八年级数学试卷全县期中考试试卷
河北省邯郸市第二十五中学2022-2023学年八年级上学期期中考试数学试卷(含解析)
邯郸市第二十五中学2022-2023学年第一学期期中考试八年级数学一、选择题(1—10题每题3分,11—16题每题2分,共42分)1.下列图形具有稳定性的是()A. B. C. D.【答案】A解析:A .具有稳定性,符合题意;B .不具有稳定性,故不符合题意;C .不具有稳定性,故不符合题意;D .不具有稳定性,故不符合题意,故选:A .2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D.【答案】C解析:解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .3.平面直角坐标系中,点()3,4A -关于y 轴的对称点是1A ,点1A 的坐标是()A.()4,3-- B.()3,4- C.()3,4-- D.()3,4【答案】D解析:解:点()3,4A -关于y 轴的对称点的坐标为:()3,4.故选:D .4.如图,点C 在AD 上,,40CA CB A =∠=︒,则BCD ∠等于()A.40︒B.70︒C.80︒D.110︒【答案】C解析:解:CA CB = ,40A ∠=︒,40A B ∴∠=∠=︒,404080BCD A B ∴∠=∠+∠=︒+︒=︒,故选:C .5.如图,△ABE ≌△ACD ,BC =10,DE =4,则DC 的长是()A.8B.7C.6D.5【答案】B解析:解:∵△ABE ≌△ACD ,∴BE =CD ,∴BE +CD =BC +DE =14,∴2CD =14,∴CD =7,故选:B .6.用三角板作△ABC 的边BC 上的高,下列三角板的摆放位置正确的是()A. B.C. D.【答案】A解析:解:B ,C ,D 都不是△ABC 的边BC 上的高,A 选项是△ABC 的边BC 上的高,故选:A .7.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC 等于()A.30°B.35°C.45°D.60°【答案】A 解析:解:如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形花环为正六边形,∴∠ABD=×°6(6-2)180=120°,而∠CBD=∠BAC=90°,∴∠ABC=120°-90°=30°.故选:A .8.如图,已知ABC 的周长是20,OB 和OC 分别平分ABC ∠和ACB ∠,OD BC ⊥,垂足为点D ,3OD =,则ABC 的面积是()A.20B.30C.40D.60【答案】B 解析:连接AO ,过点O 分别作OE AB ⊥于点E ,OF AC ⊥于点F ,∵ABC AOB BOC AOC S S S S =++△△△△,111222AB OE BC OD AC OF =++,∵BO 、CO 为角平分线,∴3OE OD OF ===,∴()113203022ABC S OD AB BC AC =++==.故选:B .9.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为A.40海里B.60海里C.70海里D.80海里【答案】D解析:∵根据方向角的意义和平行的性质,∠M =70°,∠N =40°,∴根据三角形内角和定理得∠MPN =70°.∴∠M =∠MPN =70°.∴NP =NM =80(海里).故选D .10.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?A.5B.6C.7D.10【答案】C 解析:依题意可得,当其中一个夹角为180°即四条木条构成三角形时,任意两螺丝的距离之和取到最大值,为夹角为180°的两条木条的长度之和.因为三角形两边之和大于第三边,若长度为2和6的两条木条的夹角调整成180°时,此时三边长为3,4,8,不符合;若长度为2和3的两条木条的夹角调整成180°时,此时三边长为4,5,6,符合,此时任意两螺丝的距离之和的最大值为6;若长度为3和4的两条木条的夹角调整成180°时,此时三边长为2,6,7,符合,此时任意两螺丝的距离之和的最大值为7;若长度为4和6的两条木条的夹角调整成180°时,此时三边长为2,3,10,不符合.综上可得,任意两螺丝的距离之和的最大值为7,故选C11.如图,在四边形ABCD 中,90A ∠=︒,2AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的值不可能是()A.1.5B.2C.2.5D.3【答案】A 解析:解:如图,过点D 作DH BC ⊥交BC 于点H ,BD CD ⊥ ,90BDC ∴∠=︒,又180C BDC DBC ∠+∠+∠=︒ ,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,ABD CBD ∴∠=∠,BD ∴是ABC ∠的角平分线,又AD AB ⊥ DH BC ⊥,,AD DH =∴,又2AD = ,2DH ∴=,又∵点D 是直线BC 上一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 的长,即DP 的长最小值为2,1.52< ,DP ∴的长不可能是1.5,故选:A .12.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A.BAD CAD∠=∠ B.△BCD 是等边三角形C.AD 垂直平分BCD.ABDC S AD BC= 【答案】D解析:解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .13.如图,在正方形网格中有M ,N 两点,在直线l 上求一点P ,使PM PN +最短,则点P 应选在()A.A 点B.B 点C.C 点D.D 点【答案】C 解析:解:如图,点M '是点M 关于直线l 的对称点,连接M N ',则M N '与直线l 的交点,即为点P ,此时PM PN +最短,M N ' 与直线l 交于点C ,∴点P 应选C 点.故选:C .14.如图,在ABC 中,30,90A C ∠=︒∠=︒,AB 的垂直平分线交AC 于D 点,交AB 于E 点,则下列结论错误的是()A.DE DC= B.AD DB = C.AD BC = D.BC AE=【答案】C 解析:解:∵ 30, 90A C ∠=︒∠=︒,∴60ABC ∠=︒,∵DE 垂直平分AB ,∴AD BD =,AE BE =,故B 选项正确,不符合题意;C 选项错误,符合题意;∴30ABD A ∠=∠=︒,∴30CBD ∠=︒,∴CBD ABD ∠=∠,∵90,C DE AB ∠=︒⊥,∴DE DC =,故A 选项正确,不符合题意;∵ 30, 90A C ∠=︒∠=︒,∴12BC AB =,∴BC AE =,故D 选项正确,不符合题意;故选:C15.如图,D 为ABC 内一点,CD 平分ACB ∠,BE CD ⊥,垂足为D ,交AC 于点E ,A ABE ∠=∠.若5AC =,3BC =,则BD 的长为()A.2.5B.1.5C.2D.1【答案】D 解析:解:∵CD 平分ACB ∠,BE CD ⊥,∴ECD BCD ∠=∠,90BDC EDC ∠=∠=︒,在BCD △与ECD 中,90ECD BCD CD CD BDC EDC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ASA BCD ECD ∴≌ ,BC CE ∴=,BEC ∴ 是等腰三角形,∴12BD BE =,又A ABE ∠=∠ ,ABE ∴ 是等腰三角形,AE BE ∴=,()111222BD BE AE AC CE ∴===-,∵5AC =,3BC =,()15312BD ∴=⨯-=.故选:D .16.如图,已知等边三角形ABC ,2AB =,点D 在AB 上,点F 在AC 的延长线上,,BD CF DE BC =⊥于E ,FG BC ⊥于G ,DF 交BC 于点P ,则下列结论:①BE CG =;②EDP GFP ≌;③60EDP ∠=︒;④1EP =.其中一定正确的是()A.①③B.②④C.①②③D.①②④【答案】D 解析:解:ABC 是等边三角形,AB BC AC ∴==,60A B ACB ∠=∠=∠=︒.ACB GCF ∠=∠ ,DE BC ⊥ ,FG BC ⊥,90DEB FGC DEP ∴∠=∠=∠=︒.在DEB 和FGC △中,DEB FGC B GCF BD CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEB FGC ∴△≌△BE CG ∴=,DE FG =,故①正确;在DEP 和FGP 中,DEP FGP DPE FPG DE FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)DEP FGP ∴△≌△,故②正确;PE PG ∴=,EDP ∠不一定等于60︒,当PD AB ⊥时,60EDP ∠=︒,故③错误;PG PC CG =+ ,PE PC BE ∴=+.2PE PC BE ++= ,1PE ∴=.故④正确.正确的有①②④,故选:D .二、填空题(17,18题每题3分,19题每空2分,共10分)17.如图,ABC 中,D ,E 分别是BC ,AD 的中点,ABC 的面积是20,则阴影部分的面积是______.【答案】5解析:解:ABC 中,D 、E 分别是BC ,AD 的中点,AD ∴是ABC 的中线,CE 是ADC △的中线,2ABC ADC S S ∴= ,2ADC AEC S S = ,4ABC AEC S S ∴= ,ABC 的面积是20,AEC ∴ 的面积为5,即阴影部分的面积是5.故答案为:5.18.如图,已知8AO =,P 是射线ON 上一动点(即Р点可在射线ON 上运动),60AON ∠=︒,则OP =_______时,AOP 为直角三角形.【答案】4或16##16或4解析:解:当90APO ∠=︒时,9030OAP AOP ∠︒∠=︒=-,142OP OA ∴==,当90OAP ∠=︒时,9030OPA AOP ∠=︒-∠=︒,216OP OA ∴==,故答案为:4或16.19.如图,已知()()3,0,0,1A B -,连接AB ,过B 点作AB 的垂线段BC ,使BA BC =,连接AC ,C 点坐标为__________;Р点从A 点出发沿x 轴向左平移,连接BP ,作等腰直角BPQ V ,连接CQ ,当C 、P 、Q 三点共线时Р点的坐标为___________.【答案】①.(1,4)-②.(1,0)解析:解:如图,过C 作CH y ⊥轴于H ,则90BCH CBH ∠+∠=︒,∵()()3,0,0,1A B -,∴3OA =,1OB =,AB BC ⊥ ,90ABC ∴∠=︒,90ABO CBH ∴∠+∠=︒,ABO BCH ∴∠=∠,在ABO 和BCH V 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)ABO BCH ∴≌△△,3BH OA ∴==,1CH OB ==,4OH OB BH ∴=+=,C ∴点坐标为(1,4)-;BPQ △是等腰直角三角形,90PBQ ABC ∴∠=∠=︒,PBQ ABQ ABC ABQ ∴∠-∠=∠-∠,即PBA QBC ∠=∠,在PBA △和QBC △中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,(SAS)PBA QBC ∴△≌△,135BPA BQC ∴∠=∠=︒,BPQ △是等腰直角三角形,45BQP ∴∠=︒,当C 、P ,Q 三点共线时,135BQC ∠=︒,18013545OPB ∴∠=︒-︒=︒,1OP OB ∴==,P ∴点坐标为(1,0),故答案为:(1,4)-,(1,0).三、解答题(共68分)20.求出下列图形中x 的值.【答案】(1)70x =;(2)60x =解析:解:(1)∵40180x x ++=,解得70x =;(2)∵()7010x x x +=++,解得60x =.21.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出ABC 关于y 轴对称的111A B C △;(2)写出点111,,A B C 的坐标(直接写答案);(3)在y 轴上画出点P ,使PB+PC 最小.【答案】(1)图见解析;(2)111(3,2),(4,3),(1,1)A B C --;(3)图见解析.解析:(1)先根据轴对称的性质分别描出点111,,A B C ,再顺次连接即可得到111A B C △,如图所示:(2)点坐标关于y 轴对称的变化规律:横坐标变为相反数,纵坐标不变3,24,3(),(),()1,1A B C ----- 1113,24,(),(),(3)1,1A B C ∴--;(3)由轴对称的性质得:1PB PB =则1PB PC PB PC+=+由两点之间线段最短得:当1,,C P B 三点共线时,1PB PC +取得最小值,最小值为1CB 如图,连接1CB ,与y 轴的交点P 即为所求.22.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BF =CE .试说明:AB ∥DE .【答案】见解析解析:证明:BF CE = ,BF CF CE CF ∴+=+,即BC EF =,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ≅∆∆∴,B E ∴∠=∠,//AB DE ∴.23.如图,ABC 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值【答案】(1)40︒(2)6PD x =-;当3x =时,PD 有最大值,即3PD =【小问1详解】解:在ABC 与ADE V 中,AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC ADE ∴≌△△,BAC DAE ∴∠=∠,BAC DAC DAE DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠,30B ∠=︒ ,70APC ∠=︒,703040CAE BAD APC B ∴∠=∠=∠-∠=︒-︒=︒;【小问2详解】解:AB AC ⊥ ,90BAC ∴∠=︒,6AB = ,AP x =,()SAS ABC ADE ≌,6AB AD ∴==,∴当AD BC ⊥时,x 最小,PD 最大,6PD x =-,30B ∠=︒ ,AD BC ⊥,90APB ∴∠=︒,132AP AB ∴==,3AP x ∴==时,PD 有最大值,即633PD AD AP =-=-=.24.如图:已知等边ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE CD =.(1)求E ∠的度数.(2)求证:DBE 是等腰三角形.【答案】(1)30︒(2)见解析【小问1详解】解: ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,又CE CD = ,E CDE ∴∠=∠,又ACB E CDE ∠=∠+∠ ,1302E ACB ∴∠=∠=︒;【小问2详解】证明: 等边ABC 中,D 是AC 的中点,11603022DBC ABC ∴∠=∠=⨯︒=︒由(1)知30E ∠=︒,30DBC E ∴∠=∠=︒,DB DE ∴=,即DBE 是等腰三角形.25.如果一个多边形的各边都相等且各角也都相等,那么这样的多边形叫做正多边形,如正三角形就是等边三角形,正四边形就是正方形,如下图,就是一组正多边形,(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456……n ∠α的度数______°_____°______°______°……_____°(2)根据规律,计算正八边形中的∠α的度数.(3)是否存在正n 边形使得∠α=21°?若存在,请求出n 的值,若不存在,请说明理由.【答案】(1)60,45,36,30°,180n;(2)22.5;(3)不存在.解析:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数3456…n ∠α的度数60°45°36°30°…(1808)°(2)根据规律,计算正八边形中的∠α=(1808)°=22.5°;(3)不存在,理由如下:设存在正n 边形使得∠α=21°,得∠α=21°=(180n)°.解得n=847,n 是正整数,n=847(不符合题意要舍去),不存在正n 边形使得∠α=21°.26.如图,已知:在ABC 中,4AC BC ==,120ACB ∠=︒,将一块足够大的直角三角尺()90,30PMN M MPN ∠=︒∠=︒按如图放置,顶点Р在线段AB 上滑动(且不与A 、B 重合),三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB α∠=,斜边PN 交AC 于点D .(1)当α=______°,PN BC ∥,此时APD ∠=______°(2)点Р在滑动时,当AP 长为多少时,ADP △与BPC △全等,为什么?(3)点Р在滑动时,PCD 的形状可以是等腰三角形吗?若可以,直接写出夹角α的大小;若不可以,请说明理由.【答案】(1)30,30(2)4AP =时,ADP △与BPC △全等,理由见解析(3)45α∠=︒或90︒时,PCD 的形状可以是等腰三角形【小问1详解】若PN BC ∥,则MPN α∠=∠,30MPN ∠=︒,∴30MPN α∠=∠=︒,120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,30α∠=︒,303060APC B α∴∠=∠+∠=︒+︒=︒,30MPN ∠=︒,603030APD APC MPN ∠=∠-∠=︒-︒=︒,故答案为:30,30;【小问2详解】当4AP =时,ADP BPC ≌ ,理由如下:120ACB ∠=︒ ,AC BC =,30A B ∴∠=∠=︒,APC ∠ 是BPC △的一个外角,30APC B αα∴∠=∠+∠=︒+∠,30APC DPC APD APD ∠=∠+∠=︒+∠ ,APD α∴∠=∠,4AP BC == ,在ADP △和BPC △中,A B AP BC APD BCP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ADP BPC ∴≌ ;【小问3详解】PCD QV 是等腰三角形,120PCD α∠=-°,30CPD ∠=︒,①当PC PD =时,()118030752PCD PDC ∴∠=∠=︒-︒=︒,即12075α-=°°,45α∴∠=︒;②当PD CD =时,PCD 是等腰三角形,30PCD CPD ∴∠=∠=︒,即12030α-=°°,90α∴=︒;③当PC CD =时,PCD 是等腰三角形,30CDP CPD ∴∠=∠=︒,180230120PCD ∴∠=︒-⨯︒=︒,即120120α-=°°,0α∴=︒,此时点P 与点B 重合,点D 和A 重合,∵点P 不与A ,B 重合,0α∴=︒,舍去,综合所述:当PCD 是等腰三角形时,45α=︒或90︒.20。
八年级数学下期中考试试卷
一. 填空题:(每题2分,共30分)1.请写出命题“对顶角相等”的逆命题:____________________________.2. 小玲手里拿着长分别为30cm ,40cm 的两根木棒,现她让你帮她找出第三根木棒,使得三根木棒构成一个直角三角形,则你帮她找到第三根木棒长应为 _______cm.3.如图1-1所示,在长方形纸片ABCD 中,AB=12,BC=5,点E 在AB 上,将△DAE 沿DE 折叠,使点A落在对角线BD 上的点A ˊ处,则AE 的长为 ______________.4.如图1-2,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE=4cm,则点P 到边BC 的距离为 _____cm. 5.用不等式表示:(1)是非负数可以表示为: ;(2)x 的2倍减3的差不大于1可以表示为: .6.一次函数 与 的函数图形的交点坐标是________ ,当 _______时,7.不等式3x+4 4(x-1)的解集是__________________.8.不等式组⎪⎩⎪⎨⎧〉≥03-x -501-23-x )(,的解集是 .9.若关于x 的不等式的解集为x ,则m 的值为 . 10.在△ABC 中,∠C= ,AD 平分∠BAC ,交BC 于点D ,若DC=7,则D 到AB 的距离是 . 11.小芳准备去买苹果和梨,她带了15元钱,已知一斤苹果2元,一斤梨y 元,如果她买3斤苹果和4斤梨,那么应满足的不等关系是 . 12.不等式2x+9 3(x+2)的正整数解是 . 13.若不等式是一元一次不等式,则 .14.若|2a-6|>6-2a,则实数a 的取值范围是 .15.2x-1 5的最大整数解为______________.二.选择题:(每小题3分,共30分)1.点A 的坐标为(4 ,3 ),将点A 先向左2个单位长度,再向下平移2个单位长度得到点A ˊ那么点A ˊ的坐标是( )A.(3 ,1)B.(2 ,1)C.(4 ,3)D.(1 ,2) 2.若a 且 为实数,则下列 正确的是( ). A.ac B.ac bc C. D. 3.不等式的正整数解有( )个.A.1个B.2个C.3个D.4个4.将不等式组⎩⎨⎧≤+≥932x 01-x ,的解集在数轴上表示出来,应是 ( ).5.已知不等式a+ 与 的解集相同,则a 的值是( )。
八年级下学期期中考试数学试卷(含有答案)
八年级下学期期中考试数学试卷(含有答案)一.单选题。
(每小题4分,共40分)1.已知x >y ,则下列不等式中,不成立的是( )A.3x >3yB.x -9>y -9C.﹣x >﹣yD.﹣x2<﹣y2 2.下列各式从左到右的变形是因式分解的是( )A.(x -3)(x+1)=x 2-2x -3B.x 2-xy=x (x -y )C.ab+bc+d=b (a+c )+dD.6x 2y=3xy•2x 3.若分式x -1x的值为0,则x 的值是( )A.1B.﹣1C.0D.24.把多项式2a 2-4a 分解因式,应提取的公因式是( ) A.a B.2 C.a 2 D.2a5.已知两个不等式的解集在数轴上如图所示,那么组成的不等式组的解集是( ) A.x >1 B.x ≥﹣1 C.﹣3<x ≤﹣1 D.x >﹣3(第5题图) (第6题图) (第10题图) 6.如图,将△COD 绕点O 按顺时针方向旋转一定角度后得到△AOB ,旋转角为( ) A.∠AOB B.∠BOC C.∠AOC D.∠COD 7.在下列分式的变形中,从左到右一定正确的是( ) A.a b =a+1b+1 B.2a 2b =ab C.a b =a 2b 2 D.a b =acbc 8.下列各式中能用平方差公式因式分解是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 9.如果把xyx+y 中x ,y 的值都扩大2倍,那么这个分式的值( ) A.不变 B.缩小到原来的12 C.扩大4倍 D.扩大2倍10.如图,一次函数y=kx+b 的图象经过点A (﹣1,﹣2)和B (﹣2,0),一次函数y=2x 的图象经过点A ,则不等式2x ≤kx+b 的解集为( )A.x ≤﹣1B.x ≤﹣2C.x ≥1D.﹣2≤x <﹣1 二.填空题。
(每小题4分,共24分) 11.因式分解:a 3-4a 2= 。
12.要使分式2x -5有意义,则x 的取值范围应满足的条件是 .13.已知x+y=5,xy=2,则x 2y+xy 2的值是 .14.如图,将周长为8的△DEF 沿EF 方向平移3个单位长度得到△ABC ,则四边形ABFD 的周长为 .(第14题图)15.若a+1a =4,则a 2+1a 2= . 16.若1a +1b =5,则分式2a -5ab+2b﹣a+3ab -b的值为 .(填序号)①第3分时,汽车的速度是40千米/时;②从第3分到第6分,汽车行驶了120千米;③第12分时,汽车的速度是0千米/时;④从第9分到12分,汽车的速度从60千米/时减少到0千米/时. 三、解答题。
2022-2023学年八年级第一学期期中考试数学试卷附详细答案
2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )2.在平面直角坐标系中,点A(−1,4)关于x轴对称的点的坐标为( )A.(1,4)B.( −1,4)C.(0,−4)D.(−1,−4)3.下列正多边形中,内角和是540°的是( )4.如图,用纸板挡住部分三角形后,能用尺规画出与此三角形全等的三角形,其全等的依据是( )A.ASAB.AASC.SASD.HL5.若α为正六边形的一个外角,则α的度数为( )A.45°B.50°C.60°D.72°4题图A5题图B E F C6.如图,△ABF ≌△ACE ,点B 和点C 是对应顶点,则下列结论中不一定...成立的是() A.∠B=∠C B.BE=CF C.∠BAE=∠CAF D.AE=EF7.如图,物业公司计划在小区内修建一个电动车充电桩,要求到A ,B ,C 三个出口的距离都相等,则充电桩应建在( )A.△ABC 的三条高的交点处B.△ABC 的三条角平分线的交点处C.△ABC 的三条中线的交点处D.△ABC 的三条边的垂直平分线的交点处 8.如图,E 是△ABC 的边AC 的中点,CF ∥AB ,连接FE 并延长交AB 于点D ,若AB=9,CF=6,则BD 的长为( )A.1.5B.2C.3D.3.59.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,若BC=10,DE=3,则△BCE 的面积为( )A.14B.15C.18D.30 10.具备下列条件的△ABC ,不是..直角三角形的是( ) A.∠A ︰∠B ︰∠C=5︰2︰3 B.∠A −∠C=∠B C.∠A=∠B=2∠C D.∠A=12∠B=13∠C11.如图,△ABC 与△A 1B 1C ,关于直线MN 对称,P 为MN 上任一点(P 不与AA 1共线),下列结论不正确...的是( ) A.AP=A 1P B.△ABC 与△A 1B 1C 1的面积相等 C.MN 垂直平分线段AA 1 D.直线AB ,A 1B 1的交点不一定在MN 上 12.如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,A8题图BCEFD 7题图ABC9题图则∠AEC=( )A.28°B.59°C.60°D.62°13.如图,将三角形纸片ABC 翻折,点A 落在点A ´的位置,折痕为DE.若∠A=30°,∠BDA ´=80°,则∠CEA ´的度数为( )A.15°B.20°C.30°D.40°14.如图,小亮和小明分别用尺规作∠APB 的平分线PQ ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确15.如图,AD 为△ABC 的中线,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,下列结论正确的有( )①∠EDF=90°;②∠BAD=∠CAD ;③△BDE ≌△DCF ;④EF ∥BC. A.4个 B.3个 C.2个 D.1个16.有一道题目:“如图,∠AOB=60°,点M ,N 分别在OA ,OB 上运动(不与点O 重合),13题图A CBDE A ´A14题图APP B BQQ小明小亮11题图A MN CBP A 1B 1C 112题图ME 平分∠AMN ,ME 的反向延长线与∠MNO 的平分线交于点F ,在点M ,N 的运动过程中,求∠F 的度数.”甲的解答:∠F 的度数不能确定,它随着点M ,N 的运动而变化,且随∠OMN 的增大而减小;乙的解答:∠F 始终等于45°,下列判断正确的是( )A.甲说的对B.乙说的对C.乙求的结果不对,∠F 始终等于30°D.两人说的都不对,凭已知条件无法确定∠F 的值或变化趋势二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,AB=AC ,点D ,E 分别在AB ,AC 上,连接BE ,CD ,要使△ABE ≌△ACD ,则添加的条件是_______.(只需填一个即可)18.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,若△BCD 的周长为5,BC=2,则AC 的长为_______,边AB 长的取值范围是_______.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E.17题图ACEDB18题图19题图ABCD E16题图A EBFMON 15题图(1)若∠C=50°,∠BAC=60°,则∠ADB的度数为_______.(2)若∠BED=45°,则∠C的度数为_______.(3)猜想∠BED与∠C的数量关系为_______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.已知一个多边形的边数为n.(1)若n=7,求这个多边形的内角和.比一个四边形的外角和多90°,求n的值.(2)若这个多边形的内角和的1421.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−4),B(3,−3),C(1,−1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)写出(1)中所画的△A1B1C1的各顶点坐标.(3)连接CC1,BB1,则四边形BCC1B1的面积为_______.22.如图,在Rt△ABC中,∠ACB=90°,D为边AB上一点.将△ACB沿CD折叠,使点A恰好落在边BC上的点E处.(1)若AC=6,BC=8,AB=10,求△BDE 的周长. (2)若∠B=37°,求∠CDE 的度数.23.已知:如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,且PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F. (1)求证:PE=PF.(2)若∠BAC=60°,连接AP ,求∠EAP 的度数.24.在△ABC 中,AF 平分∠BAC ,CD ⊥AF ,垂足为F ,与AB 交于点D.(1)如图1,若∠BAC=80°,∠B=40°,求∠BCD 的度数. (2)如图2,在△ABC 内部作∠ACE=∠B ,求证:∠BCD=∠DCE.A图2图1AAD BEC25.如图,AE=AF ,AE ⊥AF ,点E ,F ,B 在同一直线上,AB=AC ,∠BAC=90°.(1)判断△AEB 与△AFC 是否全等?若全等,请给出证明;若不全等,请说明理由. (2)当EF 和BF 满足什么数量关系时,CE=CB?请给出结论并说明理由.26.【问题提出】如图1,△ABC 是直角三角形,∠BAC=90°,AB=AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E.求证:△ABD ≌△CAE.【变式探究】若图1中的点B ,C 在直线l 的两侧,其他条件不变(如图2所示),判断△ABD 与△CAE 是否依然全等,并说明理由.【深入思考】如图3,在△ABC 中,AB=AC ,直线l 经过点A ,且点B ,C 位于直线l 的两侧,若∠BDA+∠BAC=180°,∠BDA=∠AEC ,判断线段BD ,CE ,DE 之间的数量关系,并加以说明.图1l图2图3ACD E BlF2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )1.解:D 是轴对称图形,关于对称轴两侧对称且能完全重合,故选D 。
八年级数学上册期中考试试卷及答案
专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. 3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。
()2. 0是最小的自然数。
()3. 1是最大的质数。
()4. 两条对角线相等的四边形一定是矩形。
()5. 任何两个奇数相加的和都是偶数。
()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。
2. 如果 a = 2,那么 a 的平方是______。
3. 下列数中,最大的偶数是______。
4. 如果一个等边三角形的边长是3,那么它的周长是______。
5. 下列数中,最小的负数是______。
四、简答题(每题2分,共10分)1. 请解释什么是质数。
2. 请解释什么是偶数。
3. 请解释什么是等边三角形。
4. 请解释什么是自然数。
5. 请解释什么是正方形。
五、应用题(每题2分,共10分)1. 一个长方形的长是6,宽是4,求它的面积。
2. 如果 a = 3,b = 5,那么 a + b 的和是多少?3. 一个等腰三角形的底边长是8,腰长是5,求它的周长。
4. 一个正方形的边长是5,求它的对角线长度。
5. 如果一个数的平方是36,那么这个数可能是多少?六、分析题(每题5分,共10分)1. 请分析一个长方形的长和宽分别是多少时,它的面积最大。
2. 请分析一个等腰三角形的底边长和腰长分别是多少时,它的周长最小。
七、实践操作题(每题5分,共10分)1. 请画出一个边长为5的正方形,并标出它的对角线长度。
2. 请画出一个底边长为6,腰长为8的等腰三角形,并标出它的周长。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
山东省滕州市2023—-2024学年上学期期中考试八年级数学试卷(含答案)
2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,152.(3分)下列运算,结果正确的是( )A.B.C.D.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣54.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠19.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.010.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .12.(3分)计算:= .13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 , ).14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 .15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 .16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 (填写序号).三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:,其中a=﹣2023.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x 时,y≥0;(4)求原点到直线l的距离.2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷参考答案与试题解析一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,15【分析】根据勾股数的定义:凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数进行判断即可.【解答】解:A、∵32=7,42=16,72=25,95+162<252,故选项错误,不符合题意;B、∵42+42<72,故选项错误,不符合题意;C、∵6.5,1.2不符合勾股数定义,不符合题意;D、∵92+125=81+144=225=152,故选项正确,符合题意.故选:D.【点评】此题主要考查了勾股数,解题关键是熟记勾股数的概念.2.(3分)下列运算,结果正确的是( )A.B.C.D.【分析】根据二次根式的加减法对A、B选项进行判断;根据二次根式的除法法则对C 选项进行判断;根据二次根式的乘法法则对D选项进行判断.【解答】解:A.与不能合并;B.6与,所以B选项不符合题意;C.原式==;D.原式==,所以D选项符合题意.故选:D.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣5【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出a+b.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,∴a=3,b=2,∴a+b=3+2=4.故选:A.【点评】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.4.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.【分析】先求出k的取值范围,再判断出k﹣1的符号,进而可得出结论.【解答】解:∵式子有意义,∴,解得k>1,∴k﹣4>0,∴一次函数y=(k﹣1)x+k﹣2的图象过一、二、三象限.故选:A.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.【分析】首先连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形的三线合一的性质,即可证得:AD⊥BC,然后利用勾股定理,即可求得AD的长,然后利用面积法来求DE的长.【解答】解:连接AD,∵△ABC中,AB=AC=13,D为BC中点,∴AD⊥BC,BD=,∴AD==12,又∵DE⊥AB,∴BD•AD=,∴ED===,故选:D.【点评】此题考查了等腰三角形的性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.【分析】根据勾股定理,可得AC的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得AC==,AM=AC=,M点的坐标是﹣4,故选:A.【点评】本题考查了实数与数轴,利用勾股定理得出AC的长是解题关键,注意M点的坐标是﹣1.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)【分析】画出图形,找到所有的符合条件的点A即可.【解答】解:如图,满足等腰Rt△ABC的A点坐标有(2、(0、(8、(2、(﹣2、(﹣5,∴点A的坐标不可能是(2,3),故选:D.【点评】本题考查等腰直角三角形与直角坐标系,解题的关键是准确全面的画出图形.8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠1【分析】根据正比例函数的定义列式计算即可得解.【解答】解:根据题意得,m2﹣1=3且m﹣1≠0,解得m=±2且m≠1,所以m=﹣1.故选:A.【点评】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.9.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.0【分析】把P(a,b)代入y=2x+1得2a﹣b=﹣1,整理代数式,整体代入代数式求值即可.【解答】解:∵点P(a,b)在直线y=2x+1上,∴b=7a+1,即2a﹣b=﹣2,1﹣4a+8b=1﹣2(3a﹣b)=1﹣2×(﹣4)=1+2=6.故选:A.【点评】本题考查了一次函数图象上点的特征,解题的关键是掌握一次函数图象上点的特征.10.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,如图.令y=x+6中x=0,∴点B的坐标为(0,4);令y=x+4中y=0,则,解得:x=﹣3,∴点A的坐标为(﹣3,4).∵点C、D分别为线段AB,∴点C(﹣,5),1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣6).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣,5),﹣1),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=5,则0=﹣,解得:x=﹣,∴点P的坐标为(﹣,0).故选:A.【点评】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .【分析】根据题意和图形,可以得到ab的值,然后可以求得(a+b)2的值,再根据b>a>0,即可求得a+b的值.【解答】解:解得,ab=8,∵(a+b)2=a2+2ab+b7=(a2+b2)+6ab∴(a+b)2=25+2×2=41,∵b>a>0,∴a+b=,故答案为:.【点评】本题考查勾股定理、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.12.(3分)计算:= ﹣ .【分析】利用平方差公式计算.【解答】解:原式=(+)×(﹣﹣)=(3﹣2)×(﹣)=﹣.故答案为:﹣.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和乘法公式是解决问题的关键.13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 ﹣1 , 1 ).【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),5),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣2,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 2024 .【分析】先把点(m,n)代入函数y=﹣2x+1求出n=﹣2m+1,再代入所求代数式进行计算即可.【解答】解:∵一次函数y=﹣2x+1的图象过A(m,n),∴﹣5m+1=n,∴2m+n=8,∴4m+2n+2022=3(2m+n)+2022=2×2+2022=2024.故答案为:2024.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 y=﹣2x或 .【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,(1)当直线l把△ABO的面积分为S△AOC:S△BOC=2:1时,作CF⊥OA于F,CE⊥OB 于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;(2)当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同(1).【解答】解:由直线y=x+3的解析式可求得A(﹣3,7),3),如图(1),当直线l把△ABO的面积分为S△AOC:S△BOC=2:6时,作CF⊥OA于F,CE⊥OB于E,则△AOC=2,∴,即,∴CF=2,∵=,,解得CE=5.∴C(﹣1,2),∴直线l的解析式为y=﹣2x;如图(2),当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同理求得C(﹣4,1),∴直线l的解析式为.【点评】此题考查的是用待定系数法求一次函数的解析式,涉及到三角形的面积公式及分类讨论的方法.16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 ①②③④ (填写序号).【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,2小时后.则说明乙每小时比甲快40km.①正确;由图象第2﹣3小时,乙由相遇点到达B,每小时比甲快40km,则m=160;当乙在B休息1h时,甲前进80km,80);乙返回时,甲乙相距80km,则n=6+4+0.4=8.4,故答案为:①②③④.【点评】本题考查了一次函数的应用,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.【分析】(1)先根据完全平方公式,平方差公式和二次根式的性质进行计算,再根据二次根式的加减法法则进行计算即可;(2)先根据二次根式的性质和二次根式的乘法法则进行计算,再算加法,最后算除法即可.【解答】解:(1)=12﹣(6)2﹣(3+3+2)=1﹣12﹣1﹣7﹣2=﹣15﹣6;(2)×=﹣=﹣=1﹣.【点评】本题考查了二次根式的混合运算,平方差公式,完全平方公式,分母有理化等知识点,能正确根据二次根式的运算法则进行计算是解此题的关键.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?【分析】根据题意得出由勾股定理得出BC的长,进而得出小汽车1小时行驶20×3600=72000(米),进而得出答案.【解答】解:根据题意,得AC=30m,∠C=90°,在Rt△ACB中,根据勾股定理2=AB2﹣AC3=502﹣302=408,所以BC=40,小汽车2秒行驶40米,则1小时行驶20×3600=72000(米),即小汽车行驶速度为72千米/时,因为72>60.【点评】此题主要考查了勾股定理的应用,根据已知得出BC的长是解题关键.19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.【分析】(1)根据轴对称的性质作出△A1B1C1;(2)根据PB1∥x轴,可得点P的纵坐标为1,根据题意列出方程,求得a=2,即可求解.【解答】解:(1)如图,△A1B1C3即为所求.(2)∵B(5,﹣1)3与点B关于x轴对称,∴B1(5,2).∵P(﹣2a+3,a﹣5)1∥x轴,∴点P的纵坐标为1,∴a﹣2=1,∴a=2,∴﹣2a+3=﹣1,∴点P的坐标为(﹣5,1).【点评】本题考查了画轴对称图形,坐标与图形,熟练掌握轴对称的性质是解题的关键.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 小亮 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: =﹣a(a<0) ;(3)先化简,再求值:,其中a=﹣2023.【分析】(1)由a=1007知1﹣a=﹣1006<0,从而由=|1﹣a|=a﹣1可得答案;(2)根据二次根式的性质=|a|可得答案;(3)先根据二次根式的性质化简原式,再代入计算可得.【解答】解:(1)小亮的解法是错误的,故答案为:小亮;(2)错误的原因在于未能正确地运用二次根式的性质=﹣a(a<0),故答案为:=﹣a(a<0);(3)∵a=﹣2007,∴a﹣3=﹣2010<6,则原式=a+2=a+2|a﹣3|=a﹣2(a﹣3)=a﹣2a+8=﹣a+6=2023+6=2029.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质=|a|.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 (8,0) ,点B的坐标为 (0,4) ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在【分析】(1)代入x=0及y=0,可求出点B的纵坐标及点A的横坐标,进而可得出点B,A的坐标;(2)设OC=a,则AC=8﹣a,由折叠的性质可知BC=AC=8﹣a,在Rt△BOC中,利用勾股定理,可求出a的值,进而可得出OC的长;(3)存在,设出点P的坐标,根据△APO的面积为20,可列出关于m的含绝对值符号的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征,即可求出点P的坐标.【解答】解:(1)当x=0时,y=﹣,∴点B的坐标为(0,4);当y=8时,﹣x+6=0,解得:x=8,∴点A的坐标为(3,0).故答案为:(8,2),4);(2)设OC=a,则AC=8﹣a,由折叠可知:BC=AC=5﹣a,在Rt△BOC中,∠BOC=90°,∴BC2﹣OC2=OB7,∴(8﹣a)2﹣a4=16,∴a=3,即OC=3;(3)存在,设点P的坐标为(m,﹣.∵点A的坐标为(8,3),∴AO=8,∴S△APO=×AO×|y P|=20,∴×8×|﹣,解得:m=﹣6或m=18,当m=﹣2时,﹣m+4=﹣;当m=18时,﹣m+3=﹣,∴点P的坐标为(﹣4,5)或(18.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积、翻折变换(折叠问题)以及勾股定理,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用勾股定理,找出关于OC长的方程;(3)利用三角形的面积公式,找出关于点P横坐标的方程.22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形【分析】(1)求出AB,OA,OB,然后根据旋转角是60°判断出AB′⊥x轴,再写出点B′的坐标即可;(2)根据旋转的性质可知:O″A=OA=,O″B″=OB=1,且O″A⊥x轴,O″B″∥x轴,可得B″点到x轴距离为,到y轴距离为+1,即可得点B′的坐标;(3)分三种情况:①当AB=BC时,②当AB=AC时,③当AC=BC时,分别求解即可.【解答】解:(1)∵一次函数y=﹣kx+1与x轴、y轴分别交于A,令x=0,则y=6,∴点B(0,1),∴OB=3,∵∠BAO=30°.∴AB=2,OA=,∵旋转角是60°,∴∠OAB′=30°+60°=90°,AB′=AB=4,∴AB′⊥x轴,∴点B′(,2);(2)∵把△AOB绕点A顺时针旋转90°后得到△AO″B″,∴O″A=OA=,O″B″=OB=1,∠AO″B″=∠AOB=90°,∴O″A⊥x轴,O″B″∥x轴,∴B″点到x轴距离为,到y轴距离为,∴点B″的坐标为(+1,);(3)如图,①当AB=BC时,∵OB⊥x轴,∴OA=OC,∴点C1的坐标为:(﹣,7);②当AB=AC时,∵AB=2,点C2(6+,0)7(﹣2;③当AC=BC时,设点C8(x,0),则﹣x=,解得:x=,∴点C3的坐标为:(,0);综上可得:点C的坐标为:(﹣,0)或(2+﹣2,0).【点评】本题是一次函数综合题,考查了坐标与图形性质,旋转的性质,一次函数图象上点的坐标特征,直角三角形的性质,等腰三角形的性质.掌握方程思想、分类讨论思想与数形结合思想的应用是解题的关键.23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?【分析】(1)根据题意,装运C水果有20﹣x﹣y辆货车,再根据每辆货车的运载量和三种水果的总量列出x、y之间的关系式,进一步整理成y关于x的函数的形式即可;(2)根据“装运三种水果的车辆数都不少于2辆”,求得x的取值范围.列出利润关于x 的表达式,根据利润随x的变化特点,求出当利润最大时x的值.【解答】解:(1)根据题意,装运C水果有20﹣x﹣y辆货车,∴6x+5y+4(20﹣x﹣y)=100,∴y=﹣2x+20.(2)∵装运三种水果的车辆数都不少于2辆,∴x≥2,﹣2x+20≥2,∴8≤x≤9,∴x=2,4,4,5,7,7,8或3.三种水果全部售完所获得的利润m=500×6x+600×5y+400×4(20﹣x﹣y)=﹣1400x+60000,∴m=﹣1400x+60000(x=2,3,6,5,6,6,8或9).∵m随x的减小而增大,∴当x=2时,y=﹣2×2+20=16,m=﹣1400×3+60000=57200.∴安排2辆货车装运A水果,安排16辆货车装运B水果,使得三种水果全部售完所获得的利润最大.【点评】本题考查一次函数及一元一次不等式的应用,一定要注意对比总结,掌握这类题型的解答规律.24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x ≤ 时,y≥0;(4)求原点到直线l的距离.【分析】(1)把(3,﹣3),(0,1)代入一次函数的解析式得到方程组求出方程组的解即可;(2)根据解析式求得A的坐标,然后根据三角形面积公式求得即可;(3)观察图象即可求得;(4)利用三角形面积公式即可求得.【解答】解:(1)把(3,﹣3),5)代入y=kx+b,得,解得:,∴直线l的解析式为y=﹣x+8;(2)在y=﹣x+3中,则﹣,解得x=,∴A(,0),∵B(0,6),∴OA=,OB=4,∴S△AOB==×1=,∴直线l与两坐标轴所围成的三角形的面积为;(3)∵A(,0),∴当x≤时,y≥0;故答案为:≤;(4)设原点到直线的距离为h,∵OA=,OB=1,∴AB===,∵S△AOB=AB•h,∴=×h,∴h=.故原点到直线l的距离为.【点评】本题主要考查一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积,数形结合是解此题的关键.。
八年级数学期中考试试卷
八年级数学期中考试试卷一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.718B. 3.14159C. √2D. 0.33333...2. 已知一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1cmB. 1cm ≤ x < 7cmC. 7cm < x < 10cmD. x = 7cm3. 函数y = 2x - 3的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 如果一个数的平方根是另一个数的立方根,那么这个数是:A. 1B. 0C. -1D. 85. 一个圆的直径是14cm,那么它的半径是:A. 7cmB. 14cmC. 28cmD. 21cm6. 已知一个正数的平方是16,那么这个数是:A. 4B. ±4C. -4D. 167. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么它的体积是:A. 24cm³B. 12cm³C. 6cm³D. 9cm³8. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 109. 一个角的余角是它的补角的一半,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°10. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 0D. 正数或0二、填空题(每题2分,共20分)11. 如果一个三角形的两边长分别是5cm和12cm,那么第三边长x的取值范围是______。
12. 函数y = 3x + 2的斜率是______。
13. 一个圆的半径是7cm,那么它的直径是______。
14. 一个数的立方根是2,那么这个数是______。
15. 一个长方体的体积是60cm³,长是5cm,宽是4cm,那么它的高是______。
北师大版八年级上册数学期中考试试卷及答案
北师大版八年级上册数学期中考试试题一、单选题1.下列各数是无理数的是()A.227B.(4﹣π)0C.﹣πD2.下列函数中,y是x的正比例函数的是()A.y=5x﹣1B.y=12x C.y=x2D.y=3x3.如果点P(2,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥04)A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.下列各组数为勾股数的是()A.6,12,13B.3,4,7C.4,7.5,8.5D.8,15,17 6.下列计算正确的是()A B=1CD7.在一次函数y=﹣3x+9的图象上有两个点A(x1,y1),B(x2,y2),已知x1>x2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.无法确定8.有一长、宽、高分别为5cm,4cm,4cm的长方体木块,一只蚂蚁沿如图所示路径从顶点A处在长方体的表面爬到长方体上和A相对的中点B处,则需要爬行的最短路径长为()A B C D.2cm9.已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A .B .C .D .10.已知点12(4,),(2,)y y -都在直线122y x =+上,则1y 和2y 的大小关系是()A .12y y >B .12y y =C .12y y <D .无法确定二、填空题11.函数y =中,自变量x 的取值范围是________.12.若直角三角形的两直角边长分别为3cm ,4cm ,则斜边的长为__________cm .13.在平面直角坐标系中,点()1,1A -和()1,1B 关于______轴对称.14.已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).15.已知实数x,y 满足2y =,则()2011y x -的值为__________.16.若某个正数的两个不同的平方根分别是2m ﹣4与2,则m 的值是________.17.已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8.则边BC 的长为_______.三、解答题18.191|﹣3)0+.20.已知函数()0y kx b k =+≠的图象经过点()2,1A -,点51,2B ⎛⎫ ⎪⎝⎭(1)求直线AB 的解析式;(2)若在直线AB上存在点C,使1=2ACO ABOS S∆∆,求出点C坐标.21.小明用的练习本可在甲、乙两个商店买到.已知两个商店的标价都是每本1元.但甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖.⑴当购买数量超过10本时,分别写出在甲、乙两商店购买练习本的费用y(元)与购买数量x(本)之间的关系式;⑵小明要买30本练习本,到哪个商店购买较省钱?22.如图,长方形纸片ABCD中,AB=8,BC=10,折叠纸片的一边AD,使点D落在BC 边上的点F处,AE为折痕.请回答下列问题:(1)AF=________;(2)试求线段DE的长度.23.在平面直角坐标系xOy中, ABC三个顶点的坐标分别为A(0,2),B(2,0),C(5,3).(1)点C关于x轴对称的点C1的坐标为,点C关于y轴对称的点C2的坐标为.(2)试说明 ABC是直角三角形.(3)已知点P在x轴上,若12PBC ABCS S=△△,求点P的坐标.24.如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1并写出坐标;(2)求出△A1B1C1的面积.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与y轴相交于点C(0,6),与直线OA相交于点A且点A的纵坐标为2,动点P沿路线O A C→→运动.(1)求直线BC的解析式;(2)在y轴上找一点M,使得△MAB的周长最小,则点M的坐标为______;(请直接写出结果)(3)当△OPC的面积是△OAC的面积的14时,求出这时P的坐标.参考答案1.C【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、227是分数,属于有理数,故此选项不符合题意;B、(4﹣π)0=1,1是有理数,故此选项不符合题意;C、﹣π是无理数,故此选项符合题意;D2,2是有理数,故此选项不符合题意;故选:C.【点睛】本题考查的是无理数的定义,掌握“无限不循环的小数是无理数”是解题的关键.2.B【解析】【分析】一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数,据此判断即可.【详解】解:A.y=5x﹣1不属于正比例函数,不合题意;B.y=12x属于正比例函数,符合题意;C.y=x2不属于正比例函数,不合题意;D.y=3x不属于正比例函数,不合题意;故选:B.【点睛】本题考查了正比例函数的识别,熟知形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数是解本题的关键.3.A【解析】【分析】根据第四象限的点的坐标特点解答即可.解:∵点P(2,y)在第四象限,∴y<0.故选:A.【点睛】本题考查了点的坐标特征,熟练掌握四个象限内点的坐标特征是解本题的关键.4.B【解析】【详解】根据9<13<16,可知32<13<42,可知34.故选B.【点睛】此题主要考查了二次根式的估算,解题关键是要找到被开方数相接近的平方数,即找到附近的平方数,确定开方的结果即可.5.D【解析】【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A、62+122≠132,故不符合题意,B、32+42≠72,故不符合题意,C、7.5,8.5不是正整数,故不符合题意,D、82+152=172,故符合题意.故选:D.6.C【解析】【分析】根据二次根式的运算方法判断选项的正确性.解:A选项错误,不是同类二次根式不可以加减;B选项错误,不是同类二次根式不可以加减;C选项正确;D选项错误,2故选:C.7.A【解析】根据一次函数解析式一次项系数的正负判断函数的增减关系.【详解】解:∵一次函数的一次项系数k=-3<0,∴y随着x的增大而减小,∵x1>x2,∴y1<y2.故选:A.8.A【解析】根据勾股定理即可得到结论.【详解】如图,,,故选:A.【点睛】此题考查最短路径问题,解题的关键是明确线段最短这一知识点,然后把立体的长方体放到一个平面内,求出最短的线段.9.D根据正比例函数y kx =的图象经过第一,三象限可得: 0k >,因此在一次函数y kx k =-中0k >, 0b k =-<,根据0k >直线倾斜方向向右上方, 0b <直线与y 轴的交点在y 轴负半轴,画出图象即可求解.【详解】根据正比例函数y kx =的图象经过第一,三象限可得:所以0k >,所以一次函数y kx k =-中0k >,0b k =-<,所以一次函数图象经过一,三,四象限,故选D.【点睛】本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.10.C 【解析】【分析】根据一次函数的增减性进行判断.【详解】∵122y x =+,k >0,∴y 随x 的增大而增大,又∵点12(4,),(2,)y y -在直线122y x =+上,且-4<2,∴y 1<y 2.故选:C .【点睛】考查了一次函数的性质,解题关键是熟记一次函数的性质:一次函数y=kx+b ,当k>0时,图象从左到右上升,y 随x 的增大而增大;当k<0时,图象从左到右下降,y 随x 的增大而减小.11.x≥0【解析】根据二次根式有意义的条件:被开方数为非负数列不等式即可得答案.【详解】∵y=∴x≥0.故答案为:x≥0【点睛】本题考查了函数自变量的取值范围,主要涉及二次根式有意义的条件,解题关键是熟记二次根式有意义的条件为:被开方数必须大于或等于0.12.5【解析】【分析】直接根据勾股定理两直角边的平方和等于斜边的平方进行计算.【详解】根据勾股定理,得斜边的长5=(cm).故答案为:5【点睛】此题考查勾股定理,解题关键在于掌握运算法则.13.x【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可对称结论.【详解】解:点A(1,−1)和B(1,1)关于x轴对称,故答案为:x.【点睛】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.14.<【解析】【分析】由k=2>0,可得出y随x的增大而增大,结合1<3,即可得出x1<x2.【详解】解:∵k=2>0,∴y随x的增大而增大.又∵1<3,∴x1<x2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.15.-1【解析】【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】都有意义,∴x=3,则y=2,故(y-x)2011=-1.故答案为:-1.【点睛】此题考查二次根式有意义的条件,正确得出x的值是解题关键.16.1【解析】【分析】根据平方根的定义得出2m﹣4+2=0,再进行求解即可得出答案.【详解】解:∵一个正数的两个平方根分别是2m ﹣4与2,∴2m ﹣4+2=0,∴m =1;故答案为:1.【点睛】本题考查了平方根的应用,能得出关于m 的方程是解此题的关键,注意:一个正数有两个平方根,它们互为相反数.17.21或9【解析】【分析】根据题意,ABC 可能是锐角三角形或者钝角三角形,分两种情况进行讨论作图,然后利用勾股定理即可求解.【详解】解:在ABC 中,17AB =,10AC =,BC 边上高8AD =,如图所示,当ABC 为锐角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:15621BC BD DC =+=+=;如图所示:当ABC 为钝角三角形时,在Rt ABD △中17AB =,8AD =,由勾股定理得:22222178225BD AB AD =-=-=,∴15BD =,在Rt ACD △中10AC =,8AD =,由勾股定理得:2222210836CD AC AD =-=-=,∴6CD =,∴BC 的长为:1569BC BD DC =-=-=;综上可得:BC 的长为:21或9.故答案为:21或9.【点睛】题目主要考查勾股定理,进行分类讨论作出图象运用勾股定理解直角三角形是解题关键.18.56【解析】【分析】化简二次根式,然后先进行二次根式分母有理化计算,最后算加减.【详解】125024223226232)22622⨯2610262+-6526+-=5-.【点睛】本题主要考查了二次根式的混合运算,理解二次根式的性质,掌握二次根式的混合运算的运算顺序和计算法则是解答本题的关键.19+2【解析】【分析】利用零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算法则进行计算即可.【详解】解:原式)1153=--+-1153=+-+-2.【点睛】本题主要考查了零指数幂、平方差公式和绝对值的意义以及二次根式的混合计算,解题的关键在于能够熟练掌握相关计算法则.20.(1)y=12x+2;(2)C (-1274,)或(-1736,);【解析】【分析】(1)根据点A 、B 的坐标利用待定系数法求出一次函数的解析式,此题得解.(2)根据题意得到C 是线段AB 的中点,或A 是线段BC 的三等分点,即可求得C 的坐标.【详解】(1)∵一次函数y=kx+b 的图象经过点A (-2,1)、点B (1,52).∴2152k b k b -+⎧⎪⎨+⎪⎩==,解得:122k b ==⎧⎪⎨⎪⎩.∴这个一次函数的解析式为:y=12x+2.(2)如图,∵在直线AB 上存在点C ,使S △ACO =12S △ABO ,∴C是线段AB的中点,或A是线段BC的三等分点,∵A(-2,1),B(1,5 2).∴C(-1274,)或(-7124,);【点睛】此题考查待定系数法求一次函数解析式,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.21.(1)y甲=0.7x+3,y乙=0.85x.(2)在甲商店购买较省钱.【解析】【分析】(1)根据题意:甲商店的优惠条件是:购买10本以上,从第11本开始按标价的七折卖;乙商店的优惠条件是:从第一本开始就按标价的八五折卖,列出函数关系式即可;(2)把x=30,分别代入甲乙的解析式,求出y的值就可以得出结论.【详解】⑴当x>10时,y甲=10+0.7(x-10)=0.7x+3,y乙=0.85x.⑵当x=30时,y甲=0.7×30+3=24元;y乙=0.85×30=25.5元;∵y甲<y乙,∴在甲商店购买较省钱.【点睛】此题考查一次函数的应用:关键在于根据题意用一次函数表示两个变量的关系,然后利用一次函数的性质解决问题.22.(1)10;(2)DE=5.【解析】【分析】(1)由折叠性质可得AF=AD,根据矩形的性质即可得到AF的长;(2)利用勾股定理可求出BF的长,进而求出CF的长,设DE=x,根据折叠性质可得EF=DE=x,利用勾股定理列出方程求得x的值即可得答案.【详解】(1)在长方形ABCD中,BC=10,∴AD=BC=10,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴AF=AD=10,故答案为:10(2)∵AB=8,AF=10,在Rt△ABF中,AB2+BF2=AF2,∴6BF==,∴CF=BC﹣BF=10-6=4,设DE=x,则CE=8﹣x,∵折叠纸片的一边AD,使点D落在BC边上的点F处,AE为折痕.∴EF=DE=x,∠D=∠AFE=90°,∴EF2=CF2+CE2,即x2=(8﹣x)2+42,解得:x=5,∴DE=5.【点睛】本题考查矩形的性质、折叠性质及勾股定理,熟练掌握折叠的性质,正确找出对应边与对应角是解题关键.23.(1)(5,-3),(﹣5,3);(2)见解析;(3)P(0,0)或(4,0)【解析】(1)根据平面直角坐标系中关于坐标轴为对称点的特点可直接得到结果;(2)根据勾股定理求出AB2,AC2,BC2,再根据勾股定理的逆定理即可证得结论;(3)先求出S△ABC =6,设P点坐标为(t,0),根据三角形面积公式得到12×5×|t﹣2|=12×6=3,然后求出t的值,则可得到P点坐标.【详解】解:(1)∵C点的坐标为(5,3),∴点C关于x轴对称的点C1的坐标为(5,﹣3),点C关于y轴对称的点C2的坐标为(﹣5,3),故答案为:(5,-3),(﹣5,3);(2)∵AB 2=22+22=8,AC 2=(3﹣2)2+52=26,BC 2=(5﹣2)2+32=18,∴AB 2+BC 2=8+18=26=AC 2,∴△ABC 是直角三角形;(3)S △ABC =3×5﹣12×2×2﹣12×(5﹣2)×3﹣12×(3﹣2)×5=6,设P 点坐标为(t ,0),∵S △PBC =12S △ABC ,∴12×3×|t ﹣2|=12×6=3,∴t ﹣2=±2,∴t =0或t =4,∴P 点坐标为(0,0)或(4,0).【点睛】本题主要考查了坐标与图形,关于坐标轴对称的点的坐标特征,勾股定理的逆定理等等,解题的关键在于能够熟练掌握相关知识进行求解.24.(1)图见解析;点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1);(2)92.【解析】【分析】(1)先根据轴对称的性质作出△A 1B 1C 1,然后再写出各点坐标即可;(2)用一个长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)如图所示:△A 1B 1C 1即为所求.由图可知:点A 1的坐标为(﹣1,2),点B 1的坐标为(﹣3,1),点C 1的坐标为(2,﹣1).(2)用一个长方形将△A 1B 1C 1框住,如上图所示:由图可知:△A 1B 1C 1的面积=5×3-12×1×2-12×2×5-12×3×3=92【点睛】此题考查的是画关于y 轴对称的图形和网格中求面积,掌握关于y 轴对称的图形的画法和用长方形将△A 1B 1C 1框住,再利用长方形的面积减去三个直角三角形的面积,是解决此题的关键.25.(1)BC 解析式为6y x =-+;(2)M (0,65);(3)点P 的坐标为(1,12)或(1,5).【解析】【分析】(1)设直线BC 的解析式是y=kx+b ,把B 、C 的坐标代入,求出k 、b 即可;(2)先确定出点M 的位置,进而求出直线AB'的解析式即可得出结论;(3)分为两种情况:①当P 在OA 上,此时OP :AO=1:4,根据A 点的坐标求出即可;②当P 在AC 上,此时CP :AC=1:4,求出P 即可.【详解】(1)设直线BC的解析式是y=kx+b,根据题意得:606bk b ⎧⎨+⎩==解得16 kb-⎧⎨⎩==则直线BC的解析式是:y=-x+6;(2)如图,作点B(6,0)关于y轴的对称点B',∴B'(-6,0),连接AB'交y轴于M,此时MA+MB最小,得到△MAB的周长最小设直线AB'的解析式为y=mx+n,∵A(4,2),∴42 60 m nm n+⎧⎨-+⎩==,∴1565 mn⎧⎪⎪⎨⎪⎪⎩==,∴直线AB'的解析式为y=16 55x+,令x=0,∴y=6 5,∴M(0,6 5),(3)设OA的解析式是y=ax,则4a=2,解得:a=12,则直线的解析式是:y=12 x,①当P在OA上时,∵当△OPC的面积是△OAC的面积的14时,∴P的横坐标是14×4=1,在y=12x中,当x=1时,y=12,则P的坐标是(1,12);②当P在AC上时,∵△OPC的面积是△OAC的面积的1 4,∴CP:AP=1:5,∵A(4,2)∴在y=-x+6中,当x=1时,y=5,则P的坐标是(1,5),∴P的坐标是:P1(1,12)或P2(1,5).【点睛】此题考查一次函数的交点问题,用待定系数法求一次函数的解析式等知识点,能求出符合的所有情况是解题的关键.。
2022-2023学年八年级下期中考试数学试卷及答案
=6,则 BE 的长为
.
16.点 P,Q,R 在反比例函数 y (常数 k>0,x>0)图象上的位置如图所示,分别过这
三个点作 x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为 S1,S2,S3.若
OE=ED=DC,S1+S3=27,则 S2 的值为
.
17.如图,反比例函数 y 位于第二象限的图象上有 A,B 两点,过 A 作 AD⊥x 轴于点 D,
22.【阅读】如图 1,四边形 OABC 中,OA=a,OC=8,BC=6,∠AOC=∠BCO=90°, 经过点 O 的直线 l 将四边形分成两部分,直线 l 与 OC 所成的角设为θ,将四边形 OABC 的直角∠OCB 沿直线 l 折叠,点 C 落在点 D 处,我们把这个操作过程记为 FZ[θ,a].
1~1.5 小时;C、0.5~1 小时;D、0.5 小时以下.图 1、2 是根据调查结果绘制的两幅不
完整的统计图,请你根据统计图提供的信息,解答以下问题:
(1)本次一共调查了多少名学生?
(2)在图 1 中将选项 B 的部分补充完整;
(3)若该校有 3000 名学生,你估计全校可能有多少名学生平均每天参加体育活动的时
间在 1 小时以下.
20.(12 分)如图,已知△ABC 的三个顶点的坐标分别为 A(﹣2,3)、B(﹣6,0)、C(﹣ 1,0). (1)将△ABC 绕坐标原点 O 逆时针旋转 90°.画出图形,直接写出点 B 的对应点的坐 标; (2)请直接写出:以 A、B、C 为顶点的平行四边形的第四个顶点 D 的坐标.
(1)若平均每人每小时植树 4 棵,则这次共计要植树
棵;
(2)当 x=80 时,求 y 的值;
(3)为了能在 1.5h 内完成任务,至少需要多少人参加植树?
湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)
八年级期中考试八年级数学试卷2023-2024学年第一学期时量:120分满分:120分一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.下列条件中,不能得到等边三角形的是()A.有两个外角相等的等腰三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个内角是60°的三角形3.下列计算正确的是()A.B.C.D.4.下列各式中,可以用平方差公式进行计算的是()A.B.C.D.5.若,,则的值为()A.8B.11C.15D.456.如图,,点在上,与相交于点,.则的度数为()A.30°B.40°C.60°D.75°7.如图,在的正方形方格中,每个小正方形方格的边长都为1,则和的关系是()A.B.C.D.8.如图,中,,,且,则()A.10B.6C.4D.39.如图,在中,的垂直平分线分别交、于点,,连接.若,的周长为24,则的周长为()A.16B.18C.20D.2210.如图,是的角平分线,的面积为12,长为6,,分别是,上的动点,则的最小值是()A.6B.4C.3D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.______.12.点关于轴对称的点的坐标是______.13.若,则的值为______.14.如图,在直角中,已知,边的垂直平分线交于点,交于点,且,,则的长为______.15.如图,将正方形放在平面直角坐标系中,为坐标原点,点的坐标为,则点的坐标为______.16.如图,是的角平分线,于点,的面积是,,,则______.三、解答题(本题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23每题9分,第24、25每题10分,共72分)17.计算:18.先化简,再求值:,其中.19.如图,点、、、在同一直线上,,,且,求证:(1);(2)20.如图在平面直角坐标系中,各顶点的坐标分别为,,.(1)在图中作,使和关于轴对称;(2)写出点,,的坐标;(3)求的面积.21.如图,点在的外部,点在边上,交于点,若,,.(1)求证:;(2)若,判断的形状,并说明理由.22.如图,等边三角形中,为边的中点,为的延长线上一点,过点作于点,并交于点,(1)求证:;(2)若,,求的长.23.如图,是等边三角形,点、分别在、的延长线上,且,连接并延长交于点,,交的延长线于点.(1)求证:;(2)求的度数;(3)当为等腰三角形时,求.24.完全平方公式:,适当的变形,可以解决很多的数学问题.例如:若,,求的值.解:因为,所以,即:,又因为,所以根据上面的解题思路与方法,解决下列问题:(1)若,,求的值;(2)若,求的值;(3)如图,是线段上的一点,以、为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.25.如图,在平面直角坐标系中,已知、分别为轴和轴上一点,且,满足,过点作于点,延长至点,使得,连接、.图1 图2(1)点的坐标为______,的度数为______;(2)如图1,若点在第一象限,试判断与的数量关系与位置关系,并说明理由;(3)如图2,若点的坐标为,连接,平分,与交于点.①求点的坐标;②试判断与的数量关系,并说明理由.八年级期中考试八年级数学参考答案2023-2024学年第一学期一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本题共10题,每小题3分,共30分)题号12345678910答案B A D B C D D C A B 二、填空题(本题共6小题,每小题3分,共18分)11.12.13.5 14.5 15.16.3三、解答题(共9个小题,第17,18,19题每小题6分,第20,21题每小题8分,第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明或演算过程)17.(6分)解:原式.18.(6分)解:原式.当时,原式.19.(6分)解:(1)∵,∴.又∵,∴,,∴,在与中,,∴;(2)∵,∴.∴20.(8分)解:(1)如图,即为所求(2),,;(3).21.(8分)解:(1)∵,,,,∴,在和中,∴,∴.(2)是等边三角形.理由如下:∵,∴,∵,∴,,∴,∴∴,∴是等边三角形.22.(9分)解:(1)∵,是的中点,∴,∵,∴;(2)∵是等边三角形,边长为6,∴,,由(1)可知,,∴,,∴,∵,∴,又∵,∴,∴.23.(9分)解:(1)为等边三角形,∴,,∴,在和中,,∴;(2)∵,∴,∴;(3)当为等腰三角形时,∴,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴.∵在中,,,∴,,.24.(10分)解:(1)∵,,∴,∴;(2)∵∴;(3)设,,∵,∴,又∵,∴,由完全平方公式可得,,∴,∴,∴,答:阴影部分的面积为6.25.(10分)解:(1)∵,∴,,∴点的坐标为,点,∴,∵,∴,故答案为:,45°;(2)设与轴交于点,与交于点,∵,∴,在和中,,,∴,在和中,,∴,∴,,∴,即∴∴,即,;(3)①作轴交轴于点,轴交轴于点,∵点的坐标为,∴,,由(2)知,,∵,,∴,∵,∴,∴,,∴;②延长交于点,∵,,,∴,∴,∵平分,∴,∵,,∴,∴,即.。
八年级数学期中考试试卷【含答案】
八年级数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 18cmC. 26cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 1.1010010001D. 0.3333. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. -5D. 54. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是什么?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)5. 下列哪个图形不是正多边形?A. 等边三角形B. 等腰梯形C. 正方形D. 正五边形二、判断题(每题1分,共5分)6. 任何两个奇数之和都是偶数。
()7. 在一个等差数列中,如果公差为0,则这个数列中的所有数都相等。
()8. 两个锐角互余。
()9. 任何一个正整数都可以表示为2的幂的乘积。
()10. 一元二次方程的解可以是两个相等的实数根。
()三、填空题(每题1分,共5分)11. 若一个等差数列的首项为3,公差为2,那么第10项为______。
12. 若一个正方形的边长为a,那么它的对角线长度为______。
13. 若一个圆的半径为r,那么它的面积公式为______。
14. 若一个三角形的三个内角分别为45°、45°和90°,那么这个三角形是______三角形。
15. 若一个函数f(x) = x^2 4x + 4,那么它的顶点坐标为______。
四、简答题(每题2分,共10分)16. 请简述勾股定理的内容。
17. 请简述一元二次方程的求根公式。
18. 请简述等差数列的通项公式。
19. 请简述圆的标准方程。
20. 请简述直角坐标系中两点之间的距离公式。
五、应用题(每题2分,共10分)21. 一个长方形的长是宽的两倍,且它的周长为30cm,求长方形的长和宽。
八年级期中数学试卷及答案
(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1.若a>b,则ac与bc的大小关系是()A.ac>bcB.ac<bcC.ac=bcD.无法确定答案:A2.下列哪个数是4的平方根?()A.2B.-2C.4D.-4答案:B3.已知一个等腰三角形的底边长为10cm,腰长为13cm,则这个三角形的周长为()A.32cmB.36cmC.42cmD.26cm答案:C(更多选择题题目及答案省略)二、判断题(每题1分,共20分)1.两个负数相乘,其结果一定是正数。
()答案:√2.任何数与0相乘,其结果一定是0。
()答案:√3.若a>b,则a^2>b^2。
()答案:×(更多判断题题目及答案省略)三、填空题(每空1分,共10分)1.若x+3=7,则x=_______。
答案:42.若一个正方形的边长为a,则其面积为_______。
答案:a^23.若|x|=5,则x的值为_______或_______。
答案:5;-5(更多填空题题目及答案省略)四、简答题(每题10分,共10分)1.简述勾股定理及其应用。
答案:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
应用勾股定理可以解决与直角三角形相关的问题,如计算直角三角形的边长、判断一个三角形是否为直角三角形等。
(更多简答题题目及答案省略)五、综合题(1和2两题7分,3和4两题8分,共30分)1.已知一个等差数列的首项为2,公差为3,求第10项的值。
答案:第10项的值为2+(101)3=2+27=29。
2.解方程:2(x3)+4=3x+1。
答案:2x6+4=3x+1,化简得x=9。
(更多综合题题目及答案省略)三、填空题(每空1分,共10分)4.若一个数的平方根是9,则这个数是_______。
答案:815.已知一个等边三角形的周长为24cm,则其边长为_______。
答案:8cm6.若a=3,b=-2,则a+b的值为_______。
江西省吉安市十校2023-2024学年八年级上学期期中考试数学试卷(含答案)
2023—2024学年第一学期期中八年级数学试卷考试时间:120分钟全卷满分120分一、选择题(本大题共6小题,每小题3分,共18分)1.在实数,,,3.14中,无理数是()A.B.C.D.3.142.下列各组数分別为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3B.4,5,6C.7,24,25D.8,15,183.如图,是象棋盘的一部分,若“帅”位于点,“相”位于点上,则“炮”位于点()上.A.B.C.D.4.如图,数轴上,点为线段BC的中点,,两点对应的实数分别是和,则点所对应的实数是()A.B.C.D.5.在平面直角坐标系中,一次函数的图象的随的增大而减小,且,则它的图象大致是()A.B.C.D.6.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第2025次运动后,动点的坐标是().A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)7.点关于轴的对称点坐标为__________.8.函数中自变量的取值范围是__________.9.程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,根据如图的程序进行计算,当输入们值为64时,输出的值是__________.10.若直线下移后经过点,则平移后的直线解析式为__________.11.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,点落在边AB上,连接.若,,则的长度为__________.12.在平面直角坐标系中,长方形按如图所示放疽,是AD的中点,且、、的坐标分别为,,,点是BC上的动点,当是腰长为5的等腰三角形时,则点的坐标为__________.三、解答题(本大题共5小题,每小题各6分,共30分)13.计算:(1).(2).14.已知正数的两个不同的平方根分别是和,求的立方根.15.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.图1图2(1)在图1中以格点为顶点画一个面积为10的正方形:(2)在图2中以格点为顶点画一个三角形,使三解形三边长分别为2,,.16.在第十四届全国人大一次会议召开之际,某中学举行了庄严的升旗仪式.看着着再升起的五星红旗(如图1),小乐想用刚学过的知识计算旗杆的高度.如图2,AD为旗杆AE上用来固定国旗的绳子,点D距地面的高度.将绳子AD拉至AB的位置,测得点到AE的距离,到地面的垂直高度,求旗杆AE的高度.图1图217.某城市居民用水实行阶梯收费,每户每月用水量如果未超过5吨,每吨收费2元;超过5吨时,超过的部分每吨收费3.5元,设某户每月用水量为吨,应收水费为元.(1)写出每月用水量超过5吨时,与之间的函数关系式:(2)若某户居民某月交水费17元,该户居民用水多少吨?四、(本大题共3小题,每小题各8分,共24分)18.已知,如图,Rt中,,,,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足,并作腰上的高AE.19.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)若和关于轴成轴对称,画出,点的坐标为__________;(2)在轴上求作一点,使得的值最小,请在图中画出点:(3)求的面积和最长边上的高.20.如图,在平面直角坐标系,,,,且与互为相反数.(1)求实数与的值;(2)在轴的正半轴上存在一点,使,请通过计算求出点的坐标;(3)在坐标轴的其他位詛是否存在点,使仍然成立?若存在,请直接写出符合题意的点的坐标.五、(本大题共2小题,每小题9分,共18分)21.先观察下列的计算,再完成:(1)计算:;(2)观察上面的解题过程,请直接写出的结果为__________;(3)根据你的猜想、归纳,运用规律计算:求的值22.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向C港,最终到达C港停止.设甲、乙两船行驶后,与港的距离分别为、,、与的关系则图所示.(1)B、C两港口间的距离为__________,__________;(2)甲船出发几小时追上乙船?(3)在整个过程中,什么时候甲乙两船相距?六、解答题(本大题共1小题,共12分)23.【探索发现】如图1,等腰直角三角形ABC中,,,直线DE经过点,过作于点.过作于点,则,我们称这种全等模型为“型全等”.(不需要证明)【江移应用】已知:直线的图象与轴、轴分别交于A、B两点.图1图2 图3 图4(1)如图2,当时,在第一象限构造等腰直角,;(1)直接写出__________,__________;(2)如图3,当的取值变化,点随之在轴负半轴上运动时,在轴左侧过点B作,并且,连接ON,问的面积是否发生变化?若不变,求出其值;若变,请说明理由;(3)【拓展应用】如图4,当时,直线与轴交于点,点、分别是直线和直线AB上的动点,点在轴上们坐标为,当是以CQ为斜边的等腰直角三角形时,点的坐标是__________.吉安市十校2023—2024学年第一学期联考八年级数学试卷参考答案与评分标准一、选择题(每题3分)1、C2、C3、D4、D5、A6、B二、填空题(每题3分,12题每填对一个得1分,填错一个或不填给0分)7、(-4,-1) 8、9、10、11、12、(-2,4)或(3,4)或(-3,4)三、解答题(每题6分,共30分)13、(1)解:原式=1+4-(-1)=6 .................3分(2)解:..................6分14.(1)解:正数的两个不同的平方根分别是和,,解得:,.................2分则,那么,.................4分∴a的立方根为Ő..................6分15.(1)∵正方形面积为10,∴正方形的边长为,∵,∴画图如下:.................3分(2)画图如下:.................6分16. 解:∵,∴,∵,∴,.................1分设,则,,由题意可得:,在中,,即,.................3分解得:,即,.................5分∴旗杆的高度为:..................6分17.(1)解:............3分(2)用水量刚好5吨时,应交水费为元,∵该户居民某月交水费17元,∴用水量超过5吨,则令,解得:,∴该户居民用水7吨..................6分四、解答题(每题8分,共24分)18. 解:(1)∵DA=DC,∴∠DAC=∠DCA,又AD∥BC,∴∠DAC=∠ACB,于是∠DCA=∠ACB.又∠AEC=∠B=90°,AC=AC,∴△ACE≌△ACB(AAS),∴AB=AE;.................4分(2)由(1)可知AE=AB=6,CE=CB=4,设DC=x,则DA=x,DE=x-4,由勾股定理,即,解得:..................8分19.(1)如下图,即为所求,,.................3分(2)如下图,点P即为所求..................5分(3)的面积为或最长边上的高为..................8分20、解:(1)依题意得解得;............2分(2)设M(x,0),依题意得•x•2=××[3-(-2)]×2,解得x=∴M;................5分(3)..............8分五、解答题(每题9分,共18分)21.(1)解:.................3分(2);.................5分(3).................9分22.(1)解:由图可知:、两港口间的距离为,甲船用从A港口到达B港口,A港口和B港口距离,∴甲船的速度为:,∴甲船从B港口到C港口时间为:,∴,故答案为:90,2;.................2分(2)解:由图可知,乙船用从B港口到达C港口,∴乙船的速度为:,,解得:.答:甲船出发1小时追上乙船;.................5分(3)解:①当甲船还未追上乙船时,,解得:;②当甲船追上乙船后,当未到达C港口时:,解得:;③当甲船到达C港口,乙船还未到达C港口时:,解得:;综上:当经过或或时,甲乙两船相距.(少一种情况扣一分).................9分23.(1)①,;.................2分②.................4分(2)不变,的面积为定值,.................5分理由如下:当变化时,点随之在轴负半轴上运动时,,过点作于,,,,,,,又,.,,变化时,的面积是定值,;.................8分(3)点的坐标为或.................12分。
2023-2024学年度上学期八年级期中测试题数学附详细答案
2023-2024学年度上学期八年级期中测试题数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 2.64的算术平方根是A.√8B.8C.±8D.16 3.下列计算正确的是A.a+a=a 2B.a 2·a 2=2a 2C.(−ab) 2=ab 2D.(2a) 2÷4a=a 4.下列计算正确的是A.√9=±3B.√9=−3C.√273=3 D.−√273=3 5.若等腰三角形的两边长分别为2、4,则它周长为A.8B.10C.8或10D.10或12 6.下列分解因式正确的是A.a 2+a+1=a(a+1)+1B.a 2−ab=a(a −1)C.a 2−4b 2=(a+2b)(a −2b)D.a 2+2ab+b 2=(a −b)27.如图,A 、B 两点分别位于一个池塘的两端,小明想用绳子测量A 、B 之间的距离,但绳子不够长.他通过思考又想到了这样一个方法:先在地上取一个可以直接到达A 、B 的点C ,连接AC 并延长到点D ,使CD=CA ;连接BC 并延长到点E ,使CE=CB ,连接DE 并且测出DE 的长即为A 、B 之间的距离.图中△ABC ≌△DEC 的数学理由是 A.SSS B.SAS C.ASA D.AAS8.如图,在△ABA 1中,AB=A 1B ,∠B=20°.在A 1B 上取一点C ,延长AA 1到点A 2,使A 1A 2=A 1C ,连结A 2C ;在A 2C 上取一点D ,延长A 1A 2到点A 3,使A 2A 3=A 2D ,连结A 3D ;……,按此操作进行下去,在以点A 5为顶角顶点的等腰三角形的底角的度数为 A.20° B.10° C.5° D.2.5° 二、填空题(每小题3分,共18分) 9.16的平方根为_______.10.命题“内错角相等”是______命题(填“真”或“假”). 11.若a+b=3,则a 2−b 2+6b 的值为_______.12.如图,△ABC ≌△DBE ,点B 在线段AE 上,若∠C=25°,则∠BDE 的度数是_____.13.如图,在△ABC 中,AB=AC ,点D 为BC 的是中点,连结AD ,在边AC 上截取AD=AE.若∠BAD=20°,则∠EDC 的大小为____度.14.如图,四边形ABCD 中,AB=BC ,∠ABC=90°,对角线BD ⊥CD.若BD=6,CD=1,则四(第12题)AB ED C(第13题)ABCEDA(第14题)BDC(第7题)(第8题)B C DE A 12 A3 A4 A n边形ABCD 的面积为_____.三、解答题(本大题10小题,共78分)15.(6分)计算:(1)(6ab)2÷4a 2. (2)(a+b)(a −3b). 16.(6分)因式分解下列各题:(1)a 2−9. (2)a 2+12a+36. 17.(6分)如图,AB=AE ,AC=AD ,∠BAD=∠EAC ,∠D=43°,求∠C 的大小.18.(7分)先化简,再求值:(2x +1)(2x −1)− x (4x −3),其中x =120.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法,并保留作图痕迹.(1)在图①中画△BCD ,使△BCD 与△ABC 全等.(2)在图②中画△BCE ,使△BCE 与△ABC 的面积相等,但不全等.(3)在图③中画△FGH ,使△FGH 与△ABC 全等,且所作的三角形有一条边经过AC 的中点.(第19题)图③AC B图② AC B图①AC BA(第17题)ECDB20.(7分)先化简,再求值:(2a −b)2−(a −2b)(a+2b)−2a(a-2b),其中a=√5,b=1. 21.(8分)如图①,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACB 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点. (1)求△AEF 的周长.(2)如图②,在△ABC 中,AB=5,AC=4,∠ABC 和∠ACG 的平分线交于点D ,过点D 作EF ∥BC ,分别交边AB 、AC 于E 、F 两点.若AC=4AF ,则△AEF 的周长为________.22.(9分)【探究】在△ABC 中,AB=AC ,D 是边BC 上一点,以AD 为一边在AD 的右侧作△ADE 使AE=AD ,∠DAE=∠BAC ,连结CE. (1)求证:△BAD ≌△CAE.(2)若∠BAC=α,求∠DCE 的大小(用含α的代数式表示).【应用】若∠BAC=50°,且△DCE 的两个锐角的度数之比为1︰4,则∠DAC 的大小为_____度.23.(10分)【教材原题】观察图①,用等式表示下图中图形的面积的运算为_________.ABEC(第22题)D(第21题)图②A BC GDEFA图①CEF DB【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为___________. 【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a 2+b 2=___________. (2)若x 满足(11−x )(x −8)=2,求(11−x )2+(x −8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD ,AC ⊥BD 于点E ,AE=DE ,BE=CE.该校计划在△AED 和△BEC 区域内种花,在△CDE 和△ABE 的区域内种草.经测量种花区域的面积和为252,AC=7,直接写出种草区域的面积和.24.(12分)如图,在△ABC 中,∠ABC=90°,AB=4,BC=6,点B 在直线m 上,点M 是直线m 上点B 左边的一点,且BM=2,∠ABM=60°.动点P 从点A 出发,以每秒1个单位长度的速度沿折线AB-BC 向终点C 匀速运动;同时动点Q 从C 点出发,以每秒3个单位长度的速度沿折线沿CB-BA 向终点A 匀速运动.分别过点P 、点Q 作PD ⊥m 于D ,QE ⊥m 于E.设点P 的运动时间为t(s). (1)用含t 的代数式表示BQ 的长.(2)当点Q 在边BC 上时,求证:∠PBD=∠BQE.(3)连结PM 、QM ,在不添加辅助下和连结其它线段的条件下,当图中存在等边三角形时,求t 的值.(4)当△PBD 与△BQE 全等时,直接写出t 的值.A(第23题)图①图②图③D CBabab a 2b 2花 草草=++ 花E2023-2024学年度上学期八年级期中测试题参考答案数学本试卷包括三道大题,共24小题,共4页.全卷满分120分.考试时间为90分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、选择题(每小题3分,共24分)1.在实数√3,0,−0.33,10中,其中无理数是A.√3B.0C.−0.33D.10 1.解:√3是无限不循环小数,是无理数,故选A 。
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季
八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列图形中是轴对称图形的是()A.B.C.D.2.已知三角形的三边长分别为3,x,7,则x的值可能是()A.3B.5C.10D.113.下列判断错误的是()A.等腰三角形是轴对称图形B.有两条边相等的三角形是等腰三角形C.等腰三角形的两个底角相等D.等腰三角形的角平分线、中线、高互相重合4.下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.5.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点确定一点直线B.两点之间线段最短C.同角的余角相等D.三角形具有稳定性6.如图,已知∠C=∠C1=90°,能直接用“HL”判定Rt△ABC≌Rt△A1B1C1的条件是()A.∠C=∠C1,AB=A1B1 B.AB=A1B1,AC=A1C1C.AC=A1C1,BC=B1C1 D.∠B=∠B1,BC=B1C17.如图,△ABC≌△DCB,∠DBC=40°,则∠BOC的度数为()A.100°B.80°C.40°D.140°8.A、B、C为三个小区,A、B、C三个小区的学生人数比为3:7:4,现在要在△ABC所在的平面上建造一个学校P,使得所有学生走的路程和最短,则学校P应该选在()A.点C处B.△ABC三条中线的交点处C.点B处D.∠A和∠B的角平分线的交点处9.如图,△ABC的外角∠DAC和∠FCA的平分线交于点E,∠EAC和∠ECA 的平分线交于点M,若∠B=48°,则∠M的度数为()A.114°B.122°C.123°D.124°10.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.8二、填空题(每小题3分,满分18分)11.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于.12.点A(a,b)与点B(3,﹣4)关于y轴对称,则a+b的值为.13.某多边形的内角和与外角和相等,这个多边形的边数是.14.等腰三角形的一个角是70°,则等腰三角形的顶角的度数是.15.已知a,b,c为△ABC的三边,化简:3|a+b﹣c|+2|a﹣b﹣c|=.16.如图,点B、C、E三点在同一直线上,且AB=AD,AC=AE,BC=DE,若∠1+∠2+∠3=96°,则∠3的度数为.八年级上册数学期中考试模拟试卷人教版2024—2025学年秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.若学校有一块三角形的绿地,AB=BC=20m,∠A=15°,求绿地△ABC的面积?18.如图,△ABC是等边三角形,BD是中线,延长BC至E,使CE=CD.(1)求证:DB=DE;(2)过点D作DF垂直BE,垂足为F,若CF=3,求△ABC的周长.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交AC于点M.(1)若∠B=70°,则∠NMA的度数是;(2)连接MB,若BC=6,△MBC的周长是14.①求△ABC的周长;②若P是直线MN上一个动点,则PB+PC的最小值是.20.已知点C在线段BE上,且△ABC和△DCE都是等边三角形,连接BD,AE,分别交AC,DC于点M,N.(1)求证:△AEC≌△BDC;(2)求证:CM=CN.21.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.22.如图1,在四边形ABCD中,∠A=∠C=90°,AB=CD,将四边形ABCD沿对角线BD翻折,点C落到点F处,BF交AD于点E.(1)求证:EB=ED;(2)如图2,延长BA,DF交于点G,连接GE并延长交BD于点H.求证:∠ADB=∠BGH.23.如图,在△ABC中,AB=AC=3,∠B=50°,点D在线段BC上运动(不与B、C重合),连接AD,作∠ADE=50°,DE交线段AC于E.(1)当∠BDA=105°时,∠BAD=°,∠DEC=°;(2)若DC=AB,求证:△ABD≌△DCE;(3)在点D的运动过程中,是否存在△ADE是等腰三角形?若存在,请直接写出此时∠BDA的度数;若不存在,请说明理由.24.如图,在平面直角坐标系中,已知三点A(0,a)(a>0),B(0,b)(b≤0),C(c,0)(c<0),且(a﹣b)2=c2.(1)试判断线段AB与OC的数量关系,并证明;(2)如图1,当b=0时,连接AC,点P是线段AC上一点,CQ⊥OP于Q,连接AQ.若∠AQP=45°,试探究CQ和OQ之间数量关系;(3)如图2,当b<0时,点D在x轴负半轴上,位于点C的左侧,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠CED的度数是否为定值?如果是,请求出∠CED的度数;如果不是,请说明理由.25.如图,平面直角坐标系中,A(0,a),B(b,0)且a、b满足|a+2b﹣6|+|a﹣2b+2|=0.E为线段上一动点,∠BED=∠OAB,BD⊥EC,垂足在EC的延长线上,试求:(1)判断△OAB的形状,并说明理由;(2)如图1,当点E与点A重合时,探究线段AC与BD的数量关系,并证明你的结论;(3)如图2,当点E在线段AB(不与A、B重合)上运动时,试探究线段EC与BD的数量关系,证明你的结论.。
安徽省安庆市第四中学2022-2023学年八年级上学期数学期中考试试卷(沪科版、含答案)
安庆四中2022—2023学年度第一学期八年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1. 已知点在第二象限,则点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列式子中,能表示y是x的函数的是( )A. B. C. D.3. 已知等腰三角形的周长为20cm,则底边长y(cm)与腰长x(cm)的函数关系式是( )A. y=20﹣2x(5<x<10)B. y=2x﹣20(5<x<10)C. y=10x(x<10)D. y x﹣10(5<x)4. 对于一次函数,下列说法不正确的是()A. 图象与的图象平行B. 图象不经过第三象限C. 图象与坐标轴围成的面积是2D. 当时,5. 已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A. B.C. D.6. 下列四个图形中,线段BE是的高的图形是( )A. B. C. D.7. 若函数,则当函数值y=8时,自变量x的值是( )A. ±B. 4C. ±或4D. 4或-8. 有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A3个 B. 2个 C. 1个 D. 0个9. 如图,将一张三角形纸片ABC的一角折叠,使点A落在外的处,折痕为DE.如果,那么下列式子中正确的是( )A. B. C. D.10. 如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )A. (1012,1011)B. (1009,1008)C. (1010,1009)D. (1011,1010)二.填空题(本大题共4小题,每小题5分,满分20分)11. 函数中自变量的取值范围是__________.12. 已知点在第2象限,且到x轴的距离为3,到y轴的距离等于5,则点P的坐标是________.13. 在,已知点D、E、F分别是边BC、AD、CE上的中点,且,则的值为_____cm2.14. 火车匀速通过隧道时,火车在隧道内的长度(米)与火车行驶时间(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是_____.(把你认为正确结论的序号都填上)三.解答题(本大题共2小题,每小题8分,满分16分)15. 已知y+5与3x+4成正比例,当x=1时,y=2.求:(1)y与x之间的函数表达式;(2)当x=-1时,求y值.16. 如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2),(1)请画出上述平移后的△A1B1C1,并写出点A、C、A1、C1的坐标;(2)求线段AC扫过的面积.四.解答题(本大题共2小题,每小题8分,满分16分)17. 在中,.(1)求a的取值范围;(2)若为等腰三角形,求周长.18. 如图,在中,D是边上一点,,,,求的度数?五.解答题(本大题共2小题,每小题10分,满分20分)19. 已知一次函数的图象与x轴交于点,与y轴交于点,且与正比例函数的图象交于点C.(1)求一次函数的表达式;(2)求点C的坐标;(3)直接写出不等式的解.20. 中,是的角平分线,是的高.(1)如图1,若,请说明的度数;(2)如图2(),试说明的数量关系.六.解答题(本题12分)21. 如图,直线与坐标轴交于点A、B两点,直线与直线相交于点P,交x轴于点C,且面积为.(1)则A点的坐标为 ;a= ;(2)求直线解析式;(3)若点D是线段上一动点,过点D作轴交直线于点E,若,求点D的坐标.22. 某工厂生产A、B两种产品共1000件,其中A产品个数不少于B产品个数,生产总成本不超过18000元,已知两种产品单个成本和零售价如下表,设该工厂生产A产品x件.产品成本(元/个)零售价(元/个).A2025B1012(1)该厂把这1000件产品以零售价全部售出,求该厂能获得的最大利润:(2)受疫情影响,A产品的成本比原来增加m(m>0)元/个;该厂在不调整零售价情况下,将1000件产品全部出售获得的最低利润是3000元,求m的值.23. 已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O 点重合),点C在射线ON上且OC=2,过点C作直线l//PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B 运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.参考答案与解析一.选择题(本大题共10小题,每小题4分,满分40分)1-5DCADD 6-10ADDAD二.填空题(本大题共4小题,每小题5分,满分20分)11. 且12.(-5,3)13.##15##14.②③④三.解答题(本大题共2小题,每小题8分,满分16分)15.解:(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4)(k≠0).又∵当x=1时,y=2,∴2+5=k(3×1+4),即k=1.∴y与x之间的函数表达式为y=3x-1.(2)当x=-1时,y=3×(-1)-1=-4.16. 解:(1)如图,各点的坐标为:A(﹣3,2)、C(﹣2,0)、A1(3,4)、C1(4,2);(2)如图,连接AA1、CC1;∴;;∴四边形ACC1A1的面积为7+7=14.答:线段AC扫过的面积为14.四.解答题(本大题共2小题,每小题8分,满分16分)17.解:(1)由题意可知,即,解得:;(2)∵为等腰三角形,故可分类讨论:①当时,即,解得:,∵,∴此情况不合题意,舍;②当时,即,解得:,∵,∴此情况符合题意.综上可知,∴的周长.18.解:设,则.∵,∴,即,∴,∴.五.解答题(本大题共2小题,每小题10分,满分20分)19.解:(1)把,代入得:,解得∴一次函数的表达式为;(2)由得∴点C的坐标为;(3)根据函数图像可得不等式的解为:.20. 解:(1)∵,,∴,∵是的角平分线,∴,∵是的高,∴,∵,∴,∴;(2)∵,∴,∵是的角平分线,∴,∵是的高,∴,∴,∴,即.六.解答题(本题12分)21.解:(1)当时,,当时,,解得:,∴点A的坐标为.故答案为:;;(2)过点P作\轴,垂足为H,如图:由(1)得:,∴,即,∴,∴,∴点C的坐标为.设直线的解析式为,将点、代入得:,解得:,∴直线PC的解析式为;(3)如图:设点D坐标为,∵轴交直线PC于点E,,∴点E的坐标为,代入直线的解析式为得,,解得,当时,,∴点D坐标为.七.解答题(本题12分)22.解:(1)设利润为w,由题意可得:,∵A产品个数不少于B产品个数,生产总成本不超过18000元,∴,解得:,∵在中,3>0,∴当x=800时,w最大,且为4400元,∴该厂能获得的最大利润为4400元;(2)由题意可得:,其中,当0<m<3时,3-m>0,此时当x=500时,获得最小利润为:500(3-m)+2000=3000,解得:m=1;当m=3时,w=2000≠3000,不成立;当m>3时,3-m<0,此时当x=800时,获得最小利润为:800(3-m)+2000=3000,解得:m=1.75,不合题意,∴m的值为1.八.解答题(本题14分)23.解:(1)根据平行线间的距离处处相等,得到底边上的高为2,∴.(2)如图②,∵,∴∴∵直线直线∴∵∴∵是的平分线,∴∴;(3)不变,值为如图③∵直线,∴,∵∴,∵,∴,∵,∴∵是的平分线,∴,∴,∴.。
八年级下学期数学期中考试试卷
初二年级下册期中考试数学试题一.选择题.本大题共10个小题,每个小题3分,共30分.在每小题所给的四个选项中,只有一个是符合题意的,请将正确答案前面的代号填在答题纸中的表格内. 1.一次函数14-=x y 的图像不经过 A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.下列命题中正确的是A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线平分每一组对角的四边形是正方形3.如图,平行四边形ABCD 中,E BC AC ,⊥为AB 的中点,若2=CE ,则=CD A.2 B.3 C.4 D.54.顺次连结下列四边形各边中点所得的四边形一定是矩形的是 A.等腰梯形 B.矩形 C.平行四边形 D.菱形5.将正比例函数x y 3=的图像向右平移4个单位长度后,所得函数图像的解析式为A.43+=x yB.43-=x yC.()43+=x yD.()43-=x y6.如图,矩形ABCD 的对角线BD AC ,交于点BD AE O ⊥,于点E , 45=∠AOB ,则BAE ∠的大小为 A.15° B.22.5° C.30° D.45° 7.若函数⎩⎨⎧>≤+=2,2,2,22x x x x y ,则当函数值为8时,自变量的值为A.6±或4B.6或4C.6-或4D.48.已知点()()52,,5,21x B x A 都在直线23+-=x y 上,则1x 与2x 的关系是 A.21x x > B.21x x = C.21x x < D.122x x = 9.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF ,若AD =3,则菱形AECF 的面积为 A.23 B.43 C.4 D.810.如图,已知平行四边形ABCD 中,点M 是BC 的中点,且AM =6,BD =12,AD =45,则该平行四边形的面积为 A.245 B.36 C.48 D.72A B CDE OA BCD M二.填空题.本大题共12个空,每个空3分,共36分.请将正确答案填在答题纸上相应的位置上.11.函数121+=x y 的定义域是 ▲ .12.若一个多边形的内角和等于 720,则这个多边形的边数是 ▲ . 13.矩形ABCD 中,AC 与BD 的交点为E ,若6=AB ,8=BC ,则=DE ▲ . 14.菱形ABCD 中,对角线BD AC ,交于点O ,若6=AC cm,8=BD cm,则菱形ABCD 的周长为 ▲ cm.15.在ABC ∆中,D B C ,36,90 =∠=∠为AB 的中点,则=∠DCA ▲ °.16.如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =110°,则1∠= ▲ °. 17.直线b kx y +=与坐标轴交于()()5,0,0,3B A -两点,则关于x 的不等式0<--b kx 的解集为 ▲ .18.甲,乙两地相距100km,如果一辆汽车从甲地到乙地所用时间为x (h),汽车行驶的平均速度为y (km/h),那么y 与x 之间的函数关系式为 ▲ (不要求写出自变量的取值范围).19.如图,平行四边形ABCD 中,AC 与BD 相交于点2,45,==∠BD AEB E ,将ABC ∆沿AC 所在直线翻折到同一平面内,若点B 的落点记为B ',则B D '的长为 ▲ . 20.已知一次函数()0≠+=k b kx y 中,x 取不同值时,y 对应的值列表如下:x… 21m -- 1 2… y…2-12+n…则不等式0>+b kx (其中n m b k ,,,为常数)的解集为 ▲ . 21.正方形 ,,,23331222111C C B A C C B A O C B A 按如图所示的方式放置.点 ,,,321A A A 和点 ,,,321C C C 分别在直线()0>+=k b kx y 和x 轴上,已知点()()2,3,1,121B B ,则3B 的坐标是 ▲ ,n B 的坐标是 ▲ .1OADBCyxOC 1 B 2A 2C 3 B 1 A 3B 3A 1 C 2下学期初二年级期中考试数学答题纸二.填空题.上.11. . 12. . 13. . 14. . 15. . 16. . 17. . 18. . 19. .20. .21.; .三.解答题.本大题共10个小题,共64分.解答应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分5分)已知,如图,在平行四边形ABCD 中,F E ,分别是DC AB ,的中点.求证:四边形DEBF 是平行四边形.23.(本小题满分5分)如图,正方形ABCD 中,DF CE ⊥,垂足为H .若10=CE ,求DF 的长.A E24.(本小题满分6分)如图,在ABC ∆中, 90=∠ACB ,BC 的垂直平分线DE 交BC 于D ,交AB 于F E ,在DE 上,且AE CE AF ==. ①证明:四边形ACEF 是平行四边形;②当B ∠满足什么条件时,四边形ACEF 是菱形?并说明理由.25.(本小题满分6分)已知平面直角坐标系中,直线()0≠+=k b kx y 与直线()0≠=m mx y 相交于点()4,2-A . ①求直线()0≠=m mx y 的解析式;②若直线()0≠+=k b kx y 与另一条直线x y 2=交于点B ,且点B 的横坐标为4-,求ABO ∆的面积.26.(本小题满分6分)如图,矩形ABCD 的对角线相交于点BD CE AC DE O //,//,. ①求证:四边形OCED 是菱形; ②若30=∠ACB ,菱形OCED 的面积为38,求AC 的长.27.(本小题满分6分)将两块含 30角、大小与形状完全相同的直角三角板分别记作:Rt ABC ∆和Rt DEF ∆,设短直角边3==CD AB ,把它们按照图1所示方式摆放在一起.固定ABC ∆,将DEF ∆沿射线CB 方向平移到111F E D ∆的位置(如图2).①求证:四边形C D AF 11是平行四边形; 证明:②实验与探究:(备用图供画图实验时使用)(i)当1CE 的长为________时,四边形C D AF 11为矩形;当1CE 长为________时,四边形C D AF 11为菱形;(ii)在运动过程中,若DEF ∆沿射线CB 方向平行移动的距离为x ,设四边形C D AF 11的面积为S ,直接写出S 与x 之间的函数关系式(不必写出自变量x 的取值范围). 答:图1图2A DE O28.(本小题满分7分)王鹏和李明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏骑自行车,李明步行.当王鹏从原路返回到学校时,李明刚好到达图书馆.图中折线C--和线段OD分别表示两人离学校AO-B的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图像回答下列问题:①王鹏图书馆查阅资料的时间为分钟,王鹏返回学校的速度为千米/分钟;②请求出李明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;③当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?29.(本小题满分5分)已知,如图,矩形ABCD中,BC延长线上一点E满足∠的度数.BDBE=,F是DE的中点,求AFC30.(本小题满分8分)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲,乙两种产品,生产1吨甲产品或生产1吨乙产品所需该矿石和煤原料的吨数如表:煤的价格为400元/400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元,现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.①写出m与x之间的关系式;②写出y与x的函数表达式(不要求写自变量x的取值范围);③若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大?最大利润多少?31.选做题.(本小题满分8分,计入总分,但总分不超过120分)将边长10OA的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点,8==OCC,分别在x轴和y轴上.在OA边上选取适当的点E,连接CE,将EOC A∆沿CE折叠.①如图1,当点O落在AB边上的点D处时,点E的坐标为;②如图2,当点O落在矩形OABC内部的点D处时,过点E作xEG//轴交CD于点EH=;H,交BC于点G.求证:CH③在②的条件下,设()nH,,写出m关于n的函数关系式(不必m写出自变量n的取值范围);④如图3,将矩形OABC变为正方形,10OC,当点E为AO中点时,点O落在正方=形OABC内部的点D处,延长CD交AB于点T,求此时AT的长度.图1 图2 图3参考答案BCCDD BCAAC11.21-≠x 12.613.5 14.20 15.5416.3517.3->x18.xy 100=19.2 20.1>x 21.()4,7;()12,12--n n 22.略.23.10=DF .24.② 30=∠B 时. 25.①x y 2-=;②16. 26.②8.27.②1;3;333+=x y .28.①15,154;②x y 454=;③3千米.29. 90.30.①21505+-=x m ;②750001900+-=x y ;③当生产甲产品25吨时,公司获得的总利润最大,为27500元.31.①()5,0;③52012+=n m ;④25.。
湖北省黄石市大冶市2023-2024学年八年级上学期期中考试数学试卷(含解析)
期中考试八年级数学试卷注意事项:1.本试卷分试题卷和答题卷两部分;考试时间为120分钟;满分120分.2.考生在答题前请仔细阅读答题卷中的“注意事项”,然后按要求答题.3.所有答案均须做在答题卷相应区域,做在其他区域无效.一、选择题(3分×10=30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列各组线段中,能构成三角形的是()A .2,5,8B .3,3,6C .3,4,5D .4,5,93.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠C B .BE =CD C .AD =AE D .BD =CE4.在下列条件:①A B C ∠∠=∠+;②2A B C ∠=∠=∠;③12A B C ∠=∠=∠;④123A B C ∠∠∠=::::中,能确定ABC 为直角三角形的条件有()A .2个B .3个C .4个D .5个5.如图,AH BC ⊥,AD 是ABC 的中线,1614DC AH ==,,则ABD △的面积为()A .112B .102C .122D .2246.如图,ABC 为等边三角形,延长CB 到D ,使BD BC =.延长BC 到点E ,使CE BC =.连接AD ,AE ,则DAE ∠的度数是()A .130︒B .120︒C .110︒D .100︒7.如图,在折纸活动中,小明制作了一张△ABC 纸片,D ,E 分别是边AB ,AC 上的点,将△ABC 沿着DE 折叠压平,点A 与点A′重合,若∠A =70°,则∠1+∠2的度数为()A .110°B .140°C .220°D .70°8.如图,在等腰ABC 中,116ABC ∠=︒,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=()A .62°B .58°C .52°D .46°9.如图,点D 是等边△ABC 的边AC 上一点,以BD 为边作等边△BDE ,点C ,E 在BD 同侧,下列结论:①∠ABD =30°;②CE ∥AB ;③CB 平分∠ACE ;④CE =AD ,其中错误的有()A .0个B .1个C .2个D .3个10.已知30AOB ∠=︒,在AOB ∠内有一定点P ,点M ,N 分别是OA OB ,上的动点,若PMN 的周长最小值为3,则OP 的长为()A .1.5B .3C .2D .2.5二、填空题(3分×6=18分)11.点()32A -,关于x 轴对称的点的坐标为.12.三角形两边长分别是2,4,第三边长为偶数,第三边长为13.一个多边形的每一个内角都是135︒,这是一个边形.14.如图,15AOP BOP ∠=∠=︒,PC OA PD OA ⊥∥,,若8PC =,则PD 的长为.15.如图,在等腰Rt △ABC 中,∠ACB =90°,点D 为Rt △ABC 内一点,∠ADC =90°,若△BCD 的面积为8,则CD =.16.如图,在四边形ABCD 中,对角线BD 平分ABC ∠,14040BCD ACD ∠=︒∠=︒,,则ADB =∠.三、解答题(共8小题,8分+8分+8分+8分+9分+9分+10分+12分)17.如图,点B ,E ,C ,F 在一条直线上,FB CE AB ED AC DF ===,,.求证:AB DE ∥.18.如图,在ABC 中,AD BC ⊥于点D ,AE 平分BAC ∠.(1)若6040C B ∠=︒∠=︒,,求EAD ∠的度数;(2)若C α∠=,B β∠=,求EAD ∠的度数(用含α、β的式子来表示).19.如图,BD ,CE 是△ABC 的高,BD ,CE 相交于点F ,BE =CD .求证:(1)Rt △BCE ≌Rt △CBD ;(2)AF 平分∠BAC .20.如图,在ABC 中,边AB 的垂直平分线EF 分别交边BC AB ,于点E ,F ,过点A 作AD BC ⊥于点D ,且D 为线段CE 的中点.(1)求证:BE AC =;(2)若35B ∠=︒,求C ∠的度数.21.如图,四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接BE 并延长交AD 的延长线于点F .(1)求证:BCE FDE ≌△△;(2)连接AE ,若AE BF ⊥.①求证:BE 是CBA ∠的角平分线;②若21BC AD ==,时,求AB 的长.22.如图,在77⨯的正方形网格中,点A 、B 、C 都在格点上点D 是AB 与网格线的交点且5AB =,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)作AB 边上高CE .(2)画出点D 关于AC 的对称点F ;(3)画射线BP ,平分ABC ∠.23.已知,在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =.(1)【特殊情况,探索结论】如图1,当点E 为AB 的中点时,确定线段AE 与DB 的大小关系,请你直接写出结论:AE DB (填“>”、“<”或“=”).(2)【特例启发,解答题目】如图2,当点E 为AB 边上任意一点时,确定线段AE 与DB 的大小关系,请你写出结论,并说明理由.AEDB (填“>”、“<”或“=”);理由如下,过点E 作EF BC ∥,交AC 于点F .(请你完成以下解答过程).(3)【拓展结论,设计新题】在等边三角形ABC 中,点E 在直线AB 上,点D 在线段CB 的延长线上,且ED EC =,若ABC 的边长为1,2AE =,求CD 的长(直接写出结果).24.如图1,在平面直角坐标系中,直线AB 分别交y 轴、x 轴于点()0,A a ,点(),0B b ,且a 、b 满足20a -=.(1)求a ,b 的值:(2)以AB 为边作Rt ABC △,点C 在直线AB 的右侧且45ACB ∠=︒,求点C 的坐标;(3)若(2)的点C 在第四象限(如图2),AC 与x 交于点D ,BC 与y 轴交于点E ,连接DE ,过点C 作CF BC ⊥交x 于点F .①求证12CF BC =;②直接写出点C 到DE 的距离.参考答案1.A解析:A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .2.C解析:A 、∵2578+=<,∴不能构成三角形,排除;B 、∵3366+==,∴不能构成三角形,排除;C 、∵345,435+>-<,∴能构成三角形,符合题意;D 、4599+==,∴不能构成三角形,排除;故选:C .3.B解析:解:选项A ,∠B =∠C 利用ASA 即可说明△ABE ≌△ACD ,说法正确,故此选项错误;选项B ,BE =CD 不能说明△ABE ≌△ACD ,说法错误,故此选项正确;选项C,AD =AE 利用SAS 即可说明△ABE ≌△ACD ,说法正确,故此选项错误;选项D ,BD =CE 利用SAS 即可说明△ABE ≌△ACD ,说法正确,故此选项错误;故选B.4.B解析:解:180A B C A B C ∠+∠=∠∠+∠+∠=︒ ,,218090C C ∴∠=︒∠=︒,,则ABC 为直角三角形,①能确定;2180A B C A B C ∠=∠=∠∠+∠+∠=︒ ,,36C ∴∠=︒,72A B ∠=∠=︒,ABC ∴ 不是直角三角形,②不能确定;11802A B C A B C ∠=∠=∠∠+∠+∠=︒ ,,418045A A ∴∠=︒∠=︒,,90C ∴∠=︒,则ABC 为直角三角形,③能确定;::1:2:3A B C ∠∠∠= ,则令23A x B x C x ===∠,∠,∠,23180x x x ∴++=︒,30x =︒,90C ∴∠=︒,则ABC 为直角三角形,④能确定,故能确定ABC 为直角三角形的共有3个,故选:B .5.A解析:解;∵AH BC ⊥,1614DC AH ==,,∴11161411222ADC S CD AH =⋅=⨯⨯=△∵AD 是ABC 的中线,∴112ABD ADC S S ==△△,故选A .6.B解析:解:∵ABC 为等边三角形,=BD BC CE =,∴BD AB =,CE AC =,∵60D DAB ∠+∠=︒,60E CAE ∠+∠=︒,∴=30D DAB ∠∠=︒,=30E CAE ∠∠=︒,∴306030=120DAE DAB BAC CAE ∠=∠+∠+∠=︒+︒+︒︒.故选:B7.B解析:解:∵∠A =70°,∴∠ADE +∠AED =180°-70°=110°,∵△ABC 沿着DE 折叠压平,A 与A ′重合,∴∠A ′DE =∠ADE ,∠A′ED =∠AED ,∴12180180A ED AED A DE ADE ∠+∠=︒-∠'+∠+︒-∠'+∠()()3602110140=︒-⨯︒=︒.故选:B .8.C解析:解:∵在等腰ABC 中,116ABC ∠︒=,∴()()111801801163222A C ABC ∠=∠=︒-∠=⨯︒-︒=︒,∵AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,∴EA EB =,QB QC =,∴32ABE QBC A C ∠=∠=∠=∠=︒,∴116323252EBQ ABC ABE QBC ∠=∠-∠-∠=︒-︒-︒=︒,故选:C .9.B解析:解:∵△ABC 和△BDE 是等边三角形,∴∠A =∠ACB =∠ABC =∠DBE =60°,AB =BC ,BD =BE ,∴∠ABD =∠CBE ,①不正确;在△ABD 和△CBE 中,AB CB ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴∠A =∠BCE =60°,AD =CE ,④正确;∴∠BCE =∠ABC ,∴CE ∥AB ,②正确;∵∠CBE =∠ACB =60°,∴CB 平分∠ACE ,③正确;∴错误的有1个,故选:B .10.B解析:解:作P 关于OA 的对称点D ,作P 关于OB 的对称点E ,连接DE 交OA 于M ,交OB 于N ,连接PM PN ,,当D M N E 、、、四点共线时PMN 的周长最小,连接OD OE ,,∵P 、D 关于OA 对称,∴OD OP PM DM ==,,同理OE OP PN EN ==,,∴OD OE OP ==,∵P 、D 关于OA 对称,∴OA PD ⊥,∵OD OP =,∴DOA POA ∠=∠,同理POB EOB ∠=∠,∴223060DOE AOB ∠=∠=⨯︒=︒,∵OD OE =,∴DOE 是等边三角形,∴DE OD OP ==,∵PMN 的周长是3PM MN PN DM MN EN DE ++=++==,∴3OP =故选:B .11.()32--,解析:解:点()32A -,关于x 轴对称的点的坐标为()32--,,故答案为:()32--,.12.4解析:设第三边为a ,根据三角形的三边关系知,4-2<a <4+2.即2<a <6,∵第三边长为偶数,∴a=4.故答案为:413.八解析:解:设这个多边形的边数为n ,由题意得,()1802135n n ︒⋅-=︒⋅,解得8n =,∴这个多边形是八边形,故答案为:八.14.4解析:解:如图所示,过点P 作PE OB ⊥于E ,∵PC OA ∥,∴15CPO AOP ==︒∠,∴30PCE COP CPO =+=︒∠∠∠,∵PE OB ⊥,∴142PE PC ==,∵15AOP BOP ∠=∠=︒,PE OB PD OA ⊥⊥,,∴4PD PE ==,故答案为:4.15.4.解析:如图,过点B 作BH ⊥CD ,交CD 的延长线于H ,∵等腰Rt △ABC 中,∠ACB =90°,∴AC =BC ,∵BH ⊥CD ,∴∠ACB =∠ADC =∠H =90°,∴∠ACD +∠BCD =90°=∠BCD +∠CBH ,∴∠ACD =∠CBH ,在△ACD 和△CBH 中,ACD CBH ADC H AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBH (AAS ),∴BH =CD ,∵△BCD 的面积为8,∴12×CD ×BH =8,∴CD =4,故答案为4.16.50︒##50度解析:解:如图所示,过点D 作DE AB DF BC ⊥⊥,分别交BA BC ,延长线于E 、F ,过点D 作DH AC ⊥于H ,∵140BCD ∠=︒,∴40DCF ∠=︒,100ACB ∠=︒,∴DCF ACD ∠=∠,∴CD 平分ACF ∠,∵DF BC DH AC ⊥,⊥,∴DH DF =,同理可得DE DF =,∴DE DH =,∴AD 平分EAH ∠,∴12DAE CAE =∠,∴()111115022222ADB DAE ABD CAE ABC ABC ACB ABC ACB =-=-=+-==︒∠∠∠∠∠∠∠,故答案为:50︒.17.见解析解析:证明:∵FB CE =,∴FB CF CE CF +=+,即BC EF =,又∵AB DE AC DF ==,,∴()SSS ABC DEF ≌△△,∴B E ∠=∠,∴AB DE ∥.18.(1)10︒(2)()12αβ-解析:(1)解:在ABC 中,6040C B ∠=︒∠=︒,,∴180180604080BAC C B ∠∠∠=︒--=︒-︒-︒=︒,∵AE 平分BAC ∠,∴1402CAE BAC ∠=∠=︒,∵AD BC ⊥,60C ∠=︒,∴90906030CAD C Ð=°-Ð=°-°=°,∴10DAE CAE CAD ∠=∠-∠=︒;(2)解:∵AE 平分BAC ∠,C α∠=,B β∠=,∴11(180)22CAE ABC C B ∠∠∠==︒--∠,∵AD BC ⊥,∴90CAD C ∠=︒-∠,∴DAE CAE CAD ∠=∠-∠()()1180902C B C ∠∠∠=︒---︒-1()2C B =∠-∠,()12αβ=-.19.(1)详见解析(2)详见解析解析:(1)证明:∵BD ,CE 是△ABC 的高,∴△BCE 和△CBD 是直角三角形,在Rt △BCE 和Rt △CBD 中,BC CBBE CD =⎧⎨=⎩,∴Rt △BCE ≌Rt △CBD (HL );(2)解:∵Rt △BCE ≌Rt △CBD ,∴CE =BD ,∠BCE =∠CBD ,∴CF =BF ,∴CE ﹣CF =BD ﹣BF ,∴EF =DF ,又∵EF ⊥AB ,DF ⊥AC ,∴点F 在∠BAC 的平分线上,∴AF 平分∠BAC .20.(1)见解析(2)70C ∠=︒解析:(1)解:连接AE ,∵AD BC ⊥于点D ,且D 为线段CE 的中点,∴AD 垂直平分CE ,∴AC AE =,∵EF 垂直平分AB ,∴AE BE =,∴BE AC =;(2)解:∵AE BE =,∴35EAB B ==︒∠∠,∴70AEC B EAB ∠=∠+∠=︒,∵AC AE =,∴70C AEC ==︒∠∠.21.(1)见解析(2)①见解析;②AB 的长为3解析:(1)证明:∵AD BC ∥,∴F EBC ∠=∠,FDE C ∠=∠,∵点E 为CD 的中点,∴ED EC =,在FDE V 和BCE 中,F EBC FDE C ED EC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴(AAS)FDE BCE ≌;(2)解:①∵FDE BCE ≌△△,∴BE EF =,FD BC =,∵AE BF ⊥,∴AE 垂直平分BF ,∴AB AF =,∴ABF F ∠=∠,又∵F EBC ∠=∠,∴ABF EBC ∠=∠,∴BE 是CBA ∠的角平分线;②由(2)①123AB AF AD DF AD BC ==+=+=+=,∴AB 的长为3.22.(1)见解析(2)见解析(3)见解析解析:(1)解:如图,CE 即为所求;(2)如图,点F 即为所求;(3)如图,BP 即为所求;23.(1)=(2)=,见解析(3)3解析:(1)AE DB =,理由如下: ED EC =,∴D ECD ∠=∠,三角形ABC 为等边三角形,60ACB ABC ∠=∠=︒∴,点E 为AB 的中点,1302ECD ACB ∴︒∠=∠=,AE BE =,30D ∴∠=︒,ABC D DEB ∠=∠+∠ ,30DEB ABC D ∴∠=∠-∠=︒,∴D DEB ∠=∠,DB BE ∴=,AE DB ∴=;(2)AE DB =,理由如下:过点E 作EF BC ∥,交AC 于点F ,则AEF ABC ∠=∠,AFE ACB Ð=Ð,FEC ECD ∠=∠, ABC 为等边三角形,∴AB AC =,60A ACB ABC ∠=∠=∠=︒,60AEF AFE A ∴∠=∠=∠=︒,∴AEF △为等边三角形,120EFC ∴∠=︒,AE EF ∴=,ED EC = ,D ECD ∴∠=∠,D FEC ∴∠=∠,在DBE 和EFC 中,DBE EFCD FEC ED EC∠=∠⎧⎪∠=∠⎨⎪=⎩,DBE EFC ∴ ≌()AAS ,DB EF ∴=,AE DB ∴=;(3)点E 在AB 延长线上时,作EF AC ∥,同(2)可得则EFB △为等边三角形,如图所示,同理可得DBE CFE ≌△△,∵1AB =,2AE =,∴1BE =,1BF BE ∴==,∵2DB FC FB BC ==+=,则3CD BC DB =+=.24.(1)2a =,1b =-(2)(2,1)或(1,1)-(3)①见解析;②1解析:(1)解: 20a -=,20a ∴-≥0≥,20a ∴-=,220b +=,2a ∴=,1b =-;(2)由(1)知2a =,1b =-,(0,2)A ∴,(1,0)B -,2OA ∴=,1OB =,ABC ∆ 是直角三角形,且45ACB ∠=︒,∴只有90BAC ∠=︒或90ABC ∠=︒,Ⅰ、当90BAC ∠=︒时,如图1,45ACB ABC ∠︒∠== ,AB CB ∴=,过点C 作CG OA ⊥于G ,90CAG ACG ∴∠+∠=︒,90BAO CAG ∠︒∠+= ,BAO ACG ∴∠=∠,在AOB 和BCP 中,90CGA AOB ACG BAO AC AB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,AOB ∴ ≌(AAS)CGA ,2CG OA ∴==,1AG OB ==,1OG OA AG ∴=-=,(2,1)C ∴,Ⅱ、当90ABC ∠=︒时,如图2,同Ⅰ的方法得,(1,1)C -;即:满足条件的点(2,1)C 或(1,1)-;(3)①如图3,由(2)知点(1,1)C -,过点C 作CL y ⊥轴于点L ,则1CL BO ==,在BOE △和CLE 中,OEB LECEOB ELC BO CL∠=∠⎧⎪∠=∠⎨⎪=⎩,BOE ∴△≌(AAS)CLE ,BE CE ∴=,90ABC ∠=︒ ,90BAO BEA ∴∠+∠=︒,90BOE =︒∠ ,90CBF BEA ∴∠+∠=︒,BAE CBF ∴∠=∠,在ABE 和BCF △中,BAE CBF AB BC ABE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ∴ ≌(ASA)BCF △,BE CF ∴=,∴12CF BC =;②点C 到DE 的距离为1.如图4,过点C 作CK ED ⊥于点K ,过点C 作CH DF ⊥于点H,由①知BE CF =,12BE BC = ,CE CF ∴=,45ACB =︒∠ ,90BCF ∠=︒,ECD DCF ∴∠=∠,DC DC = ,CDE ∴ ≌(SAS)CDF ,BAE CBF ∴∠=∠,∴==.1CK CH。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试卷全县期中考试试卷
八年级数学试卷
一.选择题(本大题共有10小题,每小题4分,共计40分)
1.函数x
x
y -=
2中自变量x 的取值范围是 A .2≠x B .2≥x C .2≤x D .2>x 2.下列曲线中不能表示y 是x 的函数的是
3.将一次函数32-=x y 的图象沿y 轴向上平移8个单位长度,所得直线的解析式为 A .52-=x y B .52+=x y C .82+=x y D .82-=x y
4.若一次函数b ax y +=的图象经过第一、二、四象限,则下列不等式一定成立的是A .0<+b a B .0>-b a C .0>ab D .0<a
b 5.已知
c b a ,,是△ABC 的三条边长,化简||||b a c c b a ----+的结果为
A .c b a 222-+
B .b a 22+
C .0
D .c 2
6.已知一次函数x m kx y 2--=的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是
A .0,2><m k
B .0,2<<m k
C .0,2>>m k
D .0,0<<m k 7.如图,函数x y 21-=与32+=ax y 的图象相交于点)2,(m A ,则关于x 的不等式
32+>-ax x 的解集是
A .1->x
B .1-<x
C .2>x
D .2<x
8.在同一平面直角坐标系中,直线14+=x y 与直线b x y +-=的交点不可能在 A .第一象限 B .第二象限 C . 第三象限 D .第四象限
9.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通.现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙池水面上升的高度h 与注水时间t 之间的函数关系的图象可能是
10.在平面直角坐标系中,点(,)P x y 经过某种变换后得到点(1,2)P y x '-++,我们把点(1,2)P y x '-++叫做点(,)P x y 的终结点.
已知点1P 的终结点为2P ,点2P 的终结点为3P ,点3P 的终结点为4P ,这样依次得到1P 、2P 、3P 、4P …n P ,若点1P 的坐标为(2,0),则点2017P 的坐标为.
A .(﹣3,3)
B .(1,4)
C .(2,0)
D .(﹣2,﹣1) * 选择题答题卡(请同学们将选择题答案填在答题卡内)
11.已知,在平面直角坐标系中,白棋()2,1A -,白棋()6,0B -,则黑棋C 的坐标为 ( , ).
12.长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是 (写一个即可).
13.一次函数2y x m =-+的图象经过点()2,3P -,且与x 轴、y 轴分别交于点A 、B ,则AOB △的面积等于 .
14.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如下图所示.下列叙述正确的是 (填上你认为正
确的序号)
①两人从起跑线同时出发,同时到达终点;②小苏跑全程的平均速度小于小林跑全程的平均速度;③小苏前15s 跑过的路程大于小林前15s 跑过的路程;④小林在跑最后100m 的过程中,与小苏相遇2次.
三.解答题(本大题共有9小题,共计90分)
15.(本题满分8分)如图,在ABC ∆中,0
36,=∠∠=∠A C ABC ,线段BD 和BE 分别为ABC ∆的角平分线和高线. 求ADB ∠、DBE ∠的大小. 16.(本题满分10分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣2),B (﹣2,﹣4),C (﹣4,﹣1).
(1)把△ABC 向上平移3个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1并写出点B 1的坐标; B 1( , ) (2)若通过向右平移m 个单位,再向上平移n 个单位,就可以把△ABC 全部移到第一象限内,请写出m 和n 的取值范围.
m : n : 17.(本题满分10分)已知点P 的坐标为)63,2(+-a a . (1)若点P 到x 轴的距离等于它到y 轴距离,求点P 的坐标;
E
(2)若点P 在第二象限内,求a 的取值范围;
(3)怎样平移,可以将点P 变换成点)23,3(1+--a a P ?
. 18.(本题满分10分)已知一次函数b kx y +=的图象与直线33-=x y 平行,且与x 轴交于点)0,5(
(1)求该一次函数的函数表达式;
(2)根据(1)的结果,对于b kx y +=,请说明y 随x 的变化情况;
(3)若一次函数b kx y +=图象上有两点),b a (、),(d c ,c a ≠,求
c
a d
b --的值; 19.(本题满分10分)某地是一个降水丰富的地区,今年4月初,由于连续降雨导致该地某水库水位持续上涨,经观测水库1日—4日的水位变化情况,发现有这样规律, 1日,水库水位为00.20米,此后日期每增加一天,水库水位就上涨50.0米. (1)请求出该水库水位y (米)与日期x (日)之间的函数表达式;(注:4月1日,即1=x ,4月2日,即2=x ,…,以次类推)
(2)请用求出的函数表达式预测该水库今年4月6日的水位.
20.(本题满分10分)如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P (1,b ). (1)求b ,m 的值;
(2)垂直于x 轴的直线x =a 与直线l 1,l 2分别交于点C ,D ,若线段CD 长为2,求a 的值. 21.(本题满分10分)小慧根据学习函数的经验,对函数|1|-=x y 的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:
(1)函数|1|-=x y 的自变量x 的取值范围是 ; (2)列表,找出y 与x 的几组对应值.
其中,=b ;
(3)在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)写出该函数的一条性质:
. 22.(本题满分10分)如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为x cm ,双层部分的长度为y cm ,经测量,得到如下数据:
(1)根据表中数据的规律,完成以下表格(填括号),并直接写出y 关于x 的函数解析式;
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为L cm,求L的取值范围.
23.(本题满分12分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:
(1)直接写出y甲、y乙(关于x的函数关系式);
(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?。