,记录在表格中。
5770埃正向伏安特性:5770埃反向伏安特性:5461埃正向伏安特性:5461埃反向伏安特性:4358埃正向伏安特性:4358埃反向伏安特性:4047埃正向伏安特性:4047反向伏安特性:伏安特性曲线图:5770埃5461埃:4358埃:4047埃:遏止电位差值。
根据此曲线确定遏止电位差值,计算普朗克常数值。
元线性回归法计算光电管阴极材料的红限值,逸出功及普朗克常数值。
光电效应的基本原理

光电效应的基本原理光电效应是一个重要的物理现象,它的基本原理是当光照射到物质表面时,会使得物质表面发射电子。
这个过程的实现依赖于光子与物质电子的相互作用。
在本文中,我们将详细介绍光电效应的基本原理。
1.性质和特点光电效应的主要特点是照射到物质表面的光子可以使物质表面发射电子。
这个效应不仅发生在金属中,还可以在半导体和绝缘体等非金属物质中发生。
在正常情况下,物质表面上的电子处于束缚状态,必须接收足够的能量才能获得足够的运动能量克服束缚能而逃离物质表面。
但当光子能量达到或超过物质的逸出功时,光子与物质电子之间发生的相互作用将导致电子被拍出,这就是光电效应。
根据光子的能量大小,光电效应有三种形式。
首先是经典的热发射,该过程涉及到高温下的金属,比如电子枪或阴极,通过加热与挥发的方式将电子从金属表面释放。
其次是场致发射,该过程涉及到光电子学器件,比如光阴极和电子倍增管,其中在这些设备中,电场会促进电子逸出,而不是热量。
最后是光电发射,该过程涉及到光子的照射,这种过程是由普朗克提出的,称为某一频率下的“光量子”,只有当光子的能量大于材料的逸出功时才能发生。
2.实验条件(1)光子的能量大于材料逸出功光子的能量必须大于物质的逸出功,才能触发光电效应。
关于逸出功的概念,它是一个物质发射电子所需要的最小能量,它与物质的种类、晶体结构、晶面取向、表面状态等因素都有关系。
普通的金属逸出功大约在几个电子伏范围内。
(2)照射光子能量与材料的电离能成正比第二个条件是,选定合适的材料表面并照射特定能量的光子,其能量必须在能够刚好与材料的电离能相等的范围内。
在这个范围内,光子的能量可以被完全吸收,这可以促使电子从原子或分子中被拍出。
如果光子能量不足,电子不能逃逸,如果光子能量过剩,这些能量将失去。
(3)照射光子必须足够强为了触发光电效应,照射到物质表面的光子必须足够强。
这意味着我们需要调整光的强度和频率,确保光的能量满足条件1和条件2,才能使光电效应发生。
大学物理实验:光电效应

光电效应现象的原理
量子解释(爱因斯坦)
1 2
m
2 m
Eh
电子逸出动能
12mm2 hA
光子能量
金属表面电子逸出功
轨道能 脱出功
光电效应现象的原理
量子解释(爱因斯坦)
光电子的最大初动能
12mm2 hA
爱因斯坦光 电效应方程
入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴
极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电
则普朗克常数 hke
由该直线与横轴的交点,可求出“红限”频率v 0 。这就是密 立根验证爱因斯坦光电效应方程的主要实验思想。
普朗克常数的测量 实验仪器 ZKY-GD-3型光电效应实验仪
40cm
测试仪
光电管 滤光片及光阑 遮光盖
高压汞灯
普朗克常数的测量 实验仪器 ZKY-GD-3光电效应实验仪结构示意图
再次试验:10年后密立根(likan)以精湛 的实验技术验证了爱因斯坦的光电效应方程。 获得成就:爱因斯坦和密立根主要因光电效 应方面的杰出贡献分别荣获1921年和1923年 的诺贝尔物理学奖。
光电效应的发现和解释极大推动了量子力学的发展! 推动了现代科学技术的快速发展! 使得人类生活发生极大的变化!
➢数换据上记直径录4表m格m及二8mm的光阑,重复上述测量步骤。
577nm
UAK(V)
光阑2mm I(×10-12)
577nm 光阑4mm
577.0nm 光阑8mm
UAK(V) I(×10-12) UAK(V) I(×10-12)
普朗克常数的测量
3.验证光电管的饱和光电流与 入射光强的正比关系
➢ 将“电流量程”选择开关置于10-11A档,重新调节测试仪零 点。将电压调到25V,在同一谱线,在同一入射距离下,记录 光阑分别为2mm,4mm,8mm时对应的电流值。