一元二次方程应用题专项训练一
人教版九年级上第21章《一元二次方程》实际应用题练习含答案
《一元二次方程》实际应用题专项练习(一)1.今年国庆中秋双节同庆,某店推出了莲蓉蛋黄月饼和流心芝士月饼两种月饼,其中莲蓉蛋黄月饼每盒成本15.5元售价40元,流心芝士月饼每盒成本18元售价48元.两种月饼均为整盒出售,不售散装.中秋节前,莲蓉蛋黄月饼和流心芝士月饼共销售了400盒,销售总额为17440元.(1)中秋节前,莲蓉蛋黄月饼卖了多少盒?(2)为迎接双节,中秋当日该店大促销,莲蓉蛋黄月饼“买一送一”(买一盒送一盒)但销售单价不变,其当日销量(不算赠品)达到中秋前售卖的莲蓉蛋黄月饼总销量的;流心芝士月饼每盒销售单价减少,其当日销量比中秋节前流心芝士月饼总销量增加了5a%.中秋当日两种月饼的销售利润为2736元,求a的值.2.某商场销售一批衬衫,平均每天可售出30件,每件盈利50元.为了扩大销售,增加盈利,商场采取了降价措施.经调查发现,衬衫的单价每降1元,商场平均每天可多售出2件.(1)若某天该衬衫每件降价5元,则当天该衬衫的销量为件,当天可获利元;(2)设每件衬衫降价x元,则商场日销售量增加件,每件衬衫盈利元(用含x的代数式表示);(3)如果商场销售这批衬衫要保证每天盈利200元,同时尽快减少库存,那么衬衫的单价应降多少元?3.随着现代互联网技术的广泛应用和快递行业的高速发展,网上购物的人越来越多,“双十一”当天更是成为了全民狂欢的网购节.据统计,某天猫官方旗舰店在2017年和2019年“双十一”当天的订单量分别为20万件和45万件,现假设该旗舰店每年“双十一”当天的订单量增长率相同.(1)求该旗舰店“双十一”当天订单量的年平均增长率;(2)如果该旗舰店的客服平均每人每天最多可以处理0.2万件订单,那么该旗舰店现有的250名客服能否当天完成2020年“双十一”网购节的所有订单?如果不能,请问至少还需要增加多少名客服?4.“新冠”疫情蔓延全球,口罩成了人们的生活必需品.某药店销售普通口罩和N95口罩,今年3月份的进价如表:普通口罩N95口罩进价(元/包)8 20(1)计划N95口罩每包售价比普通口罩售价贵16元,7包普通口罩和3包N95口罩总售价相同,求普通口罩和N95口罩每包售价;(2)按(1)中售价销售一段时间后,发现普通口罩的日均销售量为120包,当每包售价降价1元时,日均销售量增加20包.该药店秉承让利于民的原则,对普通口罩进行降价销售,但要保证当天的利润为320元,求此时普通口罩每包售价.5.“疫情”期间,某小区准备搭建一个面积为12平方米的矩形临时隔离点ABCD,如图所示,矩形一边利用一段已有的围墙(可利用的围墙长度仅有5米),另外三边用9米长的建筑材料围成,为方便进出,在与围墙平行的一边要开一扇宽度为1米的小门EF,求AB的长度为多少米?6.今年某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件.为了促进疫情期间的市民消费,从而扩大销售,商场决定采取适当降价的方式促销.经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?7.如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=10cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,AP=CQ?(2)经过几秒后,△PBQ的面积等于15cm2?8.10月份,是柚子上市的季节,柚子味酸甜,略带苦味,含有丰富的维生素c和大量的营养元素.有健胃补血,降血糖等功效,百果园大型水果超市的红心柚与沙田柚这两种水果很受欢迎,红心柚售价12元/千克,沙田柚售价9元/千克.(1)若第一周红心柚的销量比沙田柚的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心柚多少千克?(2)若该水果超市第一周按照(1)中红心柚和沙田柚的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心柚售价降低了a%,销量比第一周增加了a%,沙田柚的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了%,求a的值.9.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.世界卫生组织提出:如果1人传播10人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为”超级传播者”.如果某地区有1人不幸成为新冠肺炎病毒的携带者,假设一个病毒携带者每轮传染的人数相同,经过两轮传染后共有81人成为新冠肺炎病毒的携带者.(1)请判断最初的这名病毒携带者是”超级传播者”吗?求他每轮传染的人数;(2)若不加以控制传染渠道,经过3轮传染,新冠肺炎病毒的携带者共有多少人?10.如图,有一道长为10m的墙,计划用总长为54m的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD.若花圃ABCD面积为72m2,求AB的长.参考答案1.解:(1)设中秋节前,莲蓉蛋黄月饼卖了x盒,则流心芝士月饼卖了(400﹣x)盒,依题意得:40x+48(400﹣x)=17440,解得:x=220.答:中秋节前,莲蓉蛋黄月饼卖了220盒.(2)依题意得:(40﹣2×15.5)×220×+[48(1﹣)﹣18]×(400﹣220)(1+5a%)=2736,整理得:3a2+25a﹣148=0,解得:a1=4,a2=﹣(不合题意,舍去).答:a的值为4.2.解:(1)30+2×5=40(件),(50﹣5)×40=1800(元).故答案为:40;1800.(2)设每件衬衫降价x元,则商场日销售量增加2x件,每件衬衫盈利(50﹣x)元.故答案为:2x;(50﹣x).(3)设衬衫的单价应降m元,则每件衬衫盈利(50﹣m)元,商场日销售量为(30+2m)件,依题意得:(50﹣m)(30+2m)=2000,整理得:m2﹣35m+250=0,解得:m1=10,m2=25,又∵要尽快减少库存,∴m=25.答:衬衫的单价应降25元.3.解:(1)设该旗舰店“双十一”当天订单量的年平均增长率为x,依题意得:20(1+x)2=45,解得:x1=0.5=50%,x2=﹣2.5(不合题意,舍去).答:该旗舰店“双十一”当天订单量的年平均增长率为50%.(2)45×(1+50%)=67.5(万件).∵0.2×250=50(万件),50<67.5,∴该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单. 设需要增加m 名客服,依题意得:0.2×(250+m )≥67.5,解得:m ≥87,又∵m 为正整数,∴m 的最小值为88.答:该旗舰店现有的250名客服不能当天完成2020年“双十一”网购节的所有订单,至少还需要增加88名客服.4.解:(1)设普通口罩每包的售价为x 元,N 95口罩每包的售价为y 元.依题意得:,解得:. 答:普通口罩每包的售价为12元,N 95口罩每包的售价为28元.(2)设普通口罩每包的售价降低m 元,则此时普通口罩每包的售价为(12﹣m )元,日均销售量为(120+20m )包.依题意得:(12﹣m ﹣8)(120+20m )=320,整理得:m 2+2m ﹣8=0,解得:m 1=2,m 2=﹣4(不合题意,舍去),∴12﹣m =10.答:此时普通口罩每包的售价为10元.5.解:设AB =x 米,则BC =(9+1﹣2x )米,根据题意可得,x (10﹣2x )=12,解得x 1=3,x 2=2,当x =3时,AD =4<5,当x =2时,AD =6>5,∵可利用的围墙长度仅有5米,∴AB 的长为3米.答:AB 的长度为3米.6.解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360﹣x﹣280)(5x+60)=7200,解得:x1=8,x2=60.∵有利于减少库存,∴x=60.答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.7.解:(1)设经过x秒后,AP=CQ,则AP=xcm,CQ=(10﹣2x)cm,依题意,得:x=10﹣2x,解得:x=.答:经过秒后,AP=CQ.(2)设经过y秒后,△PBQ的面积等于15cm2,则BP=(8﹣y)cm,BQ=2ycm,依题意,得:(8﹣y)×2y=15,化简,得:y2﹣8y+15=0,解得:y1=3,y2=5.答:经过3秒或5秒后,△PBQ的面积等于15cm2.8.解:(1)设第一周销售红心柚x千克.则沙田柚(x﹣200)千克,根据题意得:12x+9(x﹣200)≥6600,解得:x≥400.答:第一周至少销售红心柚400千克;(2)根据题意得:12(1﹣a%)×400(1+a%)+9×200(1+a%)=6600(1+%),∴a1=45,a2=0(舍去).答:a的值为45.9.解:(1)设每人每轮传染x人,依题意,得:1+x+(1+x)•x=81,解得:x1=8,x2=﹣10(不合题意,舍去),∵8<10,∴最初的这名病毒携带者不是“超级传播者”;(2)81×(1+8)=729(人),答:若不加以控制传染渠道,经过3轮传染,共有729人成为新冠肺炎病毒的携带者.10.解:设AB的长是xm,则BC的长是(18﹣x)m.根据题意,得x(18﹣x)=72,解这个方程,得x1=6,x2=12,当x=6时,18﹣x=12>10(不合题意,舍去).当x=12时,18﹣x=6符合题意.答:AB的长是12m.《一元二次方程》实际应用题专项练习(二)1.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?2.全球疫情爆发时,医疗物资极度匮乏,中国许多企业都积极的宣布生产医疗物资以应对疫情,某工厂及时引进了一条口罩生产线生产口罩,开工第一天生产500万个,第三天生产720万个,若每天增长的百分率相同.试回答下列问题:(1)求每天增长的百分率;(2)经调查发现,1条生产线最大产能是1500万个/天,若每增加1条生产线,每条生产线的最大产能将减少50万个/天.①现该厂要保证每天生产口罩6500万件,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产口罩15000万件,若能,应该增加几条生产线?若不能,请说明理由.3.万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了a%,该经销商购进甲的数量比原计划增加了2a%,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求a的值(a>0).4.某村计划建造如图所示的矩形蔬菜温室,要求长为24m,宽为12m,在温室内,沿前侧内墙保留2m宽的空地,其它三侧内墙各保留等宽的通道.当通道的宽为多少时,蔬菜种植区域的面积是210m2?5.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递总件数分别为10万件和14.4万件,现假定该公司每月投递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投0.5万件,那么该公司现有的29名快递投递员能否完成今年6月份的快递投递任务?如果不能,请问需要至少增加几名业务员?6.温润有度,为爱加温.近年来设计精巧、物美价廉的暖风机逐渐成为人们冬天必备的“取暖神器”,今年11月下旬某商场计划购进A、B两种型号的暖风机共900台,每台A型号暖风机售价为600元,每台B型号暖风机售价为900元.(1)若要使得A、B两种型号暖风机的销售额不低于69万元,则至多购进多少台A型号暖风机?(2)由于质量超群、品质卓越,11月下旬购进的A、B两种型号的暖风机全部售完.该商场在12上旬又购进了A、B两种型号的暖风机若干台,并且进行“双12”促销活动,每台A型号暖风机的售价比其11月下旬的售价优惠a%,A型号暖风机12月上旬的销售量比其在(1)问条件下的最高购进量增加a%,每台B型号暖风机的售价比其11月下旬的售价优惠a%,B型号暖风机12月上旬的销售量比其在(1)问条件下的最低购进量增加a%,A、B两种型号的暖风机在12月上旬的销售额比(1)问中最低销售额增加了a%,求a的值.7.柚子糖度高、酸味低,有益身体健康,深受大家喜爱.某水果店在去年8月份购进福建蜜柚和泰国青柚共900个,福建蜜柚进价为6元/个,泰国青柚进价为20元个,两种柚子的总进价不超过12400元.(1)该水果店去年8月份购进福建蜜柚最少多少个?(2)今年8月份,该水果店用和去年8月份相同的进价购进两种柚子,福建蜜柚购进数量为去年8月份购进数量的最小值,售价为16元/个.泰国青柚购进数量为去年8月份购进数量的最大值,售价为30元/个,两种柚子全部卖出.今年9月份,该水果店购进与上个月数量相同,进货单价相同的福建蜜柚.为了进一步占领市场份额,水果店对福建蜜柚进行了降价促销,它的售价在上个月的基础上先降价a%,再“买三送一”(每买3个就免费赠送1个,即4个装成一袋,一袋以3个的价格出售,但消费者只能整袋购买).受各种因素的影响,与上个月相比,泰国青柚的进价下降40%,进货量下降a%,售价上涨2a%.两种柚子卖完后,该水果店今年9月份销售两种柚子的总利润比上个月上涨,求a的值.8.为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?9.草根学堂院内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)10.今年8月双福国际农贸市场某水果批发商用2.2万元购得“象牙芒”和“红富士苹果”共400箱,其中,“象牙芒”、“红富士”的数量比为5:3.已知每箱“象牙芒”的售价是每箱“红富士”的售价的2倍少10元,预计3月可全部销售完.(1)该批发商想通过本次销售至少盈利8000元,则每箱“象牙芒”至少卖多少元?(总利润=总销售额﹣总成本)(2)实际销售时,受中央“厉行节约”号召的影响,在保持(1)中最低售价的基础上,“象牙芒”的销售下降了%,售价下降了a%;“红富士”的销售量下降了a%,但售价不变.结果导致“象牙芒”、“红富士”的销售总额相等.求a的值.参考答案1.解:(1)设y与x的函数关系式为y=kx+b(k≠0),将(22,36),(24,32)代入y=kx+b,得:,解得:,∴y与x的函数关系式为y=﹣2x+80(20≤x≤28).故答案为:y=﹣2x+80(20≤x≤28).(2)依题意,得:(x﹣20)(﹣2x+80)=150,整理,得:x2﹣60x+875=0,解得:x1=25,x2=35(不合题意,舍去).答:每本纪念册的销售单价是25元.2.解:(1)设每天增长的百分率为x,依题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:每天增长的百分率为20%;(2)①设应该增加m条生产线,则每条生产线的最大产能为(1500﹣50m)万件/天,依题意,得:(1+m)(1500﹣50m)=6500,解得:m1=4,m2=25,又∵在增加产能同时又要节省投入,∴m=4.答:应该增加4条生产线;②设增加a条生产线,则每条生产线的最大产能为(1500﹣50a)万件/天,依题意,得:(1+a)(1500﹣50a)=15000,化简得:a2﹣29a+270=0,∵△=(﹣29)2﹣4×1×270=﹣239<0,方程无解.∴不能增加生产线,使得每天生产口罩15000万件.3.解:(1)设甲商品的出厂单价是x元/件,则乙商品的出厂单价是x元/件,根据题意得:3x﹣2×x=150,解得:x=90,∴x =60.答:甲、乙商品的出厂单价分别是90、60元.(2)由题意得:, 解得:a 1=0(舍去),a 2=15.答:a 的值为15.4.解:设通道的宽为xm ,则蔬菜种植区域为长(24﹣2﹣x )m ,宽(12﹣2x )m 的矩形, 依题意,得:(24﹣2﹣x )(12﹣2x )=210,整理,得:x 2﹣28x +27=0,解得:x 1=1,x 2=27(不合题意,舍去).答:当通道的宽为1m 时,蔬菜种植区域的面积是210m 2.5.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意,得10(1+x )2=14.4解得x 1=0.2,x 2=﹣2.2(不符合题意,舍去),答:该快递公司投递总件数的月平均增长率为20%.(2)由(1)得,14.4×1.2=17.28(万件),29×0.5=14.5,14.5<17.28,故不能完成任务.因为(17.28﹣14.5)÷0.5=5.56,所以还需要至少增加6名业务员.答:需要至少增加6名业务员.6.解:(1)设购进x 台A 型号暖风机,则购进(900﹣x )台B 型号暖风机, 依题意,得:600x +900(900﹣x )≥690000,解得:x ≤400.答:至多购进400台A 型号暖风机.(2)依题意,得:600(1﹣a %)×400(1+a %)+900(1﹣a %)×(900﹣400)(1+a %)=690000(1+a%),整理,得:150a﹣12a2=0,解得:a1=12.5,a2=0(不合题意,舍去).答:a的值为12.5.7.解:(1)设该水果店去年8月份购进福建蜜柚x个,则购进泰国青柚(900﹣x)个,依题意,得:6x+20(900﹣x)≤12400,解得:x≥400.答:水果店去年8月份购进福建蜜柚最少400个.(2)由(1)可知:今年8月份,该水果店购进福建蜜柚400个、泰国青柚500个.依题意,得:[16(1﹣a%)×﹣6]×400+[30(1+2a%)﹣20×(1﹣40%)]×500(1﹣a%)=[(16﹣6)×400+(30﹣20)×500]×(1+),整理,得:90a﹣3.6a2=0,解得:a1=25,a2=0(不合题意,舍去).答:a的值为25.8.解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.9.解:设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.10.(1)设象牙芒有5x箱,则红富士有3x箱,根据题意得:5x+3x=400,解得x=50,则象牙芒有250箱,红富士有150箱.设每箱象牙芒y元,则250(2y﹣10)+150y﹣22000≥8000.解得:y≥50,∴2y﹣10≥90答:每箱“象牙芒”至少卖90元;(2)根据题意得:250(1﹣a%)•90(1﹣a%)=150(1﹣a%)•50,令t=a%,整理,得:4t2﹣5t+1=0,……(7分)解得:t=1(不合题意,舍去)或t=0.25,∴a=25.答:a的值为25.。
一元二次方程应用题专项练习(含答案)
一元二次方程应用题专项练习1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价4、现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?5、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元6、在一块面积为888平方厘米的矩形材料的四角,各剪掉一个大小相同的正方形(剪掉的正方形作废料处理,不再使用),做成一个无盖的长方体盒子,要求盒子的长为25cm,宽为高的2倍,盒子的宽和高应为多少?7、一元二次方程解应用题将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?1、解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元2、解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3、解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4、解:设边长x则(19-2x)(15-2x)=774x^2-68x+208=0x^2-17x+52=0(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=45、解:衬衫降价x元2100=(50-x)(30+2x)=1500+70x-x^2x^2-70x+600=0(x-10)(x-60)=0x-60=0 x=60>50 舍去x-10=0 x=106、解:设剪去正方形的边长为x,x同时是盒子的高,则盒子宽为2x; 矩形材料的尺寸:长:25+2x宽:4x;(25+2x)*4x=888,解得:x1=6,x2=-18.5(舍去)盒子的宽:12cm;盒子的高:6cm。
人教版数学九年级上册《一元二次方程》应用题专项训练(含答案)
《一元二次方程》应用题专项训练1.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%2.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.2x x5050(1)50(1)182++++=50(1)182+=B.2xC.50(12)182++++=x x+=D.5050(1)50(12)182x3.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2017年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2019年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2019年底共建设了多少万平方米廉租房.4. 某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A.(10)200x x+-=x x-= B.22(10)200C.(10)200++=x x+= D.22(10)200x x5. 由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/2米,通过连续两次降价%a 后,售价变为2000元/2米,下列方程中正确的是( ) A .22400(1)2000a -= B .22000(1)2400a -= C .22400(1)2000a += D .22400(1)2000a -=6. 乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2016年市政府对农牧区校舍改造的投入资金是5786万元,2018年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .7. 某商场在促销活动中,将原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 .8. 某种药品原价为100元,经过连续两次的降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是___________.9. 如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m 2,求道路宽为多少?设道路宽为x m ,从图(2)的思考方式出发列出的方程是__________.10. 某校团委准备举办学生绘画展览,为美化画面,在长为30cm、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.11. 通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(030x<<)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:400z x=(030x<<).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;5 10 15 20 25 x元/千克)y(千克)50004500400035003000O(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x 的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?12. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?13. 云南省2017年至2018年茶叶种植面积......与产茶面积....情况如表所示,表格中的、y分别为2017年和2018年全省茶叶种植面积:年份种植面积(万亩)产茶面积(万亩)(1)请求出表格中x、y的值;(2)在2017年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2019年全省茶叶种植产茶总产量达到22万吨,求2017年至2019年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)14. 某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)15.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择;①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?参考答案1. A2. B3. 解:(1)设每年市政府投资的增长率为x , 根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x -1.75=0, 解之,得:x =275.1493⨯+±-,∴x 1=0.5 x 2=-0.35(舍去), 答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷3882=(万平方米). 4. C 5. D6. 25786(1)8058.9x +=7. 236(1%)25m -=8. 20%9. (322)(2)570x x x --= 10. 解:设彩纸的宽为x cm ,1分 根据题意,得(302)(202)23020x x ++=⨯⨯, 4分 整理,得2251500x x +-=,5分 解之,得15x =,230x =-(不合题意,舍去),7分答:彩纸的宽为5cm . 8分11. (1)描点略.1分 设y kx b =+,用任两点代入求得1005000y x =-+, 3分 再用另两点代入解析式验证. 4分(2)y z =,1005000400x x ∴-+=,10x ∴=.6分 ∴总销售收入10400040000=⨯=(元) 7分∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.8分(3)设这时该农副产品的市场价格为a 元/千克, 则(1005000)4000017600a a -+=+, 10分解之得:118a =,232a =.030a <<,18a ∴=.11分∴这时该农副产品的市场价格为18元/千克.12分12. 解:设每件衬衫应降价x 元,可使商场每天盈利2100元. 1分 根据题意,得(45)(204)2100x x -+=. 5分 解得:110x =,230x =.6分 因尽快减少库存,故30x =. 7分答:每件衬衫应降价30元. 8分13. 解:(1)据表格,可得792.7154.2298.6565.8x y y +=⎧⎨-+=⎩,解方程组,得371.3421.4.x y =⎧⎨=⎩,3分(2)设2006年至2008年全省茶叶种植产茶年总产量的平均增长率为p ,∵2006年全省茶叶种植产茶面积为267.2万亩,从而2006年全省茶叶种植产茶的总产量为267.20.05213.8944⨯=(万吨).5分据题意,得213.8944(1)22p +=,解方程,得1 1.26p +±≈, ∴0.26p = 或 2.26p =-(舍去),从而增长率为26%p =.答:2006年至2008年全省年产茶总产量的平均增长率为26%. 8分14. 解法一:设第二次采购玩具x 件,则第一次采购玩具(10)x -件,由题意得1001150102x x+=- 整理得 211030000x x -+= 解得 150x =,260x =.经检验150x =,260x =都是原方程的解.当50x =时,每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去;当60x =时,每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.解法二:设第一次采购玩具x 件,则第二次采购玩具(10)x +件,由题意得1001150210x x +=+ 整理得 29020000x x -+= 解得 140x =,250x =.经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次购401050+=件,批发价为150503÷=(元)不合题意,舍去;第一次采购50件时,第二次购501060+=件,批发价为15060 2.5÷=(元)符合题意,因此第二次采购玩具60件.15. 解:(1)设平均每次下调的百分率为x ,根据题意得:()2500014050x -=解此方程得:121191010x x ==,(不符合题意,舍去) 10x ∴=%答:平均每次下调的百分率为10%. (2)方案一:100405098%396900⨯⨯=(元) 方案二:1004050 1.5100122401400⨯-⨯⨯⨯=(元)∴方案一优惠.。
一元二次方程应用题专题训练
一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。
- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。
根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。
展开方程得到x²+2x - 100 = 0。
对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。
则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。
因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。
2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。
- 解析:设原来正方形铁皮的边长为x分米。
那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。
根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。
这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。
一元二次方程应用题专题练习
一元二次方程应用题专题练习1、两个连续奇数的积是675,则这两个连续奇数为___________。
2、某工厂计划从用两年把某种产品的成本下降36%,则平均每年下降的百分率是___________。
3、一个两位数,两个数字之和是4,如果把个位数字与十位数字互换后,再与原数字相乘得403,则这个两位数是_____________________________。
4、某商店1月份营业额10万元,后两个月的平均增长率为x,则3月份的营业额可列出方程为______________________。
5、如图,在宽为20m,长为30m的矩形地面上修建宽为xm的道路,余下部分作为耕地。
根据图中数据,计算耕地的面积为___________________。
6、如图,用4个相同的小矩形与1个小正方形镶嵌而成一个大正方形图案,已知该图案的面积为81,中间小正方形的面积为16,若用x、y表示小矩形的两边长(x>y),则小矩形的长边x为,短边y为。
7、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x,那么x满足的方程为()。
A、(1+x)2=2B、(1+x)2=4C、1+2x=2D、(1+x)+2(1+x)=48、利用13m的篱笆和一面墙(墙长足够),围成一个面积为20m2的长方形鸡圈,设鸡圈靠墙的一边长为xm,可列方程。
9、某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示)。
(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为公顷,比2000年底增加了公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是年;(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,则今明两年绿地面积的年平均增长率为多少?10、某超市经销一种成本为40元/kg的水果,市场调查发现,按50元/kg销售,一个月能售出500kg,销售单位每涨1元,月销售量就减少10kg,针对这种水果的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,你认为销售单价定为多少合适?15、已知:如图,在△ABC中,cm︒=∠BC=C。
初三(九年级)数学一元二次方程应用题专项练习(带答案)
一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?01、一个面积为120 2m的矩形?若能,则矩形02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽?央长方形图案的面积为18 206、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
初三(九年级)数学一元二次方程应用题专项练习(带答案)
一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少01、一个面积为120 2m的矩形若能,则矩形的02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2长、宽各是多少{03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少:04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽]05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽央长方形图案的面积为18 2{~06、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少【m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少{08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少(2)两个正方形的面积之和可能等于12cm2吗若能,求出两段铁丝的长度;若不能,请说明理由.】09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半¥二、体积问题,dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3`三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少)14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是( )]A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.…四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税万元,该公司缴税的年平均增长率为多少18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.—19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到万元,求3、4月份月销售额的平均增长率.]五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
九年级数学上册一元二次方程应用题单循环双循环题目专项试卷
九年级数学上册一元二次方程应用题单循环双循环题目专项试卷一元二次方程应用题专项试卷题目一:单循环题1. 某家具厂生产的柜子长方形面积为400平方米,长度比宽度多12米,求柜子的长和宽各是多少米?解析:设柜子的宽度为x米,则柜子的长度为(x+12)米。
根据题意,有如下方程:x(x+12) = 400展开方程,得到:x^2 + 12x - 400 = 0通过因式分解或使用求根公式,解得x=16或x=-25。
由题目中的尺寸限制为正数,所以柜子的宽度为16米,长度为28米。
2. 甲、乙两车从同一地点出发,同时向东行驶。
已知甲车的速度是乙车速度的两倍,甲车比乙车提前3小时到达目的地。
若甲车均速为80千米/小时,求乙车均速是多少?解析:设乙车的速度为x千米/小时。
根据题意,我们可以列出如下方程:80(t + 3) = xt其中t为乙车行驶的时间。
将方程进行整理,得到:80t + 240 = xt通过整理后的方程,我们可以得到乙车的速度为80千米/小时。
题目二:双循环题1. 某商场新开业,为了吸引顾客,商场进行了购物积分活动。
具体规定如下:购物满200元,积分为购物金额的10%;若购物金额超过200元,每超过200元增加的积分为购物金额的5%。
小明在该商场购物,一共积累了340积分。
求小明的购物金额是多少?解析:设小明的购物金额为x元。
根据题意,我们可以列出如下方程:0.1x + 0.05(x - 200) = 340将方程进行整理,展开后得到:0.15x - 10 = 340通过求解方程,我们可以得到小明的购物金额为2266.67元。
2. 某电商平台举办了一次限时抢购活动,共有100件商品待售,当抢购时间开始后,每分钟商品价格以每分钟降低1元的速度递减。
某用户在第5分钟入手了一件商品,当时的价格是59元,求该商品的原始价格是多少?解析:设该商品的原始价格为x元。
根据题意,我们可以列出如下方程:x - 1 - 2 - 3 - 4 = 59将方程进行整理,得到:x - 10 = 59通过求解方程,我们可以得到该商品的原始价格为69元。
九年级数学一元二次方程应用题专项练习
九年级数学一元二次方程应用题专项练习 类型一:传播问题 1. 某种植物的主干长出a 个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为 2.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91,求每个枝干长出多少小分支? 3.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人? 4.有一人患了流感,进过两轮传染后共有64人患了流感。
(1) 求每轮传染中平均一个人传染了几个人; (2) 如果不及时控制,第三轮又有多少人被传染? 5.某养鸡场突发流感疫情,一只带病毒的小鸡经过两天的传染后,使鸡场共有169只小鸡感染患病,在每一天的传染中平均一只小鸡传染了几只小鸡? 6.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌. (1)每轮分裂中平均每个有益菌可分裂出多少个有益菌? (2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?类型二:握手问题:分析:n 个人见面,任意两个人都要握一次手。
一个人握手(n-1) 次,n 个人握手n(n-1)次,是单项问题,甲与乙握手同乙与甲握手应算作一次,故总共握手 次。
赠卡问题:n 个人相互之间送卡片,送卡片的时候,你送我一张,我也要送你一张,是双项问题,一个人送(n-1)张,n 个人既全班送n(n-1)张。
1. 参加一次联欢会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?学校:班别:姓名:学号:2.要组织一次篮球联赛,赛制为单循环形式(每两队之间都比赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?3.线段AB上有n个点(含端点),问线段AB上共有多少条线段?4.一个n边形,共有多少条对角线?n边形的所有对角线与它的各边共形成多少个三角形?5.某班同学毕业时都将自己的照片向全班其它同学各送一张表示留念,全班共送了1035张照片,那么全班有多少位学生?三、增长率问题1.小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增了10%,问他第三次数学成绩是多少?2.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x,则x满足()A.16(1+2x)=25 B.25(1-2x)=16 C.16(1+x)2=25 D.25(1-x)2=163.某厂今年一月的总产量为500万元,三月的总产量为720万元,设平均每月增长率是x,列方程( )A.500(1+x)2=720B. 500 (1+x2)=720C.720(1-2x)=500D.720(1+x)2=5004.某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?5. 某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.6. 某市为争创全国文明卫生城,2018年市政府对市区绿化工程投入的资金是2000万元,2020年投入的资金是2420万元,且从2018年到2020年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2022年需投入多少万元?四、一元二次方程与面积问题1. 如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为多少?2.某校九年级6个班的学生在学校矩形操场上举行庆新年的联谊活动,学校划分6个全等的矩形场地分给各班级之间留4米宽的过道(如图所示),已知操场的长是宽的2倍,6个班级所占场地面,求学校操场的宽为多少米.积的总和是操场面积的9163.在宽20米,长32米的矩形耕地上,修筑同样宽的三条路(两条纵向,一条横向,并且横向与纵向互相垂直),把这块耕地分成大小相等的六块试验田,要使试验田的面积是570平方米,问道路应该多宽?4.在矩形ABCD中,AB=6 cm,BC=12 cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,问几秒后△PBQ的面积等于8 m2?5.如图,某校准备一面利用墙,其余—面用篱笆围成一个矩形花辅ABCD.已知旧墙可利用的最大长度为13 m,篱笆长为24 m,设垂直于墙的AB边长为xm.(1)若围成的花圃面积为70m 2时,求BC的长;(2)如图,若计划将花圃中间用一道篱笆隔成两个小矩形,且花圃面积为78 m2,请你判断能否围成这样的花圃?如果能,求BC的长;如果不能,请说明理由.五、一元二次方程与销售问题1. 某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,如果要使产量增加15.2%,那么应多种多少棵桃树?2.某商场购进了一批单价为100元的名牌衬衫,当销售价为150元时,平均每天可售出20件,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫单价每降价1元,商场平均每天可多售出4件,另外,这批衬衫平均每天要扣除其它成本50元,若商场平均每天盈利2750元,衬衫单价应定为多少元?3. 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.4.某品牌童装平均每天可售出20件,每件盈利40元.为了迎接国庆,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?5.某市百货商店服装部在销售中发现“米奇”童装平均每天可售出20件,每件获利40元。
一元二次方程应用题专题练习
一元二次方程应用题专题练习1、某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛,设比赛组织者应邀请x个队参赛,则x满足的方程为: .2、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为: .3、有一个患了流感,经过两轮传染后共有64人患了流感,(1)求每轮传染中平均一人传染了几人?(2)如果不及时控制,第三轮将又有多少人被传染?4、如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点B开始沿BA边向点A以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从B同时出发,问:几秒钟时,△PDQ的面积等于8cm2.5、如图,道路AB与BC分别是东西方向和南北方向,AB=1000m.某日晨练,小莹从点A出发,以每分钟150m的速度向东跑;同时小亮从点B出发,以每分钟200m的速度向北跑.二人出发后经过几分钟,他们之间的直线距离仍然是1000m?6、如图,在一段15m长的围墙AB,现打算利用该围墙的一部分(或全部)为一边,再用32m长的篱笆围成一块长方形场地CDEF.(1)怎样围成一个面积为126m2的长方形场地?(2)长方形场地面积能达到130m2吗?如果能,请给出设计方案,如果不能,请说明理由.7、某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P(个)与每个书包销售价x(元)满足一次函数关系式.当定价为35元时,每天销售30个;当定价为37元时,每天销售26个,问:如果要保证商场每天销售这种书包获利200元,书包的销售价应定为多少元?8、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元;每多售出1部,所有售出的汽车的进价均降低0.1万元/部。
九年级数学下册一元二次方程的应用练习题
九年级数学下册一元二次方程的应用练习题一、选择题1. 一元二次方程x^2 - 4x - 5 = 0的解为:A. x = 1和x = 5B. x = -1和x = 5C. x = -1和x = -5D. x = -1和 x = 12. 某一元二次方程的解为x = 3和x = -2,则该方程的表达式可能是:A. x^2 - x - 6 = 0B. x^2 + x - 6 = 0C. x^2 + x + 6 = 0D. x^2 - x + 6 = 03. 解一元二次方程x^2 + 6x + 9 = 0,得到的解是:A. x = 3B. x = -3C. x = 6D. x = -6二、填空题1. 一元二次方程x^2 + 5x + 6 = 0的解是________和________。
2. 解方程x^2 + 4x - 5 = 0,得到的解是________和________。
三、综合题1. 已知一家店铺的固定成本为300元,每售出一个产品的成本为4元,售价为8元。
设该店铺每售出x个产品后的利润(P)满足一元二次方程P = -2x^2 + 20x - 268。
求:(1)该店铺售出多少个产品时,利润最大?(2)利润最大时,该店铺的利润是多少?2. 小明投掷一枚硬币,正面朝上记为1,反面朝上记为0。
他连续投掷这枚硬币,直到前两次累计得到的结果是10或者3。
设连续投掷x次后,所得的结果满足一元二次方程x^2 - 9x + 10 = 0。
求小明至少投掷多少次,才能满足条件?四、解答题1. 解一元二次方程x^2 + 6x + 9 = 0。
2. 解一元二次方程5x^2 + 3x - 2 = 0。
以上是九年级数学下册一元二次方程的应用练习题,希望对你的学习有所帮助。
一元二次方程应用题专练
一元二次方程应用题专练一、增长率问题:1、凯达公司一月份利润是1万元,二月份、三月份平均每月增长10%,则第一季度的总利润是()A.(1+10%)2万元B.(1+10%)10%万元C.[(1+10%)+(1+10%)2]万元D.[1+(1+10%)+(1+10%)2]万元2、长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?3、2008年漳州市出口贸易总值为22.52亿美元,至2010年出口贸易总值达到50.67亿美元,反映了两年来漳州市出口贸易的高速增长.(1)求这两年漳州市出口贸易的年平均增长率;(2)按这样的速度增长,请你预测2011年漳州市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563)4、某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克),现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量增长率的1/2,求新品种花生亩产量的增长率?二、利润问题:1、某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?2、某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低0.1元,可多售出1件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低x元.(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?3、新华商场为迎接家电下乡活动销售某种冰箱,每台进价为2500元,市场调研表明;当销售价定为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?4、欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这种雨伞以零售单价每把为14元出售时,月销售量为100把,如果零售单价每降价0.1元,月销售量就要增加5把.现在该公司的批发部为了扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部份每把按原批发单价九五折(即95%)付费,但零售单价每把不能低于10元.欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润为842元?(销售利润=销售款额-进货款额)5、某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.⑴当每辆车的月租金定为3600元时,能租出多少辆车?⑵当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?动态几何:例1、如图,在△ABC 中,∠B=90°,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,Q 从点B 开始沿BC 边向C 点以2cm/s 的速度移动,如果点P 、Q 分别从A 、B 同时出发,几秒钟后,△PBQ 的面积等于8cm 2?例2、如图,Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以2cm/s 的速度,沿AB 向终点B 移动;点Q 以1cm/s 的速度沿BC 向终点C 移动,其中一点到终点,另一点也随之停止.连接PQ .设动点运动时间为x 秒.(1)用含x 的代数式表示BQ 、PB 的长度;(2)当x 为何值时,△PBQ 为等腰三角形;(3)是否存在x 的值,使得四边形APQC 的面积等于20cm 2?若存在,请求出此时x 的值;若不存在,请说明理由.例3、已知:如图3-9-3所示,在△ABC 中,cm 7cm,5,90==︒=∠BC AB B .点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.(1)如果Q P ,分别从B A ,同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果Q P ,分别从B A ,同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.四、面积问题1、把100厘米长的铅丝折成一个长方形模型.(1)要使这个长方形的面积是525平方厘米,它的长和宽应该各是多少厘米?(2)面积是625平方厘米呢?(3)面积是700平方厘米呢?2、有一块长方形的铅皮,长40厘米,宽30厘米.现在把它的四角各剪去一个小方块,然后把四边折起来做成一只没有盖的盒子,使这个盒子的底面积是原来铅皮面积的一半,求这盒子的高3、学校原有一块面积为1500平方米的长方形场地,现将场地一边增加了5米,另一边减少了5米,结果使场地面积增加了10%,求现在场地长和宽。
一元二次方程解应用题
北师大版数学九年级上册一元二次方程解应用题分类训练一、增长率问题1.某中学读书社对全校名学生图书阅读量单位:本进行了调查,第一季度全校学生人均阅读量是本,读书社人均阅读量是本.读书社人均阅读量在第二季度、第三季度保持一个相同的增长率,全校学生人均阅读量第三季度和第一季度相比,增长率也是,己知第三季度读书社全部名成员的阅读总量将达到第三季度全校学生阅读总量的,求的值.2.随着“双减”政策在星城的落地,为进一步规范各个学校的课后服务工作,长沙市教育局就长沙市中小学课后服务工作实施办法进行了更明确的要求,鼓励教师参与志愿辅导.某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生万人次,第三批公益课受益学生万人次.如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;按照这个增长率,预计第四批公益课受益学生将达到多少万人次?3.现代互联网技术的广泛应用,催生了快递行业的高速发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为万件和万件.现假定该公司每月的投递总件数的增长率相同:求该快递公司投递快递总件数的月平均增长率;如果平均每人每月最多可投递快递万件,那么该公司现有的名快递投递业务员能否完成今年月份的快递投递任务?如果不能,请问至少需要增加几名业务员?4.为进一步完善全民健身公共服务体系,满足人民群众体育健身需求,我市将学校体育场地设施向社会开放作为重要民生项目某学校利用节假日和早晚非教学时间将田径场,足球场地对外开放据统计,第一个周场地对外接纳人次,场地对外接纳人次逐周增加,第三个周场地对外接纳人次,若场地对外接纳人次的周平均增长率相同.求场地对外接纳人次的周平均增长率;因条件限制,该学校体育场地每周接纳能力不超过人次,在场地对外接纳人次周平均增长率不变的条件下,学校体育场地是否有能力接纳第四周的校外进场人次?并说明理由.5.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地年种植“早黑宝”亩,到年“卓黑宝”的种植面积达到亩.求该基地这两年“早黑宝”种植面积的平均增长率;市场调查发现,当“早黑宝”的售价为元千克时,每天能售出千克,售价每降价元,每天可多售出千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为元千克,若使销售“早黑宝”每天获利元,则售价应降低多少元?二、销售问题6.某服装超市购进单价为元的童装若干件,物价部门规定其销售单价不得低于每件元,不得高于元每件,销售一段时间后发现:当销售单价为元时,平均每月销售量为件,而当销售单价每降低元时,平均每月能多售出件,同时,在销售过程中,每月还需支付其他费用元.销售单价为元时,每月的销售量为______件;销售单价为多少元时,销售这种童装每月可获利元?7.家具城某门市销售一批实木床,平均每天可售出张,每张盈利元,为扩大销售盈利,该门市决定采取适当的降价措施,但要求每张盈利不少于元,经调查发现.若每张实木床每降价元,则每天可多售出张.若每张实木床降价元,则每天可盈利多少元?若该门市平均每天盈利元.则每张实木床应降价多少元?8.鄂州某个体商户购进某种电子产品的进价是元个,根据市场调研发现:当售价是元个时,每周可卖出个若销售单价每降低元,则每周可多卖出个.设销售单价降低元,则每周可销售__________个要使该商户每周销售该商品的利润达到元,且更有利于减少库存,则每个电子产品应降价多少元9.为满足市场需求,新生活超市在端午节前夕购进价格为元个的某品牌粽子,根据市场预测,该品牌粽子每个售价元时,每天能出售个,并且售价每上涨元,其销售量将减少个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的.定价为元时,该品牌粽子每天的销量是___________个;请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为元.10.商场销售某种冰箱,该种冰箱每台进价为元,已知原销售价为每台元时,平均每天能售出台.若在原销售价的基础上每台降价元,则平均每天可多售出台.设每台冰箱的实际售价比原销售价降低了元.填表不需化简:每天的销售量台每台销售利润元降价前降价后______商场为使这种冰箱平均每天的销售利润达到元,且最大幅度让利于顾客,则每台冰箱的实际售价应定为多少元?三、面积问题11.如图是一张长、宽的矩形纸板,晓彤同学将纸板四个角各剪去一个边长为的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.若要制成一个底面积是的无盖长方体纸盒,求的值.12.如图,有长为的篱笆,一面利用墙墙的最大可用长度为围成中间隔有一道篱笆的长方形花圃.现要围成面积为的花圃,则的长是多少米?现要围成面积为的花圃能行吗?若不能,请说明理由;能否使所围成的花圃的面积为,为什么?13.如图,在一块空地上有一段长为米的旧墙,现在利用旧墙一部分不超过和米长的木栏围成一个矩形菜园.若,设米.当所围成的矩形菜园的面积为平方米时,求所利用旧墙的长;求矩形菜园面积的最大值;若木栏增加米,矩形菜园面积的最大值为米,求的值.14.如图所示,有一矩形养鸡场,养鸡场的一边靠墙,墙长米,另三边用篱笆围起来,篱笆总长米,平行于墙的一边开一个米宽的门.设养鸡场垂直于墙的边长是米,养鸡场的面积为平方米,求与的函数关系式.要使养鸡场面积为平方米,当米时,能否建造符合要求的养鸡场?若能,请求出养鸡场的长与宽,若不能,说明理由.要使养鸡场面积为平方米,请就的取值讨论建造符合要求的养鸡场的方案种数.15.如图,在宽为米、长为米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要米,则修建的路宽应为多少米?四、疾病传播问题16.卫生部疾病控制专家经过调研提出,如果人传播人以上而且被传染的人已经确定为新冠肺炎,那么这个传播者就可以称为“超级传播者”如果某镇有人不幸成为新冠肺炎病毒的携带者,假设每轮传染的人数相同,经过两轮传染后共有人成为新冠肺炎病毒的携带者.经过计算,判断最初的这名病毒携带者是“超级传播者”吗?写出过程.若不加以控制传染渠道,经过轮传染,共有多少人成为新冠肺炎病毒的携带者?17.每年的冬,春季节是流行性感冒的高发季节,流行性感冒属于呼吸道疾病中的一种,其特点是突然发生,具有高度传染性,传播速度快,在人群中容易引起流行.已知有人患了流感,经过两轮传染后,共有人患了流感.求每轮传染中平均一个人传染了几个人?如果不及时控制,按照这样传染速度,三轮传染后,患流感的有多少人?18.去年月以来,非洲猪瘟疫情在我国横行,今年猪瘟疫情发生势头明显诫缓,假如有一头猪患病,经过两轮传染后共有头猪患病.求每轮传染中平均每头猪传染了几头健康猪;如果不及时控制,第三轮传染将又有多少头健康猪被感染?19.年月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有人患新冠肺炎假设每轮传染的人数相同求:每轮传染中平均每个人传染了几个人?如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?20.有一个人患了某种流感,经过两轮传染后共有人患了此流感.每轮传染中平均一个人传染了几个人?两轮后,人们觉察到此病,采取预防措施,这样平均一个人一轮以少传染人的速度递减,则第四轮后共有多少人得此流感?参考答案1.解:由题意得:第三季度读书社人均读书量为本,第三季度全校学生的人均读书量为本,.解得,舍去,.答:增长率的值为.2.解:设第二批、第三批公益课受益学生人次的增长率为,根据题意,得,解得舍去,,所以这个增长率为.万人次,所以预计第四批公益课受益学生将达到万人次.3.解:设该快递公司投递总件数的月平均增长率为,根据题意得,解得,不合题意舍去;答:快递公司投递快递总件数的月平均增长率为;今年月份的快递投递任务是万件,平均每人每月最多可投递万件,名快递投递业务员能完成的快递投递任务是:,该公司现有的名快递投递业务员不能完成今年月份的快递投递任务,需要增加业务员人.答:该公司现有的名快递投递业务员不能完成今年月份的快递投递任务,至少需要增加名业务员.4.解:设校外进场人次的周平均增长率为,根据题意,得,解得,舍去,答:校外进场人次的周平均增长率为.因为人人,所以,学校体育场地有能力接纳第四周的校外进场人次.5.解:设该基地这两年“早黑宝”种植面积的平均增长率为,根据题意,得,解得,不合题意,舍去,,答:该基地这两年“早黑宝”种植面积的平均增长率为;设售价应降低元,则每天可售出千克,根据题意,得,整理得,,解得,,要减少库存,不合题意,舍去,,答:售价应降低元.6.7.解:元.设每张实木床降价元,根据题意得:,整理得:,解得:,舍去,答:每张实木床降价元时,门市每天销售这种实木床可以盈利元.8.解:;依题意有:.解得,.因为要有利于减少库存,所以符合题意.答:每个电子产品应降价元.9.解:;设每个粽子的定价为元时,每天的利润为元,根据题意,得:解得,,因为售价不能超过进价的,,即,所以舍去所以,答:每个粽子的定价为元时,每天的利润为元.10.;;根据题意,可得:,化简,整理得:,即解得:,,最大幅度让利顾客,,实际售价定为:元,答:每台冰箱的实际售价应定为元.11.解:纸板是长为,宽为的矩形,且纸板四个角各剪去一个边长为的正方形,则无盖纸盒的长为,宽为.依题意,得:,整理,得:,解得:,不合题意,舍去.答:的值为.12.解:设花圃的宽为,长就为,由题意得则,,解得:或,当时,,舍去,当时,,符合题意,;答:若要围成面积为的花圃,的长是米;设矩形花圃的面积为,则,解得,不能围成面积为的花圃;设矩形花圃的面积为,则,解得方程无解,不能围成面积为的花圃.13.解:依题意有:,解得:,,米.答:长为米;由题意得:,,图象开口向下,当时,有最大值,最大值为平方米.答:当长为米时,菜园面积最大,为平方米;由题意得:,,图象开口向下,对称轴为直线,当时,随的增大而增大,而,当最大为时,有最大值为.,解得:,舍..14.解:设养鸡场垂直于墙的边长是米,则平行于墙的一边长为米,;根据题意,得:,解得:或,当时,,舍去;当时,,能建造符合要求的养鸡场,其长为米,宽米;由知,当时,有两个方案;当时,有一个方案;当时,无方案.15.解:设修建的路宽为米.则列方程为,解得舍去,.答:修建的道路宽为米.16.解:设每人每轮传染人,依题意,得:,解得:,不合题意,舍去,,最初的这名病毒携带者是“超级传播者”,人,答:若不加以控制传染渠道,经过轮传染,共有人成为新冠肺炎病毒的携带者.17.解:设每轮传染中平均一个人传染了人,根据题意得:,解得:,不合题意,舍去,答:每轮传染中平均一个人传染了个人;人,答:三轮传染后,患流感的有人.18.解:设每轮传染中平均每头猪传染了头健康猪,依题意,得:,解得:,不合题意,舍去.答:每轮传染中平均每头猪传染了头健康猪.头.答:第三轮传染将又有头健康猪被感染.19.解:设每轮传染中平均每个人传染了个人,依题意,得:,解得:,不合题意,舍去.答:每轮传染中平均每个人传染了个人.人.答:按照这样的传染速度,第三轮传染后,共有人患病.20.解:设每轮传染中平均一个人传染了个人,依题意有,解得,不符合题意舍去.答:每轮传染中平均一个人传染了个人;人.答:第四轮后共有人得此病.。
一元二次方程实际应用题
一元二次方程实际应用题
一元二次方程应用题
题目一:物体自由落体问题
1.已知一个物体从高度为ℎ的位置自由落下,经过t秒后着地。
设重
力加速度为g,求ℎ与t的关系式。
2.如果ℎ=100米,g= m/s2,求着地所需的时间。
题目二:公式推导
1.已知一元二次方程的一般形式为ax2+bx+c=0,请推导出其
求根公式。
2.使用上述求根公式,求解方程2x2+3x−5=0的解。
题目三:抛物线问题
1.一个喷泉的水柱呈抛物线形状,已知喷泉的高度ℎ,以及抛物线
的顶点坐标(x0,y0),求抛物线方程。
2.如果ℎ=10米,(x0,y0)=(5,8),求抛物线的方程。
题目四:面积计算
1.已知一个矩形的长度为x米,宽度为y米,求矩形的面积。
2.如果x=5米,y=3米,求矩形的面积。
题目五:速度问题
1.一辆汽车以匀速v米/秒行驶,已知在t秒内行驶的距离为d米,求
速度v和时间t的关系式。
2.如果d=500米,t=50秒,求速度v。
题目六:投射问题
1.炮弹从地面发射,抛物线方程为y=ax2+bx+c,已知炮弹落
点与发射点水平距离为d,求抛物线方程的系数a、b和c。
2.如果d=100米,求抛物线方程。
以上为一元二次方程的一些常见应用题,希望能对你的命题工作有所帮助!。
初三(九年级)数学一元二次方程应用题专项练习(带标准答案)
初三(九年级)数学一元二次方程应用题专项练习(带答案)————————————————————————————————作者:————————————————————————————————日期:2一元二次方程应用题专项练习题(带答案)一、面积问题01、一个面积为120 2m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2m的矩形?若能,则矩形的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2m,道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?34 05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m ,宽为5 m. 如果地毯中央长方形图案的面积为18 2m ,那么花边有多宽?06、在一幅长90 cm 、宽40 cm 的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?07、有一面积为54 2m 的长方形,将它的一边剪短5 m ,另一边剪短2 m ,恰好变成一个正方形,这个正方形的边长是多少?5 08、将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt △ACB 中,∠C =90°,AC =8 m ,BC =6 m ,点P 、Q 同时由A 、B 两点出发分别沿AC 、BC 方向向点C 匀速移动(到点C 为止),它们的速度都是1 m/s. 经过几秒△PCQ 的面积是Rt △ACB 面积的一半?二、体积问题10、长方体木箱的高是8 dm ,长比宽多5 dm ,体积是528 3dm ,求这个木箱的长和宽.11、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?618、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
一元二次方程应用题(含答案)
2100=(50-x)(30+2x)=1 500+70x-x^2
21. 在一块面积为 888 平方 厘米的矩形材料的四角, 各剪掉 一个大小相同的正方形 (剪掉的 正方形作废料处理, 不再使用), 做成一个无盖的长方体盒子, 要 求盒子的长为 25cm ,宽为高的 2 倍,盒子的宽和高应为多少?
30%*X+75%Y=50%*18
6X+15Y=180
X+Y=18
X=18-Y
6*18-6Y+15Y=180
Y=8 X=10
9. 印度古算术书中有这样 一首诗:“一群猴子分两队,高 高兴兴在游戏,八分之一再平 方,蹦蹦跳跳树林里;其余使二 叽喳喳,伶俐活泼又调皮,告我 总数共多少, 两队猴子在一起。”
8. 用含 30% 和 75% 的两种防 腐药水,配置含药 50% 的防腐 药水 18kg ,两种药水各需取多 少?
பைடு நூலகம்
7 、解:设用 X 张制罐身 用 Y
张制罐底 则 X+Y=36
X=36-Y
25X=40Y/2
X=4Y/5
4Y/5=36-Y Y=20 X=16
8 、解:设 30% 的取 X 75%
的取 Y 则
解:设第一次倒出 x 升,则 第二次为 x ( 20-x )/20.( 此处 为剩下的酒精占总体积 20 升的 多少即比率然后乘上倒出的升 数即为倒出的纯酒精数
则 20-x-x(20-x)/20=5
解得 x=10
6.1 一个长方体的长与宽的 比为 5 :2 ,高为 5 厘米,表面 积为 40 平方厘米。画出这个长 方体的展开图,及其过程(设未 知数)
12. 某企业 2007 年利润为 50 万元,如果以后每年的利润 都比上年的利润增长 x% 。那么 2009 年的年利润将达到多少万 元?
一元二次方程的应用题
一元二次方程的应用题一元二次方程的应用题一元二次方程的应用题(1)一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。
解设这两个月的平均增长率是x。
,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去)。
答这两个月的平均增长率是10%。
说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n。
对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n。
二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31。
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去。
所以350-10a=350-10×25=100(件)。
答需要进货100件,每件商品应定价25元。
说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点。
三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的`年利率。
(假设不计利息税)解设第一次存款时的年利率为x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3一元二次方程的实际应用
一、与数字有关的问题
例1:一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数。
变式、三个连续奇数,它们的平方和为251,求这三个数?
二、与几何图形面积有关的问题
例2:直角三角形两直角边的比是8:15,而斜边的长等于6.8cm,那么这个直角三角形的面积等于多少?
变式:一个直角三角形三边的长是三个连续整数,求这三条边的长和它的面积
请根据上面学过内容认真完成以下练习:
1、用一条长12厘米的铁丝折成一个斜边长是5厘米的直角三角形,则两直角边的长是多少?
2、一个三角形的两边长为2和4,第三边长是方程0121022=+-x x 的解,则三角形的周长为多少
3、 直角三角形的面积为6,两直角边的和为7,则斜边长为多少?
4、一个两位数,个位上数字比十位数字小4,且个位数字与十位数字的平方和比这两位数小4,设个位数字为x ,求这个两位数?
5、一个两位数,个位上的数字是十位数字的平方还多1,若把个位上的数字与十位上的数字对调,所得的两位数比原数大27,求原两位数?
6、两个数的和为16,积为48,则这两个正整数各是多少?
7、若两个连续正整数的平方和为313,则这两个正整数的和是多少?
8、三个连续正整数中,前两个数的平方和等于第三个数的平方,则这三个数从小到大依次是多少?
9、三个连续偶数,使第三个数的平方等于前两个数的平方和,求这三个数?
10、有四个连续整数,已知它们的和等于其中最大的与最小的两个整数的积,求这四个数?
11、若三角形的三边长均满足方程0862=+-x x ,则此三角形的周长为多少?
12、一个直角三角形的两条直角边的和是14cm ,面积是24㎡,求两条直角边的长。