2019-2020学年宁夏中考数学模拟试卷(有标准答案)(Word版)
宁夏银川市2019-2020学年中考数学考前模拟卷(2)含解析
宁夏银川市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133 -=.2.如果将直线l1:y=2x﹣2平移后得到直线l2:y=2x,那么下列平移过程正确的是()A.将l1向左平移2个单位B.将l1向右平移2个单位C.将l1向上平移2个单位D.将l1向下平移2个单位3.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.64.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC.x(140%)30%+⨯D.()()130%140%x+﹣5.在△ABC中,∠C=90°,tanA=,△ABC的周长为60,那么△ABC的面积为()A.60 B.30 C.240 D.1206.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣57.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2015年4月份用电量的调查结果:居民(户) 1 2 3 4月用电量(度/户)30 42 50 51那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是50 B.众数是51 C.方差是42 D.极差是218.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)0 1 2 3 4人数(人) 2 2 3 1 1 A.3,2.5 B.1,2 C.3,3 D.2,29.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3)B.(﹣2,4),(2,3)C.(﹣3,4),(1,4)D.(﹣3,4),(1,3)10.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)11.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.12.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=1980二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD 相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.14.已知∠α=32°,则∠α的余角是_____°.15.若关于x 的不等式组><2x a x ⎧⎨⎩恰有3个整数解,则字母a 的取值范围是_____.16.抛物线y =2x 2+4向左平移2个单位长度,得到新抛物线的表达式为_____.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①∠EAF =45°;②△AED ≌△AEF ;③△ABE ∽△ACD ;④BE 1+DC 1=DE 1.其中正确的是______.(填序号)18.已知整数k <5,若△ABC 的边长均满足关于x 的方程2x 3x 80k -+=,则△ABC 的周长是 . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20.(6分)如图,数轴上的点A 、B 、C 、D 、E 表示连续的五个整数,对应数分别为a 、b 、c 、d 、e .(1)若a+e=0,则代数式b+c+d= ; (2)若a 是最小的正整数,先化简,再求值:;(3)若a+b+c+d=2,数轴上的点M 表示的实数为m (m 与a 、b 、c 、d 、e 不同),且满足MA+MD=3,则m 的范围是 .21.(6分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF. (1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).22.(8分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,求BD的长.23.(8分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数kyx=的图象上,将这两点分别记为A,B,另一点记为C,(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).24.(10分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.25.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S △PDE=110S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.26.(12分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.27.(12分)某商人制成了一个如图所示的转盘,取名为“开心大转盘”,游戏规定:参与者自由转动转盘,转盘停止后,若指针指向字母“A”,则收费2元,若指针指向字母“B”,则奖励3元;若指针指向字母“C”,则奖励1元.一天,前来寻开心的人转动转盘80次,你认为该商人是盈利的可能性大还是亏损的可能性大?为什么?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确; B .224-=-,故B 错误; C .1242=.故C 正确;D .1133-=,故D 正确;故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错. 2.C 【解析】 【分析】根据“上加下减”的原则求解即可. 【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x . 故选:C . 【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键. 3.B 【解析】 【分析】根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x 2+6x ,利用配方法求该式的最值. 【详解】 解:∵1x+y=6, ∴y=-1x+6,∴xy=-1x 2+6x=-1(x-1)2+1. ∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy 的最大值为1. 故选B . 【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy 的最大值. 4.D 【解析】 【分析】根据题意可以用相应的代数式表示出去年二月份之前房价,本题得以解决. 【详解】 由题意可得,去年二月份之前房价为:x÷(1﹣30%)÷(1+40%)=()()130%140%x+﹣,故选:D . 【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 5.D 【解析】 【分析】由tanA 的值,利用锐角三角函数定义设出BC 与AC ,进而利用勾股定理表示出AB ,由周长为60求出x 的值,确定出两直角边,即可求出三角形面积. 【详解】 如图所示,由tanA =,设BC =12x ,AC =5x ,根据勾股定理得:AB =13x , 由题意得:12x+5x+13x =60, 解得:x =2, ∴BC =24,AC =10, 则△ABC 面积为120, 故选D . 【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.6.A【解析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.7.C【解析】试题解析:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为110(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,极差为51-30=21,方差为110[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故选C.考点:1.方差;2.中位数;3.众数;4.极差.8.D【解析】试题解析:表中数据为从小到大排列.数据1小时出现了三次最多为众数;1处在第5位为中位数.所以本题这组数据的中位数是1,众数是1.故选D.考点:1.众数;1.中位数.9.A【解析】【分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【详解】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵AEO ODCOAE CODOA CO∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).【点睛】本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.10.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.11.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频12.D【解析】【分析】根据题意得:每人要赠送(x﹣1)张相片,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=1980,【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4.1【解析】解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案为4.1.14.58°【解析】【分析】根据余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角可得答案.【详解】解:∠α的余角是:90°-32°=58°.故答案为58°.【点睛】本题考查余角,解题关键是掌握互为余角的两个角的和为90度.15.﹣2≤a<﹣1.【解析】【分析】先确定不等式组的整数解,再求出a的范围即可.【详解】∵关于x的不等式组><2x ax⎧⎨⎩恰有3个整数解,∴整数解为1,0,﹣1,∴﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a的取值范围是解此题的关键.16.y=2(x+2)2+1【解析】试题解析:∵二次函数解析式为y=2x2+1,∴顶点坐标(0,1)向左平移2个单位得到的点是(-2,1),可设新函数的解析式为y=2(x-h)2+k,代入顶点坐标得y=2(x+2)2+1,故答案为y=2(x+2)2+1.点睛:函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.17.①②④【解析】【分析】①根据旋转得到,对应角∠CAD=∠BAF,由∠EAF=∠BAF+∠BAE=∠CAD+∠BAE即可判断②由旋转得出AD=AF, ∠DAE=∠EAF,及公共边即可证明③在△ABE∽△ACD中,只有AB=AC、∠ABE=∠ACD=45°两个条件,无法证明④先由△ACD≌△ABF,得出∠ACD=∠ABF=45°,进而得出∠EBF=90°,然后在Rt△BEF中,运用勾股定理得出BE 1+BF 1=EF 1,等量代换后判定④正确【详解】由旋转,可知:∠CAD =∠BAF .∵∠BAC =90°,∠DAE =45°,∴∠CAD+∠BAE =45°,∴∠BAF+∠BAE =∠EAF =45°,结论①正确;②由旋转,可知:AD =AF在△AED 和△AEF 中,=45AD AF DAE EAF AE AE ===⎧⎪∠∠︒⎨⎪⎩∴△AED ≌△AEF (SAS ),结论②正确;③在△ABE ∽△ACD 中,只有AB =AC ,、∠ABE =∠ACD =45°两个条件,无法证出△ABE ∽△ACD ,结论③错误;④由旋转,可知:CD =BF ,∠ACD =∠ABF =45°,∴∠EBF =∠ABE+∠ABF =90°,∴BF 1+BE 1=EF 1.∵△AED ≌△AEF ,EF =DE ,又∵CD =BF ,∴BE 1+DC 1=DE 1,结论④正确.故答案为:①②④【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键 18.6或12或1.【解析】【分析】根据题意得k≥0且(2﹣4×8≥0,解得k≥329. ∵整数k <5,∴k=4.∴方程变形为x 2﹣6x+8=0,解得x 1=2,x 2=4.∵△ABC 的边长均满足关于x 的方程x 2﹣6x+8=0,∴△ABC 的边长为2、2、2或4、4、4或4、4、2.∴△ABC 的周长为6或12或1.考点:一元二次方程根的判别式,因式分解法解一元二次方程,三角形三边关系,分类思想的应用.【详解】请在此输入详解!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)一副乒乓球拍28 元,一副羽毛球拍60元(2)共320 元.【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,2116 32204x yx y+=⎧⎨+=⎩,解得:2860 xy=⎧⎨=⎩答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:购买5副乒乓球拍和3副羽毛球拍共320元.20.(1)0;(1),;(3) ﹣1<x<1.【解析】【分析】(1)根据a+e=0,可知a与e互为相反数,则c=0,可得b=-1,d=1,代入可得代数式b+c+d的值;(1)根据题意可得:a=1,将分式计算并代入可得结论即可;(3)先根据A、B、C、D、E为连续整数,即可求出a的值,再根据MA+MD=3,列不等式可得结论.【详解】解:(1)∵a+e=0,即a、e互为相反数,∴点C表示原点,∴b、d也互为相反数,则a+b+c+d+e=0,故答案为:0;(1)∵a是最小的正整数,∴a=1,则原式=÷[+]=÷=•=,当a=1时,原式==;(3)∵A、B、C、D、E为连续整数,∴b=a+1,c=a+1,d=a+3,e=a+4,∵a+b+c+d=1,∴a+a+1+a+1+a+3=1,4a=﹣4,a=﹣1,∵MA+MD=3,∴点M再A、D两点之间,∴﹣1<x<1,故答案为:﹣1<x<1.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的相关知识点.21.(1)见解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整体分析:(1)用ASA证明△ADE≌△CBF,得到AD=BC,根据一组对边平行且相等的四边形是平行四边形证明;(2)根据△ADE≌△CBF,和平行四边形ABCD的性质及线段的和差关系找相等的线段.解:(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,E FAE CFDAE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF,∴AD=BC,∴四边形ABCD是平行四边形.(2)AD=BC,EC=AF,ED=BF,AB=DC. 理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE =CF ,∴EC =AF.∵四边形ABCD 是平行四边形,∴AB =DC.22.BD =241. 【解析】 【分析】 作DM ⊥BC ,交BC 延长线于M ,连接AC ,由勾股定理得出AC 2=AB 2+BC 2=25,求出AC 2+CD 2=AD 2,由勾股定理的逆定理得出△ACD 是直角三角形,∠ACD=90°,证出∠ACB=∠CDM ,得出△ABC ∽△CMD ,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD 即可.【详解】作DM ⊥BC ,交BC 延长线于M ,连接AC ,如图所示:则∠M =90°,∴∠DCM+∠CDM =90°,∵∠ABC =90°,AB =3,BC =4,∴AC 2=AB 2+BC 2=25,∵CD =10,AD =55 ,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形,∠ACD =90°,∴∠ACB+∠DCM =90°,∴∠ACB =∠CDM ,∵∠ABC =∠M =90°,∴△ABC ∽△CMD ,∴12AB CM =, ∴CM =2AB =6,DM =2BC =8,∴BM =BC+CM =10,∴BD =22BM DM +=22108+=241,【点睛】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.23.(2)2;(2)y=x+2;(3)34.【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.24.1.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.25.(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣6,-1)或(﹣46,-1)或(﹣21)或(﹣42,1)时,使得110PDE ABC S S ∆∆=. 【解析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可; (3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,2268+,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6,18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=, 设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1, 解得146t =-+,246t =-- ,此时P 点坐标为(﹣4+6,-1)或(﹣4﹣6,-1);当214612t t ---=时 ,解得1t =﹣4+2,2t =﹣4﹣2; 此时P 点坐标为(﹣4+2,1)或(﹣4﹣2,1).综上所述,P 点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABC S S ∆∆=. 点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.26.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD ∥AB ,只要证明∠ODF =∠AOD 即可,根据题目中的条件可以证明∠ODF =∠AOD ,从而可以解答本题;(2)①根据四边形ADFP 是菱形和菱形的性质,可以求得∠DAE 的度数;②根据四边形BFDP 是正方形,可以求得∠DAE 的度数.(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此时点P与点O重合,∴此时DE是直径,∴∠EAD=90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.27.商人盈利的可能性大.试题分析:根据几何概率的定义,面积比即概率.图中A,B,C所占的面积与总面积之比即为A,B,C 各自的概率,算出相应的可能性,乘以钱数,比较即可.试题解析:商人盈利的可能性大.商人收费:80×48×2=80(元),商人奖励:80×18×3+80×38×1=60(元),因为80>60,所以商人盈利的可能性大.。
宁夏银川市名校2019-2020学年中考数学模拟试卷
宁夏银川市名校2019-2020学年中考数学模拟试卷一、选择题1.若4<k <5,则k 的可能值是( )A B C .D 2.如图,已知直线y =334x -,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最小值是( )A.6B.5.5C.5D.4.53.已知⊙O ,AB 是直径,AB =4,弦CD ⊥AB 且过OB 的中点,P 是劣弧BC 上一动点,DF 垂直AP 于F ,则P 从C 运动到B 的过程中,F 运动的路径长度( )A .3π B .3 C .23π D .24.计算的结果为( )A.bB.–bC. D.5.下列运算正确的是( ) A .2m 2+m 2=3m 4B .(mn 2)2=mn 4C .2m•4m 2=8m 2D .m 5÷m 3=m 26.下列运算正确的是( ) A .22321a a -=B .22122a a a ⋅= C .623a a a ÷= D .()()3223a ba bb -÷=-7.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( )A .1B .2C .3D .48.如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB =110°,则∠α=( )A .70°B .110°C .120°D .140°9.下列命题中,真命题是( )A.四边都相等的四边形是矩形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直的平行四边形是菱形10.下列事件属于必然事件的是()A.乘车到十字路口,遇到红灯B.在装有4个红球,6个篮球的暗箱里,一次摸3个球,摸到篮球C.某学校有学生367人,至少有两人的生日相同D.明年沙糖桔的价格在每公斤6元以上11.下列条件中,能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角相等C.一组对边平行,一组邻角互补D.一组对边相等,一组邻角相等12.如图,若等边△ABC的内切圆⊙0的半径是2,则△ABC的面积是()A.B.C.D.二、填空题13.已知正方形ABCD的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3…,D10都在同一直线上,则正方形A2C2C3D3的边长是___,正方形A n∁n C n+1D n+1的边长是___.14.植树节这天有20名同学共种了52棵树苗,其中男生每人种树苗3棵,女生每人种树苗2棵,则男同学的人数为______________人.15.如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P=40°,则∠ACB=_____°.16.小鲁在一个不透明的盒子里装了5个除颜色外其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是__________.17﹣1)0﹣(﹣12)﹣2=___.18.-8的相反数是 .三、解答题19.某中学为了帮助贫困学生读书,由校团委向全校2400名学生发起了“脱贫攻坚我在行”爱心捐款活动,为了解捐款情况,校团委随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为,图①中m的值是;(2)请补全条形统计图;(3)求本次调查获取的样本数据的众数和中位数;(4)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.20.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A、B两点与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=﹣1时,抛物线顶点D的坐标为,OE=;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,当β从30°增加到60°的过程中,点D运动的路径长;(4)以DE为斜边,在直线DE的右上方作等腰Rt△PDE.设P(m,n),请直接写出n关于m的函数解析式及自变量m的取值范围.21.如图,在“飞镖形”ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是平行四边形;(2)“飞镖形”ABCD满足条件时,四边形EFGH是菱形.22.在平面直角坐标系xOy中,直线y=x+1与抛物线y=ax2+bx+3a交于点A和点B,点A在x轴上.(1)点A的坐标为.(2)①用等式表示a与b之间的数量关系,并求抛物线的对称轴;②当图象,求a 的取值范围.23.如图,在平面直角坐标系中,二次函数y =ax 2﹣2x+c 的图象与x 轴交于A 、B 两点,点A 在原点的左侧,点B 的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方的抛物线上一动点. (1)求二次函数的表达式;(2)当点P 运动到抛物线顶点时,求四边形ABPC 的面积;(3)点Q 是x 轴上的一个动点,当点P 与点C 关于对称轴对称且以点B 、C 、P 、Q 为顶点的四边形是平行四边形时,求点Q 的坐标.24.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车1月份销售总额为50000元,2月份销售总额将比1月份减少20%,每辆销售价比1月份降低400元,若这两个月卖出的数量相同。
宁夏银川市2019-2020学年中考数学五模考试卷含解析
宁夏银川市2019-2020学年中考数学五模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB ,MC =6,NC =23,则四边形MABN 的面积是( )A .63B .123C .183D .2432.已知二次函数y=-x 2-4x-5,左、右平移该抛物线,顶点恰好落在正比例函数y=-x 的图象上,则平移后的抛物线解析式为( ) A .y=-x 2-4x-1 B .y=-x 2-4x-2C .y=-x 2+2x-1D .y=-x 2+2x-23.若代数式11x x +-有意义,则实数x 的取值范围是( ) A .x≠1 B .x≥0C .x≠0D .x≥0且x≠14.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0C .x=﹣23D .x=﹣15.4的平方根是( ) A .16 B .2C .±2D .±6.若不等式组的整数解共有三个,则a 的取值范围是( )A .5<a <6B .5<a≤6C .5≤a <6D .5≤a≤67.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >1;②b+c+1=1;③3b+c+6=1;④当1<x <3时,x 2+(b ﹣1)x+c <1. 其中正确的个数为A .1B .2C .3D .48.下列式子一定成立的是()A.2a+3a=6a B.x8÷x2=x4C.121aaD.(﹣a﹣2)3=﹣61a9.利用运算律简便计算52×(–999)+49×(–999)+999正确的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–199810.下列命题中假命题是()A.正六边形的外角和等于B.位似图形必定相似C.样本方差越大,数据波动越小D.方程无实数根11.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.212.若方程x2﹣3x﹣4=0的两根分别为x1和x2,则11x+21x的值是()A.1 B.2 C.﹣34D.﹣43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为__.14.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.15.如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=3,则BC的长是_____.16.如图,在△ABC 中,AB=AC,BC=8. Oe是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则tan ABC ∠的值为_____________.17.因式分解:2m 2﹣8n 2= .18.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知:如图,在△ABC 中,AB =13,AC =8,cos ∠BAC =513,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F . (1)求∠EAD 的余切值; (2)求BFCF的值.20.(6分)如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB ,于点E求证:△ACD ≌△AED ;若∠B=30°,CD=1,求BD 的长.21.(6分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.22.(8分)如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.如果抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为该抛物线的“内接格点三角形”.设对称轴平行于y 轴的抛物线与网格对角线OM 的两个交点为A ,B ,其顶点为C ,如果△ABC 是该抛物线的内接格点三角形,2,且点A ,B ,C 的横坐标x A ,x B ,x C 满足x A <x C <x B ,那么符合上述条件的抛物线条数是( )A.7 B.8 C.14 D.1623.(8分)雾霾天气严重影响市民的生活质量。
2019-2020学年宁夏自治区中考数学模拟试卷(有标准答案)(word版)
宁夏中考数学试卷一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃2.下列计算正确的是()A. +=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.34.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.255.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B. C.6D.86.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.67.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲 B.乙 C.丙 D.丁8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= .10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是.11.实数a在数轴上的位置如图,则|a﹣3|= .12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.18.化简求值:(),其中a=2+.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F,求EF的长.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃【考点】有理数的减法.【专题】应用题;实数.【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下列计算正确的是()A. +=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)【考点】二次根式的混合运算;幂的乘方与积的乘方;完全平方公式.【分析】分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D、÷=(a≥0,b>0),正确.故选:D.【点评】此题主要考查了二次根式混合运算以及积的乘方运算以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【考点】众数;条形统计图;中位数.【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B. C.6D.8【考点】菱形的性质;三角形中位线定理.【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9 s 20.920.921.011.03A .甲B .乙C .丙D .丁 【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定, 因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙; 故选B .【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.正比例函数y 1=k 1x 的图象与反比例函数y 2=的图象相交于A ,B 两点,其中点B 的横坐标为﹣2,当y 1<y 2时,x 的取值范围是( )A .x <﹣2或x >2B .x <﹣2或0<x <2C .﹣2<x <0或0<x <2D .﹣2<x <0或x >2 【考点】反比例函数与一次函数的交点问题.【分析】由正、反比例函数的对称性结合点B 的横坐标,即可得出点A 的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O 对称,且点B 的横坐标为﹣2, ∴点A 的横坐标为2. 观察函数图象,发现:当x <﹣2或0<x <2时,一次函数图象在反比例函数图象的下方, ∴当y 1<y 2时,x 的取值范围是x <﹣2或0<x <2. 故选B .【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m= m(n+1)(n﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用平方差公式进行二次分解因式,也是难点所在.10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1 .【考点】抛物线与x轴的交点.【分析】根据△>0⇔抛物线与x轴有两个交点,列出不等式即可解决问题.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点,属于中考常考题型.11.实数a在数轴上的位置如图,则|a﹣3|= 3﹣a .【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a与3的关系是解题关键,注意差的绝对值是大数减小数.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 2 .【考点】圆锥的计算.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.【点评】本题考查圆锥的计算、扇形的弧长公式、圆的周长公式等知识,解题的关键是理解扇形的弧长等于这个圆锥的底面圆的周长,学会用方程的思想解决问题,属于中考常考题型.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于 2 .【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.【点评】本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.化简求值:(),其中a=2+.【考点】实数的运算.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 、C 关于原点对称的点A 1、B 1、C 1的位置,然后顺次连接即可; (2)根据网格结构找出点A 1、B 1、C 1关于y 轴对称的点A 2、B 2、C 2的位置,然后顺次连接即可. 【解答】解:(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑 短跑 跳绳 跳远 200 √ × √ √ 300 × √ × √ 150 √ √ √ × 200 √ × √ × 150√×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大? 【考点】利用频率估计概率;列表法与树状图法. 【分析】(1)根据求概率的公式即可得到结论; (2)根据求概率的公式即可得到结论;(3)根据求概率的公式求得各项概率进行比较即可得到结论. 【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC 的延长线于点F,求EF的长.【考点】等边三角形的性质.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【考点】分式方程的应用;一元一次不等式的应用.【专题】方程与不等式.【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE=BC=,由割线定理可证得结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO =S△AOB﹣S△ACD即可求得.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB 于E ,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1, ∴C(,1),∵反比例函数y=(x >0)的图象经过OA 的中点C ,∴1=, ∴k=,∴反比例函数的关系式为y=; (2)∵OB=2,∴D 的横坐标为2, 代入y=得,y=, ∴D(2,),∴BD=,∵AB=2,∴AD=,∴S △ACD =AD•BE=××=,∴S 四边形CDBO =S △AOB ﹣S △ACD =OB•AB﹣=×2×2﹣=.【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【考点】一次函数的应用;频数与频率;条形统计图.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.【点评】此题是一次函数的应用,主要考查了一次函数的性质,统计图,解本题的关键是统计图的分析.26.在矩形ABCD 中,AB=3,AD=4,动点Q 从点A 出发,以每秒1个单位的速度,沿AB 向点B 移动;同时点P 从点B 出发,仍以每秒1个单位的速度,沿BC 向点C 移动,连接QP ,QD ,PD .若两个点同时运动的时间为x 秒(0<x≤3),解答下列问题:(1)设△QPD 的面积为S ,用含x 的函数关系式表示S ;当x 为何值时,S 有最大值?并求出最小值;(2)是否存在x 的值,使得QP⊥DP?试说明理由.【考点】四边形综合题.【分析】(1)可用x 表示出AQ 、BQ 、BP 、CP ,从而可表示出S △ADQ 、S △BPQ 、S △P CD 的面积,则可表示出S ,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x 表示出BQ 、BP 、PC ,当QP⊥DP 时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x 的方程,可求得x 的值.【解答】解:(1)∵四边形ABCD 为矩形,∴BC=AD=4,CD=AB=3,当运动x 秒时,则AQ=x ,BP=x ,∴BQ=AB﹣AQ=3﹣x ,CP=BC ﹣BP=4﹣x ,∴S △ADQ =AD•AQ=×4x=2x,S △BPQ =BQ•BP=(3﹣x )x=x ﹣x 2,S △PCD =PC•CD=•(4﹣x )•3=6﹣x , 又S 矩形ABCD =AB•BC=3×4=12,∴S=S 矩形ABCD ﹣S △ADQ ﹣S △BPQ ﹣S △PCD =12﹣2x ﹣(x ﹣x 2)﹣(6﹣x )=x 2﹣2x+6=(x ﹣2)2+4, 即S=(x ﹣2)2+4,∴S 为开口向上的二次函数,且对称轴为x=2,∴当0<x <2时,S 随x 的增大而减小,当2<x≤3时,S 随x 的增大而增大,又当x=0时,S=5,当S=3时,S=,但x 的范围内取不到x=0,∴S 不存在最大值,当x=2时,S 有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x ,BP=x ,CP=4﹣x ,当QP⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,。
宁夏银川市名校2019-2020学年中考数学模拟试卷
宁夏银川市名校2019-2020学年中考数学模拟试卷一、选择题1.下列判断错误的是( )A .两组对边分别相等的四边形是平行四边形B .四个内角都相等的四边形是矩形C .两条对角线垂直且平分的四边形是正方形D .四条边都相等的四边形是菱形2.△ABC 中,∠A ,∠B 都是锐角,且sinA ,cosB =12,则△ABC 的形状是( ) A.直角三角形 B.钝角三角形 C.锐角三角形D.锐角三角形或钝角三角形 3.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张4.如图,四边形ABCD 是矩形,点E 、F 是矩形ABCD 外两点,AE ⊥CF 于H ,AD=3,DC=4,DE=,∠EDF=90°,则DF 的长是( )A. B. C. D.5.我们探究得方程x+y =2的正整数解只有1组,方程x+y =3的正整数解只有2组,方程x+y =4的正整数解只有3组,……,那么方程x+y+z =10的正整数解得组数是( )A .34B .35C .36D .376.如图示,用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD 在边AD 上,则AB BC的值是( )A .2BC .14 D7.如图,在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,则下列三角函数表示正确的是( )A .3tan 4A =B .4tan 3B =C .3sin 5A =D .3cos 5A = 8.下面给出四个命题:①各边相等的六边形是正六边形;②顶角和底边对应相等的两个等腰三角形全等;③顺次连结一个四边形各边中点所成的四边形是矩形,则原四边形是菱形;④正五边形既是中心对称图形又是轴对称图形其中真命题有( )A .0个B .1个C .2个D .4个9.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( )A .第一象限B .第二象限C .第三象限D .第四象限10.分式方程1232x x =-的解为( ) A .25x =- B .1x =- C .1x = D .25x = 11.如图,正方形ABCD 中,AB=3,点E 在边CD 上,且CD=3DE,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G,连接AG 、CF ,则BG 的长为( )A.1B.2C.1.5D.2.512.若一个直角三角形的两条直角边长分别为5和12,则其第三边长( )A .13B C .5 D .15二、填空题13.同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数相同的概率是____.14.用反证法证明命题“三角形中至少有两个锐角”,第一步应假设_____.15.不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为__.16.若2236x ax ++是完全平方式,则a =_________.17.如图,在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,ABC ∠的平分线交线段DE 于点F ,若12AB =,18BC =,则线段EF 的长为_______.18.在平面直角坐标系xOy 中,点A ,B 的坐标分别为(m ,3),(m+2,3),直线y =3x+b 与线段AB有公共点,则b 的取值范围为_____.(用含m 的代数式表示)三、解答题19.先化简,再求代数式的值:222111a a a a a +⎛⎫+÷⎪+--⎝⎭,其中a =tan60°﹣2sin30°. 20.如图,已知抛物线y=ax 2+85x+c 与x 轴交于A ,B 两点,与y 轴交于C 点,且A(2,0),C(0,-4),直线l :y=-12x-4与x 轴交于点D ,点P 是抛物线y=ax 2+85x+c 上的一动点,过点P 作PE ⊥x 轴,垂足为E ,交直线l 于F .(1)试求该抛物线表达式;(2)如图(1),若点P 在第三象限,四边形PCOF 是平行四边形,求P 点的坐标;(3)如图(2),连接AC .求证:△ACD 是直角三角形.21.用A4纸在某眷印社复印文件,复印页数不超过20时,每页收费1元;复印页数超过20时,超过部分每页收费降为0.4元,在某图书馆复印同样的文件,不论复印多少页,每页收费0.8元,当复印的张数超过20页时,请问答以下问题.(1)复印张数为多少页时,某眷印社与某图书馆的收费相同?(2)如何选择更省钱?22.某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A 、B 、C 、D 四个等级进行统计,制成了如图所示的不完整的统计图:根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C 对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A 等级的学生有多少人?23.已知等腰ABC ∆中,AB AC =,EDF ∠的顶点D 在线段BC 上,不与,B C 重合.(1)如图①,若,DE AC DF AB ∥∥且点D 在BC 中点时,四边形AEDF 是什么四边形并证明?(2)将EDF ∠绕点D 旋转至如图②所示位置,若,,B C EDF BD m CD n α∠=∠=∠===,设BDE ∆的面积为1S ;CDF ∆的面积为2S ,求12S S ⋅的值(用含有,,m n α的代数式表示).图①图②24.如图,某人在山坡坡脚C处测得一座建筑物定点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=60m,山坡的坡比为1:2.(1)求该建筑物的高度(即AB的长,结果保留根号);(2)求此人所在位置点P的铅直高度(即PD的长,结果保留根号).25.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,DE⊥BC于E,连接BD,设AD=m,DC=n,BE=p,DE=q.(1)若tanC=2,BE=3,CE=2,求点B到CD的距离;(2)若m=n, B D=,求四边形ABCD的面积.【参考答案】***一、选择题13.1 614.同一三角形中最多有一个锐角.15.1 416.617.318.﹣3﹣3m≤b≤3﹣3m .三、解答题19.31a +. 【解析】【分析】根据分式加减乘除的运算法则对原式进行化简,再算出a 的值,代入即可.【详解】 原式=2(1)(2)13(1)(1)1a a a a a a a -++-⋅=+-+ .当a 1212-⨯=-时,3=.【点睛】本题考查分式的运算以及特殊角的锐角三角函数值,解题的关键是熟练掌握分式的运算法则及特殊角的三角函数值.20.(1)y=15x 2+85x-4;(2)P 点的坐标为(-8,-4),(-2.5,-274);(3)证明见解析. 【解析】【分析】(1)利用待定系数法即可求a 、c 的值,从而求得抛物线的表达式;(2)设P 点的坐标是(x ,15x 2+85x-4),则F (x ,-12x-4),由OCPF 是平行四边形得OC=FP,OC ∥PF ,从而-15x 2-2110x=4,求解即可得P 的横坐标,代入解析式即可得P 的坐标. (3)分别求出点A 、C 、D 的坐标,可以根据勾股定理的逆定理即可判断【详解】(1)依题意,抛物线经过A(2,0),C(0,-4),则c=-4将点A 代入得0=4a+85×2-4,解得a=15抛物线的解析式是y=15x 2+85x-4 (2)设P 点的坐标是(x ,15x 2+85x-4),则F(x ,-12x-4) ∴PF=(-12x-4)-(15x 2+85x-4)=-15x 2-2110x ∵四边形OCPF 是平行四边形∴OC=FP ,OC ∥PF∴-15x 2-2110x=4 即2x 2+21x+40=0解得x 1=-8 x 2=-2.5∴P点的坐标为(-8,-4),(-2.5,-274)(3)当y=0时,-12x-4=0,得x=-8,即D(-8,0)当x=0时,0-4=y,即C(0,-4)当y=0时,15x2+85x-4=0解得x1=-10 x2=2,即B(-10,0),A(2,0)∴AD=10∵AC2=22+42=20CD2=82+42=80∴AD2=AC2+CD2∴∠ACD=90°△ACD是直角三角形【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.21.(1)复印张数为30页时,某眷印社与某图书馆的收费相同;(2)当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社.【解析】【分析】(1)复印张数超过20页时,某眷印社收费为:20+0.4(x-20),某图书馆收费为:0.8x',两者相等列方程求解.(2)求某眷印社收费大于某图书馆的x值,再比较说明.【详解】解:(1)设复印张数为x页,(x>20),列方程得:20+0.4(x﹣20)=0.8x解得:x=30答:复印张数为30页时,某眷印社与某图书馆的收费相同.(2)20+0.4(x﹣20)>0.8x解得:x<30答:当复印张数大于0小于30页时,选某图书馆;当复印张数为30页时,两店一样;当复印张数大于30页时,选某眷印社.【点睛】本题考查了一元一次方程和一元一次不等式的应用,是一次方程和不等式综合运用的常考题型,找出其中的数量关系列出方程与不等式是解答本题的关键.22.(1)117°;补图见解析;(2)30人.【解析】【分析】(1)先根据B 等级人数及其百分比求得总人数,总人数减去其他等级人数求得C 等级人数,继而用360°乘以C 等级人数所占比例即可得,根据以上所求结果即可补全图形;(2)总人数乘以样本中A 等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人,∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 补全条形图如下:(2)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【点睛】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)菱形;(2)2221sin 4n m α. 【解析】【分析】(1)根据菱形的判定方法进行证明即可;(2)首先证明△EBD ∽△DCF ,设BE=x ,CF=y ,可得xy=mn ,由S 1=12•mx•sin α,S 2=12nysin α,可得S 1•S 2=14(mn )2sin 2α; 【详解】(1)菱形,∵点D 为BC 的中点,且,DE AC DF AB ∥∥∴,DE DF 为三角形中位线, ∴11,,22DE AC DF AB ==∵,AB AC =∴DE=DF∵,DE AF DF AE ,∴AEDF 是平行四边形,∴AEDF 是菱形.(2)设BE=x ,CF=y .∵∠EDC=∠EDF+∠FDC=∠B+∠BEF ,∠MDN=∠B ,∴∠BED=∠FDC ,∵∠B=∠C ,∴△BED ∽△CDF , ∴BE BD CD CF=, ∴x m n y=, ∴xy mn = ∵S 1=12•BD•BE•sin α=12mxsin α,S 2=12CD•CF•sin α=12ysin α, ∴1211sin sin 22S S mx ny αα⋅=⋅=2221sin 4n m α 【点睛】 本题考查几何变换综合题、等边三角形的性质、等腰三角形的性质、相似三角形的判定和性质、三角形的面积公式.锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题.24.(1) 建筑物的高度为 (2)点P 的铅直高度为(20)米.【解析】【分析】(1)过点P 作PE ⊥BD 于E ,PF ⊥AB 于F ,在Rt △ABC 中,求出AB 的长度即可;(2)设PE =x 米,则BF =PE =x 米,根据山坡坡度为1:2,用x 表示CE 的长度,然后根据AF =PF 列出等量关系式,求出x 的值即可.【详解】解:(1)过点P 作PE ⊥BD 于E ,PF ⊥AB 于F ,又∵AB ⊥BC 于B ,∴四边形BEPF 是矩形,∴PE =BF ,PF =BE∵在Rt △ABC 中,BC =90米,∠ACB =60°,∴AB =BC•tan60°=60(米),故建筑物的高度为(2)设PE =x 米,则BF =PE =x 米,∵在Rt △PCE 中,tan ∠PCD =12PE CE =, ∴CE =2x ,∵在Rt △PAF 中,∠APF =45°,∴AF =AB ﹣BF =﹣x ,PF =BE =BC+CE =60+2x ,又∵AF =PF ,∴60﹣x =60+2x ,解得:x =﹣20,答:人所在的位置点P 的铅直高度为(20)米.【点睛】本题考查了解直角三角形的应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.25.(1)(2)9.【解析】【分析】(1)要求点B到CD的距离,于是作垂线构造直角三角形,又知tanC=2,BE=3,CE=2,可以得到BF=2FC,设未知数根据勾股定理列方程可以求解;(2)m=n,即AD=DC,通过作垂线,构造全等三角形将问题转化为求正方形BEDG的面积即可.【详解】(1)过点B作BF⊥CD,垂足为F,则∠BFC=90°,∵DE⊥BC,∴∠DEC=∠DEB=90°,在Rt△DEC中,∵tanC=2,EC=2,∴DE=4,在Rt△BFC中,∵tanC=2,∴BF=2FC,设BF=x,则FC=12x,∵BF2+FC2=BC2,∴x2+(12x)2=(3+2)2,解得:x=BF=答:点B到CD的距离是(2)过点D作DG⊥AB,交BA的延长线相交于点G,∵四边形ABCD的内角和是360°,∠ABC=∠ADC=90°,∴∠C+∠BAD=180°,又∵∠BAD+∠GAD=180°,∴∠C=∠GAD,∵∠DEC=∠G=90°,AD=CD∴△DEC≌△DGA,(AAS)∴DE=DG,∴四边形BEDG是正方形,∴S四边形ABCD=S正方形BEDG=12BD2=9.答:四边形ABCD的面积是9.【点睛】考查解直角三角形,勾股定理、和全等三角形等知识,作垂线构造直角三角形是常用的辅助线作法,通过作辅助线将问题转化求正方形的面积.。
宁夏银川市2019-2020学年中考数学学业水平测试试题
2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②2.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .453.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >4.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10 B .10 C .﹣6 D .25.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC6.若2<2a <3,则a的值可以是()A.﹣7 B.163C.132D.127.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是()A.20cm2 B.20πcm2C.10πcm2D.5πcm28.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.9.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣710.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A.2 B.3 C.5 D.7二、填空题(本题包括8个小题)11.如图,一组平行横格线,其相邻横格线间的距离都相等,已知点A、B、C、D、O都在横格线上,且线段AD,BC交于点O,则AB:CD等于______.12.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为_____.13.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =,则图中阴影部分面积是 .14.⊙O 的半径为10cm ,AB,CD 是⊙O 的两条弦,且AB ∥CD ,AB=16cm,CD=12cm .则AB 与CD 之间的距离是 cm .15.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________16.已知关于x 方程x 2﹣3x+a=0有一个根为1,则方程的另一个根为_____.17.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.18.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.三、解答题(本题包括8个小题)19.(6分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD .过点D 作DE ⊥AC ,垂足为点E .求证:DE 是⊙O 的切线;当⊙O 半径为3,CE =2时,求BD 长.20.(6分)已知关于 x 的一元二次方程 x 2﹣2(k ﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.21.(6分)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F . 求证:△ABF ≌△CDE ; 如图,若∠1=65°,求∠B 的大小.22.(8分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b 的图象经过一、二、四象限的概率.23.(8分)如图,在平面直角坐标系xOy 中,直线y kx k =+与双曲线4=y x(x>0)交于点1)(,A a . 求a ,k 的值;已知直线l 过点(2,0)D 且平行于直线y kx k =+,点P(m ,n )(m>3)是直线l 上一动点,过点P 分别作x 轴、y 轴的平行线,交双曲线4=y x(x>0)于点M 、N ,双曲线在点M 、N 之间的部分与线段PM 、PN 所围成的区域(不含边界)记为W .横、纵坐标都是整数的点叫做整点.①当4m =时,直接写出区域W 内的整点个数;②若区域W 内的整点个数不超过8个,结合图象,求m 的取值范围.24.(10分)如图,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数()0m y m x=≠的图象交于C 、D 两点.已知点C 的坐标是(6,-1),D (n ,3).求m 的值和点D 的坐标.求tan BAO ∠的值.根据图象直接写出:当x 为何值时,一次函数的值大于反比例函数的值?25.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.26.(12分)如图,在菱形ABCD 中,作⊥BE AD 于E ,BF ⊥CD 于F ,求证:AE CF =.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】利用加减消元法53⨯+⨯①②消去y即可.【详解】用加减法解方程组437651x yx y+=⎧⎨-=-⎩①②时,若要求消去y,则应①×5+②×3,故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D【解析】【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4cos cos5OBC ABOAB=∠==.故选D.3.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x<-或04x<<时,一次函数图象在反比例函数图象上方,∴使12y y>成立的x取值范围是2x<-或04x<<,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 4.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.5.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a的取值范围,易得符合条件的选项.【详解】解:∵2<3,∴4<a-2<9,∴6<a <1.又a-2≥0,即a≥2.∴a 的取值范围是6<a <1.观察选项,只有选项C 符合题意.故选C .【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.7.C【解析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.故答案为C8.B【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a->0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .9.C【解析】【分析】先求出x=7时y 的值,再将x=4、y=-1代入y=2x+b 可得答案.∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C .【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.10.C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C .考点:众数;中位数.二、填空题(本题包括8个小题)11.2:1.【解析】【分析】过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,可得OF ⊥CD ,由AB//CD ,可得△AOB ∽△DOC ,根据相似三角形对应高的比等于相似比可得AB OE CD OF=,由此即可求得答案. 【详解】如图,过点O 作OE ⊥AB 于点E ,延长EO 交CD 于点F ,∵AB//CD ,∴∠OFD=∠OEA=90°,即OF ⊥CD ,∵AB//CD ,∴△AOB ∽△DOC ,又∵OE ⊥AB ,OF ⊥CD ,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴AB OE CD OF ==23, 故答案为:2:1.本题考查了相似三角形的的判定与性质,熟练掌握相似三角形对应高的比等于相似比是解本题的关键. 12.40︒.【解析】【分析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度.【详解】连续左转后形成的正多边形边数为:4559÷=,则左转的角度是360940︒÷=︒.故答案是:40︒.【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键.13.4【解析】试题分析:由中线性质,可得AG=2GD ,则11212111222232326BGF CGE ABG ABD ABC S S S S S ===⨯=⨯⨯=⨯=,∴阴影部分的面积为4;其实图中各个单独小三角形面积都相等本题虽然超纲,但学生容易蒙对的.考点:中线的性质.14.2或14【解析】【分析】分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB 和CD 在圆心同侧时,如图,∵AB=16cm ,CD=12cm ,∴AE=8cm ,CF=6cm ,∵OA=OC=10cm ,∴EO=6cm ,OF=8cm ,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.15.1【解析】【分析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=1,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a2019= a3=1,故答案为:1.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a2019的值.16.1【解析】分析:设方程的另一个根为m,根据两根之和等于-ba,即可得出关于m的一元一次方程,解之即可得出详解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=1.故答案为1.点睛:本题考查了根与系数的关系,牢记两根之和等于-ba是解题的关键.17.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.18.1或5.【解析】【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.三、解答题(本题包括8个小题)19.(1)证明见解析;(2)BD=3【分析】(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出CE CDBD AB=,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.【详解】(1)证明:连接OD,如图,∵AB为⊙0的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切线;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴CE CDBD AB=,∴BD•CD=AB•CE,∵BD=CD,∴BD2=AB•CE,∵⊙O半径为3,CE=2,∴BD62⨯3本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.20.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根, ∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0,解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.21.(1)证明见解析;(2)50°.【解析】试题分析:(1)由平行四边形的性质得出AB=CD ,AD ∥BC ,∠B=∠D ,得出∠1=∠DCE ,证出∠AFB=∠1,由AAS 证明△ABF ≌△CDE 即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.试题解析:(1)∵四边形ABCD 是平行四边形, ∴AB=CD ,AD ∥BC ,∠B=∠D , ∴∠1=∠DCE , ∵AF ∥CE , ∴∠AFB=∠ECB , ∵CE 平分∠BCD , ∴∠DCE=∠ECB , ∴∠AFB=∠1,在△ABF 和△CDE 中,, ∴△ABF ≌△CDE (AAS );(2)由(1)得:∠1=∠ECB ,∠DCE=∠ECB , ∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.22.(1)答案见解析;(2)13. 【解析】(1)k 可能的取值为-1、-2、-3,b 可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b 经过一、二、四象限时k 、b 的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b 经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种,则P=412= 13. 23.(1)4a =,=2k ;(2)① 3,② 3 4.5m <≤.【解析】【分析】(1)将1)(,Aa 代入4=y x可求出a ,将A 点坐标代入y kx k =+可求出k ; (2)①根据题意画出函数图像,可直接写出区域W 内的整点个数;②求出直线l 的表达式为24y x =-,根据图像可得到两种极限情况,求出对应的m 的取值范围即可.【详解】 解:(1)将1)(,Aa 代入4=y x得a=4 将14)(,A代入=4+k k ,得=2k (2)①区域W 内的整点个数是3②∵直线l 是过点(2,0)D 且平行于直线22y x =+∴直线l 的表达式为24y x =-当24=5-x 时,即=4.5x 线段PM 上有整点∴3 4.5m <≤【点睛】本题考查了待定系数法求函数解析式以及函数图像的交点问题,正确理解整点的定义并画出函数图像,运用数形结合的思想是解题关键.24.(1)m=-6,点D 的坐标为(-2,3);(2)1tan BAO 2∠=;(3)当2x <-或06x <<时,一次函数的值大于反比例函数的值.【解析】【分析】(1)将点C 的坐标(6,-1)代入m y x=即可求出m ,再把D (n ,3)代入反比例函数解析式求出n 即可. (2)根据C (6,-1)、D (-2,3)得出直线CD 的解析式,再求出直线CD 与x 轴和y 轴的交点即可,得出OA 、OB 的长,再根据锐角三角函数的定义即可求得;(3)根据函数的图象和交点坐标即可求得.【详解】⑴把C (6,-1)代入m y x=,得()m 616=⨯-=-. 则反比例函数的解析式为6y x=-, 把y 3=代入6y x =-,得x 2=-, ∴点D 的坐标为(-2,3).⑵将C (6,-1)、D (-2,3)代入y kx b =+,得6123k b k b +=-⎧⎨-+=⎩,解得122k b ⎧=-⎪⎨⎪=⎩. ∴一次函数的解析式为1y x 22=-+, ∴点B 的坐标为(0,2),点A 的坐标为(4,0).∴OA 4OB 2==,,在在Rt ΔABO 中,∴OB 21tan BAO OA 42∠===. ⑶根据函数图象可知,当x 2<-或0x 6<<时,一次函数的值大于反比例函数的值【点睛】此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.25. (1)200;(2)见解析;(3)126°;(4)240人.【解析】【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数【详解】(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:24100×100%=12%, ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.【点睛】此题考查扇形统计图和条形统计图,看懂图中数据是解题关键26.见解析【解析】【分析】由菱形的性质可得BA BC =,A C ∠=∠,然后根据角角边判定≅ABE CBF ,进而得到AE=CF .【详解】证明:∵菱形ABCD ,∴BA BC =,A C ∠=∠,∵BE AD ⊥,BF CD ⊥,∴90BEA BFC ∠=∠=,在ABE △与CBF 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅(), ∴AE=CF .【点睛】本题考查菱形的性质和全等三角形的判定与性质,根据菱形的性质得到全等条件是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )A .中位数B .众数C .平均数D .方差2.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( )A .2017年第二季度环比有所提高B .2017年第三季度环比有所提高C .2018年第一季度同比有所提高D .2018年第四季度同比有所提高3.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A .3a+2bB .3a+4bC .6a+2bD .6a+4b412233499100+++++的整数部分是( ) A .3 B .5 C .9 D .65.如图,已知△ABC ,按以下步骤作图:①分别以 B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点 M ,N ;②作直线 MN 交 AB 于点 D ,连接 CD .若 CD=AC ,∠A=50°,则∠ACB 的度数为( )A .90°B .95°C .105°D .110°6.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数 C .众数 D .平均数7.如右图,⊿ABC 内接于⊙O ,若∠OAB=28°则∠C 的大小为( )A .62°B .56°C .60°D .28°8.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 9.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .4310.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .二、填空题(本题包括8个小题)11.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .12.如图,ΔABC 中,∠ACB=90°,∠ABC=25°,以点C 为旋转中心顺时针旋转后得到ΔA′B′C′,且点A 在A′B′上,则旋转角为________________°.13.对于实数p q ,,我们用符号min{}p q ,表示p q ,两数中较小的数,如min{1,2}1=.因此,{}min 2,3--= ________;若{}22min (1)1x x -=,,则x =________.14.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.15.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.16.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.17.规定用符号[]m 表示一个实数m 的整数部分,例如:203⎡⎤=⎢⎥⎣⎦,[]3.143=.按此规定,101⎡⎤+⎣⎦的值为________.18.如图,已知△ABC 中,AB =AC =5,BC =8,将△ABC 沿射线BC 方向平移m 个单位得到△DEF ,顶点A ,B ,C 分别与D ,E ,F 对应,若以A ,D ,E 为顶点的三角形是等腰三角形,且AE 为腰,则m 的值是______.三、解答题(本题包括8个小题)19.(6分)图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)20.(6分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值21.(6分)如图,在平面直角坐标系中,一次函数y =﹣x+3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.22.(8分)列方程解应用题 八年级学生去距学校10 km 的博物馆参观,一部分学生骑自行车先走,过了20 min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.23.(8分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为 ;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.24.(10分)如图所示,直线y=12x+2与双曲线y=k x相交于点A(2,n),与x 轴交于点C .求双曲线解析式;点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.25.(10分)一辆汽车,新车购买价30万元,第一年使用后折旧20%,以后该车的年折旧率有所变化,但它在第二、三年的年折旧率相同.已知在第三年年末,这辆车折旧后价值为17.34万元,求这辆车第二、三年的年折旧率.26.(12分)计算:101()2sin601tan60(2019)2π--+-+-; 解方程:24(3)9x x x +=-参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.2.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A 正确;2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确;2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.【点睛】本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键.3.A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 4.C【解析】1=,∴原式﹣﹣解:∵+…﹣﹣1+10=1.故选C.5.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.6.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差7.A【解析】【详解】连接OB.在△OAB中,OA=OB(⊙O的半径),∴∠OAB=∠OBA(等边对等角);又∵∠OAB=28°,∴∠OBA=28°;∴∠AOB=180°-2×28°=124°;而∠C=12∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠C=62°;。
宁夏银川市2019-2020学年中考五诊数学试题含解析
宁夏银川市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+B .()2213y x =-+ C .()2313y x =-++ D .()2313y x =--+ 2.若一次函数(1)y m x m =++的图像过第一、三、四象限,则函数2y mx mx =-( )A .有最大值4mB .有最大值4m -C .有最小值4mD .有最小值4m - 3.点P (4,﹣3)关于原点对称的点所在的象限是( )A .第四象限B .第三象限C .第二象限D .第一象限4.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .65.一元二次方程x 2﹣2x =0的根是( )A .x =2B .x =0C .x 1=0,x 2=2D .x 1=0,x 2=﹣26.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-7.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .8.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D .9.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒10.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则tan ∠DAC 的值为( )A .2+3B .23C .3+3D .3311.如图已知⊙O 的内接五边形ABCDE ,连接BE 、CE ,若AB =BC =CE ,∠EDC =130°,则∠ABE 的度数为( )A .25°B .30°C .35°D .40°12.如图,△ABC 中,AB=5,BC=3,AC=4,以点C 为圆心的圆与AB 相切,则⊙C 的半径为( )A.2.3 B.2.4 C.2.5 D.2.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2a×(﹣2b)=_____.14.方程242x-=的根是__________.15.方程3x(x-1)=2(x-1)的根是16.甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是__km/h.17.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.18.分解因式:a3b+2a2b2+ab3=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE 于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.20.(6分)某数学兴趣小组为测量如图(①所示的一段古城墙的高度,设计用平面镜测量的示意图如图已知AB⊥BD、CD⊥BD,且测得AB=1.2m,BP=1.8m.PD=12m,求该城墙的高度(平面镜的原度忽略不计):请你设计一个测量这段古城墙高度的方案.要求:①面出示意图(不要求写画法);②写出方案,给出简要的计算过程:③给出的方案不能用到图②的方法.21.(6分)先化简,22211121x x xx xx x--+⋅-++,其中x=12.22.(8分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.用树状图或列表法求出小王去的概率;小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.23.(8分)解分式方程:2322xx x+--=124.(10分)先化简,再求值:(231xx--﹣2)÷11x-,其中x满足12x2﹣x﹣4=025.(10分)一个不透明的袋子中,装有标号分别为1、-1、2的三个小球,他们除标号不同外,其余都完全相同;(1)搅匀后,从中任意取一个球,标号为正数的概率是;(2)搅匀后,从中任取一个球,标号记为k,然后放回搅匀再取一个球,标号记为b,求直线y=kx+b 经过一、二、三象限的概率.26.(12分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?27.(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可.【详解】解:根据图象,设函数解析式为()2y a x h k =-+由图象可知,顶点为(1,3)∴()213y a x =-+,将点(0,0)代入得()20013a =-+解得3a =-∴()2313y x =--+故答案为:D .【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式.2.B【解析】【分析】【详解】解:∵一次函数y=(m+1)x+m 的图象过第一、三、四象限,∴m+1>0,m <0,即-1<m <0,∴函数221()24m y mx mx m x =-=--有最大值, ∴最大值为4m -, 故选B .3.C【解析】【分析】 由题意得点P 的坐标为(﹣4,3),根据象限内点的符号特点可得点P 1的所在象限.【详解】∵设P (4,﹣3)关于原点的对称点是点P 1,∴点P 1的坐标为(﹣4,3),∴点P 1在第二象限.故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.4.B【解析】【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【详解】解:360°÷36°=10,所以这个正多边形是正十边形.故选:B .【点睛】本题主要考查了多边形的外角和定理.是需要识记的内容.5.C【解析】【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】方程变形得:x (x ﹣1)=0,可得x =0或x ﹣1=0,解得:x 1=0,x 1=1.故选C .考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.6.A【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.7.D【解析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .8.A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x)<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.9.B【分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【详解】解,连结OB ,∵PA 、PB 是O e 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB ,∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB ,∴62∠=∠=︒BOC P ,∵»»BCBC =, ∴1312∠=∠=︒D BOC , ∵//BD AC ,∴31∠=∠=︒C D ,故选:B .【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.10.A【解析】【分析】设AC=a ,由特殊角的三角函数值分别表示出BC 、AB 的长度,进而得出BD 、CD 的长度,由公式求出tan ∠DAC 的值即可.【详解】设AC=a ,则BC=30AC tan ︒=3a ,AB=30AC sin ︒=2a , ∴BD=BA=2a , ∴CD=(2+3)a ,∴tan ∠DAC=2+3.故选A.【点睛】本题主要考查特殊角的三角函数值.11.B【解析】【分析】如图,连接OA ,OB ,OC ,OE .想办法求出∠AOE 即可解决问题.【详解】如图,连接OA ,OB ,OC ,OE .∵∠EBC+∠EDC =180°,∠EDC =130°,∴∠EBC =50°,∴∠EOC =2∠EBC =100°,∵AB =BC =CE ,∴弧AB =弧BC =弧CE ,∴∠AOB =∠BOC =∠EOC =100°,∴∠AOE =360°﹣3×100°=60°,∴∠ABE =12∠AOE =30°. 故选:B .【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.B【解析】试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=12AC×BC=12AB×CD,∴AC×BC=AB×CD,即CD=AC BCAB⋅=345⨯=125,∴⊙C的半径为125,故选B.考点:圆的切线的性质;勾股定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣4ab【解析】【分析】根据单项式与单项式的乘法解答即可.【详解】2a×(﹣2b)=﹣4ab.故答案为﹣4ab.【点睛】本题考查了单项式的乘法,关键是根据单项式的乘法法则解答.14.1.【解析】【分析】把无理方程转化为整式方程即可解决问题.【详解】两边平方得到:2x﹣1=1,解得:x=1,经检验:x=1是原方程的解.故答案为:1.【点睛】本题考查了无理方程,解题的关键是学会用转化的思想思考问题,注意必须检验.15.x1=1,x2=-.【解析】试题解析:3x(x-1)=2(x-1)3x(x-1)-2 (x-1) =0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考点:解一元二次方程---因式分解法.16.3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.17.33m n n +-【解析】【分析】过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长. 【详解】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴3tanDF BF DBF=⋅∠=.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴33AB BE AE CD DF AE m n n =-=+-=+-.故答案为:33m n n +-.【点睛】此题考查解直角三角形的应用,解题的关键在于做辅助线.18.ab (a+b )1.【解析】【详解】a 3b+1a 1b 1+ab 3=ab (a 1+1ab+b 1)=ab (a+b )1.故答案为ab (a+b )1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)3或256.(3)65x =或0<1x < 【解析】【分析】(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当PEF EAB ∠=∠ 时,则得到四边形ABEP 为矩形,从而求得x 的值;当PEF AEB ∠=∠时,再结合(1)中的结论,得到等腰APE V .再根据等腰三角形的三线合一得到F 是AE 的中点,运用勾股定理和相似三角形的性质进行求解. (3)此题首先应针对点P 的位置分为两种大情况:①D e 与AE 相切,② D e 与线段AE 只有一个公共点,不一定必须相切,只要保证和线段AE 只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段AE 外的情况即是x 的取值范围.【详解】(1)证明:∵矩形ABCD ,∴AD ∥BC.90.ABE ∴∠=o ∴∠PAF=∠AEB.又∵PF ⊥AE ,90.PFA ABE ∴∠=∠=o ∴△PFA ∽△ABE.(2)情况1,当△EFP ∽△ABE ,且∠PEF=∠EAB 时,则有PE ∥AB∴四边形ABEP 为矩形,∴PA=EB=3,即x=3.情况2,当△PFE ∽△ABE ,且∠PEF=∠AEB 时,∵∠PAF=∠AEB ,∴∠PEF=∠PAF.∴PE=PA.∵PF ⊥AE ,∴点F 为AE 的中点,5AE ===Q ,15.22EF AE ∴== ,PE EF AE EB =Q 即5253PE =, 25.6PE ∴= ∴满足条件的x 的值为3或25.6(3) 65x =或0 1.x << 【点睛】两组角对应相等,两三角形相似.20.(1)8m ;(2)答案不唯一【解析】【分析】(1)根据入射角等于反射角可得 ∠APB=∠CPD ,由 AB ⊥BD 、CD ⊥BD 可得到 ∠ABP=∠CDP=90°,从而可证得三角形相似,根据相似三角形的性质列出比例式,即可求出CD 的长.(2)设计成视角问题求古城墙的高度.【详解】(1)解:由题意,得∠APB=∠CPD ,∠ABP=∠CDP=90°,∴Rt △ABP ∽Rt △CDP ,∴AB CD BP BP=, ∴CD=1.2121.8⨯=8. 答:该古城墙的高度为8m(2)解:答案不唯一,如:如图,在距这段古城墙底部am 的E 处,用高h (m )的测角仪DE 测得这段古城墙顶端A 的仰角为α.即可测量这段古城墙AB 的高度,过点D 作DC ⊥AB 于点C.在Rt △ACD 中,∠ACD=90°,tanα=AC CD , ∴AC=α tanα,∴AB=AC+BC=αtanα+h【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21.2213x ,x + 【解析】【分析】根据分式的化简方法先通分再约分,然后带入求值.【详解】 解:22211121x x x x x x x --+⋅-++ 2(1)(1)(1)1(1)1111111121x x x x x x xx x x x x x x x +--=+⋅+--=++-+=+++=+ 当12x =时,2213x x =+. 【点睛】此题重点考查学生对分式的化简的应用,掌握分式的化简方法是解题的关键.22.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.x=1【解析】【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】化为整式方程得:2﹣3x=x﹣2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1.【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.24.1【解析】【分析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解.【详解】解:(231xx--﹣2)÷11x-==x 2﹣3﹣2x+2=x 2﹣2x ﹣1, ∵12x 2﹣x ﹣4=0, ∴x 2﹣2x=8,∴原式=8﹣1=1.【点睛】分式混合运算要注意先去括号;分子、 分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.25.(1)23;(2)49 【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k>0,b>0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数, 所以从中任意取一个球,标号为正数的概率是23. (2)因为直线y=kx+b 经过一、二、三象限,所以k>0,b>0,又因为取情况: k b1 -12 11,1 1,-1 1,2 -1-1,1 -1,-1 -1.2 2 2,1 2,-1 2,2 共9种情况,符合条件的有4种,所以直线y=kx+b 经过一、二、三象限的概率是49. 【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .26.(1)201800y x =-+;(2)2203000108000w x x =-+-;(3)最多获利4480元.【解析】【分析】(1)销售量y 为200件加增加的件数(80﹣x )×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【详解】(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式为:W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣30002(20)⨯-=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.【点睛】二次函数的应用.27.53米.【解析】【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值. 【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:421.53661baa b⎧-=⎪⎨⎪=++⎩,解得:12413ab⎧=-⎪⎪⎨⎪=⎪⎩,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣124x2+13x+1,∵y=﹣124(x﹣4)2+53,∴飞行的最高高度为:53米.【点睛】本题考核知识点:二次函数的应用. 解题关键点:熟记二次函数的基本性质.。
宁夏中卫市2019-2020学年中考数学一模考试卷含解析
宁夏中卫市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°2.在同一坐标系中,反比例函数y=kx与二次函数y=kx2+k(k≠0)的图象可能为()A.B.C.D.3.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50°B.60°C.70°D.80°4.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.35.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.标准差C.中位数D.众数6.下列命题中,正确的是( )A .菱形的对角线相等B .平行四边形既是轴对称图形,又是中心对称图形C .正方形的对角线不能相等D .正方形的对角线相等且互相垂直7.现有两根木棒,它们的长分别是20cm 和30cm ,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )A .10cm 的木棒B .40cm 的木棒C .50cm 的木棒D .60cm 的木棒8.内角和为540°的多边形是( )A .B .C .D .9.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( )A .B .2C .D .10.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为( )A .9.29×109B .9.29×1010C .92.9×1010D .9.29×101111.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( )A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯12.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A (﹣3,y 1),B (2,y 2),C (3,y 3)在抛物线y=2x 2﹣4x+c 上,则y 1,y 2,y 3的大小关系是_____. 14.一组数据1,4,4,3,4,3,4的众数是_____.15.已知⊙O 1、⊙O 2的半径分别为2和5,圆心距为d,若⊙O 1与⊙O 2相交,那么d 的取值范围是_________. 16.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F在AB上,点B、E在反比例函数的图像上,OA=1,OC=6,则正方形ADEF的边长为.17.如图,直线a、b相交于点O,若∠1=30°,则∠2=___18.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某市郊外景区内一条笔直的公路a经过三个景点A、B、C,•景区管委会又开发了风景优美的景点D,经测量,景点D位于景点A的北偏东30′方向8km处,•位于景点B的正北方向,还位于景点C的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D向公路a修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km).求景点C与景点D之间的距离.(结果精确到1km).20.(6分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=35,AK10,求CN的长.21.(6分)已知二次函数y=a (x+m )2的顶点坐标为(﹣1,0),且过点A (﹣2,﹣12). (1)求这个二次函数的解析式;(2)点B (2,﹣2)在这个函数图象上吗?(3)你能通过左,右平移函数图象,使它过点B 吗?若能,请写出平移方案. 22.(8分)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,AB 与CD 交于点E ,点P 是CD 延长线上的一点,AP=AC ,且∠B=2∠P .(1)求证:PA 是⊙O 的切线;(2)若PD=3,求⊙O 的直径;(3)在(2)的条件下,若点B 等分半圆CD ,求DE 的长.23.(8分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)036 24.(10分)已知抛物线,2:3L y ax bx =+-与x 轴交于()1,0A B -、两点,与y 轴交于点C ,且抛物线L 的对称轴为直线1x =.(1)抛物线的表达式;(2)若抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 与x 轴交于点','A B 两点(点'A 在点'B 左侧),要使'2ABC A BC S S ∆∆=,求所有满足条件的抛物线'L 的表达式.25.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?26.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.27.(12分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:甲种乙种丙种进价(元/台)1200 1600 2000售价(元/台)1420 1860 2280经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.2.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.3.C【解析】【详解】解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.4.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.5.B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为x i,则样本B中的数据为y i=x i+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.6.D【解析】【分析】根据菱形,平行四边形,正方形的性质定理判断即可.【详解】A.菱形的对角线不一定相等,A 错误;B.平行四边形不是轴对称图形,是中心对称图形,B 错误;C. 正方形的对角线相等,C错误;D.正方形的对角线相等且互相垂直,D 正确;故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.B【解析】【分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.8.C【解析】试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.考点:多边形内角与外角.9.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52, ∴m=118, ∵m <0,∴此种情形不合题意,所以m+n=﹣1+52=12. 10.B【解析】【分析】科学记数法的表示形式为a×1n 的形式,其中1≤|a|<1,n 为整数.确定n 的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11. 故选B .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.11.B【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:将360000000用科学记数法表示为:3.6×1. 故选:B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.C【解析】【分析】根据平行线的性质,可得CFB ∠的度数,再根据:3:4CFE EFB ∠∠=以及平行线的性质,即可得出BEF ∠的度数.【详解】∵//AB CD ,40ABF ︒∠=,∴180140CFB B ︒︒∠=-∠=,∵:3:4CFE EFB ∠∠=, ∴3607CFE CFB ︒∠=∠=, ∵//AB CD ,∴60BEF CFE ︒∠=∠=,故选C .【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y 2<y 3<y 1【解析】【分析】把点的坐标分别代入抛物线解析式可分别求得y 1、y 2、y 3的值,比较可求得答案.【详解】∵y=2x 2-4x+c ,∴当x=-3时,y 1=2×(-3)2-4×(-3)+c=30+c ,当x=2时,y 2=2×22-4×2+c=c , 当x=3时,y 3=2×32-4×3+c=6+c , ∵c <6+c <30+c ,∴y 2<y 3<y 1,故答案为y 2<y 3<y 1.【点睛】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键. 14.1【解析】【分析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中1是出现次数最多的,故众数是1.故答案为1.【点睛】本题为统计题,考查了众数的定义,是基础题型.15.3<d<7【解析】【分析】若两圆的半径分别为R 和r ,且R≥r ,圆心距为d :相交,则R-r<d<R+r ,从而得到圆心距O 1O 2的取值范围.【详解】∵⊙O 1和⊙O 2的半径分别为2和5,且两圆的位置关系为相交,∴圆心距O 1O 2的取值范围为5-2<d<2+5,即3<d<7.故答案为:3<d<7.【点睛】本题考查的知识点是圆与圆的位置关系,解题的关键是熟练的掌握圆与圆的位置关系.16.2【解析】试题分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义.17.30°【解析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.解:∵∠1+∠2=180°,又∠1=30°,∴∠2=150°.18.221y x x =-++(答案不唯一)【解析】【分析】根据二次函数的性质,抛物线开口向下a<0,与y 轴交点的纵坐标即为常数项,然后写出即可.【详解】∵抛物线开口向下,并且与y 轴交于点(0,1)∴二次函数的一般表达式2y ax bx c =++中,a<0,c=1,∴二次函数表达式可以为:221y x x =-++(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)景点D向公路a修建的这条公路的长约是3.1km;(2)景点C与景点D之间的距离约为4km.【解析】【详解】解:(1)如图,过点D作DE⊥AC于点E,过点A作AF⊥DB,交DB的延长线于点F,在Rt△DAF中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF-=-=,在Rt△ABF中BF=2222AB AF54-=-=3,∴BD=DF﹣BF=43﹣3,sin∠ABF=45 AFAB=,在Rt△DBE中,sin∠DBE=DBBD,∵∠ABF=∠DBE,∴sin∠DBE=45,∴DE=BD•sin∠DBE=45×(43﹣3)=163125-≈3.1(km),∴景点D向公路a修建的这条公路的长约是3.1km;(2)由题意可知∠CDB=75°,由(1)可知sin∠DBE=45=0.8,所以∠DBE=53°,∴∠DCB=180°﹣75°﹣53°=52°,在Rt△DCE中,sin∠DCE=DBDC,∴DC=3.1sin520.79DE︒=≈4(km),∴景点C与景点D之间的距离约为4km.20.(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(32010 13【解析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=12∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AH HK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH ,在Rt △APN 中,由tan ∠CAH=43PN AP =,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP=tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长.试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G ,∴OG ⊥EF ,∴∠AGO+∠AGE=90°,∵CD ⊥AB 于H ,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG ,∴∠AGO=∠OAG ,∴∠AGE=∠AKH ,∵∠EKG=∠AKH ,∴∠EKG=∠AGE ,∴KE=GE .(2)设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α,∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α,∴∠ACH=∠E ,∴CA ∥FE .(3)作NP ⊥AC 于P .∵∠ACH=∠E ,∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a ,则4a =,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE ,∵∠AGE=∠AKH ,∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH HK=3,=,∵,=∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG ,∵∠ACN=∠ABG ,∴∠AKH=∠ACN ,∴tan ∠AKH=tan ∠ACN=3,∵NP ⊥AC 于P ,∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=43PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PN CP =3, ∴CP=4b ,∴AC=AP+CP=13b ,∵AC=5,∴13b=5,∴b=5 13,∴CN=22PN CP+=410b⋅=2010 13.21.(1)y=﹣12(x+1)1;(1)点B(1,﹣1)不在这个函数的图象上;(3)抛物线向左平移1个单位或平移5个单位函数,即可过点B;【解析】【分析】(1)根据待定系数法即可得出二次函数的解析式;(1)代入B(1,-1)即可判断;(3)根据题意设平移后的解析式为y=-12(x+1+m)1,代入B的坐标,求得m的植即可.【详解】解:(1)∵二次函数y=a(x+m)1的顶点坐标为(﹣1,0),∴m=1,∴二次函数y=a(x+1)1,把点A(﹣1,﹣12)代入得a=﹣12,则抛物线的解析式为:y=﹣12(x+1)1.(1)把x=1代入y=﹣12(x+1)1得y=﹣92≠﹣1,所以,点B(1,﹣1)不在这个函数的图象上;(3)根据题意设平移后的解析式为y=﹣12(x+1+m)1,把B(1,﹣1)代入得﹣1=﹣12(1+1+m)1,解得m=﹣1或﹣5,所以抛物线向左平移1个单位或平移5个单位函数,即可过点B.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的性质以及图象与几何变换.22.(1)证明见解析;(2)(3)3;【解析】【分析】(1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2 ∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;==O的直径;(2)利用∠P=30°得到OP=2OA,则PD OD(3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设DH=x,则DE=2x,HE AH HE,,所以)1x=然后求出x即可===得到DE的长.【详解】(1)证明:连接OA、AD,如图,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD为直径,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO为等边三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切线;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,==∴PD OD∴⊙O的直径为(3)解:作EH⊥AD于H,如图,∵点B等分半圆CD,∴∠BAC=45°,∴∠DAE=45°,设DH=x ,在Rt △DHE 中,DE=2x ,3HE x =, 在Rt △AHE 中,3AH HE x ,== ∴()331AD x x x =+=+, 即()313x +=,解得33.x -=∴233DE x ==-.【点睛】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.23.17.2【解析】分析:按照实数的运算顺序进行运算即可.详解:原式11416,22=⨯+-+ 1216,2=+-+ 17.2= 点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.24.(1)()214y x =--;(2)()()2234;74y x y x =--=--. 【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意知()20A m '-,,根据三角形面积公式列方程即可求解. 【详解】(1)根据题意得:1230b a a b ⎧-=⎪⎨⎪--=⎩, 解得:12a b =⎧⎨=-⎩, 抛物线的表达式为:()222314y x x x =--=--;(2)∵抛物线'L 与抛物线L 关于直线x m =对称,抛物线L 的对称轴为直线1x =∴抛物线'L 的对称轴为直线1x m =+,∵抛物线'L 与x 轴交于点','A B 两点且点'A 在点'B 左侧,∴A '的横坐标为:121m m +-=-∴()10A m '-,, 令0y =,则2230x x --=,解得:1213x x =-=,,令0x =,则3y =,∴点A B 、的坐标分别为()10A -,,()30B ,,点C 的坐标为()03,, ∴1143622ABC C S AB y =⨯⨯=⨯⨯=n , ∵132A BCABC S S '==n n , ∴132A BC C S A B y '=⨯⨯'=n ,即113332m --⨯=, 解得:2m =或6m =,∵抛物线'L 与抛物线L 关于直线x m =对称,抛物线'L 的对称轴为直线1x m =+,∴抛物线'L 的表达式为()234y x =--或()274y x =--. 【点睛】本题属于二次函数综合题,涉及了待定系数法求函数解析式、一元二次方程的解及三角形的面积,第(2)问的关键是得到抛物线'L 的对称轴为直线1x m =+.25.(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.26.(1)见解析;(2)1【解析】【分析】(1)根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC 即可推出四边形是菱形;(2)根据线段垂直平分线性质得出AF=CF,设AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到结论.【详解】(1)∵EF是AC的垂直平分线,∴AO=OC,∠AOE=∠COF=90°.∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵EAO FCOAO COAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四边形AECF是平行四边形.又∵EF⊥AC,∴平行四边形AECF是菱形;(2)设AF=x.∵EF是AC的垂直平分线,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周长为1.【点睛】本题考查了勾股定理,矩形性质,平行四边形的判定,菱形的判定,全等三角形的性质和判定,平行线的性质等知识点的综合运用,用了方程思想.27.(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解析】【分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.。
【附5套中考模拟试卷】宁夏银川市2019-2020学年中考数学模拟试题含解析
宁夏银川市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图直线y =mx 与双曲线y=kx交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .42.下列运算中,正确的是 ( ) A .x 2+5x 2=6x 4B .x 326·x x =C .236()x x =D .33()xy xy =3.△ABC 在正方形网格中的位置如图所示,则cosB 的值为( )A .5B .25C .12D .24.若一个圆锥的底面半径为3cm ,母线长为5cm ,则这个圆锥的全面积为( ) A .15πcm 2B .24πcm 2C .39πcm 2D .48πcm 25.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=6.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .7.下列代数运算正确的是( ) A .(x+1)2=x 2+1B .(x 3)2=x 5C .(2x )2=2x 2D .x 3•x 2=x 58.如图,已知正五边形 ABCDE 内接于O e ,连结BD ,则ABD ∠的度数是( )A.60︒B.70︒C.72︒D.144︒9.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60APB∠=o,8PA=,那么弦AB的长是()A.4B.43C.8D.8310.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有15的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①②B.②③C.③④D.④11.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2)B.a(x﹣3)(x+4)C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)12.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子( )A .31B .35C .40D .50二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC 其中正确的是_____(填序号)14.若22m n x y --与423m n x y +是同类项,则3m n -的立方根是 .15.如图,在平面直角坐标系xOy 中,点A 的坐标为A(1,0),等腰直角三角形ABC 的边AB 在x 轴的正半轴上,∠ABC=90°,点B 在点A 的右侧,点C 在第一象限。
宁夏银川市2019-2020学年第三次中考模拟考试数学试卷含解析
宁夏银川市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为( ) A .3122×10 8元 B .3.122×10 3元 C .3122×10 11 元D .3.122×10 11 元2.如图所示的几何体的俯视图是( )A .B .C .D .3.如图,在△ABC 中,AC 的垂直平分线分别交AC 、BC 于E ,D 两点,EC =4,△ABC 的周长为23,则△ABD 的周长为( )A .13B .15C .17D .194.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了132件.如果全组共有x 名同学,则根据题意列出的方程是( ) A .x(x+1)=132B .x(x-1)=132C .x(x+1)=132×12D .x(x-1)=132×25.下列运算正确的是( )A .a 2·a 3﹦a 6B .a 3+ a 3﹦a 6C .|-a 2|﹦a 2D .(-a 2)3﹦a 66.如果实数a=11,且a 在数轴上对应点的位置如图所示,其中正确的是( ) A . B . C . D .7.二次函数2y x 的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴8.如果关于x 的分式方程1311a x x x --=++有负数解,且关于y 的不等式组2()43412a y y y y ---⎧⎪⎨+<+⎪⎩…无解,则符合条件的所有整数a 的和为() A .﹣2B .0C .1D .39.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )A .(0,0)B .(﹣2,1)C .(﹣2,﹣1)D .(0,﹣1)10.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为( )A .23B .75C .77D .13911.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).x…1-12…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点12.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5B .4C .7D .14二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x 的方程x 2+kx ﹣3=0的一个根是x=﹣1,则另一根为_____.14.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.15.ABC ∆内接于圆O ,设A x ∠=o ,圆O 的半径为r ,则OBC ∠所对的劣弧长为_____(用含x r ,的代数式表示).16.如图,在Rt △ABC 中,∠C=90°,AB=5,BC=3,点P 、Q 分别在边BC 、AC 上,PQ ∥AB ,把△PCQ 绕点P 旋转得到△PDE (点C 、Q 分别与点D 、E 对应),点D 落在线段PQ 上,若AD 平分∠BAC ,则CP 的长为_________.17.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____. 18.若3,a ,4,5的众数是4,则这组数据的平均数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)先化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2,其中x=3.20.(6分)某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元 求甲、乙型号手机每部进价为多少元? 该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案 售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m 元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m 的值21.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.22.(8分)解不等式组:2(3)47{22x x x x +≤++>并写出它的所有整数解.23.(8分)如图1,在正方形ABCD 中,E 是边BC 的中点,F 是CD 上一点,已知∠AEF =90°.(1)求证:23EC DF =; (2)平行四边形ABCD 中,E 是边BC 上一点,F 是边CD 上一点,∠AFE =∠ADC ,∠AEF =90°. ①如图2,若∠AFE =45°,求ECDF的值; ②如图3,若AB =BC ,EC =3CF ,直接写出cos ∠AFE 的值.24.(10分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.求y 与x 之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.25.(10分)已知关于 的方程mx 2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数的值.26.(12分)有4张正面分别标有数字﹣1,2,﹣3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从4张卡片中随机摸出一张不放回,将该卡片上的数字记为m ,在随机抽取1张,将卡片的数字即为n .(1)请用列表或树状图的方式把(m ,n )所有的结果表示出来. (2)求选出的(m ,n )在二、四象限的概率.27.(12分)如图,在平面直角坐标系中,一次函数1(0)y ax b a =+≠的图象与y 轴相交于点A ,与反比例函数2(0)ky k x=≠的图象相交于点(3,2)B ,(1,)C n -.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出12y y 时,x 的取值范围;(3)在y 轴上是否存在点P ,使PAB △为等腰三角形,如果存在,请求点P 的坐标,若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】可以用排除法求解. 【详解】第一,根据科学记数法的形式可以排除A 选项和C 选项,B 选项明显不对,所以选D. 【点睛】牢记科学记数法的规则是解决这一类题的关键. 2.D 【解析】 【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中. 【详解】从上往下看,该几何体的俯视图与选项D 所示视图一致. 故选D . 【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图. 3.B【解析】∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.4.B【解析】全组有x名同学,则每名同学所赠的标本为:(x-1)件,那么x名同学共赠:x(x-1)件,所以,x(x-1)=132,故选B.5.C【解析】【分析】根据同底数幂相乘,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.【详解】a2·a3﹦a5,故A项错误;a3+ a3﹦2a3,故B项错误;a3+ a3﹦- a6,故D项错误,选C.【点睛】本题考查同底数幂加减乘除及乘方,解题的关键是清楚运算法则.6.C【解析】.详解:49 911,4 <<Q由被开方数越大算术平方根越大,<<即7 3,2 <<故选C.的大小.7.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).8.B【解析】【分析】解关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,结合解集无解,确定a的范围,再由分式方程1311a xx x--=++有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组2()43412a y yyy---⎧⎪⎨+<+⎪⎩„,可整理得242y ay+⎧⎨<-⎩…∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵1311a xx x--=++得x=42a-而关于x的分式方程1311a xx x--=++有负数解∴a﹣4<1∴a<4于是﹣3≤a<4,且a 为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.C【解析】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.∵点A的坐标为(﹣3,2),∴点O的坐标为(﹣2,﹣1).故选C.10.B【解析】【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【详解】∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=1.∵上边的数与左边的数的和正好等于右边的数,∴a=11+1=2.故选B.【点睛】本题考查了数字变化规律,观察出上边的数与左边的数的和正好等于右边的数是解题的关键.11.B【解析】【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与x轴有两个交点,且它们分别在y轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.12.A【解析】【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH12=AB.【详解】∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD.∵H为AD边中点,∴OH是△ABD的中位线,∴OH12=AB12=⨯7=3.1.故选A.【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】设另一根为x2,根据一元二次方程根与系数的关系得出-1•x2=-1,即可求出答案.【详解】设方程的另一个根为x2,则-1×x2=-1,解得:x2=1,故答案为1.【点睛】本题考查了一元二次方程根与系数的关系:如果x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,那么x1+x2=-ba,x1x2=ca.14.1 3【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.15.9090xrπ-o oo或9090xrπ-o oo【解析】【分析】分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.【详解】解:当0°<x°≤90°时,如图所示:连接OC,由圆周角定理得,∠BOC=2∠A=2x°,∴∠DOC=180°-2x°,∴∠OBC所对的劣弧长=(1802)(90)18090x r xππ--=,当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长=(2180)(90)18090x xππ--=.故答案为:9090xro ooπ-或9090xrπ-o oo.【点睛】本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.16.1【解析】【分析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.17.4 9【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是49,故答案为4 9 .【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.18.4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4 =x2﹣1.当x=3时,原式=3)2﹣1=3﹣1=﹣2.【解析】应用整式的混合运算法则进行化简,最后代入x值求值.20.(1) 甲种型号手机每部进价为1000元,乙种型号手机每部进价为800元;(2) 共有四种方案;(3) 当m=80时,w始终等于8000,取值与a无关【解析】【分析】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元根据题意列方程组求出x、y的值即可;(2)设购进甲种型号手机a部,这购进乙种型号手机(20-a)部,根据题意列不等式组求出a的取值范围,根据a为整数求出a的值即可明确方案(3)利用利润=单个利润 数量,用a表示出利润W,当利润与a无关时,(2)中的方案利润相同,求出m值即可;【详解】(1) 设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,22800324600x y x y +=⎧⎨+=⎩,解得1000800x y =⎧⎨=⎩, (2) 设购进甲种型号手机a 部,这购进乙种型号手机(20-a)部,17400≤1000a +800(20-a)≤18000,解得7≤a≤10,∵a 为自然数,∴有a 为7、8、9、10共四种方案,(3) 甲种型号手机每部利润为1000×40%=400,w =400a +(1280-800-m)(20-a)=(m -80)a +9600-20m ,当m =80时,w 始终等于8000,取值与a 无关.【点睛】本题考查了列二元一次方程组解实际问题的运用,根据题意找出等量关系列出方程是解题关键. 21.(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标.【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x ,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案.试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x ,根据题意得:700(1+x )2=1183,解得:x 1=0.3=30%,x 2=﹣2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),∵1537.9>1500,∴2017年该市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解.22.原不等式组的解集为122x -≤<,它的所有整数解为0,1. 【解析】【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后写出它的所有整数解即可.【详解】解:()2347{22x x x x +≤++>①②, 解不等式①,得1-2x ≥, 解不等式②,得x <2, ∴原不等式组的解集为122x -≤<, 它的所有整数解为0,1.【点睛】本题主要考查了一元一次不等式组解集的求法.解一元一次不等式组的简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).23.(1)见解析;(2)①23EC DF =;②cos ∠AFE =25 【解析】【分析】(1)用特殊值法,设2BE EC ==,则4AB BC ==,证ABE ECF ∆∆∽,可求出CF ,DF 的长,即可求出结论;(2)①如图2,过F 作FG FD ⊥交AD 于点G ,证FGD ∆和AEF ∆是等腰直角三角形,证FCE AGF ∆∆∽,求出:CE GF 的值,即可写出:EC DF 的值;②如图3,作FT FD =交AD 于点T ,作FH AD ⊥于H ,证FCE ATF ∆∆∽,设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==,112DH DT x +==,分别用含x 的代数式表示出∠AFE 和∠D 的余弦值,列出方程,求出x 的值,即可求出结论.【详解】(1)设BE =EC =2,则AB =BC =4,∵90AEF ∠︒=,∴90AEB FEC ∠+∠︒=,∵90AEB EAB ∠+∠︒=,∴∠FEC =∠EAB ,又∴90B C ∠∠︒==,∴ABE ECF ∆∆∽, ∴BE AB CF EC=, 即242CF =, ∴CF =1,则3DF DC CF -==, ∴23EC DF =; (2)①如图2,过F 作FG FD ⊥交AD 于点G ,∵45AFE ADC ∠∠︒==,∴FGD ∆和AEF ∆是等腰直角三角形,∴180135AGF DGF ∠︒-∠︒==,180135C D ∠︒-∠︒==,∴∠AGF =∠C ,又∵GAF D CFE AFE ∠+∠∠+∠=, ∴∠GAF =∠CFE ,∴FCE AGF ∆∆∽,∴2=2CE FE GF AF =, 又∵GF =DF , ∴2EC DF =;②如图3,作FT FD =交AD 于点T ,作FHAD ⊥于H ,则FTD FDT ∠∠=,∴180180FTD D ︒-∠︒-∠=,∴∠ATF =∠C , 又∵TAF D AFE CFE ∠+∠∠+∠=,且∠D =∠AFE ,∴∠TAF =∠CFE ,∴FCE ATF ∆∆∽,∴FE FC CE AF AT TF==, 设CF =2,则CE =6,可设AT =x ,则TF =3x ,32AD CD x +==, ∴112DH DT x +==,且2FE FC AF AT x==, 由cos =cos AFE D ∠,得213x x x +=, 解得x =5,∴2cos 5EF AFE AF ∠==.【点睛】本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.24.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩. 故y 与x 之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700≥240,解得x≤46,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=46时,w 大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x 2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=±5,x 1=55,x 2=45,如图所示,由图象得:当45≤x≤55时,捐款后每天剩余利润不低于3600元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.25.(1)证明见解析(2)m=1或m=-1【解析】试题分析:(1)由于m≠0,则计算判别式的值得到1=V ,从而可判断方程总有两个不相等的实数根; (2)先利用求根公式得到1211,1x x m=-=-,然后利用有理数的整除性确定整数m 的值. 试题解析:(1)证明:∵m≠0,∴方程为一元二次方程, Q 2(21)4(1)10m m m =---=>V ,∴此方程总有两个不相等的实数根;(2)∵(21)12m x m--±=, 1211,1x x m∴=-=-, ∵方程的两个实数根都是整数,且m 是整数,∴m=1或m=−1.26.(1)详见解析;(2)P=23. 【解析】试题分析:(1)树状图列举所有结果.(2)用在第二四象限的点数除以所有结果.试题解析: (1)画树状图得:则(m ,n )共有12种等可能的结果:(2,-1),(2,﹣3),(2, 4),(-1,2),(-1,﹣3),(1, 4),(﹣3,2),(﹣3,-1),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3).(2)(m ,n )在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3, 4),(﹣4,2),(4,-1),(4,﹣3),∴所选出的m ,n 在第二、三四象限的概率为:P=812=23点睛:(1)利用频率估算法:大量重复试验中,事件A 发生的频率会稳定在某个常数p 附近,那么这个常数P 就叫做事件A 的概率(有些时候用计算出A 发生的所有频率的平均值作为其概率).(2)定义法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,考察事件A 包含其中的m 中结果,那么事件A 发生的概率为P ()m A n=. (3)列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.(4)树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.27.(1)24y x =-; 6y x=;(2)10x -<<或3x >;(3)存在,(0,4P -+或(0,4P --或(0,8)P 或10,4P ⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C 坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分BP BA =、BP BA =、PA PB =三种情况讨论,即可得出结论.【详解】(1)Q 一次函数1y ax b =+与反比例函数k y x=,相交于点(3,2)B ,(1,)C n -, ∴把(3,2)B 代入k y x=得:23k =, ∴6k =, ∴反比例函数解析式为6y x =, 把(1,)C n -代入6y x =得:61n =-, ∴6n =-,∴点C 的坐标为(1,6)--,把(3,2)B ,(1,6)C --代入y ax b =+得:23k b b k b=+⎧⎨-=-+⎩, 解得:24k b =⎧⎨=-⎩, ∴一次函数解析式为24y x =-;(2)根据函数图像可知:当10x -<<或3x >时,一次函数的图象在反比例函数图象的上方,∴当10x -<<或3x >时,12y y >;(3)存在(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形,理由如下: 过B 作BD y ⊥轴,交y 轴于D ,∵直线124y x =-与y 轴交于点A ,∴令0x =得,4y =-,∴点A 的坐标为(0,4)-,∵点B 的坐标为(3,2)B ,∴点D 的坐标为(0,2)D ,∴22(30)(24)AB =-++2236=+35=①当AP AB =时,则35AP =(0,4)A -Q ,∴点P 的坐标为:1(0,435)P -+、2(0,435)P --; ②当BP BA =时,BAP Q △是等腰三角形,BD AP ⊥,BD ∴平分AP ,2(4)6DA DP ∴==--=,∵点D 的坐标为(0,2)D ,∴点P 的坐标为(0,26)+,即3(0,8)P ;③当PA PB =时,如图:设PA PB x ==,则6DP DA PA x =-=-,Q 在Rt BDO △中,3DB =,6DP x =-,PB x =,∴由勾股定理得:222PB DB DP =+,2223(6)x x =+-, 解得:154x =, (0,4)A -Q ,∴点P 的坐标为150,44⎛⎫-+ ⎪⎝⎭,即410,4P ⎛⎫- ⎪⎝⎭, 综上所述,当(0,435)P -+或(0,435)P --或(0,8)P 或10,4P ⎛⎫-⎪⎝⎭时,PAB △为等腰三角形. 【点睛】 本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x 的范围,解(3)的关键是分类讨论.。
2019年宁夏中考数学试题(WORD精校版带标准答案及解析)
2019年宁夏中考数学试卷一、选择题(每小题3分,共24分)1.(2019宁夏)港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米.数字55000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1062.(2019宁夏)下列各式中正确的是()A.4=±2 B.(-3)2=-3 C.34=2 D.8-2= 23.(2019宁夏)由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.4.(2019宁夏)为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.7 0.9 1.1 1.3 1.5及以上人数 2 9 6 5 4 4则本次调查中阅读时间的中位数和众数分别是()A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.(2019宁夏)如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°6.(2019宁夏)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=AD C.AC=BD D.∠ABD=∠CBD7.(2019宁夏)函数y=kx和y=kx+2(k≠0)在同一直角坐标系中的大致图象是()A.B.C.D.8.(2019宁夏)如图,正六边形ABCDEF的边长为2,分别以点A,D为圆心,以AB,DC 为半径作扇形ABF,扇形DCE.则图中阴影部分的面积是()A.63-43πB.63-83πC.123-43πD.123-83π二、填空题(每小题3分,共24分)9.(2019宁夏)分解因式:2a3-8a=.10.(2019宁夏)计算:(-12)-1+|2-2|=.11.(2019宁夏)在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为23,那么盒子内白色乒乓球的个数为.12.(2019宁夏)已知一元二次方程3x 2+4x -k =0有两个不相等的实数根,则k 的取值范围 .13.(2019宁夏)为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为 小时.14.(2019宁夏)如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧AB ︵沿弦AB 折叠交于OC 的中点D ,若AB =210,则⊙O 的半径为 .15.(2019宁夏)如图,在Rt △ABC 中,∠C =90°,以顶点B 为圆心,适当长度为半径画弧,分别交AB ,BC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若∠A =30°,则S △BCDS △ABD= .16.(2019宁夏)你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程x 2+5x -14=0即x (x +5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(x +x +5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得x =2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程x 2-4x -12=0的正确构图是 .(只填序号)三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)(2019宁夏)已知:在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (5,4),B (0,3),C (2,1).(1)画出△ABC 关于原点成中心对称的△A 1B 1C 1,并写出点C 1的坐标; (2)画出将A 1B 1C 1绕点C 1按顺时针旋转90°所得的△A 2B 2C 1.18.(6分)(2019宁夏)解方程:2x +2 +1=xx -1.19.(6分)(2019宁夏)解不等式组:⎩⎪⎨⎪⎧x 2-x -13 ≥1x -32 <x +2 .20.(6分)(2019宁夏)学校在“我和我的祖国”快闪拍摄活动中,为学生化妆.其中5名男生和3名女生共需化妆费190元;3名男生的化妆费用与2名女生的化妆费用相同.(1)求每位男生和女生的化妆费分别为多少元;(2)如果学校提供的化妆总费用为2000元,根据活动需要至少应有42名女生化妆,那么男生最多有多少人化妆.21.(6分)(2019宁夏)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=25AD,求tan∠AFE.22.(6分)(2019宁夏)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.学生垃圾类别A B C D E F G H厨余垃圾√√√√√√√√可回收垃圾√×√××√√√有害垃圾×√×√√××√其他垃圾×√√××√√√(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.四、解答题(本共4道题,其中23、24题每题8分,25、28题每题10分,共38分)23.(8分)(2019宁夏)如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.(1)求证:OD∥BC;(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求CDBE的值.24.(8分)(2019宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(3,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.25.(10分)(2019宁夏)在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:跑道宽度/米0 1 2 3 4 5 …跑道周长/米400 …若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?26.(10分)(2019宁夏)如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上的动点(点M不与A,B重合),且MQ⊥BC,过点M作BC的平行线MN,交AC于点N,连接NQ,设BQ为x.(1)试说明不论x为何值时,总有△QBM∽△ABC;(2)是否存在一点Q,使得四边形BMNQ为平行四边形,试说明理由;(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.参考答案一、选择题1.【解答】解:数字55000用科学记数法表示为5.5×104.故选:C.2.【解答】解:A.,故选项A不合题意;B.,故选项B不合题意;C.,故选项C不合题意;D.,故选项D符合题意.故选:D.3.【解答】解:由俯视图知该几何体共3列,其中第1列前一排3个正方形、后1排1个正方形,第2列只有前排2个正方形,第三列只有1个正方形,所以其主视图为:故选:A.4.【解答】解:由表格可得,30名学生平均每天阅读时间的中位数是:=0.9 30名学生平均每天阅读时间的是0.7,故选:B.5.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°-40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°-70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.6.【解答】解:∵四边形ABCD的两条对角线相交于点O,且互相平分,∴四边形ABCD是平行四边形,∴AD∥BC,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;当∠ABD=∠CBD时,由AD∥BC得:∠CBD=∠ADB,∴∠ABD=∠ADB,∴AB=AD,∴四边形ABCD是菱形;故选:C.7.【解答】解:在函数y=和y=kx+2(k≠0)中,当k>0时,函数y=的图象在第一、三象限,函数y=kx+2的图象在第一、二、三象限,故选项A、D错误,选项B正确,当k<0时,函数y=的图象在第二、四象限,函数y=kx+2的图象在第一、二、四象限,故选项C错误,故选:B.8.【解答】解:∵正六边形ABCDEF的边长为2,∴正六边形ABCDEF的面积是:=6×=6,∠F AB=∠EDC=120°,∴图中阴影部分的面积是:6-=,故选:B.二、填空题(本题共8小题,每小题3分,共24分)9.【解答】解:原式=2a(a2-4)=2a(a+2)(a-2),故答案为:2a(a+2)(a-2)10.【解答】解:(-)-1+|2-|=-2+2-=-;故答案为-;11.【解答】解:设盒子内白色乒乓球的个数为x,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,∴盒子内白色乒乓球的个数为4,故答案为:4.12.【解答】解:∵方程3x2+4x-k=0有两个不相等的实数根,∴△>0,即42-4×3×(-k)>0,解得k>-,故答案为:k>-.13.【解答】解:由图可知,该班一共有学生:8+16+12+4=40(人),该班学生这天用于体育锻炼的平均时间为:(0.5×8+1×16+1.5×12+2×4)÷40=1.15(小时).故答案为1.15.14.【解答】解:连接OA,设半径为x,∵将劣弧沿弦AB折叠交于OC的中点D,∴OC=,OC⊥AB,∴AC==,∵OA2-OC2=AC2,∴,解得,x=3.故答案为:3.15.【解答】解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.16.【解答】解:∵x2-4x-12=0即x(x-4)=12,∴构造如图②中大正方形的面积是(x+x-4)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×12+42,据此易得x=6.故答案为:②.三、解答题(本题共有6个小题,每小题6分,共36分)17.【解答】解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(-2,-1).(2)如图所示,△A2B2C1即为所求.18.【解答】解:+1=,方程两边同时乘以(x+2)(x-1),得2(x-1)+(x+2)(x-1)=x(x+2),∴x=4,将检验x=4是方程的解;∴方程的解为x=4;19.【解答】解:解不等式-≥1,得:x≥4,解不等式<x+2,得:x>-7,则不等式组的解集为-7<x≤4.20.【解答】解:(1)设每位男生的化妆费是x元,每位女生的化妆费是y元,依题意得:.解得:.答:每位男生的化妆费是20元,每位女生的化妆费是30元;(2)设男生有a人化妆,依题意得:≥42.解得a≤37.即a的最大值是37.答:男生最多有37人化妆.21.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∵EF⊥CE,∴∠FEC=90°,∴∠AFE+∠AEF=∠AEF+∠DEC=90°,∴∠AFE=∠DEC,在△AEF与△DCE中,,∴△AEF≌△DCE(AAS),∴AF=DE;(2)解:∵DE=AD,∴AE=DE,∵AF=DE,∴tan∠AFE==.22.【解答】解:(1)8名学生中至少有三类垃圾投放正确的概率为;(2)列表如下:A C F GA C A F A GAC AC FC GCF AF CF GFG AG CG FG四、解答题(本共4道题,其中23、24题每题8分,25、28题每题10分,共38分)23.【解答】解:(1)证明∵AB=BC∴∠A=∠C∵OD=OA∴∠A=∠ADO∴∠C=∠ADO∴OD∥BC(2)如图,连接BD,∵∠A=30°,∠A=∠C∴∠C=30°∵DE为⊙O的切线,∴DE⊥OD∵OD∥BC∴DE⊥BC∴∠BED=90°∵AB为⊙O的直径∴∠BDA=90°,∠CBD=60°∴=tan∠C=tan30°=∴BD=CD∴=cos∠CBD=cos60°=∴BE=BD=CD∴=24.【解答】解:(1)∵与m轴相交于点P(,0),∴OB=,∵∠ABC=30°,∴OA=1,∴S==;(2)∵B(0,),A(1,0),设AB的解析式y=kx+b,∴,∴,∴y=-x+;(3)在移动过程中OB=-m,则OA=tan30°×OB=(-m)=1-m,∴s=×(-m)×(1-m)=-m+,(0≤m≤)当m=0时,s=,∴Q(0,).25.【解答】解:(1)400米跑道中一段直道的长度=(400-2×36×3.14)÷2=86.96 m (2)表格如下:y=2πx+400=6.28x+400;(3)当y=446时,即6.28x+400=446,解得:x≈7.32 m7.32÷1.2≈6 条∴最多能铺设道宽为1.2米的跑道6条.26.【解答】解:(1)∵MQ⊥BC,∴∠MQB=90°,∴∠MQB=∠CAB,又∠QBM=∠ABC,∴△QBM∽△ABC;(2)当BQ=MN时,四边形BMNQ为平行四边形,∵MN∥BQ,BQ=MN,∴四边形BMNQ为平行四边形;(3)∵∠A=90°,AB=3,AC=4,∴BC==5,∵△QBM∽△ABC,∴==,即==,解得,QM=x,BM=x,∵MN∥BC,∴=,即=,解得,MN=5-x,则四边形BMNQ的面积=×(5-x+x)×x=-(x-)2+,∴当x=时,四边形BMNQ的面积最大,最大值为.。
宁夏银川市2019-2020学年中考数学模拟试题(2)含解析
宁夏银川市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.据统计,第22届冬季奥林匹克运动会的电视转播时间长达88000小时,社交网站和国际奥委会官方网站也创下冬奥会收看率纪录.用科学记数法表示88000为( )A .0.88×105B .8.8×104C .8.8×105D .8.8×1062.如图,在ABC ∆中,10 , 8 , 6AB AC BC === ,以边AB 的中点O 为圆心,作半圆与AC 相切,点, P Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .6B .2131+C .9D .323 3.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135-4.下列运算正确的是( )A .4 =2B .43﹣27=1C .182÷=9D .233⨯=2 5.用配方法解方程x 2﹣4x+1=0,配方后所得的方程是( )A .(x ﹣2)2=3B .(x+2)2=3C .(x ﹣2)2=﹣3D .(x+2)2=﹣36.实数﹣5.22的绝对值是( )A .5.22B .﹣5.22C .±5.22D . 5.227.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )A .75°B .60°C .55°D .45°8.如图,△ABC 中,AB=2,AC=3,1<BC <5,分别以AB 、BC 、AC 为边向外作正方形ABIH 、BCDE 和正方形ACFG ,则图中阴影部分的最大面积为( )A.6 B.9 C.11 D.无法计算9.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是()A.204×103B.20.4×104C.2.04×105D.2.04×10610.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()A.91032π⎛⎝米2B.932π⎛⎝米2C.9632π⎛⎝米2D.(693π-米211.下列式子成立的有( )个①﹣12的倒数是﹣2②(﹣2a2)3=﹣8a52325 2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.412.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=25二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知52xy=,那么x yy+=__.14.王英同学从A 地沿北偏西60°方向走100米到B 地,再从B 地向正南方向走200米到C 地,此时王英同学离A 地的距离是_____米.15.如图,圆锥底面半径为r cm ,母线长为10cm ,其侧面展开图是圆心角为216°的扇形,则r 的值为 .16.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r =(2,3),b r =(4,m ),且a r ∥b r ,则m=_____.17.如图,菱形ABCD 和菱形CEFG 中,∠ABC =60°,点B ,C ,E 在同一条直线上,点D 在CG 上,BC =1,CE =3,H 是AF 的中点,则CH 的长为________.18.如图,在⊙O 中,点B 为半径OA 上一点,且OA =13,AB =1,若CD 是一条过点B 的动弦,则弦CD 的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在平面直角坐标系中,O 为坐标原点,△OAB 的顶点A 、B 的坐标分别是A (0,5),B (3,1),过点B 画BC ⊥AB 交直线于点C ,连结AC ,以点A 为圆心,AC 为半径画弧交x 轴负半轴于点D ,连结AD 、CD .(1)求证:△ABC ≌△AOD .(2)设△ACD 的面积为,求关于的函数关系式.(3)若四边形ABCD 恰有一组对边平行,求的值.20.(6分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A ,B ,C ,D ,E 五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;(2)求扇形统计图B 等级所对应扇形的圆心角度数;(3)已知A 等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.21.(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.22.(8分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF 试说明AC=EF ;求证:四边形ADFE 是平行四边形.23.(8分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?24.(10分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数m y x=的图象经过点E ,与AB 交于点F . 若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.25.(10分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1; 以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.26.(12分)我们知道ABC △中,如果3AB =,4AC =,那么当AB AC ⊥时,ABC △的面积最大为6;(1)若四边形ABCD 中,16AD BD BC ++=,且6BD =,直接写出AD BD BC ,,满足什么位置关系时四边形ABCD 面积最大?并直接写出最大面积.(2)已知四边形ABCD 中,16AD BD BC ++=,求BD 为多少时,四边形ABCD 面积最大?并求出最大面积是多少?27.(12分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图①中m 的值为 ;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).因此,∵88000一共5位,∴88000=8.88×104. 故选B.考点:科学记数法.2.C【解析】【分析】如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1,此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,求出OP 1,如图当Q 2在AB 边上时,P2与B 重合时,P 2Q 2最大值=5+3=8,由此不难解决问题.【详解】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是1.故选:C.【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.3.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A选项:原式=3×2=6,故A不是无理数;B6,故B是无理数;C 6,故C 不是无理数;D =12,故D 不是无理数故选B .【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.A【解析】【分析】根据二次根式的性质对A 进行判断;根据二次根式的加减法对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的乘法法则对D 进行判断.【详解】A 、原式=2,所以A 选项正确;B 、原式B 选项错误;C 、原式=3,所以C 选项错误;D 、原式,所以D 选项错误. 故选A .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.6.A【解析】【分析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.故选A.【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.7.B【解析】【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=12(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.8.B【解析】【分析】有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC 最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.【详解】把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直线上,且AB为△ACH'的中线,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时,S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以阴影部分面积之和为S△ABC的3倍,又∵AB=2,AC=3,∴图中阴影部分的最大面积为3×12×2×3=9,故选B.【点睛】本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.9.C【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.考点:科学记数法—表示较大的数.10.C【解析】【详解】连接OD,∵弧AB的半径OA长是6米,C是OA的中点,∴OC=12OA=12×6=1.∵∠AOB=90°,CD∥OB,∴CD⊥OA.在Rt△OCD中,∵OD=6,OC=1,∴2222CD OD OC6333=-=-=.又∵CD333sin DOCOD62∠===,∴∠DOC=60°.∴2606193336336022DOCAODS S Sππ∆⋅⋅=-=-⨯⨯=-阴影扇形(米2).故选C.11.B【解析】【分析】根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣12的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;232)6﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.12.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7 2【解析】【分析】根据比例的性质,设x=5a,则y=2a,代入原式即可求解. 【详解】解:∵52xy=,∴设x=5a,则y=2a,那么25722x y a ay a++==.故答案为:72.【点睛】本题主要考查了比例的性质,根据比例式用同一个未知数得出x y,的值进而求解是解题关键.14.100【解析】先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如图,作AE⊥BC于点E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt △ACE 中,根据勾股定理得:AC=100.即此时王英同学离A 地的距离是100米.故答案为100.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线. 15.1. 【解析】试题分析:∵圆锥底面半径为rcm ,母线长为10cm ,其侧面展开图是圆心角为211°的扇形, ∴2πr=360216×2π×10,解得r=1. 故答案为:1. 【考点】圆锥的计算. 16.6 【解析】根据题意得,2m=3×4,解得m=6,故答案为6. 177 【解析】 【分析】连接AC 、CF ,GE ,根据菱形性质求出AC 、CF ,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可. 【详解】解:如图,连接AC 、CF 、GE ,CF 和GE 相交于O 点 ∵在菱形ABCD 中,ABC=60∠o ,BC=1, ∴ACD=60∠o ,AC=1,AB//CD ∴GCE=60∠o∵在菱形CEFG 中,CF GE 和是它的对角线, ∴GCF=FCE=30∠∠o ,CF GE ⊥ ∴CO=cos30CE o ⨯3=333, ∴CF=2CO=33∵ACF=ACD+GCF ∠∠∠=6030+o o =90o ,∴在Rt ACF V 中,22AF=AC CF +()22=133+=27又∵H 是AF 的中点 ∴1CH=AF 21=272⨯=7.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,菱形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键. 18.10 【解析】 【分析】连接OC ,当CD ⊥OA 时CD 的值最小,然后根据垂径定理和勾股定理求解即可. 【详解】连接OC ,当CD ⊥OA 时CD 的值最小, ∵OA=13,AB=1, ∴OB=13-1=12, ∴BC=2213-12=5, ∴CD=5×2=10. 故答案为10. 【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)证明详见解析;(2)S=(m+1)2+(m >);(2)2或1. 【解析】试题分析:(1)利用两点间的距离公式计算出AB=5,则AB=OA ,则可根据“HL”证明△ABC ≌△AOD ; (2)过点B 作直线BE ⊥直线y=﹣m 于E ,作AF ⊥BE 于F ,如图,证明Rt △ABF ∽Rt △BCE ,利用相似比可得BC=(m+1),再在Rt △ACB 中,由勾股定理得AC 2=AB 2+BC 2=25+(m+1)2,然后证明△AOB∽△ACD,利用相似的性质得,而S△AOB=,于是可得S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,分类讨论:当AB∥CD时,则∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函数得到tan∠AOB=2,tan∠ACB=,所以=2;当AD∥BC,则∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,则∠ACB=∠4,根据三角函数定义得到tan∠4=,tan∠ACB=,则=,然后分别解关于m的方程即可得到m的值.试题解析:(1)证明:∵A(0,5),B(2,1),∴AB==5,∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,,∴Rt△ABC≌Rt△AOD;(2)解:过点B作直线BE⊥直线y=﹣m于E,作AF⊥BE于F,如图,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴,即,∴BC=(m+1),在Rt△ACB中,AC2=AB2+BC2=25+(m+1)2,∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴=,而S△AOB=×5×2=,∴S=(m+1)2+(m>);(2)作BH⊥y轴于H,如图,当AB∥CD时,则∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB==2,tan∠ACB===,∴=2,解得m=1;当AD∥BC,则∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=,tan∠ACB=,∴=,解得m=2.综上所述,m的值为2或1.考点:相似形综合题.20.(1)50;(2)115.2°;(3). 【解析】(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B 等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.解:(1)参加本次比赛的学生有:(人)(2)B 等级的学生共有:(人).∴所占的百分比为:∴B 等级所对应扇形的圆心角度数为:.(3)列表如下: 男 女1 女2 女3 男 ﹣﹣﹣ (女,男) (女,男) (女,男) 女1 (男,女) ﹣﹣﹣ (女,女) (女,女) 女2 (男,女) (女,女) ﹣﹣﹣ (女,女) 女3(男,女)(女,女)(女,女)﹣﹣﹣∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种. ∴P (选中1名男生和1名女生).“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键. 21.(1)详见解析;(2)详见解析;(3)3BC AB 【解析】 【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论; (2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论. 【详解】(1)∵AD=BD , ∴∠B=∠BAD , ∵AD=CD , ∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180° ∴∠B+∠C=90°, ∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OEQ 四边形ABCD 是矩形1122OA OB OC OD AC BD ∴===== AE CE ⊥Q 90AEC ∴∠=︒12OE AC ∴=12OE BD ∴=90BED ∴∠=︒ BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点FQ 四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ ADE ∆Q 是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=Q 在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,AF =AE ∴=AE BC =QBC ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形. 22.证明见解析. 【解析】 【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形. 【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC . 又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC . ∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA , ∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD . ∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD . ∵AC=EF ,AC=AD ,∴EF=AD . ∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定. 23.(1)(300﹣10x ).(2)每本书应涨价5元. 【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解. 试题解析:(1)∵每本书上涨了x 元, ∴每天可售出书(300﹣10x )本. 故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750, 整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元. 24.(1)12=-m ,43y x =-;(2)4y x =-.【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论. 详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩,解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,, ∴5AE =. ∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x =图象上, ∴43a a =-, 解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标.25.(1)见解析(2)10 【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD=2,CD=6,AC==,∴sin ∠ACB===,即sin ∠A 2C 2B 2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.26. (1)当AD BD ⊥,BC BD ⊥时有最大值1;(2)当8BD =时,面积有最大值32.【解析】【分析】(1)由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,由此即可解决问题.(2)设BD=x ,由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,构建二次函数,利用二次函数的性质即可解决问题.【详解】(1) 由题意当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大, 最大面积为12×6×(16-6)=1. 故当AD BD ⊥,BC BD ⊥时有最大值1;(2)当AD BD P ,BC BD ⊥时有最大值,设BD x =, 由题意:当AD ∥BC ,BD ⊥AD 时,四边形ABCD 的面积最大,16AD BD BC ++=Q16AD BC x ∴+=-ABD CBD ABCD S S S ∴=+V V 四边形1122AD BD BC BD =⋅+⋅ ()12AD BC BD =+⋅ ()1162x x =- ()21=8322x --+ 102-<Q ∴抛物线开口向下∴当8BD = 时,面积有最大值32.【点睛】本题考查三角形的面积,二次函数的应用等知识,解题的关键是学会利用参数构建二次函数解决问题.27.(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】【分析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=15 2,∴这组数据的中位数为15.【点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.。
宁夏银川市2019-2020学年中考数学一模考试卷含解析
宁夏银川市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在直角坐标平面内,已知点M(4,3),以M 为圆心,r 为半径的圆与x 轴相交,与y 轴相离,那么r 的取值范围为( ) A .0r 5<<B .3r 5<<C .4r 5<<D .3r 4<<2.数据4,8,4,6,3的众数和平均数分别是( ) A .5,4B .8,5C .6,5D .4,53.方程x 2﹣3x+2=0的解是( ) A .x 1=1,x 2=2 B .x 1=﹣1,x 2=﹣2 C .x 1=1,x 2=﹣2D .x 1=﹣1,x 2=24.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线( ) A .x=1B .x=49C .x=﹣1D .x=﹣495.如图,在6×4的正方形网格中,△ABC 的顶点均为格点,则sin ∠ACB=( ) A .12B .2C .255D .1346.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .16或177.在实数﹣3 ,0.21,2π,18,0.001 ,0.20202中,无理数的个数为( )A .1B .2C .3D .48.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A.B.C.D.9.下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x10.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着B.沉C.应D.冷11.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近12.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.14.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球实验,将球搅匀后任意摸出一个球,记下颜色后放回,搅匀,通过多次重复试验,算得摸到红球的频率是0.2,则袋中有________个红球.15.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.16.抛物线y=mx2+2mx+5的对称轴是直线_____.17.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.18.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:节目代号 A B C D E节目类型新闻体育动画娱乐戏曲喜爱人数12 30 m 54 9请你根据以上的信息,回答下列问题:(1)被调查学生的总数为 人,统计表中m 的值为 .扇形统计图中n 的值为 ; (2)被调查学生中,最喜爱电视节目的“众数” ;(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数. 20.(6分)自学下面材料后,解答问题。
宁夏银川市2019-2020学年中考数学仿真第一次备考试题含解析
宁夏银川市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 2.下列命题中错误的有( )个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四边形为矩形(4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A .1B .2C .3D .43.如图,已知点 P 是双曲线 y =2x上的一个动点,连结 OP ,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ ,则经过点 Q 的双曲线的表达式为( )A .y = 3xB .y =﹣ 13xC .y = 13xD .y =﹣3x4.反比例函数y =m x的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是( )A .1B .2C .3D .45.如图,矩形ABCD 中,12AB =,13BC =,以B 为圆心,BA 为半径画弧,交BC 于点E ,以D 为圆心,DA 为半径画弧,交BC 于点F ,则EF 的长为( )A .3B .4C .92D .56.如图,△ABC 中,DE ∥BC ,13AD AB =,AE =2cm ,则AC 的长是( )A .2cmB .4cmC .6cmD .8cm7.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 48.已知反比例函数y=8k x -的图象位于第一、第三象限,则k 的取值范围是( ) A .k >8 B .k≥8 C .k≤8 D .k <89.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >410.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗 B .2颗 C .3颗 D .4颗11.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A.(4,4)B.(3,3)C.(3,1)D.(4,1)12.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______.14.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=43,AC=5,则AB的长____.15.分式12x-有意义时,x的取值范围是_____.16.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________17.如图所示,数轴上点A所表示的数为a,则a的值是____.18.函数y=3x-中自变量x的取值范围是________,若x=4,则函数值y=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)20.(6分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.21.(6分)如图,抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=12MN时,求菱形对角线MN的长.22.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.(8分)在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF(1)求证:BF是⊙A的切线.(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.24.(10分)已知点A、B分别是x轴、y轴上的动点,点C、D是某个函数图象上的点,当四边形ABCD (A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数kyx=(k>0),它的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标_____,写出符合题意的其中一条抛物线解析式_____,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?_____.(本小题只需直接写出答案)25.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?26.(12分)如图,在平面直角坐标系中,圆M经过原点O,直线364y x=--与x轴、y轴分别相交于A,B两点.(1)求出A,B两点的坐标;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S △PDE=110S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.27.(12分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.(1)求证:四边形ABED是菱形;(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】7的范围,进而可得7的范围.【详解】解:a=12×(77,∵2<7<3,∴6<4+7<7,∴a的值在6和7之间,故选D.【点睛】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.2.D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.D【解析】【分析】过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.【详解】过P,Q分别作PM⊥x轴,QN⊥x轴,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋转可得OP=OQ,在△QON 和△OPM 中,90QNO OMP OQN POMOQ OP ====∠∠︒⎧⎪∠∠⎨⎪⎩, ∴△QON ≌△OPM (AAS ),∴ON=PM ,QN=OM ,设P (a ,b ),则有Q (-b ,a ),由点P 在y=3x上,得到ab=3,可得-ab=-3, 则点Q 在y=-3x 上. 故选D .【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.4.B【解析】【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:∵反比例函数的图象位于一三象限,∴m >0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y 随x 的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y =x m ,得到h =﹣m ,2k =m , ∵m >0∴h <k故③正确;将P(x ,y)代入y =x m 得到m =xy ,将P′(﹣x ,﹣y)代入y =xm 得到m =xy , 故P(x ,y)在图象上,则P′(﹣x ,﹣y)也在图象上故④正确,故选:B .【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.【解析】【分析】连接DF ,在Rt DCF △中,利用勾股定理求出CF 的长度,则EF 的长度可求.【详解】连接DF ,∵四边形ABCD 是矩形∴12,13AB CD BE AD BC DF ======在Rt DCF △中,90C ∠=︒222213125CF DF CD ∴-=-=13121EC BC BE =-=-=Q514EF CF EC ∴=-=-=故选:B .【点睛】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.6.C【解析】【分析】由DE ∥BC 可得△ADE ∽△ABC ,再根据相似三角形的性质即可求得结果.【详解】∵DE ∥BC∴△ADE ∽△ABC ∴13AD AE AB AC == ∵2cm =AE∴AC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.【解析】A. x4+x4=2x4,故错误;B. (x2)3=x6,故错误;C. (x﹣y)2=x2﹣2xy+y2,故错误;D. x3•x=x4,正确,故选D.8.A【解析】【分析】本题考查反比例函数的图象和性质,由k-8>0即可解得答案.【详解】∵反比例函数y=8kx-的图象位于第一、第三象限,∴k-8>0,解得k>8,故选A.【点睛】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.10.B【解析】试题解析:由题意得25134xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23 xy⎧⎨⎩==.故选B.11.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.12.C【解析】【分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60 13【解析】【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h(h为斜边上的高),∴h=60 13.故答案为:60 13.【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.14.3.【解析】【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE=43=ADCD,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.15.x<1【解析】有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.16.1【解析】【分析】根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.【详解】∵点(a,b)在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.17.【解析】【分析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.【详解】∵直角三角形的两直角边为1,2,=那么a故答案为此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.18.x≥3y=1【解析】根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y=1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3,在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cosPCBPC=∠6≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键. 20.(1)y=﹣3x2+252x﹣1(2≤x≤54);(2)商场每天销售这种商品的销售利润不能达到500元.【解析】【分析】(1)此题可以按等量关系“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.【详解】(1)由题意得:每件商品的销售利润为(x﹣2)元,那么m件的销售利润为y=m(x﹣2).又∵m=162﹣3x ,∴y=(x ﹣2)(162﹣3x ),即y=﹣3x 2+252x ﹣1.∵x ﹣2≥0,∴x≥2.又∵m≥0,∴162﹣3x≥0,即x≤54,∴2≤x≤54,∴所求关系式为y=﹣3x 2+252x ﹣1(2≤x≤54).(2)由(1)得y=﹣3x 2+252x ﹣1=﹣3(x ﹣42)2+432,所以可得售价定为42元时获得的利润最大,最大销售利润是432元.∵500>432,∴商场每天销售这种商品的销售利润不能达到500元.【点睛】本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价﹣进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.21. (1) 21262y x x =--,点D 的坐标为(2,-8) (2) 点F 的坐标为(7,92)或(5,72)(3) 菱形对角线MN1.【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB ,tan ∠FAG=tan ∠BDE ,求出F 点坐标.(3)分类讨论,当MN 在x 轴上方时,在x 轴下方时分别计算MN. 详解:(1)∵OB=OC=1,∴B(1,0),C(0,-1). ∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩,解得26b c =-⎧⎨=-⎩, ∴抛物线的解析式为21262y x x =--. ∵21262y x x =--=()21282x --, ∴点D 的坐标为(2,-8).(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --. ∵∠FAB=∠EDB ,∴tan ∠FAG=tan ∠BDE , 即21261222x x x --=+, 解得17x =,22x =-(舍去).当x=7时,y=92, ∴点F 的坐标为(7,92). 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-). 综上所述,点F 的坐标为(7,92)或(5,72-). (3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上,∴()()212222262n n n =+-+-,即2280n n --=.解得114n +=,214n =(舍去).∴.当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上, ∴()()212222262n n n -=+-+-, 即22+80n n -=.解得1n =,2n =(舍去).∴1.综上所述,菱形对角线MN 1.点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x ()(2,0)x ,利用双根式,y=()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点,122x x x +=. 2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.22.(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】【分析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可.(2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x ,根据题意列方程得:()2100001x 12100⨯-=,解得x 1=0.1,x 2=-1.9(不合题意,舍去).答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.23.(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE 为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到∠FAB=∠CAB ,然后利用SAS 证得两三角形全等,得出对应角相等即可;(2)当∠CAB=60°时,四边形ADFE 为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE ,利用邻边相等的平行四边形是菱形进行判断四边形ADFE 是菱形.详解:(1)证明:∵EF ∥AB∴∠FAB=∠EFA ,∠CAB=∠E∵AE=AF∴∠EFA =∠E∴∠FAB=∠CAB∵AC=AF ,AB=AB∴△ABC ≌△ABF∴∠AFB=∠ACB=90°, ∴BF 是⊙A 的切线.(2)当∠CAB=60°时,四边形ADFE 为菱形.理由:∵EF ∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF 是等边三角形∴AE=EF ,∵AE=AD∴EF=AD∴四边形ADFE 是平行四边形∵AE=EF∴平行四边形ADFE 为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大.24.(13;(2)2y x =;(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+,偶数. 【解析】【分析】(1)设正方形ABCD的边长为a,当点A在x轴负半轴、点B在y轴正半轴上时,可知3a=2,求出a,(2)作DE、CF分别垂直于x、y轴,可知ADE≌△BAO≌△CBF,列出m的等式解出m,(3)本问的抛物线解析式不止一个,求出其中一个.【详解】解:(1)∵正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.当点A在x轴正半轴、点B在y轴负半轴上时,∴AO=1,BO=1,∴正方形ABCD的边长为2,当点A在x轴负半轴、点B在y轴正半轴上时,设正方形的边长为a,得3a=2,∴1a23,所以伴侣正方形的边长为2或123;(2)作DE、CF分别垂直于x、y轴,知△ADE≌△BAO≌△CBF,此时,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C点坐标为(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函数的解析式为y=2x,(3)根据题意画出图形,如图所示:过C 作CF ⊥x 轴,垂足为F ,过D 作DE ⊥CF ,垂足为E ,∴△CED ≌△DGB ≌△AOB ≌△AFC ,∵C (3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE ﹣GE=DE ﹣OF=4﹣3=1,则D 坐标为(﹣1,3);设过D 与C 的抛物线的解析式为:y=ax 2+b ,把D 和C 的坐标代入得:394a b a b +=⎧⎨+=⎩, 解得18238a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴满足题意的抛物线的解析式为y=18x 2+238; 同理可得D 的坐标可以为:(7,﹣3);(﹣4,7);(4,1),; 对应的抛物线分别为272234040y x =+ ;23177y x =+ ;235577y x =+, 所求的任何抛物线的伴侣正方形个数为偶数.【点睛】本题考查了二次函数的综合题.灵活运用相关知识是解题关键.25. (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】【分析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.26.(1)A (﹣8,0),B (0,﹣6);(2)21462y x x =---;(3)存在.P 点坐标为(﹣,-1)或(﹣4,-1)或(﹣1)或(﹣4,1)时,使得110PDE ABC S S ∆∆=. 【解析】分析:(1)令已知的直线的解析式中x=0,可求出B 点坐标,令y=0,可求出A 点坐标;(2)根据A 、B 的坐标易得到M 点坐标,若抛物线的顶点C 在⊙M 上,那么C 点必为抛物线对称轴与⊙O 的交点;根据A 、B 的坐标可求出AB 的长,进而可得到⊙M 的半径及C 点的坐标,再用待定系数法求解即可; (3)在(2)中已经求得了C 点坐标,即可得到AC 、BC 的长;由圆周角定理:∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P 点坐标.本题解析:(1)对于直线364y x =--,当0x =时,6y =-;当0y =时, 所以A (﹣8,0),B (0,﹣6);(2)在Rt △AOB 中,,∵∠AOB=90°,∴AB 为⊙M 的直径,∴点M 为AB 的中点,M (﹣4,﹣3),∵MC ∥y 轴,MC=5,∴C (﹣4,2),设抛物线的解析式为y=a(x+4)²+2, 把B (0,﹣6)代入得16a+2=﹣6,解得a=12-, ∴抛物线的解析式为21(4)2y x =-+ ,即21462y x x =---; (3)存在.当y=0时,21(4)22y x =-++ ,解得x ,=﹣2,x ,=﹣6, ∴D (﹣6,0),E (﹣2,0),18202ABC ACM BCM S S S CM ∆∆∆=+=⨯⨯=,设P (t ,2142t t ---6), ∵110PDE ABC S S ∆∆= ∴211(26)4622t t -+---=110⨯20, 即|21462t t ---|=1,当21462t t ---=-1, 解得146t =-+,246t =-- ,此时P 点坐标为(﹣4+6,-1)或(﹣4﹣6,-1);当214612t t ---=时 ,解得1t =﹣4+2,2t =﹣4﹣2; 此时P 点坐标为(﹣4+2,1)或(﹣4﹣2,1).综上所述,P 点坐标为(﹣6,-1)或(﹣46,-1)或(﹣2,1)或(﹣42,1)时,使得110PDE ABC S S ∆∆=. 点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.27.见解析【解析】试题分析:(1)先证得四边形ABED 是平行四边形,又AB=AD , 邻边相等的平行四边形是菱形;(2)四边形ABED 是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED ,又EC=2BE ,EC=2DE ,可得△DEC是直角三角形.试题解析:梯形ABCD 中,AD ∥BC ,∴四边形ABED 是平行四边形,又AB=AD ,∴四边形ABED 是菱形;(2)∵四边形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定。
2019-2020年最新宁夏自治区中考数学仿真模拟试卷及答案解析
宁夏中考数学模拟试题数 学 试 题注意事项:1.全卷总分120分,答题时间120分钟3.使用答题卡的考生,将所有答案全部答在答题卡相应的位置上.一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.计算32)(a 的结果是 ( ) A .5a B. 6a C. 8a D.9a 2.一元二次方程xx x -=-2)2(的根是( )A. 1-B. 0C.1和2 D. 1-和23.如图是某水库大坝横断面示意图.其中AB 、CD 分别表示水库上下底面的水平线, ∠ABC=120°,BC 的长是50 m ,则水库大坝的高度h 是 ( )A . 253mB .25m C. 252m D.3350m第4题CD第3题4.如图,△ABC 中, ∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处,若∠A =22°,则∠BDC 等于 ( )A .44° B. 60° C. 67° D. 77°5. 雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人,设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是 ( ) A .⎩⎨⎧=+=+8000415004y x y x B .⎩⎨⎧=+=+8000615004y x y x C .⎩⎨⎧=+=+8000641500y x y xD .⎩⎨⎧=+=+8000461500y x y x 6. 函数xay = (a ≠0)与y=)1(-x a (a ≠0)在同一坐标系中的大致图象是 ( )7如图是某几何体的三视图,其侧面积( )A.6B. π4C.π6D. π128.如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为 ( )A .4π B .2πC .22πD . π2B AC D第8题第7题主视图左视图俯视图二、填空题(每小题3分,共24分)9.分解因式:=+-2422a a ___________________.10.点 P (a ,a -3)在第四象限,则a 的取值范围是 .11. 如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.12.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB 的长为 cm.13.如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数)0( x xky =的图象经过点C ,则k 的值为_________. 14.△ABC 中,D 、E 分别是边AB 与AC 的中点,BC = 4,下面四个结论:①DE=2;②△ADE ∽△ABC ;③△ADE 的面积与△ABC 的面积之比为 1 : 4;④△ADE 的周长与△ABC 的周长之比为 1 : 4;其中正确的有 .(只填序号)15.如图,在Rt ABC △中,90ACB ∠=°,∠A=α,将ABC △绕点C 按顺时针方向旋转后得到EDC △,此时点D 在AB 边上,则旋转角的大小为 .16.若不等式组⎩⎨⎧--≥+2210x x a x 有解,则a 的取值范围是 .三、解答题(共24分)17.(6分) 计算:2330tan 627)32(2--+-- 第13题 E BCA D 第15题18.(6分) 解方程1326-+=-x xx19.(6分)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别为A(-1,2), B (-3,4)C(-2,6) (1)画出△ABC 绕点A 顺时针旋转90后得到的△A 1B 1C 1(2)以原点O 为位似中心,画出将△A 1B 1C 1三条边放大为原来的2倍后的△A 2B 2C 2y20.(6分)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一) 班:168 167 170 165 168 166 171 168 167 170 (二) 班:165 167 169 170 165 168 170 171 168 167 (1) 补充完成下面的统计分析表(2) 请选一个合适的统计量作为选择标准,说明哪一个班能被选取. 四、解答题(共48分)21.(6分)小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率。
宁夏银川市2019-2020学年中考第四次模拟数学试题含解析
宁夏银川市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若代数式2x2+3x﹣1的值为1,则代数式4x2+6x﹣1的值为()A.﹣3 B.﹣1 C.1 D.32.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<13.下列说法:①;②数轴上的点与实数成一一对应关系;③﹣2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有( )A.2个B.3个C.4个D.5个4.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.195.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=26°,则∠OBC的度数为()A.54°B.64°C.74°D.26°6.分式2231x xx+--的值为0,则x的取值为( )A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-1 7.下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷12mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+48.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π9.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>-14B.k>-14且0k≠C.k<-14D.k≥-14且0k≠10.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-311.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=22.其中正确的结论有()A.4个B.3个C.2个D.1个12.估计41的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若向北走5km记作﹣5km,则+10km的含义是_____.14.分解因式:a3-a=15.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.16.如图,线段AB 是⊙O 的直径,弦CD⊥AB,AB=8,∠CAB=22.5°,则CD的长等于___________________________.17.因式分解:9a3b﹣ab=_____.18.|-3|=_________;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.20.(6分)如图,点A在∠MON的边ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM 于C.求证:四边形ABCD是矩形;若DE=3,OE=9,求AB、AD的长.21.(6分)先化简,再求值:22()11x x xxx x+÷-++,其中x=2.22.(8分)如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.23.(8分)如图,抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=1.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=12MN时,求菱形对角线MN的长.24.(10分)如图,已知三角形ABC的边AB是0的切线,切点为B.AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.25.(10分)计算:-2-2 - 12+2 1sin60π3⎛⎫-︒+-⎪⎝⎭26.(12分)已知Rt△ABC中,∠ACB=90°,CA=CB=4,另有一块等腰直角三角板的直角顶点放在C 处,CP=CQ=2,将三角板CPQ绕点C旋转(保持点P在△ABC内部),连接AP、BP、BQ.如图1求证:AP=BQ;如图2当三角板CPQ绕点C旋转到点A、P、Q在同一直线时,求AP的长;设射线AP 与射线BQ相交于点E,连接EC,写出旋转过程中EP、EQ、EC之间的数量关系.27.(12分)如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.求线段MN的长.若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】由2x 2+1x ﹣1=1知2x 2+1x =2,代入原式2(2x 2+1x )﹣1计算可得.【详解】解:∵2x 2+1x ﹣1=1,∴2x 2+1x =2,则4x 2+6x ﹣1=2(2x 2+1x )﹣1=2×2﹣1 =4﹣1=1.故本题答案为:D.【点睛】本题主要考查代数式的求值,运用整体代入的思想是解题的关键.2.C【解析】【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围.【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m -=,Δ=4+4m > 0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.3.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】 ①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是 的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确; ⑤两个无理数的和还是无理数,如 和 是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.4.A【解析】【详解】一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【点睛】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.5.B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中, MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.6.A【解析】【分析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】∵原式的值为2,∴2230 {10x xx+--≠=,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.7.B【解析】【分析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.8.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 9.B【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2-4ac≥1.【详解】由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>14-且k≠1.故选B.【点睛】本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键. 10.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 11.A【解析】【分析】①正确.只要证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②正确.由AD ∥BC ,推出△AEF ∽△CBF ,推出AE BC =AF CF ,由AE=12AD=12BC ,推出AF CF =12,即CF=2AF ;③正确.只要证明DM 垂直平分CF ,即可证明;④正确.设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有 b a =2a b,即a ,可得tan ∠CAD=CD AD =2b a =2. 【详解】 如图,过D 作DM ∥BE 交AC 于N .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∴∠EAC=∠ACB .∵BE ⊥AC 于点F ,∴∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF . ∵AE=12AD=12BC ,∴AF CF =12,∴CF=2AF ,故②正确; ∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM=DE=12BC ,∴BM=CM ,∴CN=NF . ∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DM 垂直平分CF ,∴DF=DC ,故③正确;设AE=a ,AB=b ,则AD=2a ,由△BAE ∽△ADC ,有b a =2a b ,即a ,∴tan ∠CAD=CD AD =2b a =2.故④正确.故选A .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.解题时注意:相似三角形的对应边成比例.12.C【解析】 364149<<, ∴6417<<. 416和7之间.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.向南走10km【解析】【分析】【详解】分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论. 详解:∵ 向北走5km 记作﹣5km ,∴ +10km 表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.14.(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+15.0.7【解析】【分析】用通话时间不足10分钟的通话次数除以通话的总次数即可得.【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),∴通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.16.【解析】【分析】连接OC,如图所示,由直径AB 垂直于CD,利用垂径定理得到E 为CD 的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE 为等腰直角三角形,求出CE 的长,进而得出CD.【详解】连接OC,如图所示:∵AB 是⊙O 的直径,弦CD⊥AB,∴OC= 12AB=4,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE 为△AOC 的外角,∴∠COE=45°,∴△COE 为等腰直角三角形,∴CE=2OC=∴CD=2CE=故答案为【点睛】考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.17.ab(3a+1)(3a-1).【解析】试题分析:原式提取公因式后,利用平方差公式分解即可.试题解析:原式=ab (9a 2-1)=ab (3a+1)(3a-1).考点: 提公因式法与公式法的综合运用.18.1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-1|=1.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)12;(2)34 【解析】【分析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率.【详解】解:(1)(1)第二个孩子是女孩的概率=12; 故答案为12; (2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=34. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.20.(1)证明见解析;(2)AB 、AD 的长分别为2和1.【解析】【分析】(1)证Rt △ABO ≌Rt △DEA (HL )得∠AOB=∠DAE ,AD ∥BC .证四边形ABCD 是平行四边形,又90ABC ∠=︒,故四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=.(1)证明:∵AB ⊥OM 于B ,DE ⊥ON 于E ,∴90ABO DEA ∠=∠=︒.在Rt △ABO 与Rt △DEA 中,∵AO AD OB AE=⎧⎨=⎩∴Rt △ABO ≌Rt △DEA (HL ). ∴∠AOB=∠DAE .∴AD ∥BC .又∵AB ⊥OM ,DC ⊥OM ,∴AB ∥DC .∴四边形ABCD 是平行四边形.∵90ABC ∠=︒,∴四边形ABCD 是矩形;(2)由(1)知Rt △ABO ≌Rt △DEA ,∴AB=DE=2.设AD=x ,则OA=x ,AE=OE -OA=9-x .在Rt △DEA 中,由222AE DE AD +=得:()22293x x -+=,解得5x =.∴AD=1.即AB 、AD 的长分别为2和1.【点睛】矩形的判定和性质;掌握判断定证三角形全等是关键.21.【解析】【分析】先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【详解】解:原式()22,111x x x x x x x x +⎛⎫+=÷- ⎪+++⎝⎭()22,11x x x x x +=÷++ ()221,1x x x x x++=⋅+ 2.x x+=当x 时,原式1=考查分式的混合运算,掌握运算顺序是解题的关键.22.(1)①132y x =-+;②四边形ABCD 是菱形,理由见解析;(2)四边形ABCD 能是正方形,理由见解析,m+n=32.【解析】【分析】(1)①先确定出点A ,B 坐标,再利用待定系数法即可得出结论;②先确定出点D 坐标,进而确定出点P 坐标,进而求出PA ,PC ,即可得出结论;(2)先确定出B (1,4m ),D (1,4n ),进而求出点P 的坐标,再求出A ,C 坐标,最后用AC=BD ,即可得出结论.【详解】(1)①如图1,4m =Q ,∴反比例函数为4y x=, 当4x =时,1y =,()4,1B ∴,当2y =时,42x∴=, 2x ∴=,()2,2A ∴,设直线AB 的解析式为y kx b =+,∴ 2241k b k b +=⎧⎨+=⎩,∴1 23kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为132y x=-+;②四边形ABCD是菱形,理由如下:如图2,由①知,()4,1B,//BD yQ轴,()4,5D∴,Q点P是线段BD的中点,()4,3P∴,当3y=时,由4yx=得,43x=,由20yx=得,203x=,48433PA∴=-=,208433PC=-=,PA PC∴=,PB PD=Q,∴四边形ABCD为平行四边形,BD AC⊥Q,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,BD AC∴=,当4x=时,4m myx==,4n nyx==4,4m B ⎛⎫∴ ⎪⎝⎭,4,4n D ⎛⎫ ⎪⎝⎭, 4,8m n P +⎛⎫∴ ⎪⎝⎭, 8(m A m n ∴+,)8m n +,8(n C m n +,)8m n + AC BD =Q ,∴ 8844n m n m m n m n -=-++, 32m n ∴+=.【点睛】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD 是平行四边形是解本题的关键.23. (1) 21262y x x =--,点D 的坐标为(2,-8) (2) 点F 的坐标为(7,92)或(5,72)(3) 菱形对角线MN1.【解析】分析:(1)利用待定系数法,列方程求二次函数解析式.(2)利用解析法,∠FAB=∠EDB ,tan ∠FAG=tan ∠BDE ,求出F 点坐标.(3)分类讨论,当MN 在x 轴上方时,在x 轴下方时分别计算MN. 详解:(1)∵OB=OC=1,∴B(1,0),C(0,-1). ∴216+6026b c c ⎧⨯+=⎪⎨⎪=-⎩,解得26b c =-⎧⎨=-⎩, ∴抛物线的解析式为21262y x x =--. ∵21262y x x =--=()21282x --, ∴点D 的坐标为(2,-8).(2)如图,当点F 在x 轴上方时,设点F 的坐标为(x ,21262x x --).过点F 作FG ⊥x 轴于点G ,易求得OA=2,则AG=x+2,FG=21262x x --. ∵∠FAB=∠EDB ,∴tan ∠FAG=tan ∠BDE , 即21261222x x x --=+, 解得17x =,22x =-(舍去).当x=7时,y=92, ∴点F 的坐标为(7,92). 当点F 在x 轴下方时,设同理求得点F 的坐标为(5,72-). 综上所述,点F 的坐标为(7,92)或(5,72-). (3)∵点P 在x 轴上,∴根据菱形的对称性可知点P 的坐标为(2,0).如图,当MN 在x 轴上方时,设T 为菱形对角线的交点.∵PQ=12MN , ∴MT=2PT.设TP=n ,则MT=2n. ∴M(2+2n ,n).∵点M 在抛物线上,∴()()212222262n n n =+-+-,即2280n n --=. 解得11654n +=,21654n -=(舍去). ∴MN=2MT=4n=65+1.当MN 在x 轴下方时,设TP=n ,得M(2+2n ,-n).∵点M 在抛物线上,∴()()212222262n n n -=+-+-, 即22+80n n -=.解得1165n -+=,2165n --=(舍去). ∴MN=2MT=4n=651-.综上所述,菱形对角线MN 的长为65+1或651-.点睛:1.求二次函数的解析式(1)已知二次函数过三个点,利用一般式,y =ax 2+bx +c (0a ≠).列方程组求二次函数解析式.(2)已知二次函数与x 轴的两个交点1,0x ()(2,0)x ,利用双根式,y=()()12a x x x x --(0a ≠)求二次函数解析式,而且此时对称轴方程过交点的中点,122x x x +=. 2.处理直角坐标系下,二次函数与几何图形问题:第一步要写出每个点的坐标(不能写出来的,可以用字母表示),写已知点坐标的过程中,经常要做坐标轴的垂线,第二步,利用特殊图形的性质和函数的性质,往往是解决问题的钥匙.24.(1)证明见解析;(2)258. 【解析】试题分析:(1)证明:如图1,连接OB ,由AB 是⊙0的切线,得到OB ⊥AB ,由于CE 丄AB ,的OB ∥CE ,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD 通过△DBC ∽△CBE ,得到比例式,列方程可得结果. (1)证明:如图1,连接OB ,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.25.753 4【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【详解】解:原式=137523113 442--+-+=-【点睛】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.26.(1)证明见解析(2)142-(3)EP+EQ= 2EC【解析】【分析】(1)由题意可得:∠ACP=∠BCQ,即可证△ACP≌△BCQ,可得AP=CQ;作CH⊥PQ 于H,由题意可求PQ=22,可得CH=2,根据勾股定理可求AH=14,即可求AP 的长;作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O,由题意可证△CNP≌△ CMQ,可得CN=CM,QM=PN,即可证Rt△CEM≌Rt△CEN,EN=EM,∠CEM=∠CEN=45°,则可求得EP、EQ、EC 之间的数量关系.【详解】解:(1)如图 1 中,∵∠ACB=∠PCQ=90°,∴∠ACP=∠BCQ 且AC=BC,CP=CQ∴△ACP≌△BCQ(SAS)∴PA=BQ如图 2 中,作CH⊥PQ 于H∵A、P、Q 共线,PC=2,∴2∵PC=CQ,CH⊥PQ∴CH=PH= 2在Rt△ACH 中,AH=22= 14AC CH∴PA=AH﹣PH= 14-2解:结论:EP+EQ=2EC理由:如图3 中,作CM⊥BQ 于M,CN⊥EP 于N,设BC 交AE 于O.∵△ACP≌△BCQ,∴∠CAO=∠OBE,∵∠AOC=∠BOE,∴∠OEB=∠ACO=90°,∵∠M=∠CNE=∠MEN=90°,∴∠MCN=∠PCQ=90°,∴∠PCN=∠QCM,∵PC=CQ,∠CNP=∠M=90°,∴△CNP≌△CMQ(AAS),∴CN=CM,QM=PN,∴CE=CE,∴Rt△CEM≌Rt△CEN(HL),∴EN=EM,∠CEM=∠CEN=45°∴EP+EQ=EN+PN+EM﹣MQ=2EN,2EN,∴EP+EQ=2EC【点睛】本题考查几何变换综合题,解答关键是等腰直角三角形的性质,全等三角形的性质和判定,添加恰当辅助线构造全等三角形.27.(1)7cm(2)若C为线段AB上任意一点,且满足AC+CB=a(cm),其他条件不变,则MN=12a(cm);理由详见解析(3)12b(cm)【解析】【分析】(1)据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.【详解】(1)如图∵AC=8cm,CB=6cm,∴AB=AC+CB=8+6=14cm,又∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∴MN=12AC+12BC=12( AC+BC)=12AB=7cm.答:MN的长为7cm.(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,则MN=12a cm,理由是:∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC+CB=acm,∴MN=12AC+12BC=12(AC+BC)=12a cm.(3)解:如图,∵点M、N分别是AC、BC的中点,∴MC=12AC,CN=12BC,∵AC-CB=bcm,∴MN=12AC-12BC=12(AC-BC)=1b2cm.考点:两点间的距离.。
宁夏银川市2019-2020学年中考三诊数学试题含解析
宁夏银川市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知a 为整数,且3<a<5,则a 等于( )A .1B .2C .3D .42.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S 6,则S 6的值为( )A .3B .23C .332D .2333.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=kx (k <0)的图象经过点B ,则k 的值为( )A .﹣12B .﹣32C .32D .﹣364.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -5.﹣18的倒数是( )A .18B .﹣18C .-118D .118 62,0,π,13 ,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .457.下列实数中,无理数是( ) A .3.14 B .1.01001 C 39D .227 8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A.5 B.6 C.7 D.89.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(a+b)2=a2+2ab+b210.已知反比例函数2yx-=,下列结论不正确的是()A.图象经过点(﹣2,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>﹣1时,y>211.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃Oe的直径,且AB⊥CD.入口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C12.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A.B.C.D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD的边长为3,点E,F分别在边BCCD上,BE=CF=1,小球P从点E出发沿直线向点F运动,完成第1次与边的碰撞,每当碰到正方形的边时反弹,反弹时反射角等于入射角,则小球P与正方形的边第2次碰撞到__边上,小球P与正方形的边完成第5次碰撞所经过的路程为__.14.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=48°,则∠ACB′=_____.15.如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;A4A0间的距离是_____;…按此规律运动到点A2019处,则点A2019与点A0间的距离是_____.16.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.17.如图,平行线AB、CD被直线EF所截,若∠2=130°,则∠1=_____.18.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .20.(6分)计算:(1)21(62)12(8)3--- (2)221cos60cos 45tan 603+-o o o 21.(6分)化简: 23x 11x 2?x 4+⎛⎫+÷ ⎪--⎝⎭ 22.(8分)计算:(13)-1+(32+)0+27-2cos30°. 23.(8分)已知:如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.24.(10分)如图1,AB 为半圆O 的直径,D 为BA 的延长线上一点,DC 为半圆O 的切线,切点为C . (1)求证:∠ACD=∠B ;(2)如图2,∠BDC 的平分线分别交AC ,BC 于点E ,F ,求∠CEF 的度数.25.(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.26.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)27.(12分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线;(2)若tan∠BAD=23,且OC=4,求BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】直接利用3,5接近的整数是1,进而得出答案.【详解】∵a为整数,且3<a<5,∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.2.C【解析】【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【详解】如图所示,单位圆的半径为1,则其内接正六边形ABCDEF中,△AOB是边长为1的正三角形,所以正六边形ABCDEF的面积为S6=6×12×1×1×sin60°33故选C.【点睛】本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.3.B【解析】解:∵O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,∴OA=5,AB ∥OC ,∴点B 的坐标为(8,﹣4),∵函数y=k x (k <0)的图象经过点B , ∴﹣4=k 8,得k=﹣32. 故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A 点坐标求得OA 的长,再根据菱形的性质求得B 点坐标,然后用待定系数法求得反函数的系数即可.4.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.5.C【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-181()18⨯-=1, ∴﹣18的倒数是118-,【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.6.C【解析】【分析】0,π,13,6这5个数中只有0、13、6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】,0,π,13,6这5个数中有理数只有0、13、6这3个数,∴抽到有理数的概率是35,故选C.【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中的有理数的个数是解题的关键.7.C【解析】【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;CD、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.8.C【解析】【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.9.D【解析】【分析】根据合并同类项法则,可知3a2﹣2a2= a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!10.D【解析】【分析】【详解】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.11.B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.12.D【解析】【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可.【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②, 解不等式①得,x >2.5,解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象.故选:D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.AB,【解析】【分析】根据已知中的点E ,F 的位置,可知入射角的正切值为12,通过相似三角形,来确定反射后的点的位置.再由勾股定理就可以求出小球第5次碰撞所经过路程的总长度.【详解】根据已知中的点E,F 的位置,可知入射角的正切值为12,第一次碰撞点为F ,在反射的过程中,根据入射角等于反射角及平行关系的三角形的相似可得, 第二次碰撞点为G ,在AB 上,且AG=16AB , 第三次碰撞点为H,在AD 上,且AH=13AD , 第四次碰撞点为M,在DC 上,且DM=13DC , 第五次碰撞点为N,在AB 上,且BN=16AB , 第六次回到E 点,BE=13BC. 由勾股定理可以得出32,GH=123212故小球第5321232112故答案为AB , 112【点睛】本题考查了正方形与轴对称的性质,解题的关键是熟练的掌握正方形与轴对称的性质.14.6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中线,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因为∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.15.231.【解析】【分析】据题意求得A0A1=4,A0A1=23,A0A3=1,A0A4=23,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019与A3重合,即可得到结论.【详解】解:如图,∵⊙O的半径=1,由题意得,A0A1=4,A0A1=3A0A3=1,A0A4=3A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此规律A1019与A3重合,∴A0A1019=A0A3=1,故答案为3 1.【点睛】本题考查了图形的变化类,等边三角形的性质,解直角三角形,正确的作出图形是解题的关键.16.1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.17.50°【解析】【分析】利用平行线的性质推出∠EFC=∠2=130°,再根据邻补角的性质即可解决问题.【详解】∵AB∥CD,∴∠EFC=∠2=130°,∴∠1=180°-∠EFC=50°,故答案为50°【点睛】本题考查平行线的性质、邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.18.1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,EAO FCOOA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.20.(1)8-;(2)1.【解析】【分析】(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【详解】解:(1)原式=6212⎛--⎝⎭8 =-8 =-(2)原式22 11223⎛⎫=+-⋅⎪⎪⎝⎭11=-=.【点睛】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.21.x+2【解析】【分析】先把括号里的分式通分,化简,再计算除法.【详解】解:原式=x1x2+-x2x2x1()+-⨯+=x+2【点睛】此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.22.【解析】【分析】原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【详解】原式23.证明见解析【解析】证明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.24.(1)详见解析;(2)∠CEF=45°.【解析】试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.试题解析:(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°.25.(1)证明见解析;(2)【解析】【分析】(1)根据正方形的性质得到AB=BC,∠A=∠CBN=90°,∠1+∠2=90°,根据垂线和三角形内角和定理得到∠2+∠3=90°,推出∠1=∠3,根据ASA推出△ABE≌△BCN;(2)tan∠ABE=,根据已知求出AE与AB的关系即可求得tan∠ABE.【详解】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中,∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.【点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出△ABE≌△BCN是解此题的关键.26.(1)163;(2)此校车在AB路段超速,理由见解析.【解析】【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A到B用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB路段超速.【点睛】考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等.24327.(1)证明见解析;(2【解析】试题分析:(1)连接OB,由SSS证明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)连接BE,证明△PAC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.试题解析:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB.在△PAO和△PBO中,∵PA PB PO PO OA OB=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO=23OCAC=,且OC=4,∴AC=1,则BC=1.在Rt△APO中,∵AC⊥OP,∴△PAC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=2.在Rt△PBC中,由勾股定理,得22313PC BC+=,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=12BE,OC∥BE,∴BE=2OC=3.∵BE∥OP,∴△DBE∽△DPO,∴BD BEPD OP =813=,解得.。
宁夏银川市2019-2020学年中考数学四月模拟试卷含解析
宁夏银川市2019-2020学年中考数学四月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >22.设x 1,x 2是一元二次方程x 2﹣2x ﹣5=0的两根,则x 12+x 22的值为( ) A .6B .8C .14D .163.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是( ) A .55×106B .0.55×108C .5.5×106D .5.5×1074.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )A .B .C .D .5.据资料显示,地球的海洋面积约为360000000平方千米,请用科学记数法表示地球海洋面积面积约为多少平方千米( ) A .73610⨯B .83.610⨯C .90.3610⨯D .93.610⨯6.在平面直角坐标系中,将点 P (﹣4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( ) A .(2,4)B .(2,﹣4)C .(﹣2,4)D .(﹣2,﹣4)7.3的相反数是( ) A .33B .﹣3C .﹣33D .38.二次函数y=ax 1+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c >﹣3b ;(3)7a ﹣3b+1c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个9.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图. 该校七年级有400名女生,则估计800米跑不合格的约有( )A.2人B.16人C.20人D.40人10.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.11.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为()A.B.C.D.12.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A .49B .13C .29D .19二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.14.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为___________ .15.如图,等腰三角形ABC 的底边BC 长为4,面积是12,腰AB 的垂直平分线EF 分别交AB ,AC 于点E 、F ,若点D 为底边BC 的中点,点M 为线段EF 上一动点,则△BDM 的周长的最小值为_____.16.已知关于x 的一元二次方程20x mx n ++=的两个实数根分别是x 1 =-2,x 2 =4,则+m n 的值为________.17.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1. 18.计算:()()a a b b a b +-+=_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,ABC ∆内接于O e ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠; (2)若6BC =,3sin 5BAC ∠=,求AC 和CD 的长. 20.(6分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD 上,转轴B 到地面的距离BD=3m .小亮在荡秋千过程中,当秋千摆动到最高点A 时,测得点A 到BD 的距离AC=2m ,点A 到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.21.(6分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A 粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?22.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.求证:AM是⊙O的切线;若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).24.(10分)如图,△DEF是由△ABC通过一次旋转得到的,请用直尺和圆规画出旋转中心.25.(10分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图①),图②是平面图.光明中学的数学兴趣小组针对风电塔杆进行了测量,甲同学站在平地上的A处测得塔杆顶端C的仰角是55°,乙同学站在岩石B处测得叶片的最高位置D的仰角是45°(D,C,H在同一直线上,G,A,H在同一条直线上),他们事先从相关部门了解到叶片的长度为15米(塔杆与叶片连接处的长度忽略不计),岩石高BG为4米,两处的水平距离AG为23米,BG⊥GH,CH⊥AH,求塔杆CH的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)26.(12分)(1)计算:(a-b)2-a(a-2b);(2)解方程:23x=3x.27.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=35,AK=10,求CN的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1. 故选:D . 【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 2.C 【解析】 【分析】根据根与系数的关系得到x 1+x 2=2,x 1•x 2=-5,再变形x 12+x 22得到(x 1+x 2)2-2x 1•x 2,然后利用代入计算即可. 【详解】∵一元二次方程x 2-2x-5=0的两根是x 1、x 2, ∴x 1+x 2=2,x 1•x 2=-5,∴x 12+x 22=(x 1+x 2)2-2x 1•x 2=22-2×(-5)=1. 故选C . 【点睛】考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=-b a,x 1•x 2=c a. 3.D 【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数4.D【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选D.【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形5.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:将360000000用科学记数法表示为:3.6×1.故选:B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.A【解析】【分析】首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q 点坐标.【详解】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON , 在△PMO 和△ONQ 中,∵{PMO ONQ MPO NOQ PO OQ∠=∠∠=∠= ,∴△PMO ≌△ONQ , ∴PM=ON ,OM=QN , ∵P 点坐标为(﹣4,2), ∴Q 点坐标为(2,4), 故选A . 【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等. 7.B 【解析】 【分析】一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解. 【详解】故选:B . 【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1. 8.B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+1c=7a+11a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+1c <0,故(3)不正确;根据图像可知当x <1时,y 随x 增大而增大,当x >1时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 1)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 1,故(4)不正确; 根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.9.C【解析】【分析】先求出800米跑不合格的百分率,再根据用样本估计总体求出估值.【详解】400×2201216102=+++人.故选C.【点睛】考查了频率分布直方图,以及用样本估计总体,关键是从上面可得到具体的值.10.D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.C【解析】【分析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.12.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.33【解析】【分析】如图,连接BD.首先证明△BCD是等边三角形,推出S△EBC=S△DBC=34×42=43,再证明△EMN∽△EBC,可得EMNEBCSS∆∆=(MNBC)2=14,推出S△EMN=3,由此即可解决问题.【详解】解:如图,连接BD.∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD∥BC,∴△BCD是等边三角形,∴S△EBC=S△DBC=34×423,∵EM=MB,EN=NC,∴MN∥BC,MN=12BC,∴△EMN∽△EBC,∴EMNEBCSS∆∆=(MNBC)2=14,∴S△EMN3故答案为33.【点睛】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.3【解析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan∠DBC=COBO=3222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.15.2【解析】【分析】连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.【详解】解:连接AD交EF与点M′,连结AM.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S △ABC =12BC•AD =12×4×AD =12,解得AD =1, ∵EF 是线段AB 的垂直平分线,∴AM =BM .∴BM+MD =MD+AM .∴当点M 位于点M′处时,MB+MD 有最小值,最小值1.∴△BDM 的周长的最小值为DB+AD =2+1=2.【点睛】本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.16.-10【解析】【分析】根据根与系数的关系得出-2+4=-m ,-2×4=n ,求出即可. 【详解】∵关于x 的一元二次方程20x mx n ++=的两个实数根分别为x 1 =-2,x 2 =4,∴−2+4=−m ,−2×4=n ,解得:m=−2,n=−8,∴m+n=−10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键17.2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC ,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理18.22a b -【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可.详解:故答案为:22a b -.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)证明见解析;(2)AC =310 , CD =9013 , 【解析】分析:(1)延长AO 交BC 于H ,连接BO ,证明A 、O 在线段BC 的垂直平分线上,得出AO ⊥BC ,再由等腰三角形的性质即可得出结论;(2)延长CD 交⊙O 于E ,连接BE ,则CE 是⊙O 的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC ,得出sinE=sin ∠BAC ,求出CE=53BC=10,由勾股定理求出BE=8,证出BE ∥OA ,得出OA OD BE DE =,求出OD=2513,得出CD=9013,而BE ∥OA ,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt △ACH 中,由勾股定理求出AC 的长即可. 本题解析:解:(1)证明:延长AO 交BC 于H ,连接BO.∵AB =AC ,OB =OC ,∴A ,O 在线段BC 的垂直平分线上.∴AO ⊥BC.又∵AB =AC ,∴AO 平分∠BAC.(2)延长CD 交⊙O 于E ,连接BE ,则CE 是⊙O 的直径.∴∠EBC =90°,BC ⊥BE.∵∠E =∠BAC ,∴sinE =sin ∠BAC.∴=.∴CE =BC =10.∴BE ==8,OA =OE =CE =5. ∵AH ⊥BC ,∴BE ∥OA.∴=,即=,解得OD =.∴CD =5+=. ∵BE ∥OA ,即BE ∥OH ,OC =OE ,∴OH 是△CEB 的中位线.在Rt△ACH中,AC===3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.20.(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.【解析】【分析】(1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.【详解】(1)如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键. 21.(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.【解析】【分析】(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D 的运费,列出函数关系式;(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.【详解】解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3种调运方案方案二:从B 市调运到C 市1台,D 市5台;从A 市调运到C 市9台,D 市3台;方案三:从B 市调运到C 市2台,D 市4台;从A 市调运到C 市8台,D 市4台;(3)w =200x+8600k >0,所以当x =0时,总运费最低.也就是从B 市调运到C 市0台,D 市6台;从A 市调运到C 市10台,D 市2台;最低运费是8600元.【点睛】本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.22.(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【解析】【分析】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,根据“A 型公交车1辆,B 型公交车2辆,共需400万元;A 型公交车2辆,B 型公交车1辆,共需350万元”列出方程组解决问题; (2)设购买A 型公交车a 辆,则B 型公交车(10-a )辆,由“购买A 型和B 型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A 型公交车每辆需x 万元,购买B 型公交车每辆需y 万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩……, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.23.(1)见解析;(2)8 3π【解析】【分析】(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【详解】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴AD=23,∴S阴影=S梯形OADC﹣S扇形OAC=12×(4+2)×23﹣26048=63-3603gππ.【点睛】本题主要考查切线的性质与判定、扇形的面积等,解题关键在于用整体减去部分的方法计算.24.见解析【解析】试题分析:首先根据旋转的性质,找到两组对应点,连接这两组对应点;然后作连接成的两条线段的垂直平分线,两垂直平分线的交点即为旋转中心,据此解答即可.解:如图所示,点P即为所求作的旋转中心.25.塔杆CH的高为42米【解析】【分析】作BE⊥DH,知GH=BE、BG=EH=4,设AH=x,则BE=GH=23+x,由CH=AHtan∠CAH=tan55°•x知CE=CH-EH=tan55°•x-4,根据BE=DE可得关于x的方程,解之可得.【详解】解:如图,作BE⊥DH于点E,则GH=BE 、BG=EH=4,设AH=x ,则BE=GH=GA+AH=23+x ,在Rt △ACH 中,CH=AHtan ∠CAH=tan55°•x ,∴CE=CH ﹣EH=tan55°•x ﹣4,∵∠DBE=45°,∴BE=DE=CE+DC ,即23+x=tan55°•x ﹣4+15,解得:x≈30,∴CH=tan55°•x=1.4×30=42,答:塔杆CH 的高为42米.【点睛】本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形. 26. (1) b 2 (2)1【解析】分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.详解:(1) 解:原式=a 2-2ab +b 2-a 2+2ab =b 2 ;(2) 解:()233x x =-, 解得:x =1,经检验 x =1为原方程的根, 所以原方程的解为x =1.点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.27.(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3 【解析】试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ;(3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=4CH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AH HK =,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH ,在Rt △APN 中,由tan ∠CAH=43PN AP =,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP=tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长.试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G ,∴OG ⊥EF ,∴∠AGO+∠AGE=90°,∵CD ⊥AB 于H ,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG ,∴∠AGO=∠OAG ,∴∠AGE=∠AKH ,∵∠EKG=∠AKH ,∴∠EKG=∠AGE ,∴KE=GE .(2)设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α,∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α,∴∠ACH=∠E ,∴CA ∥FE .(3)作NP ⊥AC 于P .∵∠ACH=∠E ,∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a ,则4a =,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE ,∵∠AGE=∠AKH ,∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH HK=3,=,∵,=∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG ,∵∠ACN=∠ABG ,∴∠AKH=∠ACN ,∴tan ∠AKH=tan ∠ACN=3,∵NP ⊥AC 于P ,∴∠APN=∠CPN=90°, 在Rt △APN 中,tan ∠CAH=43PN AP =,设PN=12b ,则AP=9b , 在Rt △CPN 中,tan ∠ACN=PN CP =3, ∴CP=4b ,∴AC=AP+CP=13b ,∵AC=5,∴13b=5,∴b=5 13,∴CN=22PN CP+=410b⋅=2010 13.。
宁夏银川市2019-2020学年中考第二次模拟数学试题含解析
宁夏银川市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若,则的值为( )A .﹣6B .6C .18D .302.下列大学的校徽图案是轴对称图形的是( )A .B .C .D .3.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,若⊙O 的半径为5,AB=8,则CD 的长是( )A .2B .3C .4D .54.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×109 5.化简221121211x x x x ÷+--++的结果是( ) A .1 B .12 C .11x x -+ D .222(1)x x -+ 6.下列几何体中三视图完全相同的是( )A .B .C .D .7.一个几何体的三视图如图所示,则该几何体的形状可能是( )A .B .C .D .8.已知⊙O 的半径为13,弦AB ∥CD ,AB=24,CD=10,则四边形ACDB 的面积是( ) A .119 B .289 C .77或119 D .119或2899.如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A .50°B .70°C .80°D .110°10.下列运算正确的是( )A .a 3•a 2=a 6B .a ﹣2=﹣21aC .33﹣23=3D .(a+2)(a ﹣2)=a 2+4 11.化简:(a+343a a --)(1﹣12a -)的结果等于( ) A .a ﹣2 B .a+2 C .23a a -- D .32a a -- 12.从3、1、-2这三个数中任取两个不同的数作为P 点的坐标,则P 点刚好落在第四象限的概率是( ) A .14 B .13 C .23 D .12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm 214.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要_____cm .15.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边AB=5,则它的周长等于_____.16.在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠AOB =60°,AC =6cm ,则AB 的长是_____. 17.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD面积为_____.18.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.20.(6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.21.(6分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?22.(8分)如图①,在Rt △ABC 中,∠ABC=90o ,AB 是⊙O 的直径,⊙O 交AC 于点D ,过点D 的直线交BC 于点E ,交AB 的延长线于点P ,∠A=∠PDB .(1)求证:PD 是⊙O 的切线;(2)若AB=4,DA=DP ,试求弧BD 的长;(3)如图②,点M 是弧AB 的中点,连结DM ,交AB 于点N .若tanA=,求的值.23.(8分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.(1)当2m =时,直接写出CE BE = ,AE BE= . (2)如图1,当2m =,3n =时,连DE 并延长交CA 延长线于F ,求证:32EF DE =. (3)如图2,连AD 交CE 于G ,当AD BD =且32CG AE =时,求m n的值. 24.(10分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点,(1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.25.(10分)先化简,再求值:,其中x=1.26.(12分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O 经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.27.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:∵,即,∴原式=====﹣12+18=1.故选B.考点:整式的混合运算—化简求值;整体思想;条件求值.2.B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.A【解析】试题分析:已知AB 是⊙O 的弦,半径OC ⊥AB 于点D ,由垂径定理可得AD=BD=4,在Rt △ADO 中,由勾股定理可得OD=3,所以CD=OC-OD=5-3=2.故选A.考点:垂径定理;勾股定理.4.A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108 故选:A【点睛】本题考查科学记数法—表示较大的数.5.A【解析】原式=()()111x x +-•(x –1)2+21x +=11x x -++21x +=11x x ++=1,故选A . 6.A【解析】【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A 、球的三视图完全相同,都是圆,正确;B 、圆柱的俯视图与主视图和左视图不同,错误;C 、圆锥的俯视图与主视图和左视图不同,错误;D 、四棱锥的俯视图与主视图和左视图不同,错误;故选A .【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.7.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D .考点:由三视图判断几何体. 视频8.D【解析】【分析】分两种情况进行讨论:①弦AB 和CD 在圆心同侧;②弦AB 和CD 在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理,然后按梯形面积的求解即可.【详解】解:①当弦AB 和CD 在圆心同侧时,如图1,∵AB=24cm ,CD=10cm ,∴AE=12cm ,CF=5cm ,∴OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=12-5=7cm ;∴四边形ACDB 的面积()124107=1192+⨯ ②当弦AB 和CD 在圆心异侧时,如图2,∵AB=24cm ,CD=10cm ,∴.AE=12cm ,CF=5cm ,∵OA=OC=13cm ,∴EO=5cm ,OF=12cm ,∴EF=OF+OE=17cm.∴四边形ACDB 的面积()1241017=2892+⨯ ∴四边形ACDB 的面积为119或289.故选:D.【点睛】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.9.C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°. 故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.10.C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答案.【详解】A 、a 3•a 2=a 5,故A 选项错误;B 、a ﹣2=21a ,故B 选项错误;C 、33﹣23=3,故C 选项正确;D 、(a+2)(a ﹣2)=a 2﹣4,故D 选项错误,故选C .【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键.11.B【解析】【分析】【详解】解:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +. 故选B .考点:分式的混合运算.12.B【解析】解:画树状图得:∵共有6种等可能的结果,其中(1,-2),(3,-2)点落在第四项象限,∴P 点刚好落在第四象限的概率=26=13.故选B . 点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,熟记各象限内点的符号特点是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.60π【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm 1.14.1【解析】【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A 、B′,∵AA′=1+3+1+3=8(cm ),A′B′=6cm ,根据两点之间线段最短,AB′=2286+=1cm .故答案为1.考点:平面展开-最短路径问题.15.52 .【解析】【分析】分两种情况讨论:①Rt △ABC 中,CD ⊥AB ,CD=12AB=52;②Rt △ABC 中,AC=12BC ,分别依据勾股定理和三角形的面积公式,即可得到该三角形的周长为55【详解】由题意可知,存在以下两种情况:(1)当一条直角边是另一条直角边的一半时,这个直角三角形是半高三角形,此时设较短的直角边为a ,则较长的直角边为2a ,由勾股定理可得:222(2)5a a +=,解得:5a =, 55∴此时直角三角形的周长为:535+;(2)当斜边上的高是斜边的一半是,这个直角三角形是半高三角形,此时设两直角边分别为x 、y , 这有题意可得:①2225x y +=,②S △=1155222xy =⨯⨯,∴③225xy =,由①+③得:22250x xy y ++=,即2()50x y +=,∴x y +=∴此时这个直角三角形的周长为:综上所述,这个半高直角三角形的周长为:5+或故答案为5+【点睛】(1)读懂题意,弄清“半高三角形”的含义是解题的基础;(2)根据题意,若直角三角形是“半高三角形”,则存在两种情况:①一条直角边是另一条直角边的一半;②斜边上的高是斜边的一半;解题时这两种情况都要讨论,不要忽略了其中一种.16.3cm .【解析】【分析】根据矩形的对角线相等且互相平分可得OA =OB =OD =OC ,由∠AOB =60°,判断出△AOB 是等边三角形,根据等边三角形的性质求出AB 即可.【详解】解:∵四边形ABCD 是矩形,AC =6cm∴OA =OC =OB =OD =3cm ,∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =OA =3cm ,故答案为:3cm【点睛】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.17.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D 点,设其交AB 与E,则 ,作DF ⊥AB 于点F.利用三角函数即可求得DF 即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=22,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线18.1152k k≤≠且【解析】【分析】若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.【详解】解:∵方程有两个实数根,∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,解得:k≤112且k≠1,故答案为k≤112且k≠1.【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)1+2【解析】【分析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结OD.如图,CDQ与Oe相切于点D,OD CD,∴⊥2BDC90∠∠∴+︒=,ABQ是Oe的直径,ADB90∠∴︒=,即1290∠∠+︒=,1BDC∠∠∴=,OA ODQ=,1A∠∠∴=,BDC A∠∠∴=;(2)解:在Rt ODCV中,C45∠︒Q=,2212OC ODAC OA OC∴==∴=+=+.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.20.(1)600(2)见解析(3)3200(4)【解析】(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2分)(2)如图;…(5分)(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.…(7分)(4)如图;(列表方法略,参照给分).…(8分)P(C粽)==.答:他第二个吃到的恰好是C粽的概率是.…(10分)21.(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.22.(1)见解析;(2);(3).【解析】【分析】(1)连结OD;由AB是⊙O的直径,得到∠ADB=90°,根据等腰三角形的性质得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圆上,于是得到结论;(2)设∠A=x,则∠A=∠P=x,∠DBA=2x,在△ABD中,根据∠A+∠ABD=90o列方程求出x的值,进而可得到∠DOB=60o,然后根据弧长公式计算即可;(3)连结OM,过D作DF⊥AB于点F,然后证明△OMN∽△FDN,根据相似三角形的性质求解即可. 【详解】(1)连结OD,∵AB是⊙O的直径,∴∠ADB=90o,∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,且D在圆上,∴PD是⊙O的切线.(2)设∠A=x,∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,在△ABD中,∠A+∠ABD=90o,x=2x=90o,即x=30o,∴∠DOB=60o,∴弧BD长.(3)连结OM,过D作DF⊥AB于点F,∵点M是的中点,∴OM⊥AB,设BD=x,则AD=2x,AB==2OM,即OM=,在Rt △BDF 中,DF=,由△OMN ∽△FDN 得.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理及其推论,三角形外角的性质,含30°角的直角三角形的性质,弧长的计算,弧弦圆心角的关系,相似三角形的判定与性质.熟练掌握切线的判定方法是解(1)的关键,求出∠A=30o 是解(2)的关键,证明△OMN ∽△FDN 是解(3)的关键.23.(1)12,14;(2)证明见解析;(3)34m n =. 【解析】【分析】(1)利用相似三角形的判定可得BCE CAE BAC ∆∆∆∽∽,列出比例式即可求出结论;(2)作//DH CF 交AB 于H ,设AE a =,则4BE a =,根据平行线分线段成比例定理列出比例式即可求出AH 和EH ,然后根据平行线分线段成比例定理列出比例式即可得出结论;(3)作DH AB ⊥于H ,根据相似三角形的判定可得AEG CEA ∆∆∽,列出比例式可得2AE EG EC =g ,设3CG a =,2AE a =,EG x =,即可求出x 的值,根据平行线分线段成比例定理求出::5:8BD BC DH CE ==,设5BD AD b ==,8BC b =,3CD b =,然后根据勾股定理求出AC ,即可得出结论.【详解】(1)如图1中,当2m =时,2BC AC =.CE AB ⊥Q ,90ACB ∠=︒,BCE CAE BAC ∴∆∆∆∽∽,∴12CE AC AE EB BC EC ===, 2EB EC ∴=,2EC AE =,∴14AE EB =.故答案为:12,14.(2)如图11-中,作//DHCF交AB于H.2m=Q,3n=,∴tan∠B=12CE ACBE BC==,tan∠ACE= tan∠B=12AECE=∴BE=2CE,12AE CE=4BE AE∴=,2BD CD=,设AE a=,则4BE a=,//DH ACQ,∴2BH BDAH CD==,53AH a∴=,5233EH a a a=-=,//DH AFQ,∴3223EF AE aDE EH a===,32EF DE∴=.(3)如图2中,作DH AB⊥于H.90ACB CEB∠=∠=︒Q,90ACE ECB∴∠+∠=︒,90B ECB∠+∠=︒,ACE B∴∠=∠,DA DB=Q,EAG B∠=∠,EAG ACE∴∠=∠,90AEG AEC ∠=∠=︒Q ,AEG CEA ∴∆∆∽,2AE EG EC ∴=g ,32CG AE =Q ,设3CG a =,2AE a =,EG x =, 则有24(3)a x x a =+,解得x a =或4a -(舍弃),1tan tan tan 2EG EAG ACE B AE ∴∠=∠=∠==, 4EC a ∴=,8EB a =,10AB a =,DA DB =Q ,DH AB ⊥,5AH HB a ∴==,52DH a ∴=, //DH CE Q ,::5:8BD BC DH CE ∴==,设5BD AD b ==,8BC b =,3CD b =,在Rt ACD ∆中,4AC b =,:4:3AC CD ∴=,mAC nDC =Q ,::4:3AC CD n m ∴==, ∴34m n =. 【点睛】此题考查的是相似三角形的应用和锐角三角函数,此题难度较大,掌握相似三角形的判定及性质、平行线分线段成比例定理和利用锐角三角函数解直角三角形是解决此题的关键.24.(3)证明见解析; (3)AB=3.【解析】【分析】(3)由等腰直角三角形得出AC=BC ,CE=CD ,∠ACB=∠ECD=90°,得出∠BCD=∠ACE ,根据SAS 推出△ACE ≌△BCD 即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt △AED 中,由勾股定理求出DE 即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.25.【解析】【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.26.(1)证明见解析;(2)CE=1.【解析】【分析】(1)根据等角对等边得∠OBE=∠OEB,由角平分线的定义可得∠OBE=∠EBC,从而可得∠OEB=∠EBC,根据内错角相等,两直线平行可得OE∥BC,根据两直线平行,同位角相等可得∠OEA=90°,从而可证AC是⊙O的切线.(2)根据垂径定理可求BH=12BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的长,从而求出CE的长. 【详解】(1)证明:如图,连接OE,∵OB=OE,∴∠OBE=∠OEB,∵ BE平分∠ABC.∴∠OBE=∠EBC,∴∠OEB=∠EBC,∴OE∥BC,∵∠ACB=90°,∴∠OEA=∠ACB=90°,∴ AC是⊙O的切线.(2)解:过O作OH⊥BF,∴BH=12BF=3,四边形OHCE是矩形,∴CE=OH,在Rt△OBH中,BH=3,OB=5,∴,∴CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性.27.(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.【解析】【分析】(1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)解:设2018至2020年寝室数量的年平均增长率为x,根据题意得:64(1+x)2=121,解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).答:2018至2020年寝室数量的年平均增长率为37.5%.(2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,∵单人间的数量在20至30之间(包括20和30),∴121620{121630yy-≥-≤,解得:15 16≤y≤1656.根据题意得:w=2y+20y+121﹣6y=16y+121,∴当y=16时,16y+121取得最大值为1.答:该校的寝室建成后最多可供1名师生住宿.【点睛】本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.。
宁夏银川市2019-2020学年中考数学三模考试卷含解析
宁夏银川市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x 辆,则根据题意可列方程为( ) A .1600x+4000(120%)x +=18 B .1600x40001600(120%)x -++=18 C .1600x +4000160020%x -=18D .4000x40001600(120%)x -++=18 2.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°3.能说明命题“对于任何实数a ,|a|>﹣a”是假命题的一个反例可以是( ) A .a =﹣2B .a =13C .a =1D .a =24.估算18的值是在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+ C .2y x 6=+D .2y x =6.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy-+-D .236212x x -+7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( ) A .若这5次成绩的中位数为8,则x =8 B .若这5次成绩的众数是8,则x =8 C .若这5次成绩的方差为8,则x =8 D .若这5次成绩的平均成绩是8,则x =88.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )A .44B .45C .46D .479.在同一直角坐标系中,函数y=kx-k 与ky x=(k≠0)的图象大致是 ( ) A . B .C .D .10.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A .B .C .D .11.把1a-a 移到根号内得( ) A a B a C a -D a -12.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____. 14.25位同学10秒钟跳绳的成绩汇总如下表: 人数 1 2 3 4 5 10 次数15825101720那么跳绳次数的中位数是_____________.15.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是14,则袋中小球的总个数是_____ 16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.17.已知x 1、x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,则的值是______.18.在反比例函数2y x=图象的每一支上,y 随x 的增大而______(用“增大”或“减小”填空). 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象与反比例函数my x= 的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-p 的解集(请直接写出答案).20.(6分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”. (1)求抛物线y =x 2﹣2x 的“孪生抛物线”的表达式;(2)若抛物线y =x 2﹣2x+c 的顶点为D ,与y 轴交于点C ,其“孪生抛物线”与y 轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y =x 2﹣2x ﹣3与y 轴交于点C ,与x 轴正半轴的交点为A ,那么是否在其“孪生抛物线”上存在点P ,在y 轴上存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.21.(6分)计算:4sin30°+(1﹣2)0﹣|﹣2|+(12)﹣222.(8分)先化简再求值:2()(2)x y y y x -++,其中2x =,3y =.23.(8分)如图,AB 是⊙O 的直径,点C 是的中点,连接AC 并延长至点D ,使CD =AC ,点E 是OB 上一点,且,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH .求证:BD 是⊙O 的切线;(2)当OB =2时,求BH 的长.24.(10分)已知PA 与⊙O 相切于点A ,B 、C 是⊙O 上的两点(1)如图①,PB 与⊙O 相切于点B ,AC 是⊙O 的直径若∠BAC =25°;求∠P 的大小 (2)如图②,PB 与⊙O 相交于点D ,且PD =DB ,若∠ACB =90°,求∠P 的大小25.(10分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF·AD .26.(12分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ; (2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).27.(12分)如图,在平面直角坐标系xOy 中,直线()30y kx k =+≠与x 轴交于点A ,与双曲线()0my m x=≠的一个交点为B (-1,4).求直线与双曲线的表达式;过点B 作BC ⊥x 轴于点C ,若点P 在双曲线my x =上,且△PAC 的面积为4,求点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】【分析】根据前后的时间和是18天,可以列出方程. 【详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x -+=+%. 故选B 【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程. 2.C 【解析】 【分析】由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE ,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°. 【详解】∵∠B =70°,∠BAC =30° ∴∠ACB =80°∵将△ABC 绕点C 顺时针旋转得△EDC . ∴AC =CE ,∠ACE =∠ACB =80° ∴∠CAE =∠AEC =50° 故选C . 【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键. 3.A 【解析】 【分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断. 【详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ; (2)当13a =时,1133a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ;(3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ; (4)当2a =时,2?2a a ,=-=-,此时a a >-, ∴当2a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A. 【点睛】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键. 4.C 【解析】 【分析】求出16<18<25,推出4<18<5,即可得出答案. 【详解】∵16<18<25, ∴4<18<5,∴18的值是在4和5之间. 故选:C . 【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出16<18<25,题目比较好,难度不大. 5.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 6.A 【解析】试题分析:选项A 为最简分式;选项B 化简可得原式==;选项C 化简可得原式==;选项D 化简可得原式==,故答案选A.考点:最简分式.7.D【解析】【分析】根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.【详解】A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;C、如果x=8,则平均数为15(8+9+7+8+8)=8,方差为15[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;D、若这5次成绩的平均成绩是8,则15(8+9+7+8+x)=8,解得x=8,故本选项正确;故选D.【点睛】本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…x n的平均数为x,则方差()()()()22221232...nx x x x x x x xSn-+-+-++-=,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.A【解析】【分析】连接正方形的对角线,然后依据正方形的性质进行判断即可.【详解】解:如图所示:∵四边形为正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故选:A.【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键. 9.D 【解析】 【分析】根据k 值的正负性分别判断一次函数y=kx-k 与反比例函数ky x=(k≠0)所经过象限,即可得出答案. 【详解】 解:有两种情况,当k>0是时,一次函数y=kx-k 的图象经过一、三、四象限,反比例函数ky x=(k≠0)的图象经过一、三象限;当k<0时,一次函数y=kx-k 的图象经过一、二、四象限,反比例函数ky x=(k≠0)的图象经过二、四象限; 根据选项可知,D 选项满足条件. 故选D. 【点睛】本题考查了一次函数、反比例函数的图象.正确这两种图象所经过的象限是解题的关键. 10.A 【解析】 【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上, ∴x=ax 2+bx+c , ∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点, ∴方程ax 2+(b-1)x+c=0有两个正实数根. ∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点,又∵-2ba >0,a >0 ∴-12b a -=-2b a +12a>0∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A.11.C【解析】【分析】根据二次根式有意义的条件可得a<0,原式变形为﹣(﹣a)【详解】解:∵﹣1a>0,∴a<0,∴原式=﹣(﹣a)=.故选C.【点睛】本题考查的是二次根式的化简,主要是判断根号有意义的条件,然后确定值的范围再进行化简,是常考题型.12.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B.【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.14.20【解析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,∵由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,∴这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.15.8个【解析】【分析】根据概率公式结合取出红球的概率即可求出袋中小球的总个数.【详解】袋中小球的总个数是:2÷14=8(个).故答案为8个.【点睛】本题考查了概率公式,根据概率公式算出球的总个数是解题的关键.16.8【解析】试题分析:设红球有x 个,根据概率公式可得0.484xx=++,解得:x =8.考点:概率. 17.6 【解析】 【分析】已知x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根,根据方程解的定义及根与系数的关系可得x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1,即x 12=2 x 1+1, x 22=2 x 2+1,代入所给的代数式,再利用完全平方公式变形,整体代入求值即可. 【详解】∵x 1,x 2是一元二次方程x 2﹣2x ﹣1=0的两实数根, ∴x 12﹣2 x 1﹣1=0, x 22﹣2 x 2﹣1=0,x 1+x 2=2,x 1·x 2=-1, 即x 12=2 x 1+1, x 22=2 x 2+1, ∴=故答案为6. 【点睛】本题考查了一元二次方程解的定义及根与系数的关系,会熟练运用整体思想是解决本题的关键. 18.减小 【解析】 【分析】根据反比例函数的性质,依据比例系数k 的符号即可确定. 【详解】 ∵k=2>0,∴y 随x 的增大而减小. 故答案是:减小. 【点睛】本题考查了反比例函数的性质,反比例函数y=kx(k≠0)的图象是双曲线,当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)y=﹣8x,y=﹣x ﹣2(2)3(3)﹣4<x <0或x >2 【解析】试题分析:(1)将B 坐标代入反比例解析式中求出m 的值,即可确定出反比例解析式;将A 坐标代入反比例解析式求出n 的值,确定出A 的坐标,将A 与B 坐标代入一次函数解析式中求出k 与b 的值,即可确定出一次函数解析式;(2)对于直线AB ,令y=0求出x 的值,即可确定出C 坐标,三角形AOB 面积=三角形AOC 面积+三角形BOC 面积,求出即可;(3)由两函数交点A 与B 的横坐标,利用图象即可求出所求不等式的解集. 试题解析:(1)∵B (2,﹣4)在y=mx上, ∴m=﹣1.∴反比例函数的解析式为y=﹣8x. ∵点A (﹣4,n )在y=﹣8x上, ∴n=2. ∴A (﹣4,2).∵y=kx+b 经过A (﹣4,2),B (2,﹣4), ∴4224k b k b -+=⎧⎨+=-⎩,解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y=﹣x ﹣2. (2)∵C 是直线AB 与x 轴的交点, ∴当y=0时,x=﹣2. ∴点C (﹣2,0). ∴OC=2.∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=3. (3)不等式0mkx b x+-<的解集为:﹣4<x <0或x >2. 20.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt △,(3)P1(3,-8),P2(-3,-20). 【解析】 【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y 轴的交点坐标C 、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A (3,0),C (0,-3),其“孪生抛物线”为y=-x 2+2x-5,当AC 为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC 为平行四边形的边,点P 在y 轴左侧,则AQ ∥CP 且AQ=CP , ∴点P 的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20, ∴P 2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P 1(3,-8),P 2(-3,-20),在y 轴上存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形为平行四边形. 【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P 的位置,注意分情况讨论. 21.1. 【解析】 【分析】按照实数的运算顺序进行运算即可. 【详解】 原式14124,2=⨯+-+ =1. 【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键. 22.8 【解析】 【分析】原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x 与y 的值代入计算即可求出值. 【详解】原式=22222x xy y y xy -+++=222x y +,当2x =,3y =时,原式=22(2)2(3)2238.+⨯=+⨯=【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 23.(1)证明见解析;(2)BH =.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.(1)∠P=50°;(2)∠P=45°.【解析】【分析】(1)连接OB,根据切线长定理得到PA=PB,∠PAO=∠PBO=90°,根据三角形内角和定理计算即可;(2)连接AB、AD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到AB⊥PA,根据等腰直角三角形的性质解答.【详解】解:(1)如图①,连接OB.∵PA、PB与⊙O相切于A、B点,∴PA=PB,∴∠PAO=∠PBO=90°∴∠PAB=∠PBA,∵∠BAC=25°,∴∠PBA=∠PAB=90°一∠BAC=65°∴∠P=180°-∠PAB-∠PBA=50°;(2)如图②,连接AB、AD,∵∠ACB=90°,∴AB是的直径,∠ADB=90·∵PD=DB,∴PA=AB.∵PA与⊙O相切于A点∴AB⊥PA,∴∠P=∠ABP=45°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于过切点的半径是解题的关键.25.(1)见解析;(2)见解析.【解析】【分析】(1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴AC ADBC CE=,∴△ACD∽△CBE ,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴AB AFAD DC=,又∵AB=DC,∴2AB AF AD=⋅【详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA, ∵AC·CE=AD·BC,∴AC AD BC CE=,∴△ACD∽△CBE , ∴∠DCA=∠EBC, (2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC, ∴∠BAD=∠ADC,∴△ABF∽△DAC,∴AB AF AD DC=,∵AB=DC , ∴2AB AF AD =⋅. 【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键. 26.(1)23;(2)这两个数字之和是3的倍数的概率为13. 【解析】 【分析】(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率. 【详解】解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个, ∴指针所指扇形中的数字是奇数的概率为23, 故答案为23; (2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种, 所以这两个数字之和是3的倍数的概率为39=13. 【点睛】本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式. 27.(1)直线的表达式为3y x =-+,双曲线的表达方式为4y x=-;(2)点P 的坐标为1(2,2)P -或2(2,2)P - 【解析】分析:(1)将点B (-1,4)代入直线和双曲线解析式求出k 和m 的值即可; (2)根据直线解析式求得点A 坐标,由S △ACP =12AC•|y P |=4求得点P 的纵坐标,继而可得答案. 详解:(1)∵直线()30y kx k =+≠与双曲线y =mx(0m ≠)都经过点B (-1,4), 34,14k m ∴-+==-⨯,1,4k m ∴=-=-,∴直线的表达式为3y x =-+,双曲线的表达方式为4y x=-.(2)由题意,得点C 的坐标为C (-1,0),直线3y x =-+与x 轴交于点A (3,0),4AC ∴=,∵142ACP P S AC y ∆=⋅=, 2P y ∴=±,点P 在双曲线4y x=-上, ∴点P 的坐标为()12,2P -或()22,2P -.点睛:本题主要考查反比例函数和一次函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式计算正确的是()A.4a﹣a=3 B.a6÷a2=a3C.(﹣a3)2=a6D.a3a2=a6【分析】根据合并同类项,同底数幂的除法底数不变指数相减,积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案.【解答】解:A、系数相加子母机指数不变,故A不符合题意;B、同底数幂的除法底数不变指数相减,故B不符合题意;C、积的乘方等于乘方的积,故C符合题意;D、同底数幂的乘法底数不变指数相加,故D不符合题意;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.在平面直角坐标系中,点(3,﹣2)关于原点对称的点是()A.C.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(3,﹣2)关于原点对称的点的坐标是(﹣3,2),故选:A.【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.3.学校国旗护卫队成员的身高分布如下表:身高/cm159160161162人数71099则学校国旗护卫队成员的身高的众数和中位数分别是()A.160和160 B.160和160.5 C.160和161 D.161和161【分析】众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:数据160出现了10次,次数最多,众数是:160cm;排序后位于中间位置的是161cm,中位数是:161cm.故选C.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A.第一天B.第二天C.第三天D.第四天【分析】根据图象中的信息即可得到结论.【解答】解:由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B.【点评】本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价﹣进价是解题的关键.5.关于x的一元二次方程(a﹣1)x2+3x﹣2=0有实数根,则a的取值范围是()A.B.C.且a≠1 D.且a≠1【分析】根据一元而次方程的定义和判别式的意义得到a≠1且△=32﹣4(a﹣1)(﹣2)≥0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得a≠1且△=32﹣4(a﹣1)(﹣2)≥0,解得a≥﹣且a≠1.故选D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.已知点 A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【分析】由点点 A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4)∴当x>0时,y随x的增大而增大,故D正确,A错误.∴这个函数图象可能是B,故选B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.7.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.=a2﹣abC.(a﹣b)【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选D.【点评】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.8.圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12πB.15πC.24πD.30π【分析】先求圆锥的母线,再根据公式求侧面积.【解答】解:由勾股定理得:母线l===5,=2πrl=πrl=π×3×5=15π.∴S侧故选B.【点评】本题考查了圆锥的计算,熟练掌握圆锥的母线和侧面积公式是关键.二、填空题(每题3分,满分24分,将答案填在答题纸上)9.分解因式:2a2﹣8= 2(a+2)(a﹣2).【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣8=2(a2﹣4),=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.实数a在数轴上的位置如图,则|a﹣|= ﹣a .【分析】根据数轴上点的位置判断出a﹣的正负,利用绝对值的代数意义化简即可得到结果.【解答】解:∵a<0,∴a﹣<0,则原式=﹣a,故答案为:﹣a【点评】此题考查了实数与数轴,弄清绝对值里边式子的正负是解本题的关键.11.如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【分析】直接利用阴影部分÷总面积=飞镖落在阴影区域的概率,即可得出答案.【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是: =.故答案为:.【点评】此题主要考查了几何概率,正确利用概率公式分析是解题关键.12.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为 4 元.【分析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.【点评】本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.14.在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为8 .【分析】根据直角三角形的性质求出DM,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵AM⊥BM,点D是AB的中点,∴DM=AC=3,∵ME=DM,∴ME=1,∴DE=DM+ME=4,∵D是AB的中点,DE∥BC,∴BC=2DE=8,故答案为:8.【点评】本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为 5 .【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.16.如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是22 .【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6﹣8=22,故答案为22.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.三、解答题(本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤8,由②得:x>﹣3,则不等式组的解集为﹣3<x≤8.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.解方程:﹣=1.【分析】根据分式方程的解法即可求出答案.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,令x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,【点评】本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.19.校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?【分析】(1)首先用A等级的学生人数除以A等级的人数所占的百分比,求出总人数;然后用总人数减去A、B、D三个等级的人数,求出C等级的人数,补全条形图;用C等级的人数除以总人数,得出C等级的人数所占的百分比,补全扇形图;(2)用加权平均数的计算公式求解即可;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)4÷10%=40(人),C等级的人数40﹣4﹣16﹣8=12(人),C等级的人数所占的百分比12÷40=30%.两个统计图补充如下:(2)9×10%+8×40%+7×30%+6×20%=7.4(分);(3)列表为:男1男2女1女2男1﹣﹣男2男1女1男1女2男1男2男1男2﹣﹣女1男2女2男2女1男1女1男2女1﹣﹣女2女1女2男1女2男2女2女1女2﹣﹣由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,所以恰好选到1名男生和1名女生的概率P==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.也考查了扇形统计图、条形统计图的应用以及加权平均数.20.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.【分析】(1)根据图形平移的性质画出平移后得的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2 B2C2即为所求.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.21.在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.【分析】只要证明AB=BM=MD=DA,即可解决问题.【解答】证明:∵AB∥DM,∴∠BAM=∠AMD,∵△ADC是由△ABC翻折得到,∴∠CAB=∠CAD,AB=AD,BM=DM,∴∠DAM=∠AMD,∴DA=DM=AB=BM,∴四边形ABMD是菱形.【点评】本题考查翻折变换、等腰三角形的判定和性质.平行线的性质等知识,解题的关键是证明△ADM是等腰三角形.22.某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.四、解答题(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)23.将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点 E,分别连接EB,EC.(1)求证:EC平分∠AEB;(2)求的值.【分析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;(2)设AB与CE交于点M.根据角平分线的性质得出=.易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==.作AF⊥CE 于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例得出==,进而求出===.【解答】(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,∴∠BAC=∠ABC=45°,∵∠AEC=∠ABC,∠BEC=∠BAC,∴∠AEC=∠BEC,即EC平分∠AEB;(2)解:如图,设AB与CE交于点M.∵EC平分∠AEB,∴=.在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°,∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,∴==.作AF⊥CE于F,BG⊥CE于G.在△AFM与△BGM中,∵∠AFM=∠BGM=90°,∠AMF=∠BMG,∴△AFM∽△BGM,∴==,∴===.【点评】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义,通过作辅助线得出==是解题的关键.24.直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B (6,n),∴m=2,n=1,∴A(2,3),B(6,1),则有,解得,∴直线AB的解析式为y=﹣x+94(2)如图①当PA⊥OD时,∵PA∥CC,∴△ADP∽△CDO,此时p(2,0).②当AP′⊥CD时,易知△P′DA∽△CDO,∵直线AB的解析式为y=﹣x+4,∴直线P′A的解析式为y=2x﹣1,令y=0,解得x=,∴P′(,0),综上所述,满足条件的点P坐标为(2,0)或(,0).【点评】本题考查反比例函数综合题、一次函数的性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型.25.为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m3)32及其以下3334353637383940414243及其以上户数(户)200160180220240210190100170120100110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?【分析】(1)根据统计表可得出月均用水量不超过38吨的居民户数占2000户的70%,由此即可得出结论;(2)分0≤x≤38及x>38两种情况,找出y与x的函数关系式;(3)求出当x=38时的y值,与80.9比较后可得出该家庭当月用水量超出38立方米,令y=2.5x ﹣26.6=80.9求出x值即可.【解答】解:(1)200+160+180+220+240+210+190=1400(户),2000×70%=1400(户),∴基本用水量最低应确定为多38m3.答:为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为38立方米.(2)设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),当0≤x≤38时,y=1.8x;当x>38时,y=1.8×38+2.5(x﹣38)=2.5x﹣26.6.综上所述:y与x的函数关系式为y=.(3)∵1.8×38=68.4(元),68.4<80.9,∴该家庭当月用水量超出38立方米.当y=2.5x﹣26.6=80.9时,x=43.答:该家庭当月用水量是43立方米.【点评】本题考查了一次函数的应用、一次函数图象上点的坐标特征以及统计表,解题的关键是:(1)根据统计表数据找出月均用水量不超过38吨的居民户数占2000户的70%;(2)分0≤x≤38及x>38两种情况,找出y与x的函数关系式;(3)令y=2.5x﹣26.6=80.9求出x 值.26.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.【分析】(1)连接AP,过C作CD⊥AB于D,根据等边三角形的性质得到AB=AC,根据三角形的面积公式列方程即可得到结论;(2)设BP=x,则CP=2﹣x,由△ABC是等边三角形,得到∠B=∠C=60°,解直角三角形得到BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),根据二次函数的性质即可得到结论.【解答】解:(1)连接AP,过C作CD⊥AB于D,∵△ABC是等边三角形,∴AB=AC,∵S△ABC =S△ABP+S△ACP,∴ABCD=ABPM+ACPN,∴PM+PN=CD,即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)设BP=x,则CP=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),∴四边形AMPN的面积=×(2﹣x)x+ [2﹣(2﹣x)](2﹣x)=﹣x2+x+=﹣(x﹣1)2+,∴当BP=1时,四边形AMPN的面积最大,最大值是.【点评】本题考查了等边三角形的性质,三角形面积的计算,二次函数的性质,正确的作出辅助线是解题的关键.。