高考数学 数列通项公式求解方法总结
求数列通项公式方法大全
求数列通项公式的方法大全一、公式法(定义法)根据等差数列、等比数列的定义求通项例题0 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
【高考数学】数列的证明和求数列通项公式
数列的证明和求数列通项公式数列的通项公式在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。
求通项公式也是学习数列时的一个难点。
由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。
【基础知识整合】一、等差(等比)数列的证明常用方法: 1.定义法判断一个数列是等差数列,常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义;在等比数列中一样有:①2n ≥时,有1nn a q a -==(常数q 0≠);②n *∈N 时,有1n na q a +==(常数q 0≠). 2.中项法212{}n n n n a a a a +++=⇔是等差数列,221(0)n n n n a a a a ++=≠{}n a ⇔是等比数列,这是证明数列{}n a 为等差(等比)数列的另一种主要方法 二、求数列通项公式的常用方法: 1. 公式法、利用11(1)(2)n nn S n S S n a -=⎧=⎨-≥⎩2. 求差(商)法:类似于 “12211125222n n a a a n +++=+ , 12321n n a a a a n +=+”等条件时,使用求差(商)法求解;3. 累加法:类似于“()1n n a a f n +-=”的条件时,使用累加法求解()11n n a a f n --=-[来源:学*科*网]()122n n a a f n ---=- ()233n n a a f n ---=-……()211a a f -=以上式子左右分别相加,得()()()()11231n a a f n f n f n f -=-+-+-⋅⋅⋅⋅⋅⋅ 所以得到()()()()11231n a f n f n f n f a =-+-+-⋅⋅⋅⋅⋅⋅⋅++ 4. 累乘法:类似于“()1n na f n a +=”的条件时,使用累乘法求解; ()()()()324112311231nn n a a a a a a f f f f n a a a a -==-5. 倒数法:类似于“1nn n ka a a k+=+”的条件时,使用倒数法求解 如:1121,2nn n a a a a +==+,求n a由已知得:1211122n n n n a a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+,∴21n a n =+ 6. 构造法:[来源:学科网ZXXK]比如:()1,0,1,0n n a ka d k d k k d -=+≠≠≠为常数,[来源:学科网ZXXK]可转化为等比数列,设()()111n n n n a c k a c a ka k c --+=+⇒=+- 令()1k c d -=,∴1d c k =-,∴1n d a k ⎧⎫+⎨⎬-⎩⎭是首项为11d a k +-,k 为公比的等比数列 ∴1111n n d d a a k k k -⎛⎫+=+ ⎪--⎝⎭,1111n n d d a a k k k -⎛⎫=+- ⎪--⎝⎭∴ 类型一 等差(等比)数列的证明 【典例1】 【2016年高考新课标Ⅲ(17)】已知数列{}n a 错误!未找到引用源。
数列通项公式的求法
法,且在解决实际问题时,需要根据不同的情况选择不同的方法。
7
cn=n2+1
即可得此数列的通项公式为 an
=
2 • n +1 n2 +1
由以上例题可知,根据所给数列的前几项求通项公式时,需要 仔细观察分析,抓住以下几方面的特征,并对此进行归纳、联想, 具体如下:
1)分式中分子、分母的特征; 2)相邻项的变化特征; 3)拆项后的特征; 4)各项符号的特征等。 但是,根据数列的前几项写出数列的一个通项公式是利用不完 全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出 的结果是不可靠的,要注意代值检验,对于正负符号变化,可用 (-1)n或(-1)n+1来调整。 二、由an与sn的关系求an 例2:已知数列{an}的前n项和为Sn=n2-2 · n+2,求数列{an} 的通项公式an. 解:当n=1时,a1=S1=1 当n≥2时,an=Sn-Sn-1=2 · n-3.且n=1时,a1=-1与a1=1矛盾。
…
∴ an
=
8·1 9
−
1 1 0n
(3)将数列统一为,, ,,…,对于分子3,5,7,9,…是序列号的 2倍加1,可得分子的通项公式为bn=2 · n+1,对于分母2,5,10,17,…
联 想 到 数 列1,4,9,16, …即 数 列{n2}, 可 得 分 母 的 通 项 公 式 为
bn+1 bn
=
an+1 + 3 an + 3
=2
.
∴{bn}是以4为首项,2为公比的等比数列。∴bn=4×2n-1=2n+1 即:an=2n+1 a公n+比1=b由为·b上a的n+可等d知变比,形数形得列如a,n+a1利n++x1=用=bb它··(a可na+n求d+(x出)b,a≠n。其1)中,常x用= 构bd−造1等,比则数{列an+法x}。是对 数列求通项的方法有很多种,以上仅是几种常见的求通项的方
高考数学难点突破:数列通项公式推导技巧
高考数学难点突破:数列通项公式推导技巧在高考数学中,数列一直是重点和难点内容,而数列通项公式的推导更是重中之重。
掌握了数列通项公式的推导技巧,就相当于握住了解决数列问题的关键钥匙。
接下来,让我们一起深入探讨数列通项公式的推导技巧。
一、等差数列通项公式的推导等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
这个常数称为等差数列的公差,通常用字母 d 表示。
假设等差数列的首项为\(a_1\),公差为 d,那么第二项就是\(a_2 = a_1 + d\),第三项\(a_3 = a_2 + d = a_1 + 2d\),第四项\(a_4 = a_3 + d = a_1 + 3d\)……以此类推,我们可以发现第 n 项\(a_n = a_1 +(n 1)d\)。
通过这种逐步推导的方式,我们很容易理解等差数列通项公式的由来。
二、等比数列通项公式的推导等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
这个常数称为等比数列的公比,通常用字母 q 表示。
设等比数列的首项为\(a_1\),公比为 q,那么第二项\(a_2 =a_1q\),第三项\(a_3 = a_2q = a_1q^2\),第四项\(a_4 = a_3q =a_1q^3\)……依此类推,第 n 项\(a_n = a_1q^{n 1}\)。
理解这个推导过程,对于掌握等比数列的通项公式至关重要。
三、累加法推导通项公式对于形如\(a_{n + 1} a_n = f(n)\)的递推关系式,我们可以使用累加法来推导通项公式。
例如,已知\(a_{n + 1} a_n = 2n\),且\(a_1 = 1\)。
那么\(a_2 a_1 = 2×1\),\(a_3 a_2 = 2×2\),\(a_4 a_3 = 2×3\),……,\(a_n a_{n 1} = 2(n 1)\)。
将上述式子相加:\\begin{align}a_n a_1&= 2×1 + 2×2 + 2×3 +\cdots + 2(n 1)\\&= 2×(1 + 2 + 3 +\cdots +(n 1))\\&= 2×\frac{(n 1)n}{2}\\&= n(n 1)\end{align}\因为\(a_1 = 1\),所以\(a_n = n(n 1) + 1\)。
数列通项公式常见求法 (1)
数列通项公式的常见求法数列在高中数学中占有非常重要的地位,每年高考都会出现相关数列的方面的试题,一般分为小题和大题两种题型,而数列的通项公式的求法是常考的一个知识点,一般常出现在大题的第一小问中,所以掌握好数列通项公式的求法不但有利于我们掌握好数列知识,更有助于我们在高考中取得好的成绩。
下面本文将中学数学中相关数列通项公式的常见求法实行较为系统的总结,希望能对同学们有所协助。
一.公式法高中重点学了等差数列和等比数列,当题中已知数列是等差数列或等比数列,在求其通项公式时我们就能够直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。
1、等差数列公式 例1、(2011辽宁理)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式例2.(2011重庆理)设{}n a 是公比为正数的等比数列,12a =,324a a =+。
(Ⅰ)求{}n a 的通项公式解:I )设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得,即220q q --=,解得21q q ==-或(舍去),所以 2.q =所以{}n a 的通项为1*222().n n n a n N -=⋅=∈3、通用公式若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥-==-211n S S n S a n nn n 求解。
一般先求出a1=S1,若计算出的an 中当n=1适合时能够合并为一个关系式,若不适合则分段表达通项公式。
例3、已知数列}{n a 的前n 项和12-=n s n ,求}{n a 的通项公式。
高考数学-数列通项公式求解方法总结
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2nn a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的七种模型
一、高考数列求通项公式模型【简便记忆】二.高考数列求通项公式【详细解读】1.【归纳法】 适用于:列举法给出的数列模型即1234,a a a a ,,···; 【模型特征】:给出数列的前几项,通过归纳、猜想、找规律。
【求解方法】根据1(2)34⎧⎪⎪⎨⎪⎪⎩()相邻项的特征分式中分子、分母的特征()拆项后的特征()各项的序号与项之间的变与不变特征例1.根据数列前几项,写出下列各数列的一个通项公式。
(1)—1,7,—13,19,···; (2)0.8, 0.88,0.888,···; (3)115132961,,,,,248163264--,···; ●点评:该法属于不完全归纳法,仅用来解选择、填空题,对于大题,用此法还要用数学归纳法进行证明,另外求得的通项公式一定要代值检验,以防出错。
2.【累加法】 适用于:1()n n a a f n +=+模型(先累后求和) 【模型特征】:1()n n a a f n +、系数相同,作差,是关于n 的函数。
【求解方法】221()(()()-=()()()1()()(1)n n f n pn q f n pn qn r a a f n f n pq r f n n n +=+⇒⎧⎪=++⇒⎪⎪=+⇒⎨⎪⎪=⇒+⎪⎩一次型)等差求和二次型分组求和指数型等比求和分式型裂项求和化为例2. 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
(一次型) 答案:等差求和2n a n =例3. 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(指数型) 答案:等比求和31n n a n =+-练习1.已知数列{}n a 的首项为1,且写*12()n n a a n n N +=+∈出数列{}n a 的通项公式. (一次型)答案:等差求和21n a n n =-+练习2.已知数列}{n a 满足13a =,11(2)(1)n n a a n n n -=+≥-,求此数列的通项公式.答案:裂项求和12n a n=-3.【累乘法】 适用于: 1()n n a f n a += 模型(先累后求商)【模型特征】1()n n a a f n +、系数相同,作商,是关于n 分式型的函数。
31几种常见的数列的通项公式的求法
编号:31 数列的通项公式的求法数列的通项公式是数列的核心之一,它如同函数中的解析式一样,有解析式便可研究其性质等;而有了数列的通项公式便可求出任一项及前n 项和等,求数列的通项往往是解题的突破口、关键点,现将求数列通项公式的几种题目类型及方法总结如下。
一、知识梳理:求通项的常用方法:1、观察法:观察法就是观察数列特征,横向看各项之间的关系结构,纵向看各项与项数n 的内在联系,从而归纳出数列的通项公式。
2、知n S 求n a :可用公式 求解;如:n S =2n 1+;n S =2n a —2;n S =2(1)4n a +等3、公式法:直接利用等差或等比数列的定义求通项的方法;4、叠加法:递推公式为)(1n f a a n n +=+;如:21=a ,12n n a a n -=+,(或n n n a a 21+=-))2(≥n5、叠乘法:递推公式为1()n naf n a +=;如:11,a =且满足11n n na a n +=+6、构造法:直接求通项n a 较难求,可以通过整理变形等,从中构造出一个等差或等比数列;比如:形如1,n n a pa q +=+其中,p q 均是非零的实数,且1p ≠(若1p =,则是等差数列了)如:11a =,)2(,121≥+=-n a a n n7、待定系数法题型一:例1写出下面各数列的一个通项公式 (1)21,,1716,109,54…; (2)1,-,311,151,71,31-…; (3),3231,1615,87,43…; (4)21,203,2005,20007,…;(5)0.2,0.22,0.222,0.2222,…; (6)1,,67,51,45,31,23…题型二:由S n 求a n例2已知下列各数列{a n }的前n 项和S n 的公式,求{a n }的通项公式。
(1) S n =n n 522- (2)S n =10n +1;题型三:公式法例3:(1)在等差数列中13,4n a d a ==,求? (2)已知12a =,且有13n n a a -=+,求n a ?(3)等比数列{}n a 中1112,2n n a a a -==,求n a ?题型四:4.叠加法:例4、数列{a n }满足11=a ,12(1)n n a a n --=-, 求通项a n 。
(完整版)数列通项公式及其求和公式
一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。
常见数列通项的求法
常见数列通项的求法
数列的通项公式是数列的核心,它描述了数列中每一项与项数之间的规律。
求数列的通项公式是数列问题中的重要内容。
以下是几种常见的求数列通项公式的方法:
1.观察法:通过对数列的前几项进行观察,找出规律,从而得到
通项公式。
2.累加法:对于形如an=an−1+f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累加得到an。
3.累乘法:对于形如an=an−1×f(n)的递推关系,其中f(n)是一个与
n有关的函数,通过累乘得到an。
4.构造法:通过构造新数列,将原数列的递推关系式转化为新数
列的递推关系式,从而求出通项公式。
5.数学归纳法:对于一些与n有关的数列,通过数学归纳法证明
其通项公式。
6.等差数列通项公式:an=a1+(n−1)d,其中d是公差。
7.等比数列通项公式:an=a1×qn−1,其中q是公比。
8.裂项相消法:对于分式形式的递推关系,通过裂项相消法求出
通项公式。
9.特征根法:对于一些特定形式的递推关系,通过特征根法求出
通项公式。
以上是常见的求数列通项公式的方法,具体使用哪种方法需要根据题目给出的条件和递推关系式来确定。
高中数学求解数列通项公式常用方法总结
高中数学求解数列通项公式常用方法总结(共15种类型类型1(迭加法1112212212(212(log 1(n 1n nn n n n n n n a a f n n-++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a求,11=以上6种情况都要试着做一遍例1:已知数列{}n a满足11211,2n n a a a n n+=-=+,求n a。
解:由条件知:121111(11n n a a n n n n n n+-===-+++分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累加之,即21 32431((((n n a a a a a a a a--+-+-++-1111111(1(((223341n n=-+-+-++--所以111n a a n-=-111131, 1222n a a n n=∴=+-=-类型2(迭乘法11(=2n n n n a f n n a++⎧⎪=⎨⎪⎩,n a a求,11=例2:已知数列{}n a满足112,31n n n a a a n+==+,求n a。
解:由条件知11n n a n a n+=+,分别令1,2,3,,(1n n=-,代入上式得(1n-个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3(退一相减法递推公式为S n与a n的关系式。
(或(n n S f a=解法:这种类型一般利用11(1(2n n n S n a S S n-=⎧=⎨-≥⎩与11((n n n n n a S S f a f a--=-=-消去n S(2n≥或与1 ((2n n n S f S S n-=-≥消去n a进行求解。
常见题型:1、12++=n n S n,n a求(关系与n S n2、n n n a a S求,23+=(关系与n n a S3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a(n a n与例:已知数列{}n a前n项和214 2n n n S a-=--.(1求1n a+与n a的关系;(2求通项公式n a.解:(12142n n n S a-=--得:111142n n n S a++-=--于是112111((22n n n n n n S S a a++---=-+-所以1111111222n n n n n n n a a a a a+++-=-+⇒=+.类型3(构造法1 n 1n a pa q+=+(其中,p q均为常数,((10pq p-≠。
数列求通项的6种常用方法 高考数学
【点睛】易错点睛:裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.
5.若数列满足,,则满足不等式的最大正整数为( )
A.28 B.29 C.30 D.31
√
【详解】数列中,,当时,,则,整理得,即,而,即,因此数列是以为首项,公比为的等比数列,,则,由,知为奇数,此时是递增的,而,,所以正整数的最小值为13. 故选:
7.已知数列满足,(),则满足的 的最小取值为( )
A.5 B.6 C.7 D.8
【分析】由题意可得,即可得数列 是以4为首项,2为公比的等比数列,即可计算出数列 的通项公式,再解出不等式即可得解.
√
【详解】因为,所以,所以,又,所以数列 是以4为首项,2为公比的等比数列,所以,所以 由,得,即,解得 因为为正整数,所以的最小值为7.故选:
8.已知正项数列满足,则 ( )
A. B. C. D.
【分析】根据给定的递推公式,利用构造法探讨数列 的特性即可得解.
【详解】依题意,,则数列是以为公比的等比数列,因此,所以 故选:
2.已知数列的前项和为,,,,下列说法不正确的是( )
A. B. 为常数列C. D.
【分析】对条件进行转化得出 是常数列,进而解出 的通项公式,对选项逐一判断得出答案.
√
【详解】解:因为,所以,整理得,故,所以 是常数列,所以,即,故D选项正确.当时,,经检验时满足,故,对于A选项,由,知,故A选项正确,对于B选项,由,知,所以 为常数列,故B选项正确,对于C选项,由,知,故C选项错误,故选:
√
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列,通项公式方法,求前n项 和例题讲解和方法总结
的前n项和为
,
为等比数列,且
(Ⅰ)求数列
和 的通项公式; (Ⅱ)设 ,求数列 的前 项和 .
例2.已知数列的首项,,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)数列的前项和.
2.设数列 的前n项和为 , 为等比数列,且
(Ⅰ)求数列 和
的通项公式; (Ⅱ)设 ,求数列 的前 项和
. 三、分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适 当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其 合并即可. 2、已知数列的通项公式为,则它的前n项的和 3:求数列的前n项和。
数列求和练习
1、已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和. (1)求通项an及Sn; (2)设{bn-an}是首项为1,公差为3的等差数列,求{bn}的通项公式及 前n项和Tn.
3、已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,
则S13的值为( )
5、已知数列 是等差数列,且 , 是数列 的前
项和. (Ⅰ)求数列
的通项公式 及前 项和 ;
(Ⅱ) 若数列 满足 ,且 是数列 的前 项和,求 与 .
6. 设是正数组成的数列,其前n项和为 并且对于所有的自然数与2 的等差中项等于与2的等比中项. (1)求数列的通项公式; (2)令 求证:
7、已知数列 是等差数列, ;数列 的前n项和是 ,且 .
(1)公式法
①等差数列前n项和Sn=____________=________________,推导方 法:____________; ②等比数列前n项和Sn=推导方法:乘公比,错位相减法. ③常见数列的前n项和: a.1+2+3+…+n=________________; b.2+4+6+…+2n= _________________; c.1+3+5+…+(2n-1)=_____________;d. e.
数列通项公式的九种求法
数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
笔者总结出九种求解数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =, 即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=……………………①∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、累加法求形如1()n n a a f n --=(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。
例2.已知数列{a n}中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.三、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
论数列通向公式的求法
论数列通向公式的求法数列在理论上和实践中均有较高的价值,是培养学生观察能力、理解能力、逻辑思维能力的绝好载体,高考对数列知识的考察在二十世纪八十年代末发展到了极致,以后逐渐冷落,但最近几年又逐渐升温,随着与大学知识的接轨,竞赛题的释放,很多省市的高考数学卷都把数列题作为压轴题,而数列通向公式的求法又成为一个热点。
本文想总结一下在高中阶段,求数列的通项公式的常用方法和策略。
1.观察法观察法就是观察数列特征,找出各项共同构成规律,横向看各项间的关系结构,纵向看各项与项数n的内在联系,从而归纳出数列的通向公式,然后利用数学归纳法证明即可。
例1、在数列{},{}中且成等差数列,成等比数列()。
求及,由此猜测{},{}的通向公式,并证明你的结论。
解:有题设条件得,由此得,猜测用数学归纳法证明:(1)当n=1时,有以上知结论成立;(2)假设n=k时,结论成立;即,,那么当时,,所以当n=k+1时,结论也成立,由(1)(2),可知对一切正整数都成立。
点评:采用数学归纳法证明多是理科教学内容,较为容易,好掌握。
2.定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目。
例2、等差数列是递增数列,前n项和为,且a1,a3,a9成等比数列,。
求数列的通项公式.解:设数列公差为d(d>0)∵ a1,a3,a9成等比数列,3.利用公式求通项有些数列给出的前n项和与的关系式=,利用该式写出,两式做差,再利用导出与的递推式,从而求出。
例3.数列的前n项和为,=1,(n∈),求的通项公式。
解:由=1,=2,当n≥2时,==得=3,因此是首项为=2,q=3的等比数列。
故= (n≥2),而=1不满足该式所以=。
4.构造等比数列法原数列既不等差,也不等比。
若把中每一项添上一个数或一个式子构成新数列,使之等比,从而求出。
该法适用于递推式形如=或=或=其中b、c为不相等的常数,为一次式。
例4、已知数列中,=2,=(1)求的通项公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nna 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式。
例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯- 评注:本题解题的关键是把递推关系式13231nn n a a +=+⨯+转化为111213333n n n n n a a +++-=+,进而求出112232111122321()()()()333333333n n n n n n n n n n n n a a a a a a a a a -----------+-+-++-+,即得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,最后再求数列{}n a 的通项公式。
三、累乘法例5 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
例6 (2004年全国I 第15题,原题是填空题)已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=。
所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。
四、待定系数法例7 已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式。
解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n nn a -=+。
评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式。
例8 已知数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得1352423(2)n n n n n a x y a x y ++⨯++⨯+=+⨯+整理得(52)24323nnx y x y +⨯++=⨯+。
令52343x x y y +=⎧⎨+=⎩,则52x y =⎧⎨=⎩,代入⑥式得115223(522)n n n n a a +++⨯+=+⨯+⑦由11522112130a +⨯+=+=≠及⑦式,得5220nn a +⨯+≠,则115223522n n nn a a +++⨯+=+⨯+, 故数列{522}n n a +⨯+是以1152211213a +⨯+=+=为首项,以3为公比的等比数列,因此1522133n n n a -+⨯+=⨯,则1133522n n n a -=⨯-⨯-。
评注:本题解题的关键是把递推关系式13524nn n a a +=+⨯+转化为115223(522)n n n n a a +++⨯+=+⨯+,从而可知数列{522}n n a +⨯+是等比数列,进而求出数列{522}n n a +⨯+的通项公式,最后再求数列{}n a 的通项公式。
例9 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。
解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---。