电容去耦原理解释十分透彻
关于滤波电容、去耦电容、旁路电容作用
![关于滤波电容、去耦电容、旁路电容作用](https://img.taocdn.com/s3/m/031d11020740be1e650e9a19.png)
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。
(完整版)电容去耦原理(解释十分透彻)
![(完整版)电容去耦原理(解释十分透彻)](https://img.taocdn.com/s3/m/37a6de92f5335a8103d2207b.png)
电容退耦原理采用电容退耦是解决电源噪声问题的主要方法。
这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。
有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。
其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已.为了让大家有个清楚的认识,本文分别介绍一下这两种解释。
4。
1 从储能的角度来说明电容退耦原理。
在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
其原理可用图 1 说明。
图 1 去耦电路当负载电流不变时,其电流由稳压电源部分提供,即图中的 I0,方向如图所示。
此时电容两端电压与负载两端电压一致,电流 Ic 为 0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。
当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。
但是稳压电源无法很快响应负载电流的变化,因此,电流 I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。
但是由于电容电压与负载电压相同,因此电容两端存在电压变化。
对于电容来说电压变化必然产生电流,此时电容对负载放电,电流 Ic 不再为 0,为负载芯片提供电流。
根据电容等式:(公式 1)只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求.这样就保证了负载芯片电压的变化在容许的范围内。
这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。
储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。
从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计帮助不大。
从阻抗的角度理解电容退耦,能让我们设计电路时有章可循。
电子公司面试:关于滤波电容、去耦电容、旁路电容作用
![电子公司面试:关于滤波电容、去耦电容、旁路电容作用](https://img.taocdn.com/s3/m/eb4bc87ea98271fe910ef95d.png)
47关于滤波电容、去耦电容、旁路电容作用发表于 2006-11-10 0:47:52滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
去耦电容工作原理
![去耦电容工作原理](https://img.taocdn.com/s3/m/e547d488fc0a79563c1ec5da50e2524de518d0e6.png)
去耦电容工作原理高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个 1~10p F 的电容,滤除低频噪声;在电路板上每一个器件的电源与地线之间放置一个 0.01~0.1p F 的电容,滤除高频噪声。
”在书店里能够得到的大多数的高速 PCB 设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则 (老外俗称 Rule of Thumb)。
但是为什么要这样使用呢?首先就我的理解介绍两个常用的简单概念。
什么是旁路?旁路(Bypass),是指给信号中的某些有害部份提供一条低阻抗的通路。
电源中高频干扰是典型的无用成份,需要将其在进入目标芯片之前提前干掉,普通我们采用电容到达该目的。
用于该目的的电容就是所谓的旁路电容 (Bypass Capacitor) ,它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰 (高是相对的,普通认为 20MHz 以上为高频干扰, 20MHz 以下为低频纹波) 。
什么是退耦?退耦(Decouple),最早用于多级电路中,为保证先后级间传递信号而不互相影响各级静态工作点的而采取的措施。
在电源中退耦表示,当芯片内部进行开关动作或者输出发生变化时,需要瞬时从电源在线抽取较大电流,该瞬时的大电流可能导致电源在线电压的降低,从而引起对自身和其他器件的干扰。
为了减少这种干扰,需要在芯片附近设置一个储电的“小水池”以提供这种瞬时的大电流能力。
在电源电路中,旁路和退耦都是为了减少电源噪声。
旁路主要是为了减少电源上的噪声对器件本身的干扰 (自我保护) ;退耦是为了减少器件产生的噪声对电源的干扰(家丑不外扬)。
有人说退耦是针对低频、旁路是针对高频,我认为这样说是不许确的,高速芯片内部开关操作可能高达上 GHz,由此引起对电源线的干扰明显已经不属于低频的范围,为此目的的退耦电容同样需要有很好的高频特性。
去耦电容
![去耦电容](https://img.taocdn.com/s3/m/4243ac13a21614791711287b.png)
怎样去理解去耦电容【1】去:消除,去掉。
耦:耦合,不是辐射【2】1,耦合,有联系的意思。
2,耦合元件,尤其是指使输入输出产生联系的元件。
3,去耦合元件,指消除信号联系的元件。
4,去耦合电容简称去耦电容。
5,例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
【3】从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。
高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
【4】去耦和旁路都可以看作滤波。
正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。
具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。
去耦电容一般都很大,对更高频率的噪声,基本无效。
旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。
电容一般都可以看成一个RLC串联模型。
在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。
如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。
具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。
去耦电容
![去耦电容](https://img.taocdn.com/s3/m/4e4d6dee102de2bd9605887f.png)
去耦电容在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。
这就是耦合。
去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
去耦和旁路都可以看作滤波。
去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波。
具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算。
去耦电容一般都很大,对更高频率的噪声,基本无效。
旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性。
电容一般都可以看成一个RLC串联模型。
在某个频率,会发生谐振,此时电容的阻抗就等于其ESR。
如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线。
具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容。
相关作用去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。
数字电路中典型的去耦电容值是0.1μF。
这个电容的分布电感的典型值是5μH。
0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。
去耦电容作用
![去耦电容作用](https://img.taocdn.com/s3/m/b71c7e79ff00bed5b8f31d2f.png)
滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z= i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC t脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2 )有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一 是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供 电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所 处的位置不同,称呼就不一样了。
滤波电容 去耦电容
![滤波电容 去耦电容](https://img.taocdn.com/s3/m/0f0ba2aadbef5ef7ba0d4a7302768e9950e76e63.png)
滤波电容去耦电容滤波电容和去耦电容是电子电路中常用的元件,它们在不同的电路中起到不同的作用。
本文将分别介绍滤波电容和去耦电容的原理、应用和选取方法。
一、滤波电容滤波电容是一种用于滤除电路中高频噪声的元件。
在电源电路中,滤波电容可以平滑电压的波动,保证电路中的直流电压稳定。
滤波电容的原理是利用其充放电特性来平滑电源电压。
当电源电压波动时,滤波电容可以吸收过多的电荷或释放电荷,以保持电路中的稳定电压。
在功放电路中,滤波电容可以滤除音频信号中的高频噪声,提高音频信号的纯净度。
滤波电容的选取需要考虑电路中的电流和频率要求。
一般来说,电流越大,所需的滤波电容越大;频率越高,所需的滤波电容越小。
此外,滤波电容的电压容量也需要根据电路中的电压要求来选择。
二、去耦电容去耦电容是一种用于消除电路中的交流信号的元件。
在放大器电路中,放大器的工作电流会引入交流信号,造成放大器的输出信号失真。
去耦电容的作用就是屏蔽这些交流信号,使得放大器的输出信号更加准确。
去耦电容的原理是通过阻隔交流信号的传输路径,只允许直流信号通过。
去耦电容通常与电源电容并联使用,将交流信号引流到地,从而保证放大器的工作电流不会引入输出信号中。
去耦电容的选取需要考虑放大器的工作频率范围和阻抗匹配。
一般来说,去耦电容的容值越大,抑制交流信号的效果越好。
滤波电容和去耦电容在电子电路中起到了重要的作用,它们能够提高电路的稳定性和信号质量。
在实际应用中,我们需要根据具体的电路要求来选择合适的滤波电容和去耦电容。
选取合适的容值和电压容量,可以提高电路的性能和可靠性。
总结起来,滤波电容和去耦电容是电子电路中常用的元件,它们分别用于滤除高频噪声和消除交流信号。
滤波电容通过充放电特性来平滑电压波动,保证电路中的稳定电压;而去耦电容通过阻隔交流信号的传输路径,消除放大器中的交流信号。
在选择滤波电容和去耦电容时,我们需要考虑电路的电流、频率和电压要求,以及容值和电压容量的匹配。
去耦电容工作原理
![去耦电容工作原理](https://img.taocdn.com/s3/m/e0549b07f78a6529647d53b9.png)
去耦电容工作原理高手和前辈们总是告诉我们这样的经验法则:“在电路板的电源接入端放置一个1~10μF的电容,滤除低频噪声;在电路板上每个器件的电源与地线之间放置一个0.01~0.1μF的电容,滤除高频噪声。
”在书店里能够得到的大多数的高速PCB设计、高速数字电路设计的经典教程中也不厌其烦的引用该首选法则(老外俗称Rule of Thumb)。
但是为什么要这样使用呢?首先就我的理解介绍两个常用的简单概念。
什么是旁路?旁路(Bypass),是指给信号中的某些有害部分提供一条低阻抗的通路。
电源中高频干扰是典型的无用成分,需要将其在进入目标芯片之前提前干掉,一般我们采用电容到达该目的。
用于该目的的电容就是所谓的旁路电容(Bypass Capacitor),它利用了电容的频率阻抗特性(理想电容的频率特性随频率的升高,阻抗降低,这个地球人都知道),可以看出旁路电容主要针对高频干扰(高是相对的,一般认为20MHz以上为高频干扰,20MHz以下为低频纹波)。
什么是退耦?退耦(Decouple),最早用于多级电路中,为保证前后级间传递信号而不互相影响各级静态工作点的而采取的措施。
在电源中退耦表示,当芯片内部进行开关动作或输出发生变化时,需要瞬时从电源在线抽取较大电流,该瞬时的大电流可能导致电源在线电压的降低,从而引起对自身和其他器件的干扰。
为了减少这种干扰,需要在芯片附近设置一个储电的“小水池”以提供这种瞬时的大电流能力。
在电源电路中,旁路和退耦都是为了减少电源噪声。
旁路主要是为了减少电源上的噪声对器件本身的干扰(自我保护);退耦是为了减少器件产生的噪声对电源的干扰(家丑不外扬)。
有人说退耦是针对低频、旁路是针对高频,我认为这样说是不准确的,高速芯片内部开关操作可能高达上GHz,由此引起对电源线的干扰明显已经不属于低频的范围,为此目的的退耦电容同样需要有很好的高频特性。
本文以下讨论中并不刻意区分退耦和旁路,认为都是为了滤除噪声,而不管该噪声的来源。
电容退耦原理详解
![电容退耦原理详解](https://img.taocdn.com/s3/m/025ad18e52ea551810a687c0.png)
电容去耦原理详解采用电容退耦是解决电源噪声问题的主要方法。
这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。
有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。
其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。
为了让大家有个清楚的认识,本文分别介绍一下这两种解释。
一、从储能角度谈电容退耦在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
其原理可用图 1 说明。
当负载电流不变时,其电流由稳压电源部分提供,即图中的I0,方向如图所示。
此时电容两端电压与负载两端电压一致,电流Ic 为0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。
当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。
但是稳压电源无法很快响应负载电流的变化,因此,电流I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。
但是由于电容电压与负载电压相同,因此电容两端存在电压变化。
对于电容来说电压变化必然产生电流,此时电容对负载放电,电流Ic 不再为0,为负载芯片提供电流。
根据电容等式:只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。
这样就保证了负载芯片电压的变化在容许的范围内。
这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。
储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。
二、从阻抗角度来理解退耦原理从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计帮助不大。
从阻抗的角度理解电容退耦,能让我们设计电路时有章可循。
关于滤波电容、去耦电容、旁路电容作用
![关于滤波电容、去耦电容、旁路电容作用](https://img.taocdn.com/s3/m/8c5c11e1524de518964b7d8c.png)
关于滤波电容、去耦电容、旁路电容作用滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太远了,等水过来,我们已经渴的不行了。
实际水是来自于大楼顶上的水塔,水塔其实是一个buffer的作用。
如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,阻抗Z=i*wL+R,线路的电感影响也会非常大,会导致器件在需要电流的时候,不能被及时供给。
而去耦电容可以弥补此不足。
这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
去耦电路原理
![去耦电路原理](https://img.taocdn.com/s3/m/8d538437e97101f69e3143323968011ca300f717.png)
去耦电路原理去耦电路是常用的一种电路设计,它可以将直流电源中的干扰信号去掉,保证输出的信号质量,并保护负载电路免遭电源电压的不良影响。
下面我们将分步骤来进行阐述如何设计和实现一个去耦电路:第一步:直流电源滤波和去耦在电源电路中,首先需要进行直流电源的滤波,以保证输出的电压波形能保持稳定,减少干扰。
使用滤波电容器可以很好地实现这个目的。
但在实际运用中,电容器会对线路带来一定的压降,并且还会存在自身的串扰和交流干扰。
为了消除这些干扰,需要将电源电路与负载电路之间插入一个去耦电容器。
通过这种方式,可以使得电源电路与负载电路之间完全隔离,并且可以消除其间的交流干扰。
此时,电容器应选择足够大的电容量,以便于发挥较好的去耦效果。
第二步:信号线去耦在信号传输线路中,需要使用去耦电容器来消除信号线中的交流干扰,保证传输信号质量。
去耦电容器的设计需要考虑信号线阻抗和信号频率,以免因电容器阻抗过大而影响信号传输质量。
在设计电容器时,应参考相关的datasheet,并结合实验测试来确定最佳电容值与特性参数。
第三步:非对称负载去耦对于非对称负载电路,需要考虑其电路电势的非对称性,以保证电路工作稳定性。
为此,需要使用阻抗匹配和去耦技术来保持非对称负载的稳定。
具体操作方式为,在电视线路中插入同等电学参数的去耦电容和去耦电阻,将导致非对称负载电压维持平均值和波形相对稳定。
这种方式可以帮助提高电容电路的效率,并保护负载免受电压干扰的影响。
综上所述,去耦电路能够有效去除多种干扰信号,保证电路工作稳定性和性能。
因此,在电路设计和实现过程中,需要对去耦电路运用得当,以获得更好的信号质量。
电容去耦原理解释十分透彻
![电容去耦原理解释十分透彻](https://img.taocdn.com/s3/m/13d72ddafd0a79563c1e7273.png)
电容去耦原理(解释十分透彻)————————————————————————————————作者:————————————————————————————————日期:2电容退耦原理采用电容退耦是解决电源噪声问题的主要方法。
这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。
有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。
其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。
为了让大家有个清楚的认识,本文分别介绍一下这两种解释。
4.1 从储能的角度来说明电容退耦原理。
在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
其原理可用图 1 说明。
图 1 去耦电路当负载电流不变时,其电流由稳压电源部分提供,即图中的 I0,方向如图所示。
此时电容两端电压与负载两端电压一致,电流 Ic 为 0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。
当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。
但是稳压电源无法很快响应负载电流的变化,因此,电流 I0 不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。
但是由于电容电压与负载电压相同,因此电容两端存在电压变化。
对于电容来说电压变化必然产生电流,此时电容对负载放电,电流 Ic 不再为 0,为负载芯片提供电流。
根据电容等式:(公式 1)只要电容量 C 足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。
这样就保证了负载芯片电压的变化在容许的范围内。
这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。
储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。
详细解析电源完整性去耦电容原理及选型
![详细解析电源完整性去耦电容原理及选型](https://img.taocdn.com/s3/m/b3f37fd418e8b8f67c1cfad6195f312b3169ebe4.png)
详细解析电源完整性去耦电容原理及选型(电源)完整性在现今的(电子产品)中相当重要。
有几个有关电源完整性的层面:(芯片)层面、(芯片封装)层面、电路板层面及系统层面。
在电路板层面的电源完整性要达到以下三个需求:1、使芯片引脚的电压噪声+电压纹波比规格要求要小一些(例如芯片电源管脚的输入电压要求1V之间的误差小于+/-50 mV)2、控制接地反弹(地弹)(同步切换噪声SSN、同步切换输出SSO)3、降低电磁干扰(EMI)并且维持(电磁兼容)性((EMC)):电源分布(网络)(PDN)是电路板上最大型的导体,因此也是最容易发射及接收噪声的(天线)。
“地弹”,是指芯片内部“地”电平相对于电路板“地”电平的变化现象。
以电路板“地”为参考,就像是芯片内部的“地”电平不断的跳动,因此形象的称之为地弹(ground bounce)。
当器件输出端由一个状态跳变到另一个状态时,地弹现象会导致器件逻辑输入端产生毛刺。
对于任何形式封装的芯片,其引脚必会存在电感(电容)等寄生(参数),而地弹主要是由于GND引脚上的阻抗引起的。
(集成电路)的规模越来越大,开关速度不断提高,地弹噪声如果控制不好就会影响电路的功能,因此有必要深入理解地弹的概念并研究它的规律。
我们可以用下图来直观地解释一下。
图中开关Q的不同位置代表了输出的“0”“1”两种状态。
假定由于电路状态转换,开关Q接通RL 低电平,负载电容对地放电,随着负载电容电压下降,它积累的电荷流向地,在接地回路上形成一个大的(电流)浪涌。
随着放电电流建立然后衰减,这一电流变化作用于接地引脚的电感LG,这样在芯片外的电路板“地”与芯片内的地之间,会形成一定的电压差,如图中VG。
这种由于输出转换引起的芯片内部参考地电位漂移就是地弹。
芯片A的输出变化,产生地弹。
这对芯片A的输入逻辑是有影响的。
接收逻辑把输入电压和芯片内部的地电压差分比较确定输入,因此从接收逻辑来看就像输入(信号)本身叠加了一个与地弹噪声相同的噪声。
去耦电容、旁路电容作用
![去耦电容、旁路电容作用](https://img.taocdn.com/s3/m/c55b036358fafab069dc0257.png)
滤波电容、去耦电容、旁路电容作用滤波电容用在电源整流电路中,用来滤除交流成分。
使输出的直流更平滑。
去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。
旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。
1.关于去耦电容蓄能作用的理解1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。
而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。
(在vcc引脚上通常并联一个去藕电容,这样交流分量就从这个电容接地。
)2)有源器件在开关时产生的高频开关噪声将沿着电源线传播。
去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
2.旁路电容和去耦电容的区别去耦:去除在器件切换时从高频器件进入到配电网络中的RF能量。
去耦电容还可以为器件提供局部化的DC电压源,它在减少跨板浪涌电流方面特别有用。
旁路:从元件或电缆中转移出不想要的共模RF能量。
这主要是通过产生AC旁路消除无意的能量进入敏感的部分,另外还可以提供基带滤波功能(带宽受限)。
我们经常可以看到,在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了。
对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling)电容也称退耦电容,是把输出信号的干扰作为滤除对象。
3.在一个大的电容上还并联一个小电容的原因大电容由于容量大,所以体积一般也比较大,且通常使用多层卷绕的方式制作,这就导致了大电容的分布电感比较大(也叫等效串联电感,英文简称ESL)。
大家知道,电感对高频信号的阻抗是很大的,所以,大电容的高频性能不好。
关于滤波电容、去耦电容、旁路电容作用及其原理
![关于滤波电容、去耦电容、旁路电容作用及其原理](https://img.taocdn.com/s3/m/1d96ab35cdbff121dd36a32d7375a417866fc110.png)
关于滤波电容、去耦电容、旁路电容作⽤及其原理原⽂:⼀、关于滤波电容、去耦电容、旁路电容作⽤及其原理从电路来说,总是存在驱动的源和被驱动的负载。
如果负载电容⽐较⼤,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿⽐较陡峭的时候,电流⽐较⼤,这样驱动的电流就会吸收很⼤的电源电流,由于电路中的电感,电阻(特别是芯⽚管脚上的电感,会产⽣反弹),这种电流相对于正常情况来说实际上就是⼀种噪声,会影响前级的正常⼯作。
这就是耦合。
去藕电容就是起到⼀个电池的作⽤,满⾜驱动电路电流的变化,避免相互间的耦合⼲扰。
旁路电容实际也是去藕合的,只是旁路电容⼀般是指⾼频旁路,也就是给⾼频的开关噪声提⾼⼀条低阻抗泄防途径。
⾼频旁路电容⼀般⽐较⼩,根据谐振频率⼀般是0.1u,0.01u等,⽽去耦合电容⼀般⽐较⼤,是10u或者更⼤,依据电路中分布参数,以及驱动电流的变化⼤⼩来确定。
去耦和旁路都可以看作滤波。
去耦电容相当于电池,避免由于电流的突变⽽使电压下降,相当于滤纹波。
具体容值可以根据电流的⼤⼩、期望的纹波⼤⼩、作⽤时间的⼤⼩来计算。
去耦电容⼀般都很⼤,对更⾼频率的噪声,基本⽆效。
旁路电容就是针对⾼频来的,也就是利⽤了电容的频率阻抗特性。
电容⼀般都可以看成⼀个RLC串联模型。
在某个频率,会发⽣谐振,此时电容的阻抗就等于其ESR。
如果看电容的频率阻抗曲线图,就会发现⼀般都是⼀个V形的曲线。
具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,⼀个⽐较保险的⽅法就是多并⼏个电容。
去耦电容在集成电路电源和地之间的有两个作⽤:⼀⽅⾯是本集成电路的蓄能电容,另⼀⽅⾯旁路掉该器件的⾼频噪声。
数字电路中典型的去耦电容值是0.1µF。
这个电容的分布电感的典型值是5µH。
它的并⾏共振频率⼤约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声⼏乎不起作⽤。
1µF、10µF的电容,并⾏共振频率在20MHz以上,去除⾼频噪声的效果要好⼀些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容退耦原理采用电容退耦是解决电源噪声问题的主要方法。
这种方法对提高瞬态电流的响应速度,降低电源分配系统的阻抗都非常有效。
对于电容退耦,很多资料中都有涉及,但是阐述的角度不同。
有些是从局部电荷存储(即储能)的角度来说明,有些是从电源分配系统的阻抗的角度来说明,还有些资料的说明更为混乱,一会提储能,一会提阻抗,因此很多人在看资料的时候感到有些迷惑。
其实,这两种提法,本质上是相同的,只不过看待问题的视角不同而已。
为了让大家有个清楚的认识,本文分别介绍一下这两种解释。
4.1从储能的角度来说明电容退耦原理。
在制作电路板时,通常会在负载芯片周围放置很多电容,这些电容就起到电源退耦作用。
其原理可用图1说明。
图1去耦电路当负载电流不变时,其电流由稳压电源部分提供,即图中的I0,方向如图所示。
此时电容两端电压与负载两端电压一致,电流Ic为0,电容两端存储相当数量的电荷,其电荷数量和电容量有关。
当负载瞬态电流发生变化时,由于负载芯片内部晶体管电平转换速度极快,必须在极短的时间内为负载芯片提供足够的电流。
但是稳压电源无法很快响应负载电流的变化,因此,电流I0不会马上满足负载瞬态电流要求,因此负载芯片电压会降低。
但是由于电容电压与负载电压相同,因此电容两端存在电压变化。
对于电容来说电压变化必然产生电流,此时电容对负载放电,电流Ic不再为0,为负载芯片提供电流。
根据电容等式:(公式1)只要电容量C足够大,只需很小的电压变化,电容就可以提供足够大的电流,满足负载瞬态电流的要求。
这样就保证了负载芯片电压的变化在容许的范围内。
这里,相当于电容预先存储了一部分电能,在负载需要的时候释放出来,即电容是储能元件。
储能电容的存在使负载消耗的能量得到快速补充,因此保证了负载两端电压不至于有太大变化,此时电容担负的是局部电源的角色。
从储能的角度来理解电源退耦,非常直观易懂,但是对电路设计帮助不大。
从阻抗的角度理解电容退耦,能让我们设计电路时有章可循。
实际上,在决定电源分配系统的去耦电容量的时候,用的就是阻抗的概念。
4.2从阻抗的角度来理解退耦原理。
将图1中的负载芯片拿掉,如图2所示。
从AB两点向左看过去,稳压电源以及电容退耦系统一起,可以看成一个复合的电源系统。
这个电源系统的特点是:不论AB两点间负载瞬态电流如何变化,都能保证AB两点间的电压保持稳定,即AB两点间电压变化很小。
图片2电源部分我们可以用一个等效电源模型表示上面这个复合的电源系统,如图3图3等效电源对于这个电路可写出如下等式:(公式2)我们的最终设计目标是,不论AB两点间负载瞬态电流如何变化,都要保持AB两点间电压变化范围很小,根据公式2,这个要求等效于电源系统的阻抗Z要足够低。
在图2中,我们是通过去耦电容来达到这一要求的,因此从等效的角度出发,可以说去耦电容降低了电源系统的阻抗。
另一方面,从电路原理的角度来说,可得到同样结论。
电容对于交流信号呈现低阻抗特性,因此加入电容,实际上也确实降低了电源系统的交流阻抗。
从阻抗的角度理解电容退耦,可以给我们设计电源分配系统带来极大的方便。
实际上,电源分配系统设计的最根本的原则就是使阻抗最小。
最有效的设计方法就是在这个原则指导下产生的。
正确使用电容进行电源退耦,必须了解实际电容的频率特性。
理想电容器在实际中是不存在的,这就是为什么经常听到“电容不仅仅是电容”的原因。
实际的电容器总会存在一些寄生参数,这些寄生参数在低频时表现不明显,但是高频情况下,其重要性可能会超过容值本身。
图4是实际电容器的SPICE模型,图中,ESR代表等效串联电阻,ESL代表等效串联电感或寄生电感,C为理想电容。
图4电容模型等效串联电感(寄生电感)无法消除,只要存在引线,就会有寄生电感。
这从磁场能量变化的角度可以很容易理解,电流发生变化时,磁场能量发生变化,但是不可能发生能量跃变,表现出电感特性。
寄生电感会延缓电容电流的变化,电感越大,电容充放电阻抗就越大,反应时间就越长。
等效串联电阻也不可消除的,很简单,因为制作电容的材料不是超导体。
讨论实际电容特性之前,首先介绍谐振的概念。
对于图4的电容模型,其复阻抗为:(公式3)当频率很低时,远小于,整个电容器表现为电容性,当频率很高时,大于,电容器此时表现为电感性,因此“高频时电容不再是电容”,而呈现为电感。
当时,,此时容性阻抗矢量与感性阻抗之差为0,电容的总阻抗最小,表现为纯电阻特性。
该频率点就是电容的自谐振频率。
自谐振频率点是区分电容是容性还是感性的分界点,高于谐振频率时,“电容不再是电容”,因此退耦作用将下降。
因此,实际电容器都有一定的工作频率范围,只有在其工作频率范围内,电容才具有很好的退耦作用,使用电容进行电源退耦时要特别关注这一点。
寄生电感(等效串联电感)是电容器在高于自谐振频率点之后退耦功能被消弱的根本原因。
图5显示了一个实际的0805封装0.1uF陶瓷电容,其阻抗随频率变化的曲线。
图5电容阻抗特性电容的自谐振频率值和它的电容值及等效串联电感值有关,使用时可查看器件手册,了解该项参数,确定电容的有效频率范围。
下面列出了AVX生产的陶瓷电容不同封装的各项参数值。
封装0402 0603 0805 1206 ESL(nH)ESR(欧姆)0.40.50.610.060.0980.0790.121210 1812 2220 0.91.41.60.120.2030.285电容的等效串联电感和生产工艺和封装尺寸有关,同一个厂家的同种封装尺寸的电容,其等效串联电感基本相同。
通常小封装的电容等效串联电感更低,宽体封装的电容比窄体封装的电容有更低的等效串联电感。
既然电容可以看成RLC串联电路,因此也会存在品质因数,即Q值,这也是在使用电容时的一个重要参数。
电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等,电容上的电压有效值UC=I*1/ωC=U/ωCR=QU,品质因数Q=1/ωCR,这里I是电路的总电流。
电感上的电压有效值UL=ωLI=ωL*U/R=QU,品质因数Q=ωL/R。
因为:UC=UL所以Q=1/ωCR=ωL/R。
电容上的电压与外加信号电压U之比UC/U=(I*1/ωC)/RI=1/ωCR=Q。
电感上的电压与外加信号电压U之比UL/U=ωLI/RI=ωL/R=Q。
从上面分析可见,电路的品质因数越高,电感或电容上的电压比外加电压越高。
图6Q值的影响Q值影响电路的频率选择性。
当电路处于谐振频率时,有最大的电流,偏离谐振频率时总电流减小。
我们用I/I0表示通过电容的电流与谐振电流的比值,即相对变化率。
表示频率偏离谐振频率程度。
图6显示了I/I0与关系曲线。
这里有三条曲线,对应三个不同的Q值,其中有Q1>Q2>Q3。
从图中可看出当外加信号频率ω偏离电路的谐振频率ω0时,I/I0均小于1。
Q值越高在一定的频偏下电流下降得越快,其谐振曲线越尖锐。
也就是说电路的选择性是由电路的品质因素Q所决定的,Q值越高选择性越好。
在电路板上会放置一些大的电容,通常是坦电容或电解电容。
这类电容有很低的ESL,但是ESR很高,因此Q值很低,具有很宽的有效频率范围,非常适合板级电源滤波。
当电容安装到电路板上后,还会引入额外的寄生参数,从而引起谐振频率的偏移。
充分理解电容的自谐振频率和安装谐振频率非常重要,在计算系统参数时,实际使用的是安装谐振频率,而不是自谐振频率,因为我们关注的是电容安装到电路板上之后的表现。
电容在电路板上的安装通常包括一小段从焊盘拉出的引出线,两个或更多的过孔。
我们知道,不论引线还是过孔都存在寄生电感。
寄生电感是我们主要关注的重要参数,因为它对电容的特性影响最大。
电容安装后,可以对其周围一小片区域有效去耦,这涉及到去耦半径问题,本文后面还要详细讲述。
现在我们考察这样一种情况,电容要对距离它2厘米处的一点去耦,这时寄生电感包括哪几部分。
首先,电容自身存在寄生电感。
从电容到达需要去耦区域的路径上包括焊盘、一小段引出线、过孔、2厘米长的电源及地平面,这几个部分都存在寄生电感。
相比较而言,过孔的寄生电感较大。
可以用公式近似计算一个过孔的寄生电感有多大。
公式为其中:L是过孔的寄生电感,单位是nH。
h为过孔的长度,和板厚有关,单位是英寸。
d为过孔的直径,单位是英寸。
下面就计算一个常见的过孔的寄生电感,看看有多大,以便有一个感性认识。
设过孔的长度为63mil(对应电路板的厚度1.6毫米,这一厚度的电路板很常见),过孔直径8mil,根据上面公式得:这一寄生电感比很多小封装电容自身的寄生电感要大,必须考虑它的影响。
过孔的直径越大,寄生电感越小。
过孔长度越长,电感越大。
下面我们就以一个0805封装0.01uF电容为例,计算安装前后谐振频率的变化。
参数如下:容值:C=0.01uF。
电容自身等效串联电感:ESL=0.6nH。
安装后增加的寄生电感:Lmount=1.5nH。
电容的自谐振频率:安装后的总寄生电感:0.6+1.5=2.1nH。
注意,实际上安装一个电容至少要两个过孔,寄生电感是串联的,如果只用两个过孔,则过孔引入的寄生电感就有3nH。
但是在电容的每一端都并联几个过孔,可以有效减小总的寄生电感量,这和安装方法有关。
安装后的谐振频率为:可见,安装后电容的谐振频率发生了很大的偏移,使得小电容的高频去耦特性被消弱。
在进行电路参数设计时,应以这个安装后的谐振频率计算,因为这才是电容在电路板上的实际表现。
安装电感对电容的去耦特性产生很大影响,应尽量减小。
实际上,如何最大程度的减小安装后的寄生电感,是一个非常重要的问题从电源系统的角度进行去耦设计先插一句题外话,很多人在看资料时会有这样的困惑,有的资料上说要对每个电源引脚加去耦电容,而另一些资料并不是按照每个电源引脚都加去偶电容来设计的,只是说在芯片周围放置多少电容,然后怎么放置,怎么打孔等等。
那么到底哪种说法及做法正确呢?我在刚接触电路设计的时候也有这样的困惑。
其实,两种方法都是正确的,只不过处理问题的角度不同。
看过本文后,你就彻底明白了。
上一节讲了对引脚去耦的方法,这一节就来讲讲另一种方法,从电源系统的角度进行去耦设计。
该方法本着这样一个原则:在感兴趣的频率范围内,使整个电源分配系统阻抗最低。
其方法仍然是使用去耦电容。
电源去耦涉及到很多问题:总的电容量多大才能满足要求?如何确定这个值?选择那些电容值?放多少个电容?选什么材质的电容?电容如何安装到电路板上?电容放置距离有什么要求?下面分别介绍。
着名的TargetImpedance(目标阻抗)目标阻抗(TargetImpedance)定义为:(公式4)其中:为要进行去耦的电源电压等级,常见的有5V、3.3V、1.8V、1.26V、1.2V等。
为允许的电压波动,在电源噪声余量一节中我们已经阐述过了,典型值为2.5%。