环境光催化材料与光催化净化技术.ppt
光催化原理PPT课件
12
第三步
超氧负离子和氢 氧自由基具有很 强的氧化性,能将 绝大多数的有机 物氧化至最终产 物CO2和H2O,甚 至对一些无机物 也能彻底分解。
化学与药学院.
二氧化钛的光催化原理
半导体的光吸收阈值与带隙的关系:
K=1240/Eg(eV)
因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。
11
化学与药学院.
光催化原理
第一步
当光子能量高于半 导体吸收阈值的光 照射半导体时,半导 体的价带电子发生 带间跃迁,即从价带 跃迁到导带,从而产 生光生电子(e-)和 空穴(h+)。
第二步
E=hC/λ 所以可以知道波长小于380nm的光可以激发锐钛型二氧化钛。
❖有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳 米光触媒采用锐钛型的原因。
16
化学与药学院.
光催化应用技术
❖ 光催化净化是基于光催化剂在紫外线照射下具有 的氧化还原能力而净化污染物。
❖ 光催化净化技术的特点:半导体光催化剂化学性质稳
光催化的基本知识
化学与药学院 马永超
1
.
主要内容
光催化剂的定义 光催化起源
光催化材料 光催化的原理 光催化的应用
2
.
催化剂是加速化学反应速率的化学物质, 其本身并不参与反应。
光催化剂就是在光子的激发下能够起到催化作用的 化学物质的统称。
3
化学与药学院.
光催化 剂
状态 液体催化剂 固体催化剂
4
反应体系的相态
普通的二氧化钛一般称为体相半导体,这是与纳米二氧化钛 相区别的。
光催化实际环境应用
光催化技术在实际环境中的应用非常广泛,主要涉及环境净化、能源转换和化学合成等领域。
以下是一些具体的应用实例:
1. 环境净化:光催化技术可以用于空气净化,通过分解空气中的有害物质如甲醛、苯、氮氧化物(NOx)、硫氧化物(SOx)以及挥发性有机化合物(VOCs)等,从而减少空气污染。
此外,光催化也用于水净化,通过降解水中的有机污染物,提高水质。
2. 能源转换:光催化技术在太阳能电池中的应用,可以将太阳能高效转换为电能。
例如,TiO2是一种常用的光催化剂,因其化学性质稳定、催化活性高、价格低廉、无毒无污染等优点,被广泛应用于太阳能电池的研究和开发中。
3. 化学合成:光催化技术还可以用于化学合成,比如光催化产氢,这是一种清洁的能源生产方式。
g-C3N4材料就是一个典型的例子,它在光催化产氢方面显示出显著的效果。
4. 抗菌杀菌:光催化剂在抗菌杀菌方面也有应用,可以有效灭活细菌和病毒,保持环境的卫生安全。
5. 其他新兴应用:随着研究的深入,光催化技术还被探索用于更多的领域,如光催化清洁有机合成、模拟光合作用、光催化燃料电池、二氧化碳还原、固废贵金属回收、氮固定等。
综上所述,光催化技术作为一种绿色、高效的技术手段,在环境保护和能源转化等领域发挥着重要作用,并且随着新材料和新方法的不断开发,其应用范围有望进一步扩大。
环境功能材料-6-光触媒(光催化剂)
• 价带空穴具有良好的氧化性,能与纳米 TiO2表面吸附的H2O 或OH -反应, 生成具 有羟基自由基。
自由基反应
• ·O2-和·OH具有很强的化学活性,是参与 有机污染物光催化降解过程的基本单元。
TiO2表面结构的影响
光催化过程主要在催化剂表面发生,对于单纯的TiO2光催化 剂,影响其光催化剂,影响其光催化活性的表面性质如下:
后期在环境领域的发展
• 1992,第一次二氧化钛光触媒国际研讨会, • 日本发表了光触媒的新观念,并提出 应用
于氮氧化物净化的研究成果。 • 以此为契机,光触媒应用于抗菌、防污、空
气净 化等领域的相关研究急剧增加。
光催化原理
能带理论
• 能带:在形成分子时,原子轨道构成具有 分立能级的分子轨道。晶体中原子轨道所 构成的分子轨道的数量非常之大,以至于 可以将所形成的分子轨道的能级看成是准 连续的,即形成了能带。
4
.
各种常用半导体的禁带宽度和禁带边缘电位示意图(pH = 0)
➢TiO2的结构与性质 TiO2晶型结构示意图(锐钛矿型)
• 纳米 TiO2是一种半导体光催化材料,TiO2 的电子结构特点为一个满的价带和一个空 的导带。当受到能量大于带隙能的光照射 时,价带上的电子被激发,跃过禁带, 同 时在价带上产生与电子e-相对应的空穴h+ ,即自由电子--空穴对。
• 例子:H2O
H2+O2
光催化过程的发现
• 1967年,藤岛昭,东京大学研究生 • 试验中对放入水中的氧化钛单结晶进行了光
线照射,结果 发现水被分解成了氧和氢。 • 石油危机,寻找新能源, • 这一技术作为从水中提取氢的划时代方法受
到了瞩目,制氢效率很低,无法作为新能源 方案进行实际利用,因此在轰动一时后迅速 降温。
光催化ppt课件
30
31
❖ c.即使同一种催化剂,由于其结构和表面形态不同,其 光催化活性也不同。
2
背景、发展
❖ 1967年还是东京大学研究生的藤岛昭教授,在一次试验中对 放入水中的氧化钛单结晶进行了光线照射,结果发现水被分 解成了氧和氢。由于是借助光的力量促进氧化分解反应,因 此后来将这一现象中 的氧化钛称作光触媒。
❖ 这种现象相当于将光能转变为化学能,以当时正值石油危机 的背景,这一技术作为从水中提取氢的划时代方法受到了瞩 目,但由 于很难在短时间内提取大量的氢气,所以利用于新 能源的开发终究无法实现,因此在轰动一时后迅速降温。
主。多余的电子脱离施主进入导带,使半导体中的 电子数目高于空穴,这类半导体主要靠电子导电, 称为n型半导体。 ❖ 若掺杂原子的电子数较少,则为受主。受主容易将 价带中的电子拉到自己周围,使价带中空穴数量大 于电子,这类半导体称为p型半导体。
18
19
光催化基本理论
❖ 光催化反应机制及过程
(1)光激发过程
28
K光吸收波长阈值 当光照射半导体化合物时,并非任何波长的光都能被吸收和产生激 发作用,当用388nm的紫外光照射锐钛型纳米TiO2时,电子才能从 价带激发到导带,形成电子-空穴(e--h+)对,迁移到TiO2表面, 具有了还原、氧化作用。
29
❖ b. 半导体在其表面所发生的光致电子转移到吸附物上的能 力,是由半导体导带和价带位置以及吸附物的氧化还原电 位所控制。因此,不同催化剂的光催化活性不同。 如在光催化分解水的反应中,氧化型半导体的价带边低
光催化氧化技术PPT课件
H2O,O2反应生成•OH和超氧离子O2-,能够把各种有机物直接氧化
成CO2、H2O等无机小分子,电子也具有强还原性,可以还原吸 附在其表面的物质。
金红石最稳定,从低温到熔点都不会发生晶相转变;锐钛 矿次之,在室温下稳定;板钛矿很少见。 具有光催化作用的主要是锐钛矿结构和金红石结构,其中 以锐钛矿结构的催化活性最高。 锐钛矿型TiO2吸收小于387nm的光,金红石型TiO2吸收小于
413nm的光。
第22页,共72页。
TiO2光催化材料的特性
合适的半导体禁带宽度。 具有良好的抗光腐蚀性和化学稳定性。
h H2O OH H
e O2 O2
O2 H HO2
Organ HO O2 CO2 H 2O 其他产物
Mn (金属离子) ne M
第15页,共72页。
TiO2光催化氧化原理
在光照下,如果光子的能量大于半导体禁带宽度,其价带上的 电子(e-)就会被激发到导带上,同时在价带上产生空穴(h+)。
光催化剂 = 光 [Photo=Light] + 催化剂 [catalyst] 光催化剂是一种在光的照射下,自身不起变化,却可以促 进化学反应的物质。光催化剂是将光能转换成为化学反应的能
量,产生催化作用,使周围水分子及氧气激发成极具氧化力
的· OH及O2-。用其分解对人体和环境有害的有机物质及 部分无机物质,加速反应,不造成资源浪费,且不形成 附加污染。
第25页,共72页。
影响TiO2光催化性能的因素
光催化ppt课件
16
❖ 半导体结构与绝缘体类似,所不同的是Eg较窄,电 子从价带克服禁带能垒跃迁至导带有两种途径。
❖ 一种可以通过热激发或光激发实现。 ❖ 另一种通过掺杂改变半导体材料的电子分布状况实
现。
17
掺杂半导体
❖ 在半导体中含有少量杂质原子称为掺杂半导体。 ❖ 若掺杂原子的价电子除了成键外还有剩余,则为施
高效光催化材料的设计、 制备与应用
1
内容
❖ 发展背景 ❖ 能带理论 ❖ 光催化理论 ❖ 光催化反应的影响因素 ❖ 光催化材料的结构与性能 ❖ 光催化剂的制备方法 ❖ 光催化剂的表征方法 ❖ 光催化材料的应用 ❖ 存在的问题与展望
2
背景、发展
❖ 1967年还是东京大学研究生的藤岛昭教授,在一次试验中对 放入水中的氧化钛单结晶进行了光线照射,结果发现水被分 解成了氧和氢。由于是借助光的力量促进氧化分解反应,因 此后来将这一现象中 的氧化钛称作光触媒。
❖ 随着研究深入,人们发现半导体光催化技术在去除污 染物等方面,具有能耗低、氧化能力强、反应条件温 和、操作简便,可减少二次污染等突出特点,有广阔 应用前景。
4
❖ 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行, 日本发表许多关于光触媒的新观念,并提出应用于氮氧 化物净化的研究成果。此后,光触媒应用于抗菌、防污、 空气净 化等领域的相关研究急剧增加。
光催化技术在环境治理中的应用案例
光催化技术在环境治理中的应用案例近年来,光催化技术以其高效、环保的特点,成为环境治理的重要手段之一。
光催化技术利用光照激发催化剂对有机物进行氧化降解,能够有效地降低污染物的浓度,改善环境质量。
下面将通过几个具体的应用案例,来探讨光催化技术在环境治理中的重要性与前景。
第一个应用案例是光催化技术在水污染治理中的应用。
水污染是一个严重的环境问题,特别是在水污染物质中,有机污染物往往难以完全降解,对人类健康和水生态造成威胁。
光催化技术可以通过在催化剂的作用下,利用紫外光催化降解有机污染物。
例如,研究人员利用钛酸锂材料作为催化剂,通过光催化反应将水中的有机污染物进行氧化分解,结果表明,光催化技术对苯、酚等有机污染物具有良好的降解效果。
这为水污染物的有效治理提供了一种新的思路和方法。
第二个应用案例是光催化技术在空气污染治理中的应用。
空气污染已经成为全球面临的严重问题之一,尤其是在城市中,汽车尾气和工业废气等排放物质给人类健康和环境带来了巨大影响。
利用光催化技术处理空气污染已经成为了一种有效的方法。
比如,研究人员将钛酸锂和纳米二氧化钛等光催化材料涂覆在建筑物表面,利用太阳光的照射能够分解和吸附空气中的有害气体,如甲醛、苯等。
通过这种方式,能够有效地减少室内空气污染物质含量,提高室内空气质量。
第三个应用案例是光催化技术在土壤污染治理中的应用。
土壤污染对人类食品安全和生态环境带来的威胁不容忽视。
传统的土壤污染治理方法费时费力,且对环境影响较大。
光催化技术的出现为土壤污染治理带来了新的方向。
研究表明,通过在污染土壤表面铺设光催化剂,利用太阳光的照射可以分解土壤中的有机污染物质,减少土壤污染程度。
此外,光催化技术还可以通过光解有机物质和改善土壤微生物的生长环境,促进土壤的修复和底泥的净化。
在以上的应用案例中,光催化技术在环境治理中的应用展示了其巨大的潜力和价值。
然而,我们也应该清楚地认识到光催化技术在实际应用中还面临一些挑战。
光催化材料PPT课件
THANKS
感谢观看
• 光催化材料的发展也将更加注重环保和可持续发展。在材料的制备和应用过程 中,将更加注重资源的节约和环境的保护,同时推动光催化技术的绿色化和产 业化发展。
光催化材料面临的挑战与机遇
光催化材料在实际应用中仍面临一些挑战,如光催化反应的效率、反应动力学和稳定性等问题。此外,光催化材料的回收和 再利用也是需要解决的重要问题。
光催化材料等。
04
光催化材料的应用实例
光催化水处理
01
去除有害物质
光催化材料能够利用光能将水中的有害物质,如重金属离子、有机污染
物等,进行氧化或还原反应,将其转化为无害或低毒性的物质,从而达
到净化水质的目的。
02
杀菌消毒
光催化材料在光照条件下能够产生具有强氧化性的自由基,这些自由基
能够破坏细菌和病毒的细胞膜结构,从而杀死细菌和病毒,起到杀菌消
光谱响应范围
描述光催化材料能够吸收的光的 波长范围。一些材料主要吸收紫 外光,而另一些则能吸收可见光 或红外光。
光吸收效率
衡量材料在特定波长下吸收光的 程度。高吸收效率意味着材料能 更有效地利用光能。
化学性质
稳定性
指光催化材料在化学环境中保持其结 构和性能的能力。
氧化还原能力
指材料在光催化反应中的氧化或还原 能力,影响其光催化活性。
• 除了传统的金属氧化物、硫化物、氮化物等材料外,新型复合光催化材料、异 质结构光催化材料等也将成为研究热点。这些新型材料通过结构设计、元素掺 杂、表面改性等方式,能够进一步提高光催化性能和拓宽应用范围。
光催化第二章PPT课件
TiO2的等电点pHZPC=5.8, 所以,pHZPC处的导带位置ECB=-0.1-0.059pH=-0.44
三、通过测定平带点位实验获取
• n型半导体:平带点位接近导带,可以认为就是导带位置; • p型半导体:平带点位接近价带,可以认为就是价带位置; • 如果已知带隙宽度就可以确定能带位置。
上述机理最重要的是阐明电荷迁移过程,光催化
本质上是氧化还原过程,目前较好的研究手段是光电 化学方法
电化学技术研究过程 电化学技术研究
电子迁移
注入能量
高灵敏和快捷
表征光催化动 力学特征
提高催化速 率
获得实时动 力学数据
估测带隙宽度、能级位置和电 荷迁移特别是界面电荷迁移
2.5.1 光电化学理论基础
本征半导体的载流子浓度低,电子和空穴数接近,Fermi能级位于带隙中间位置,表明电 子在价带出现的概率很高而在导带中出现的概率很低。通过杂质掺杂本征半导体、或者非计量 化合物半导体等,半导体都表现n型或P型半导体的特征。
2.3光学性质分析
• 2.3.1 固体紫外-可见漫反射光谱
半导体光催化材料具有其特性,因此有一些满足其特性的表征方法。作为光催化剂,其高效宽谱的光学
吸收性能是保证光催化活性的一个必要而非充分条件,因此分析固体光催化的官学吸收性能是必不可少
的。由于固体样品存在大量的散射,所不能直接测定样品的吸收。通常采用固体紫色-可见漫反射光谱
(1-4)
调节外电压,当施加正向偏压时,Vsc增大促进电子和空穴分离;当施加负向偏压,Vsc减小, 使得Vs为零时对应的外加电压值成为平带电压Vfb。
n型:Vfb=Ecs-μ; p型:Vfb=Evs+μ
(1-5)
n型半导体表面导带电位和平带电位差μ;p型半导体表面价带电位和平带电位差μ,μ是一个在
光催化纳米材料在环境保护中的应用
光催化纳米材料在环境保护中的应用光催化纳米材料在环境保护中的应用近年来,随着工业化和城市化进程的加快,环境污染问题日益严重,对人类健康和生态系统产生了严重的影响。
为解决这一问题,科学家们不断探索创新的环境保护技术。
其中,光催化纳米材料作为一种新兴的方法,因其高效、环保的特点,正在广泛应用于环境污染治理中。
本文将着重探讨光催化纳米材料在大气污染、水污染和垃圾处理等环境保护方面的应用。
第一部分:大气污染治理大气污染是当前全球面临的严峻环境问题之一。
颗粒物、有机污染物和氮氧化物等污染物排放对人体健康和气候变化产生了不可忽视的影响。
光催化纳米材料通过利用光能将有害气体和颗粒物转化为无害物质,具有潜在的应用前景。
例如,将光催化纳米材料涂覆在建筑物外墙表面,通过阳光照射,可将大气中的氮氧化物转化为氮气和水,达到净化空气的目的。
此外,研究人员还发现,钛酸锶(SrTiO3)等光催化纳米材料能够在可见光下降解有机污染物,如苯、甲醛等。
因此,光催化纳米材料在大气污染治理中具有重要的潜力。
第二部分:水污染治理水污染是当前世界各地面临的普遍问题。
工业废水、农业面源污染和生活污水等因素导致水体富营养化、有机物和重金属污染。
光催化纳米材料的应用使得水体污染治理变得更加高效和环保。
研究人员发现,钛酸锌(ZnO)和氧化铁(Fe2O3)等光催化纳米材料能够吸附和分解有机污染物,如重金属离子、农药残留等。
此外,纳米银颗粒也被用于消毒和杀菌,通过光催化抑制微生物的生长。
光催化纳米材料不仅能够高效降解水中有害物质,还具备易于回收利用的特点,非常适合水污染治理。
第三部分:垃圾处理垃圾处理一直是城市和农村发展中的重要问题之一。
传统的垃圾填埋和焚烧处理方法存在环境污染问题,而光催化纳米材料的应用为垃圾处理带来了新的解决方案。
研究人员发现,通过光催化纳米材料能够有效降解垃圾中的有机物质,使其转化为二氧化碳和水。
而这一过程不会产生二恶英等有害物质。
光电催化 PPT
极对有机物的吸附。
外加偏电压的影响
外加电压达到一定值时,光生载流子已达到充分分 离,形成饱和光电流。 因此,在光电流接近饱和状态时,继续增大电压对 光催化反应速率提高幅度不大; 相反,随着电压的升高,光电流效率反而下降。
紫外线照射
电Байду номын сангаас 能量
导 e- e- e带 e- e- e-
e- e- ee- e- e-
禁 带
h+ h+ h+ h+
价 带
h+ h+ h+
吸附 还(原O2)
(·O2-)
氧化(污染物)
氧化为 (·OH) 吸附 (吸H附2(O污)染物)
羟基自由基(·0H),超氧离子自由基(·02-)及·0H2自由 基具有很强的氧化能力,很容易将各种污染物物直接 氧化为CO2,H2O等无机小分子。
以环己烷为目标污染物,采用活性碳/石墨和泡沫镍作 TiO2的载体,形成微孔电极,用高聚物固体电解质 Nafion分隔阴、阳两极,组成新型气相光电催化氧 化反应系统。利用外加电压的作用,有效地解决了 TiO2半导体光生电荷简单复合的问题。
与光催化相比的优势
➢ TiO2光电组合效应把导带电子的还原过程同价带空 穴的氧化过程从空间位置上分开(与半导体微粒相比 较)
➢ 明显地减少了电子和空穴的复合,结果大大增加了 半导体表面·OH的生成效率
➢ 防止了氧化中间产物在阴极上的再还原 ➢ 导带电子能被引到阴极还原水中的H+,因此不需要
向系统内鼓入作为电子俘获剂的O2
光催化剂材料
光催化剂材料
光催化剂材料是指能够利用光照射产生电子和空穴对的材料,进而促进化学反应的一种材料。
光催化剂材料具有高效、环保、可重复使用等优点,因此在环境净化、水处理等领域具有广阔的应用前景。
目前,常见的光催化剂材料主要包括氧化钛、氧化锌、氧化铟等。
其中,氧化钛是应用最为广泛的光催化剂材料之一,其光催化作用的原理是利用紫外光激发氧化钛中的电子和空穴产生一系列的自由基,在其催化下进行环境净化、水处理等反应。
随着人们对环境保护和能源储备的需求不断提高,对新型光催化剂材料的研究也日益受到关注。
例如,目前已经研究出一种金属有机骨架材料,具有高度可控性和高效催化性能,可以应用于环境污染物的降解和新能源的开发等领域。
综上所述,光催化剂材料是一种具有重要应用价值的材料,其应用前景十分广阔。
相信在不久的将来,随着人们对可再生能源和环保等问题的重视,光催化剂材料的研究和应用也将取得更加广泛和深入的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
La3+
抑制金红石相成核长大,提
高氧空位和缺陷浓度。
3mol% 600℃ 3mol% 500℃
Ce4+、Ce3+ 抑制晶粒生长及相变发生,
提高氧空位和缺陷浓度,Ce4+ 易捕获光生电子。
Zn2+
抑制晶粒生长及相变发生,
提高氧空位和缺陷浓度,
3mol% 500℃
Cu2+、Cu+ 促进金红石相成核长大,Cu2+
通常晶化度越高,电荷迁移速度越快,有利于提高光催化活性。另外组成结构 的主要多面体单元的偶极矩越大,光生载流子越易迁移,催化剂的活性越好。
3
晶体结构
晶格结构,包括晶系、晶胞参数等的差异会导致晶体有不同的质量密度及电 子能带结构。
例如TiO2的锐钛矿晶型比金红石晶型的光催化活性高。
4
晶格缺陷
晶格缺陷可能成为电子或空穴的捕获中心,抑制了两者的复合,以至于光催 化活性有所提高,但也有的缺陷可能成为电子-空穴的复合中心而降低反应活性。
很宽的响应 波长范围
石墨碳敏化 作用表现高 催化活性
碘(I) I—O—I I—O—Ti
吸收光谱范 全谱光催化 围显著红移, 活性较强 且可见光范
可见光响应起因
N→O:定域态电子跃 迁 N→Ti:显著缩短的带
隙 宽度 C→O or TiO2:带隙间定 于占据态 表面碳物质:敏化作用
碘使禁带宽度变窄 I5+替代Ti4+在表面形成 阳离子空位及表面羟基
超氧自由基可以用DMPO捕获并通过顺磁共振检测。超氧自由基O2•—不稳定, 可以通过歧化反应生成O2和H2O2,因此需要在有机溶剂如甲醇的溶液中进行捕获 和检测。超氧自由基的光催化氧化反应的作用主要在于:与有机的过氧自由基反 应完全矿化有机污染物、歧化反应生成和H2O2、抗菌活性以及与捕获空穴反应形 成另一种强氧化剂单线态氧102。
能带调控
降低导带位置
● 引入电负性较氧低的 非金属元素 ●引入d10电子构型的p 区元素 ● 引入d轨道部分填充 的孤独元素
抬升价带位置
● 导带底需在H+/H2之上 ● 引入电负性较大的金属元 素组成导带 ●化合物的离子型程度越低, 带隙宽度越小
基于固溶体结构设计的光催化剂
形成固溶体的条件可以归结为:
均相体系才能有效分离固体光催化剂,在降解和消除水体或气相中有机污染 物之后,维持反应器中光催化剂的浓度恒定,使得反应体系能以低成本和高 效率稳定进行。
半导体光催化基本原理
CB
CBB Eg
VBT
VB
电子跃迁→
CB
光生电子—空穴对
光生电子—空穴对通过
Eg
静电力相互作用,电子
和空穴可以通过体相复
合和表面复合消失,将
光
02/H2O(+8.2eV) •OH/OH—(+1.99eV)
•OH/H2O(+2.27eV) H2O
02 or•OH
Eg VB
半导体光催化反应机理颗粒模型
etr—+O2→O2•— etr—+H2O2→•OHs+OH— etr—+R •+H+→RH
A
hv
+
htr + +RH→ R •+H+ htr + + H2O→•OHs+ H+ htr + + O2•—→1 O2
①离子半径和极化性能比较接近
②晶格的形状和大小差不多。
当宽带隙半导体形成固溶体时,可以制备带隙宽度连续变化的新型光催 化剂,获得可见光响应的催化性能。
氧化物固溶体光催化剂由于能带结构可控,是一种很有希望的响应 可见光的光催化材料。
两种带隙较大的半导体,形成固溶体后其带隙也可能比两者都窄, 如GaN和ZnO。
分子
吸附
催化 分子
分子
底物 吸附
吸附
分子
分子
吸附 分子
催化光反应:初始光 激发在吸附分子上
光催化
均相光催化 非均相光催化
非均相光 催化剂
半导体光 催化剂
均相光催化在光催化分解水制氢领域中研究较多,通常是采用金属配合物
为敏华剂的四组分(敏化剂—电子中继体—牺牲剂—催化剂)的制氢体系。
非均相光催化多用于环境净化的光催化,因为在开放的环境体系中只有非
4.单线态氧
单线态氧102来自于超氧自由基O2•—,其寿命较短,存留时间小于羟基自由基 和捕获空穴。因此光催化生成的102。主要停留在TiO2表面,不能扩散到空气或水 环境中。单线态氧可氧化吸附于光催化剂表面的水溶性蛋白质。
环境光催化新材料的设计基础
目的:设计在可见光范围响应的高效光催化剂
三类 主要 途径
以TiO2为例,掺杂后需达到的三点要求:
1
掺杂后在带隙产生新能级能引起可见光 响应性能
2
最低导带能级应高于H2/H2O的势能
3
带隙中的能态应和TiO2重叠,使载流子 在寿命周期内转移至活性位点
掺杂
金属掺杂
● 可见光响应 ● 热和化学稳定性不高 ● 催化效率变低 ● 可能引入复合中心
非金属掺杂
● 可见光响应 ● 阳离子形式存在 ● 氧化性能可能下降
面临问题: 开放体系中需兼顾有效固定化和保持高效活性,且需解决纳米粒子严重团聚的问题。
光催化反应中的活性物质
空穴、H2O2、羟基自由基•OH、超氧自由基O2•—、单线态氧102、
02以及有机物化合物自由基中间产物
e— c.b. O2
O2—
H+
H2O
H2O e—
H+
O2+H2O2 H2O2
O2— H2O O2+H2O—+OH—
特征时间
fs(非常快)
10ns(快) 100ps(浅捕获;动力学平
衡) 深捕获
100ns(慢) 10ns(快)
100ns(慢) ms(很慢)
如果能带边缘位置符合 fs 某种要求时,光生电子 和空穴就会与表面吸附 的水或有机物发生氧化 还原反应,从而产生光 ps 催化作用。多相界面电 子转移的驱动力是半导 体能带和受体氧化还原 对电位之间的能级差。 ns 光催化中电荷载流子必 须先被捕获,才可能抑 制复合并促进界面间的 电荷转移。电子转移到 μs 分子氧的慢过程将于复 合过程发生竞争。
VB
能量以热量或光子方式 释放。光生电子和空穴
初始状态是分离的。
TiO2光催化有机污染物的重要步骤及其相应的特征时间
初级过程 光生载流子的生成 TiO2+hv→e—+h+ 电荷载流子的捕获 h++>Ti(IV)OH→{>Ti(IV)OH•+} e—+>Ti(IV)OH→{>Ti(III)OH}
e—+>Ti(IV) →Ti(III) 电荷载流子的复合 e—+{>Ti(IV)OH•+}→>Ti(IV)OH h++{>Ti(III)OH}→>Ti(IV)OH 表面电荷迁移 {>Ti(IV)OH•+}+有机分子→>Ti(IV)OH+氧化产物 {>Ti(III)OH}+O2→>Ti(IV)OH+O2—
能带调控
半导体光催化剂的研究大多以(复合)金属氧化物为对 象。通常过渡金属氧化物的价带由 O 2p轨道构成,其势能 位于较低的2.94V vs. NHE,构成价带元素 (如氧)的电离 势可只是价带顶位置,少量的金属d轨道参与价带形成,但 因贡献很小可忽略。而导带主要有过渡金属d轨道构成,其 电子亲和势可作为导带底的判据。影响能带位置的因素较 复杂,还与其他条件及能带宽度等有关。
提高光催化活性 产生敏化作用的可见
光催化 改变晶格结构,产生
可见光响应
非金属修饰改性TiO2
掺杂 存在形态 的元 素
光学吸收性 光催化性能 质
氮(N)
N—Ti—N O—Ti—N Ti—O—N— Ti
截止吸收波 长红移
400nm600nm
量子产率下 降空穴氧化 能级较低
碳(C)
无定形碳 间隙碳 C—O、C— Ti
① 纳米粒子表现出显著的量子尺寸效应 导带价带变成分立能级,能隙变宽,光 生电子-空穴有更强的氧化还原能力。
② 纳米粒子有非常大的比表面积 表面效应使粒子表面存在大量的氧空穴,提高 了光催化降解污染物的能力。
③ 半导体纳米粒子粒径小于空间电荷层厚度 光生载流子可以通过简单的扩散从 粒子内部迁移到离子表面与电子给体育受体发生氧化还原反应,因此粒子粒径 越小,电子和空穴复合几率越小,光催化活性越高。
e— •OH+OH— O2—•OH+OH—+O2
TiO2+hv
1. >TiOH
h+ v.b.
2.R
R
O2—,HOO•,HOOH,HOO—,HO•,OH—,H2O
R•
•ROH
活性氧物质
氧化 产物
热力 学氧 化
CO2 矿化
1.空穴
空穴是光化学反应中主要的一种氧化物质。有些纳晶光催化剂表面有深和浅 两种不同的捕获位存在。其中浅捕获位容易热激发回到价带,与自由空穴建立自 由转化。浅捕获空穴与自由空穴具有相当的反应活性与迁移性。深捕获空穴则具 有较弱的氧化能力。浅捕获空穴能迅速与表面化学吸附的物质反应,而深捕获空 穴则易于和物理吸附的物质反应,反应速率较慢。
锐钛矿比金红石有更高的催化活性,原因有二:
①. 锐钛矿就有较大的带隙
②. 锐钛矿对氧的吸附能力较强
金红石相
锐钛矿相
影响光催化活性的内因