2016-2017学年上海市闵行区九校联考七年级(上)期末数学试卷

合集下载

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max{}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒4.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒5.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+=D .6352x x --=6.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 327.已知线段AB a ,,,C DE 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π8.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .349.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 10.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .811.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .12.15( ) A .1,2 B .2,3 C .3,4 D .4,5 13.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 14.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣415.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m -二、填空题16.一个角的余角等于这个角的13,这个角的度数为________. 17.已知单项式245225n m xy x y ++与是同类项,则m n =______.18.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 19.15030'的补角是______.20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 21.若α与β互为补角,且α=50°,则β的度数是_____. 22.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____. 23.化简:2x+1﹣(x+1)=_____.24.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.25.方程x +5=12(x +3)的解是________. 26.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.27.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.28.当12点20分时,钟表上时针和分针所成的角度是___________. 29.比较大小:﹣8_____﹣9(填“>”、“=”或“<“). 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等. 32.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.33.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______; ()3求当t 为何值时,1PQ AB 2=?()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.36.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.37.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)38.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用max}2,x x 的定义分情况讨论即可求解.【详解】解:当max }21,2x x =时,x ≥012,解得:x =14>x >x 2,符合题意;②x 2=12,解得:x x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .3.C解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.5.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C. 【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.6.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.7.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.8.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.9.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.10.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.11.C解析:C【分析】利用棱柱的展开图中两底面的位置对A 、D 进行判断;根据侧面的个数与底面多边形的边数相同对B 、C 进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A 、D 选项错误;当底面为三角形时,则棱柱有三个侧面,所以B 选项错误,C 选项正确.故选:C .【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.12.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.B解析:B【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.14.B解析:B【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:3x ﹣9﹣3=0,解得:x =4,故选:B .此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.15.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.二、填空题16.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质. 17.9【分析】根据同类项的定义进行解题,则,解出m 、n 的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.18.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.19.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】解:18015030'2930'-=.故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.20.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,则原式495=-=-,故答案为5-【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.21.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.22.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.23.x【解析】【分析】首先去括号,然后再合并同类项即可.解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.24.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.25.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.26.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键27.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.28.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.29.>.【解析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.30.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题31.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)] =(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.32.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数,对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯,()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 33.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2= ()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2= ()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.34.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,。

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案

【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案


2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(

A.a 元; B.0.8a

C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(

A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,

A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D

2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (

上海市闵行区七年级(上)期末数学试卷

上海市闵行区七年级(上)期末数学试卷

七年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分)1.设某数为m,则代数式3m2−52表示()A. 某数的3倍的平方减去5除以2B. 某数平方的3倍与5的差的一半C. 某数的3倍减5的一半D. 某数与5的差的3倍除以2.如果将分式xy2x+3y中的x和y都扩大到原来的3倍,那么分式的值()A. 不变B. 扩大到原来的9倍C. 缩小到原来的13D. 扩大到原来的3倍3.(13)0的值是()A. 0B. 1C. 13D. 以上都不是4.数学课上老师出了一道因式分解的思考题,题意是x2+2mx+16能在有理数的范围内因式分解,则整数m的值有几个.小军和小华为此争论不休,请你判断整数m的值有几个?()A. 4B. 5C. 6D. 85.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A. 1B. 2C. 3D. 46.如图,五角星绕着它的旋转中心旋转,使得△ABC与△DEF重合,那么旋转角的度数至少为()A. 60∘B. 120∘C. 72∘D. 144∘二、填空题(本大题共12小题,共24.0分)7.计算:(a3)2=______.8.已知单项式−43an+1b3与单项式3a2b m-2是同类项,则m+n=______.9.计算:(-12x2y3z+3xy2)÷(-3xy2)=______.10.因式分解:2x2-18=______.11.因式分解:9a2-12a+4=______.12.在分式3b3+3a,a2+b2a2−b2,m2−n2m+n,x2+xy2x,a+b−cc−a−b中,最简分式有______个.13.方程mx−1=1x−1+2如果有增根,那么增根一定是______.14.将代数式3x-2y3化为只含有正整数指数幂的形式是______.15.用科学记数法表示:-0.000321=______.16.等边三角形有______条对称轴.17.如图,三角形ABC三边的长分别为AB=m2-n2,AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S1、S2、S3,那么S1、S2、S3之间的数量关系为______.18.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为______.(结果保留π)三、计算题(本大题共5小题,共30.0分)19.计算:(m+3n)(3m-n)-2(m-n)2.20.计算:(x-1-y-1)÷(x-2-y-2).21.因式分解:x3+x2y-xy2-y3.22.解方程:11−3x+12=36x−2.23.先化简,再求值:m−2m2−9•(1+2m−7m2−4m+4)÷m+1m+3,其中m=2019.四、解答题(本大题共5小题,共34.0分)24.分解因式:(x2-x)2+(x2-x)-6.25.在图中网格上按要求画出图形,并回答问题:(1)如果将三角形ABC平移,使得点A平移到图中点D位置,点B、点C的对应点分别为点E、点F,请画出三角形DEF;(2)画出三角形ABC关于点D成中心对称的三角形A1B1C1;(3)三角形DEF与三角形A1B1C1______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O.26.依法纳税是每个公民应尽的义务.新税法规定:居民个人的综合所得,以每一纳税月收入减去费用5000元以及专项扣除、专项附加扣除和依法确定的其它扣除后的余额,为个人应纳税所得额.已知李先生某月的个人应纳税所得额比张先生的多1500元,个人所得税税率相同情况下,李先生的个人所得税税额为76.5元,而张先生的个人所得税税额为31.5元.求李先生和张先生应纳税所得额分别为多少元.(个人所得税税率=个人所得税税额应纳税所得额)27.阅读材料:已知xx2+1=13,求x2x4+1的值解:由xx2+1=13得,x2+1x=3,则有x+1x=3,由此可得,x4+1x2=x2+1x2=(x+1x)2-2=32-2=7;所以,x2x4+1=17.请理解上述材料后求:已知xx2+x+1=a,用a的代数式表示x2x4+x2+1的值.28.如图,已知一张长方形纸片,AB=CD=a,AD=BC=b(a<b<2a).将这张纸片沿着过点A的折痕翻折,使点B落在AD边上的点F,折痕交BC于点E,将折叠后的纸片再次沿着另一条过点A的折痕翻折,点E恰好与点D重合,此时折痕交DC于点G.(1)在图中确定点F、点E和点G的位置;(2)连接AE,则∠EAB=______°;(3)用含有a、b的代数式表示线段DG的长.答案和解析1.【答案】B【解析】解:∵设某数为m,代数式表示:某数平方的3倍与5的差的一半.故选:B.根据代数式的性质得出代数式的意义.此题主要考查了代数式的意义,根据已知得出代数式的意义是考查重点.2.【答案】D【解析】解:∵=,∴扩大到原来的3倍,故选:D.将分式中的x、y分别用3x、3y代替,然后利用分式的基本性质化简即可.本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.【答案】B【解析】解:()0=1.故选:B.直接利用零指数幂的性质计算得出答案.此题主要考查了零指数幂的性质,正确把握相关定义是解题关键.4.【答案】A【解析】解:∵4×4=16,(-4)×(-4)=16,2×8=16,(-2)×(-8)=16,1×16=16,(-1)×(-16)=16,∴4+4=2m,-4+-4=2m,2+8=2m,-2-8=2m,1+16=2m,-1-16=2m,分别解得:m=4,-4,5,-5,8.5,-8.5;∴整数m的值有4个,故选:A.根据把16分解成两个因数的积,2m等于这两个因数的和,分别分析得出即可.此题主要考查了十字相乘法分解因式,对常数16的正确分解是解题的关键.5.【答案】C【解析】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.6.【答案】D【解析】解:五角星的五个角可组成正五边形,而正五边形的中心角为=72°,所以五角星绕着它的旋转中心至少顺时针旋转2个72°,使得△ABC与△DEF 重合.故选:D.由于五角星的五个角可组成正五边形,根据正五边形的性质得到正五边形的中心角为72°,然后可判断要使△ABC与△DEF重合,旋转角的度数至少为2个72°.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正五边形的性质.7.【答案】a6【解析】解:(a3)2=a6.故答案为:a6.按照幂的乘方法则:底数不变,指数相乘计算.即(a m)n=a mn(m,n是正整数)本题考查了幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),牢记法则是关键.8.【答案】6【解析】解:∵单项式与单项式3a2b m-2是同类项,∴n+1=2,m-2=3,解得:n=1,m=5,m+n=5+1=6.故答案为:6.根据同类项的概念求解.本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.9.【答案】4xyz-1【解析】解:原式=4xyz-1故答案为:4xyz-1.根据整式的除法法则即可求出答案.本题考查整式的除法,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.【答案】2(x+3)(x-3)【解析】解:2x2-18=2(x2-9)=2(x+3)(x-3),故答案为:2(x+3)(x-3).提公因式2,再运用平方差公式因式分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.11.【答案】(3a-2)2【解析】解:9a2-12a+4=(3a-2)2.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确运用公式是解题关键.12.【答案】1【解析】解:==,是最简分式,==m-n,==,==-1,所以最简分式只有1个,故答案为:1.根据最简分式的定义对各个分式逐一判断即可得.本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.本题的关键是找出分子分母的公因式.13.【答案】x=1【解析】解:去分母得m=1+2(x-1),整理得m=2x-1,∵方程有增根,∴x-1=0,即x=1,∴m=2×1-1=1,即m=1时,分式方程有增根,增根为x=1.故答案为x=1.先把方程两边同乘以x-1得到m=1+2(x-1),整理得m=2x-1,又方程如果有增根,增根只能为x=1,然后把x=1代入m=2x-1,可解得m=1,所以当m=1时,分式方程有增根,增根为x=1.本题考查了分式方程的增根:把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边不成立(或分母为0),那么这个未知数的值叫分式方程的增根.14.【答案】3y3x2【解析】解:3x-2y3=3××y3=,故答案为:.依据负整数指数幂的法则进行计算即可.本题主要考查了负整数指数幂,解题时注意:a-p=.15.【答案】-3.21×10-4【解析】解:-0.000321=-3.21×10-4.故答案为:-3.21×10-4.绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.【答案】3【解析】解:等边三角形有3条对称轴.故答案为:3.轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.正确理解轴对称图形的定义是解决本题的关键,本题是一个基础题.17.【答案】S1+S2=S3【解析】解:∵AB=m2-n2,AC=2mn,BC=m2+n2,∴AB2+AC2=BC2,∴△ABC是直角三角形,设Rt△ABC的三边分别为a、b、c,∴S1=c2,S2=b2,S3=a2,∵△ABC是直角三角形,∴b2+c2=a2,即S1+S2=S3.故答案为:S1+S2=S3.首先利用勾股定理的逆定理判定△ABC是直角三角形,设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S1、S2、S3之间的数量关系.本题考查了勾股定理以及其逆定理的运用和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.18.【答案】5π【解析】解:∵△AOC≌△BOD∴阴影部分的面积=扇形OAB的面积-扇形OCD的面积=-=5π,故答案为5π.根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积-扇形OCD的面积,利用扇形的面积公式即可求解.本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积-扇形OCD的面积是解题关键.19.【答案】解:原式=3m2+8mn-3n2-2(m2-2mn+n2)=3m2+8mn-3n2-2m2+4mn-2n2=m2+12mn-5n2.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【答案】解:(x-1-y-1)÷(x-2-y-2).=(1x−1y)÷(1x2−1y2).=y−xxy÷y2−x2x2y2.=y−xxy⋅x2y2(y+x)(y−x).=xyx+y.【解析】先将负整数指数化为正整数指数,即分式形式,再通分相除,利用平方差公式分解,约分后可得到结果.此题考查了分式的混合运算和负整数指数幂,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.21.【答案】解:原式=(x3+x2y)-(xy2+y3)=x2(x+y)-y2(x+y)=(x+y)2(x-y).【解析】原式第一、二项结合,三、四项结合,提取公因式,再利用平方差公式分解即可.此题考查了因式分解-分组分解法,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.22.【答案】解:方程两边同乘以2(3x-1),得:-2+3x-1=3,解得:x=2,检验:x=2时,2(3x-1)≠0.所以x=2是原方程的解.【解析】本题考查解分式方程的能力,因为6x-2=2(3x-1),且1-3x=-(3x-1),所以可确定方程最简公分母为2(3x-1),然后方程两边乘以最简公分母化为整式方程求解.此题考查分式方程的解.解分式方程时先确定准确的最简公分母,在去分母时方程两边都乘以最简公分母,而后移项、合并求解;最后一步一定要进行检验,这也是容易忘却的一步.23.【答案】解:原式=m−2(m+3)(m−3)•m2−2m−3(m−2)2•m+3m+1=m−2(m+3)(m−3)•(m+1)(m−3)(m−2)2•m+3m+1=1m−2,当m=2019时,原式=12019−2=12017.【解析】首先计算括号内的分式,把除法转化成乘法运算,然后进行分式的乘法运算即可化简,然后把m=2019代入计算即可求解.本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.24.【答案】解:原式=(x2-x+3)(x2-x-2)=(x2-x+3)(x+1)(x-2).【解析】直接利用十字相乘法分解因式得出答案.此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.25.【答案】是【解析】解:(1)如图所示,△DEF即为所求.(2)如图所示,△A1B1C1即为所求;(3)如图所示,△DEF与△A1B1C1是关于点O成中心对称,故答案为:是.(1)由题意得出,需将点B与点C先向左平移3个单位,再向下平移1个单位,据此可得;(2)分别作出三顶点分别关于点D的对称点,再首尾顺次连接可得;(3)连接两组对应点即可得.本题主要考查作图-旋转变换和平移变换,解题的关键是熟练掌握旋转变换和平移变换的定义和性质,并据此得出变换后的对应点.26.【答案】解:设张先生应纳税所得额为x元,则李先生应纳税所得额为(x+1500)元.依题意得,765x+1500=315x,解得x=1050,经检验:x=1050是原方程的根且符合题意,当x=1050时,x+1500=2550(元),答:李先生和张先生的应纳税所得额分别为2550元、1050元.【解析】设张先生应纳税所得额为x元,则李先生应纳税所得额为(x+1500)元,二人纳税的税率用x表示出来,根据税率相同列出方程能,解方程即可.本题考查了分式方程的应用,同时考查了学生对税率概念的理解,根据税率相同找等量关系是解题的关键.27.【答案】解:由xx2+x+1=a,可得x2+x+1x=1a,则有x+1x=1a-1,由此可得,x4+x2+1x2=x2+1x2+1=(x+1x)2-2+1=(x+1x)2-1=(1a−1)2-1=1−2aa2,所以,x2x4+x2+1=a21−2a.【解析】由=a,可得=,进而得到x+=-1,再根据=x2+ +1=-2+1=-1,整体代入即可得到的值.本题主要考查了分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.28.【答案】45【解析】解:(1)点F、点E和点G的位置如图所示;(2)由折叠的性质得:∠DAE=∠EAB,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°,故答案为:45;(3)由折叠的性质得:DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b-a,设CG=x,则DG=EG=a-x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b-a)2=(a-x)2,解得:x=,∴DG=a-x=a-=a-b+.(1)根据题意作出图形即可;(2)由折叠的性质得到∠DAE=∠EAB,根据矩形的性质得到∠BAD=∠DAE+∠EAB=90°,根据等腰直角三角形的性质得到结论;(3)由折叠的性质得到DG=EG,设CG=x,则DG=EG=a-x,根据勾股定理列方程即可得到结论.本题考查了翻折变换(折叠问题),矩形的性质,正确的作出图形是解题的关键.。

2016-2017年上海市闵行区七年级上学期期末考试数学试卷

2016-2017年上海市闵行区七年级上学期期末考试数学试卷

2016-2017学年上海市闵行区九校联考七年级(上)期末试卷一、选择题(每题2分,满分12分)1.下列代数式中,单项式的个数是①23x y -;②x y ;③2x ;④a -;⑤21x +;⑥1π;⑦27x y -;⑧0( )A .3个B .4个C .5个D .6个 2.下列运算正确的是( )A .235a b ab +=B .32636a a =()C .623a a a ÷=D .235a a a ⋅=3.若分式233y x y-中的x 和y 都扩大5倍,那么分式的值( ) A .不变 B .扩大5倍 C .缩小到原来的23D .无法判断 4.下列从左到右的变形,其中是因式分解的是( )A . 222a b a b -=-()B .()22121x x x x +=-+-C . ()()2111m m m +-=-D .()()()()311311a a a a a -+-=--5.很多图标在设计时都考虑对称美.下列是几所国内知名大学的图标,若不考虑图标上的文字、字母和数字,其中是中心对称图形的是( )A .清华大学B .浙江大学C .北京大学D .中南大学6.如图,小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要怎样操作?( )A .先绕点O 逆时针旋转90°,再向右平移3个单位,向下平移6个单位B .先绕点O 顺时针旋转90°,再向右平移3个单位,向下平移6个单位C .先绕点O 逆时针旋转90°,再向右平移4个单位,向下平移5个单位D .先绕点O 顺时针旋转90°,再向右平移3个单位,向下平移6个单位二、填空题(每题2分,满分24分)7.计算:3213a b ⎛⎫- ⎪⎝⎭= . 8.计算:()()13x x -+= .9.计算:()221842a b ab ab ⎛⎫-÷- ⎪⎝⎭= . 10.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025米)的颗粒物,也称为可入肺颗粒物,2.5微米用科学记数法表示为 米.11.分解因式:224129x xy y +-= .12.如果关于x 的多项式29x kx -+是一个完全平方式,那么k = .13.如果单项式1b xy +-与2313a x y -是同类项,那么()2016b a -= . 14.当x= 时,分式293x x -+无意义. 15.关于x 的方程53244x mx x x++=--有增根,则m= . 16.如图所示,把△ABC 沿直线DE 翻折后得到△A′DE ,如果∠A′EC=32°,那么∠A′ED= .17.已知a b c ,,是三角形ABC 的三边,且2222b ab c ac +=+,则三角形ABC 的形状是 三角形.18.若2320x y +-=,则31927x y +⋅﹣= .三、计算题(每题6分,满分42分)19.计算:()()()221233x x x --+-.20.计算:221111x y x y y x-----+-+.21.分解因式:()()29a x y y x -+-22.因式分解:()()222812x x x x ++-+23.解方程:232x x x x-=+-.24.计算:22222256522x y x y x xy y x x y y-+⋅++--+.25.先化简,后求值: 286111x x x x x +-⎛⎫+-÷ ⎪--⎝⎭,其中12x =.四、解答题(满分22分)26.如图,(1)请画出△ABC关于直线MN的对称图形△A1B1C1.(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O 成中心对称的图形△A2B2C2.27.“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?28.如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM 与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.(1)图中△ADF可以绕点按顺时针方向旋转°后能与△重合;(2)用x、y的代数式表示△AEM与△EFC的面积.参考答案1-6、CDADDD7、63127a b - 8、223x x +- 9、168a b -+ 10、92.510-⨯11、()223x y - 12、6± 13、1 14、3- 15、17416、74 17、等腰 18、1319、22410x x -+20、021、()()()3131x y a a -+-22、()()()()1223x x x x -+-+23、12x =24、12x y +- 25、原式=32x x ++;代值得原式=7526、(1)如图所示:画出△ABC 关于直线MN 的对称图形111A B C ;(2)如图所示:找出对称中心O ,画出△ABC 关于点O 成中心对称的图形222A B C .27、730元28、(1)A 、90°,ABM (2)12AEM S xy =;2EFC S y xy =-。

2016-2017七年级上期末数学试卷含答案解析

2016-2017七年级上期末数学试卷含答案解析

2016-2017学年七年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1. a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣12.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,65.如图所示立体图形从上面看到的图形是()A.B.C.D.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=17.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为.12.若x3y2k与﹣x3y8是同类项,则k= .13.32.48°=度分秒.14.若一个角的余角是这个角的4倍,则这个角的补角是度.15.如果x=1是方程ax+1=2的解,则a= .16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是.17.若3<a<5,则|5﹣a|+|3﹣a|= .18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为元.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.20.计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).21.解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.四、解答题:已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?2016-2017学年七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,共40分,每小题只有一个选项符合题目要求,请将正确选项填在对应题目的空格中)1.a=,则a的值为()A.1 B.﹣1 C.0 D.1或﹣1【考点】倒数.【分析】利用倒数的定义得出a2=1,解简单的二次方程即可得出结论.【解答】解:∵a=,∴a2=1,∴a=±1,故选D.【点评】此题是倒数,主要考查了倒数的定义,简单的一元二次方程(平方根的定义),解本题的关键掌握倒数的定义,是一道比较一道基础题目.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.3x2y﹣2yx2=x2y D.﹣3x+5x=﹣8x【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母及指数不变,故B错误;C、系数相加字母及指数不变,故C正确;D、系数相加字母及指数不变,故D错误;故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.3.如图,小华的家在A处,书店在B处,星期日小明到书店去买书,他想尽快的赶到书店,请你帮助他选择一条最近的路线()A.A⇒C⇒D⇒B B.A⇒C⇒F⇒B C.A⇒C⇒E⇒F⇒B D.A⇒C⇒M⇒B【考点】线段的性质:两点之间线段最短.【分析】根据连接两点的所有线中,直线段最短的公理解答.【解答】解:∵从C到B的所有线中,直线段最短,所以选择路线为A⇒C⇒F⇒B.故选B.【点评】此题考查知识点是两点之间线段最短.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣3π,5 B.﹣3,6 C.﹣3π,7 D.﹣3π,6【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3πxy2z3的系数是:﹣3π,次数是:6.故选:D.【点评】此题主要考查了单项式的次数与系数,正确把握定义是解题关键.5.如图所示立体图形从上面看到的图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【解答】解:从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点评】解决本题的关键是得到3列正方形具体数目.6.下列方程的变形,符合等式的性质的是()A.由2x﹣3=1,得2x=1﹣3 B.由﹣2x=1,得x=﹣2C.由8﹣x=x﹣5,得﹣x﹣x=5﹣8 D.由2(x﹣3)=1,得2x﹣3=1【考点】等式的性质.【分析】根据等式的性质,可得答案.【解答】解:A、两边加不同的数,故A错误;B、两边除以不同的数,故B错误;C、两边都减同一个整式,故C正确;D、两边除以不同的数,故D错误;故选:C.【点评】本题考查了等式的性质,熟记等式的性质是解题关键.7.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x﹣1=5(1.5x)B.3x+1=50(1.5x)C.3x﹣1=(1.5x)D.180x+1=150(1.5x)【考点】由实际问题抽象出一元一次方程.【分析】首先把3小时化为180分钟,根据题意可得山下到山顶的路程可表示为180x+1或150(1.5x),再根据路程不变可得方程.【解答】解:3小时=180分钟,设上山速度为x千米/分钟,则下山速度为1.5x千米/分钟,由题意得:180x+1=150(1.5x),故选:D.【点评】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,列出方程.8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是()A.8cm B.2cm C.8cm或2cm D.4cm【考点】两点间的距离.【专题】计算题.【分析】由于点A、B、C都是直线l上的点,所以有两种情况:①当B在AC之间时,AC=AB+BC,代入数值即可计算出结果;②当C在AB之间时,此时AC=AB﹣BC,再代入已知数据即可求出结果.【解答】解:∵点A、B、C都是直线l上的点,∴有两种情况:①当B在AC之间时,AC=AB+BC,而AB=5cm,BC=3cm,∴AC=AB+BC=8cm;②当C在AB之间时,此时AC=AB﹣BC,而AB=5cm,BC=3cm,∴AC=AB﹣BC=2cm.点A与点C之间的距离是8或2cm.故选C.【点评】在未画图类问题中,正确理解题意很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.有理数m,n在数轴上分别对应的点为M,N,则下列式子结果为负数的个数是()①m+n;②m﹣n;③|m|﹣n;④m2﹣n2;⑤m3n3.A.2个B.3个C.4个D.5个【考点】数轴;正数和负数.【专题】推理填空题.【分析】根据图示,可得m<0<n,而且|m|>|n|,据此逐项判断即可.【解答】解:∵m<0<n,而且|m|>|n|,∴m+n<0,∴①的结果为负数;∵m<0<n,∴m﹣n<0,∴②的结果为负数;∵m<0<n,而且|m|>|n|,∴|m|﹣n>0,∴③的结果为正数;∵m<0<n,而且|m|>|n|,∴m2﹣n2>0,∴④的结果为正数;∵m<0<n,∴m3n3<0,∴④的结果为负数,∴式子结果为负数的个数是3个:①、②、⑤.故选:B.【点评】此题主要考查了数轴的特征和应用,以及正数、负数的特征和判断,要熟练掌握.10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A.B.99! C.9900 D.2!【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】由题目中的规定可知100!=100×99×98×…×1,98!=98×97×…×1,然后计算的值.【解答】解:∵100!=100×99×98×...×1,98!=98×97× (1)所以=100×99=9900.故选:C.【点评】本题考查的是有理数的混合运算,根据题目中的规定,先得出100!和98!的算式,再约分即可得结果.二、填空题(本大题共8小题,每小题4分,共32分,把正确答案填在题中横线上)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为 6.75×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.若x3y2k与﹣x3y8是同类项,则k= 4 .【考点】同类项.【分析】根据x3y2k与﹣x3y8是同类项,可得出2k=8,解方程即可求解.【解答】解:∵ x3y2k与﹣x3y8是同类项,∴2k=8,解得k=4.故答案为:4.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.13.32.48°=32 度28 分48 秒.【考点】度分秒的换算.【分析】先把0.48°化成分,再把0.8′化成秒即可.【解答】解:0.48°=28.8′,0.8′=48″,即32.48°=32°28′48″,故答案为:32,28,48.【点评】本题考查了度、分、秒之间的换算的应用,能熟记度、分、秒之间的关系是解此题的关键.14.若一个角的余角是这个角的4倍,则这个角的补角是162 度.【考点】余角和补角.【分析】首先设这个角为x°,则它的余角为(90﹣x)°,根据题意列出方程4x=90﹣x,计算出x 的值,进而可得补角.【解答】解:设这个角为x°,由题意得:4x=90﹣x,解得:x=18,则这个角的补角是180°﹣18°=162°,故答案为:162.【点评】此题主要考查了余角和补角,关键是掌握余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角,补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.15.如果x=1是方程ax+1=2的解,则a= 1 .【考点】一元一次方程的解.【专题】方程思想.【分析】方程的解就是能使方程的左右两边相等的未知数的值,把x=1代入即可得到一个关于a的方程,求得a的值.【解答】解:根据题意得:a+1=2解得:a=1故答案是1.【点评】本题主要考查了方程的解的定义,根据方程的解的定义可以把求未知系数的问题转化为解方程的问题.16.一个两位数,个位数字是a,十位数字比个位数字大2,则这个两位数是11a+20 .【考点】列代数式.【分析】两位数为:10×十位数字+个位数字.【解答】解:两位数,个位数字是a,十位数字比个位数字大2可表示为(a+2).∴这个两位数是10(a+2)+a=11a+20.【点评】本题的关键是,两位数的表示方法:十位数字×10+个位数字,要求掌握该方法.用字母表示数时,要注意写法:①在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号;②在代数式中出现除法运算时,一般按照分数的写法来写;③数字通常写在字母的前面;④带分数的要写成假分数的形式.17.若3<a<5,则|5﹣a|+|3﹣a|= 2 .【考点】绝对值;代数式求值.【分析】解此题可根据a的取值,然后可以去掉绝对值,即可求解.【解答】解:依题意得:原式=5﹣a+a﹣3=2.【点评】此题考查的是学生对绝对值的意义的掌握,含绝对值的数等于它本身或相反数.18.某商品按进价提高40%后标价,再打8折销售,售价为1120元,则这种电器的进价为1000 元.【考点】一元一次方程的应用.【专题】压轴题.【分析】首先设这种电器的进价是x元,则标价是(1+40%)x元,根据售价=标价×打折可得方程(1+40%)x×80%=1120,解方程可得答案.【解答】解:设这种电器的进价是x元,由题意得:(1+40%)x×80%=1120,解得:x=1000,故答案为:1000.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出题目中的等量关系,设出未知数列出方程,此题用到的公式是:售价=标价×打折.三、计算题(本题包括19、20、21题,每题12分,共36分,解答时应写出必要的计算或化简过程)19.(2016秋•岳池县期末)计算:(1)(﹣2)2×5﹣(﹣2)3+4;(2)﹣32+3+(﹣)×12+|﹣5|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=20+8+4=32;(2)原式=﹣9+3+6﹣8+5=﹣3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(2016秋•岳池县期末)计算:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy);(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n).【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(4x2y﹣3xy)﹣(5x2y﹣2xy)=4x2y﹣3xy﹣5x2y+2xy=﹣x2y﹣xy;(2)6(m+n)+3(m﹣n)﹣2(n﹣m)﹣(m+n)=6m+6n+3m﹣3n﹣2n+2m﹣m﹣n=10m.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(2016秋•岳池县期末)解方程:(1)2(4﹣1.5y)=(y+4);(2)+1=.【考点】解一元一次方程.【分析】根据一元一次方程的解法即可求出答案.【解答】解:(1)6(4﹣1.5y)=y+424﹣9y=y+4﹣y﹣9y=4﹣24﹣10y=﹣20y=10(2)2(5x﹣7)+12=3(3x﹣1)10x﹣14+12=9x﹣310x﹣9x=﹣3﹣12+14x=﹣1【点评】本题考查一元一次方程的解法,属于基础题型.四、解答题:(2016秋•岳池县期末)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求+4m﹣3cd的值.【考点】代数式求值.【分析】依据相反数、绝对值、倒数的性质可得到a+b=0,cd=1,m=±2,然后代入计算即可.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值是2,∴a+b=0,cd=1.又∵|m|=2,∴m=2或m=﹣2.当=2时,原式=0+4×2﹣3×1=5;当m=﹣2时,原式=0+4×(﹣2)﹣3×1=﹣11.所以代数式的值为5或﹣11.【点评】本题主要考查的是求代数式的值,熟练掌握相反数、绝对值、倒数的性质是解题的关键.23.化简求值:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y,其中x=,y=﹣5.【考点】整式的加减—化简求值.【分析】先去括号,合并同类项,再代入计算即可求解.【解答】解:12(x2y﹣xy2)+5(xy2﹣x2y)﹣2x2y=12x2y﹣4xy2+5xy2﹣5x2y﹣2x2y=5x2y+xy2,当x=,y=﹣5时,原式=5×()2×(﹣5)+×(﹣5)2=﹣1+5=4.【点评】此题考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.五、推理与计算题24.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.【考点】余角和补角.【分析】由于OB是∠AOC的平分线,可得∠1=∠2,则∠1:∠2:∠3:∠4=2:2:5:3,然后根据四个角的和是360°即可求得∠2的度数,再根据余角的定义可求∠2的余角∠α的度数.【解答】解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.【点评】本题考查了余角和补角,角度的计算,理解∠1:∠2:∠3:∠4=2:2:5:3是本题的关键.25.如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想出MN 的长度吗?请画出图形,并说明理由.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;(2)根据题意画出图形,同(1)即可得出结果.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=3cm,∴MN=CM+CN=4+3=7(cm);即线段MN的长是7cm.(2)能,理由如下:如图所示,∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC﹣BC)=cm.【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.六、实践应用题(10分)26.公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【考点】一元一次方程的应用.【专题】经济问题;图表型.【分析】若设初一(1)班有x人,根据总价钱即可列方程;第二问利用算术方法即可解答;第三问应尽量设计的能够享受优惠.【解答】解:(1)设初一(1)班有x人,则有13x+11(104﹣x)=1240或13x+9(104﹣x)=1240,解得:x=48或x=76(不合题意,舍去).即初一(1)班48人,初一(2)班56人;(2)1240﹣104×9=304,∴可省304元钱;(3)要想享受优惠,由(1)可知初一(1)班48人,只需多买3张,51×11=561,48×13=624>561∴48人买51人的票可以更省钱.【点评】在优惠类一类问题中,注意认真理解优惠政策,审题要细心.。

2016-2017学年七年级上期末数学试卷含答案解析

2016-2017学年七年级上期末数学试卷含答案解析

2017-2018学年七年级(上)期末数学试卷一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣22.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠16.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣510.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+111.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=8713.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是.16.比较大小:﹣﹣(填“<”或“>”)17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=cm.三、解答题(本题共8道题,满分60分)19.(6分)计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).20.(6分)解方程:=.21.(6分)先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.22.(6分)已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D 是AC的中点,求BD的长.23.(8分)在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.24.如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.25.(10分)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?26.(10分)如图,长方形纸片ABCD ,点E 、F 分别在边AB 、CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的B′处,得到折痕EC ,将点A 落在直线EF 上的点A′处,得到折痕EN .(1)若∠BEB′=110°,则∠BEC= °,∠AEN= °,∠BEC +∠AEN= °. (2)若∠BEB′=m°,则(1)中∠BEC +∠AEN 的值是否改变?请说明你的理由. (3)将∠ECF 对折,点E 刚好落在F 处,且折痕与B′C 重合,求∠DNA′.2017-2018学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每题2分,共28分)1.实数﹣2的绝对值是()A.2 B.C.D.﹣2【考点】实数的性质.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:实数﹣2的绝对值是2,故选:A.【点评】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.2.下列说法中,正确的是()A.0是最小的有理数B.0是最小的整数C.0的倒数和相反数都是0 D.0是最小的非负数【考点】有理数.【分析】根据零的意义,可得答案.【解答】解:A、没有最小的有理数,故A错误;B、没有最小的整数,故B错误;C、0没有倒数,故C错误;D、0是最小的非负数,故D正确;故选:D.【点评】本题考查了有理数,零是自然数,是最小的非负数,是整数,注意零既不是正数也不是负数.3.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变.4.下列说法中,①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半,正确的个数为()A.1个 B.2个 C.3个 D.4个【考点】两点间的距离;直线、射线、线段;直线的性质:两点确定一条直线;线段的性质:两点之间线段最短.【分析】根据直线、射线等相关的定义或定理分别判断得出答案即可.【解答】解:(1)过两点有且只有一条直线,此选项正确;(2)连接两点的线段的长度叫两点间的距离,此选项错误;(3)两点之间所有连线中,线段最短,此选项正确;(4)射线比直线小一半,根据射线与直线都无限长,故此选项错误;故正确的有2个.故选:B.【点评】本题主要考查学生对直线、射线概念公理的理解及掌握程度,熟记其内容是解题关键.5.如图,下列表示角的方法中,不正确的是()A.∠A B.∠E C.∠αD.∠1【考点】角的概念.【分析】先表示出各个角,再根据角的表示方法选出即可.【解答】解:图中的角有∠A、∠1、∠α、∠AEC,即表示方法不正确的有∠E,故选B.【点评】本题考查了对角的表示方法的应用,主要考查学生对角的表示方法的理解和掌握.6.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′24″【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54°=21°32.4′=21°32′24″.故选:D.【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.7.已知关于x的方程2x+2m=5的解是x=﹣2,则m的值为()A.B.﹣ C.D.﹣【考点】一元一次方程的解.【分析】把x=﹣2代入方程计算即可求出m的值.【解答】解:把x=﹣2代入方程得:﹣4+2m=5,解得:m=.故选C.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.把一副三角板按如图所示那样拼在一起,那么∠ABC的度数是()A.150°B.135°C.120° D.105°【考点】角的计算.【分析】∠ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ABC=30°+90°=120°,故选C.【点评】本题考查了角度的计算,理解三角板的角的度数是关键.9.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣5【考点】代数式求值.【分析】根据已知把x=2代入得:8a+2b+1=6,变形得:﹣8a﹣2b=﹣5,再将x=﹣2代入这个代数式中,最后整体代入即可.【解答】解:当x=2时,代数式ax3+bx+1的值为6,则8a+2b+1=6,8a+2b=5,∴﹣8a﹣2b=﹣5,则当x=﹣2时,ax3+bx+1=(﹣2)3a﹣2b+1=﹣8a﹣2b+1=﹣5+1=﹣4,故选B.【点评】本题考查了求代数式的值,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A.﹣5x﹣1 B.5x+1 C.﹣13x﹣1 D.13x+1【考点】整式的加减.【分析】根据和减去一个加数等于另一个加数,计算即可得到结果.【解答】解:根据题意得:(3x2+4x﹣1)﹣(3x2+9x)=3x2+4x﹣1﹣3x2﹣9x=﹣5x﹣1,故选A.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.11.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β与∠γ的关系式为()A.∠β﹣∠γ=90°B.∠β+∠γ=90° C.∠β+∠γ=80° D.∠β﹣∠γ=180°【考点】余角和补角.【分析】根据补角和余角的定义关系式,然后消去∠α即可.【解答】解:∵∠α与∠β互补,∠α与∠γ互余,∴∠α+∠β=180°,∠α+∠γ=90°.∴∠β﹣∠γ=90°.故选:A.【点评】本题主要考查的是余角和补角的定义,根据余角和补角的定义列出关系式,然后再消去∠α是解题的关键.12.在某文具店,一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,该店在新年之际举行文具优惠销售活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.设该铅笔卖出x支,则可得的一元一次方程为()A.0.8×1.2x+0.9×2(60﹣x)=87 B.0.8×1.2x+0.9×2(60+x)=87C.0.9×2x+0.8×1.2(60+x)=87 D.0.9×2x+0.8×1.2(60﹣x)=87【考点】由实际问题抽象出一元一次方程.【分析】设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,根据两种笔共卖出87元,列方程即可.【解答】解:设该铅笔卖出x支,则圆珠笔卖出(60﹣x)支,由题意得,0.8×1.2x+0.9×2(60﹣x)=87.故选A.【点评】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.13.设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是()A.﹣2a+b B.2a+b C.﹣b D.b【考点】整式的加减;数轴;绝对值.【分析】根据各点在数轴上的位置判断出a、b的符号,再去括号,合并同类项即可.【解答】解:∵由图可知,a<0<b,∴a﹣b<0,|a|=﹣a,∴原式=b﹣a+a=b.故选D.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.14.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,屠呦呦获得诺贝尔医学奖,假设她把所有奖金存入银行一年,预计一年到期后,提取本金及利息时要交纳13500元利息税,则屠呦呦的奖金是()元.A.3×105B.3×106C.3×107D.3×108【考点】科学记数法—表示较大的数.【分析】首先利用已知求出奖金总数,再利用科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:设屠呦呦的奖金是x元,根据题意可得:2.25%•x×20%=13500,解得:x=3000000,将3000000用科学记数法表示为:3×106.故选:B.【点评】此题考查了一元一次方程的应用以及科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共4小题,每小题3分,共12分)15.单项式7πa2b3的次数是5.【考点】单项式.【分析】根据所有字母的指数和叫做这个单项式的次数,可得答案.【解答】解:7πa2b3的次数是5,故答案为:5.【点评】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.16.比较大小:﹣<﹣(填“<”或“>”)【考点】有理数大小比较.【分析】根据负数的绝对值越大负数越小,可得答案.【解答】解:这是两个负数比较大小,先求他们的绝对值,|﹣|=,|﹣|=,∵>,∴﹣<﹣,故答案为:<.【点评】本题考查了有理数大小比较,利用负数的绝对值越大负数越小是解题关键.17.如图,直线AB、CD相交于点O,∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°,则∠EOF的度数为90°.【考点】角的计算.【分析】根据已知条件“∠DOE=∠BOE,OF平分∠AOD,若∠BOE=28°”和平角的定义可以求得∠AOF=∠DOF=∠AOD=62°,∠DOE=∠BOE=28°;然后根据图形求得∠EOF=∠DOF+∠DOE=62°+28°=90°.【解答】解:∵∠DOE=∠BOE,∠BOE=28°,∴∠DOB=2∠BOE=56°;又∵∠AOD+∠BOD=180°,∴∠AOD=124°;∵OF平分∠AOD,∴∠AOF=∠DOF=∠AOD=62°,∴∠EOF=∠DOF+∠DOE=62°+28°=90°.故答案是:90°.【点评】本题考查了角的计算.解题时,注意利用隐含在题干中的已知条件“∠AOB=180°”.18.已知线段AB=10cm,直线AB上有一点C,BC=4cm,则线段AC=6或14cm.【考点】两点间的距离.【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,结合图形计算即可.【解答】解:当点C在线段AB上时,AC=AB﹣BC=6cm,当点C在线段AB的延长线上时,AC=AB+BC=14cm,故答案为:6或14.【点评】本题考查的是两点间的距离的计算,灵活运用数形结合思想、分情况讨论思想是解题的关键.三、解答题(本题共8道题,满分60分)19.计算:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24).【考点】有理数的加减混合运算.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(﹣40)﹣(﹣28)﹣(﹣19)+(﹣24)=﹣40+28+19﹣24=﹣(40+24)+(28+19)=﹣64+47=﹣17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.20.解方程:=.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:4(2x﹣1)=3(x+2),去括号得:8x﹣4=3x+6,移项合并得:5x=10,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简再求值:3a+(﹣8a+2)﹣(3﹣4a),其中a=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a﹣8a+2﹣3+4a=﹣a﹣1,当a=时,原式=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.已知线段AB的长度为4cm,延长线段AB到C,使得BC=2AB,D是AC的中点,求BD的长.【考点】两点间的距离.【分析】先根据AB=4cm,BC=2AB得出BC的长,故可得出AC的长,再根据D 是AC的中点求出AD的长,根据BD=AD﹣AB即可得出结论.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.在沙坪坝住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示)(1)用含m,n 的代数式表示该广场的面积S;(2)若m,n满足(m﹣6)2+|n﹣5|=0,求出该广场的面积.【考点】整式的加减—化简求值.【分析】(1)由广场的面积等于大矩形面积减去小矩形面积表示出S即可;(2)利用非负数的性质求出m与n的值,代入S中计算即可得到结果.【解答】解:(1)根据题意得:S=2m•2n﹣m(2n﹣0.5n﹣n)=4mn﹣0.5mn=3.5mn;(2)∵(m﹣6)2+|n﹣5|=0,∴m=6,n=5,则S=3.5×6×5=105.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(1)如图,∠AOB的平分线为OM,0N为∠AOM内的一条射线,若∠BON=57°,∠AON=11°时,求∠MON的度数;(2)某同学经过认真的分析,得出一个关系式:∠MON=(∠BON﹣∠AON),你认为这个同学得出的关系式是正确的吗?若正确,请把得出这个结论的过程写出来.【考点】角平分线的定义.【分析】(1)先由角平分线定义可得∠AOM=∠AOB=(∠BON+∠AON)=×68°=34°,再根据∠MON=∠AOM﹣∠AON,代入数据计算即可;(2)先由角平分线定义可得∠AOM=∠BOM,再根据∠AOM=∠AON+∠MON,∠MON=∠BON﹣∠MON即可解题.【解答】解:(1)∵OM 平分∠AOB ,∴∠AOM=∠AOB=(∠BON +∠AON )=×68°=34°,∴∠MON=∠AOM ﹣∠AON=34°﹣11°=23°;(2)∵OM 平分∠AOB ,∴∠AOM=∠BOM ,∵∠AON +∠MON=∠BON ﹣∠MON ,∴2∠MON=∠BON ﹣∠AON ,∴∠MON=(∠BON ﹣∠AON ),因此这个同学得出的关系式正确.【点评】本题考查了角平分线定义,角的和与差的计算,(2)中求得∠AON +∠MON=∠BON ﹣∠MON 是解题的关键.25.(10分)(2016秋•路北区期末)某城市自来水收费实行阶梯水价,收费标准如下表所示:(1)某用户四月份用水量为16吨,需交水费为多少元?(2)某用户五月份交水费50元,所用水量为多少吨?(3)某用户六月份用水量为a 吨,需要交水费为多少元?【考点】一元一次方程的应用.【分析】(1)首先得出16吨,应分两段交费,再利用已知表格中数据求出答案;(2)利用五月份交水费50元,可以判断得出应分3段交费,再利用已知表格中数据得出等式求出答案;(3)利用分类讨论利用①当a ≤12时,②当12<a ≤18时,③当a >18时,求出答案.【解答】解:(1)∵12<16<18,∴2×12+2.5×(16﹣12)=24+10=34(元),答:四月份用水量为16吨,需交水费为34元;(2)设五月份所用水量为x吨,依据题意可得:2×12+6×2.5+(x﹣18)×3=50,解得;x=21,答:五月份所有水量为21吨;(3)①当a≤12时,需交水费2a元;②当12<a≤18时,需交水费,2×12+(a﹣12)×2.5=(2.5a﹣6)元,③当a>18时,需交水费2×12+6×2.5+(a﹣18)×3=(3a﹣15)元.【点评】此题主要考查了一元一次方程的应用以及列代数式,正确利用分段表示出水费的总额是解题关键.26.(10分)(2016秋•路北区期末)如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=55°,∠AEN=35°,∠BEC+∠AEN=90°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.【考点】翻折变换(折叠问题).【分析】(1)根据折叠的性质可求出∠BEC和∠AEN的度数,然后求出两角之和;(2)不变.根据折叠的性质可得∠BEC=∠B'EC,根据∠BEB′=m°,可得∠BEC=∠B'EC=∠BEB′=m°,然后求出∠AEN,最后求和进行判断;(3)根据折叠的性质可得∠B'CF=∠B'CE,∠B'CE=∠BCE,进而得出∠B'CF=∠B'CE=∠BCE,求出其度数,在Rt△BCE中,可知∠BEC与∠BCE互余,然后求出∠BEC 的度数,最后根据平角的性质和折叠的性质求解.【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC=∠BEB′=55°,∠AEN=∠A'EN=∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;(2)不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC=∠BEB′=m°,∠AEN=∠A'EN=∠AEA'=(180°﹣m°),∴∠BEC+∠AEN=m°+(180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE=×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN=∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°。

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库

上海兰生复旦人教版七年级上册数学期末试卷及答案-百度文库一、选择题1 .已知max {J7,%2,x }表示取三个数中最大的那个数,例如:当*=9时, max { = max {四5:力} =81.当)(认{«,/,工}=」时,则x 的值为()21111 A. --------B. —C. -D.—4164 22,下列判断正确的是() A.有理数的绝对值一定是正数.B.如果两个数的绝对值相等,那么这两个数相等.C.如果一个数是正数,那么这个数的绝对值是它本身.D.如果一个数的绝对值是它本身,那么这个数是正数. 3. 一个角是这个角的余角的2倍,则这个角的度数是() A. 30°B. 45°C. 60°D. 75°4.如图,直线A5与直线CO 相交于点0,N30D = 40。

,若过点。

作OELA&则当输入x 的值为64时,愉出的值是()A. 2B. 20C. 72D. V27 .已知线段/$ = ",CDE 分别是A3,3cH 。

的中点,分别以点CO,E 为圆心,以为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为()C.50。

或90。

B. 130°D. 50。

或3r-55.将方程3-二二二=工去分母得() 2 A. 3-3x-5 = 2xc. 6-3x+5 = 2x6.有一个数值转换器,流程如下:B. 3-3x+5 = 2xD. 6-3x-5 = 2xNCOE的度数为()8 .王老师有一个实际容量为1.8GB (1GB = 22"KB )的u 盘,内有三个文件夹.已知课件文 件夹占用了 0.8GB 的内存,照片文件夹内有32张大小都是2”KB 的旅行照片,音乐文件 夹内有若干首大小都是215KB 的音乐.若该u 盘内存恰好用完,10.观察下列算式,用你所发现的规律得出2?。

】5的末位数字是21=2, 22=4, 23=8, 24=16, 25=32, 26=64, 27=128, 28=256,13.用代数式表示“a 的3倍与b 的差的平方”,正确的是(14.若代数式3x-9的值与-3互为相反数,则x 的值为( 15.如果韩江的水位升高0.6加时水位变化记作+0.6加,那么水位下降0.8加时水位变化记 作()则此时文件夹内有音乐()首.A. 28B. 30C. 32D. 349. 下列方程变形正确的是( ) A. 方程x-1 X 0.2 0.5=1化成 lOx-10 10x 0----------- - -------- = 10B. C. D.方程 3-x=2-5(x-l),去括号,得 3 - x=2 - 5x - 1 方程 3x - 2=2x+l 移项得 3x - 2x=l+2 2 3方程未知数系数化为1,得t=l3 2 A. 2 B.4 C. 6 D.11. 按如图所示图形中的虚线折叠可以围成一个棱柱的是(C. 12. 估算亦在下列哪两个整数之间() A. 1, 2B. 2, 3C. 3, 4D. 4, 5 A. 3 (a - b) B. (3a - b) C. 3a - b 2D. (a - 3b) A. 2 B. 4 C. - 2D.-4A. 9 兀ClA. B.D.O16 . 一个角的余角等于这个角的1,这个角的度数为 ______________ .3 17 .已知单项式2—2y4与以5尸,”是同类项,则〃*18 .因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二 次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为 2 0% .三种方案提价最多的是方案.19 . 150 30'的补角是.20 .已知a, b 是正整数,且a<J?<b ,则a?—b?的最大值是. 21 .若a 与B 互为补角,且a=50° ,则B 的度数是. 22 .如果m -。

上海市闵行区九校联考2015-2016学年七年级(上)期末数学试卷(解析版)

上海市闵行区九校联考2015-2016学年七年级(上)期末数学试卷(解析版)

2015-2016学年上海市闵行区九校联考七年级(上)期末数学试卷一、选择题:(本大题共6题,每题2分,满分12分)1.下列代数式中:,2x+y,,,,0,整式有()个.A.3个 B.4个 C.5个 D.6个2.用代数式表示“x与y的差的平方的一半”正确的是()A.B.C.D.3.下列运算正确的是()A.3a2•4a3=12a6B.28+28=29C.(a m+b)n=a mn+b n D.(﹣2x﹣y)(y﹣2x)=﹣4x2﹣y24.数学课上老师出了一道因式分解的思考题,题意是x2+2mx+16能在有理数的范围内因式分解,则整数m的值有几个.小军和小华为此争论不休,请你判断整数m的值有几个?()A.4 B.5 C.6 D.85.从图形的几何性质考虑,下列图形中有一个与其他三个不同,它是()A. B.C.D.6.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(6a+15)cm2B.(3a+15)cm2C.(6a+9)cm2D.(2a2+5a)cm2二、填空题:(本大题共12题,每题2分,满分24分)7.如果是六次单项式,那么m=,它的系数是.8.对于分式,当x=时,分式的值为零.9.若分式无意义,则x=.10.把化成不含分母的形式.11.计算:(﹣0.5)0÷=.12.计算(结果不含负整数指数幂):=.13.若分式方程有增根,则增根是,k=.14.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学记数法表示为.15.一小包柠檬茶冲剂,用235克开水可冲泡成浓度为6%的饮料,这包柠檬茶冲剂有克.16.当3x+3﹣x=3时,代数式32x+3﹣2x的值是.17.如图,长、宽分别为a、b的长方形硬纸片拼成一个“带孔”正方形,利用面积的不同表示方法,写出一个等式.18.在长方形ABCD中,AB=2cm,BC=3cm,E、F分别是AD、BC的中点,如果长方形ABFE绕点F顺时针旋转90°,则旋转后的长方形与长方形CDEF重叠部分的面积是cm2.三、计算题:(本大题共7题,每题6分,共42分)19.计算:(4x2﹣2x3+6x)÷(﹣2x)﹣x(2x﹣1)20.计算:(3x﹣y)2﹣(x﹣2y)(x+2y)21.分解因式:x3+3x2﹣4x﹣12.22.分解因式:(a2+2a)2﹣7(a2+2a)﹣8.23.计算:.24.解方程:.25.先化简,后求值:,其中x=﹣1.四、解答题:(本大题共3题,26、27每题7分,28题8分,满分22分)26.如图,已知三角形ABC、直线MN以及线段AB的延长线上一点O.(1)画出三角形ABC关于直线MN对称的图形;(2)画出三角形绕着点O旋转180度后的图形;(3)如果AB=5厘米,BO=3厘米,计算在这次旋转运动中,线段AB扫过的面积.27.某区为治理污水,需要铺设一段全长为300米的污水排放管道.铺设120 米后,为了尽量减少施工对城市交通所造成的影响,以后每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.28.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 厘米,分别回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BE=厘米;在图③中,BF=厘米;在图④中,BM=厘米.(2)如果长方形纸条的宽为x厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(结果用x表示).2015-2016学年上海市闵行区九校联考七年级(上)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题2分,满分12分)1.下列代数式中:,2x+y,,,,0,整式有()个.A.3个 B.4个 C.5个 D.6个【考点】整式.【分析】分母不含字母的式子即为整式.【解答】解:整式有:2x+y,a2b,,0,故选(B)2.用代数式表示“x与y的差的平方的一半”正确的是()A.B.C.D.【考点】列代数式.【分析】要明确给出文字语言中的运算关系,先求差,然后求平方,再求一半.【解答】解:x与y的差为x﹣y,平方为(x﹣y)2,一半为(x﹣y)2.故选C.3.下列运算正确的是()A.3a2•4a3=12a6B.28+28=29C.(a m+b)n=a mn+b n D.(﹣2x﹣y)(y﹣2x)=﹣4x2﹣y2【考点】平方差公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据单项式乘单项式对A计算判断;根据乘方的意义对B进行判断;根据幂的乘方与积的乘方对C进行判断;由于(﹣2x﹣y)(y﹣2x)=(2x+y)(2x﹣y),所以根据平方差公式对D进行判断.【解答】解:A、3a2•4a3=12a5,所以本选项错误;B、28+28=2×28=29,所以本选项正确;C、(a m+b)n≠a mn+b n,所以本选项错误;D、(﹣2x﹣y)(y﹣2x)=(2x+y)(2x﹣y)=4x2﹣y2,所以D本选项错误.故选B.4.数学课上老师出了一道因式分解的思考题,题意是x2+2mx+16能在有理数的范围内因式分解,则整数m的值有几个.小军和小华为此争论不休,请你判断整数m的值有几个?()A.4 B.5 C.6 D.8【考点】因式分解﹣十字相乘法等.【分析】根据把16分解成两个因数的积,2m等于这两个因数的和,分别分析得出即可.【解答】解:∵4×4=16,(﹣4)×(﹣4)=16,2×8=16,(﹣2)×(﹣8)=16,1×16=16,(﹣1)×(﹣16)=16,∴4+4=2m,﹣4+﹣4=2m,2+8=2m,﹣2﹣8=2m,1+16=2m,﹣1﹣16=2m,分别解得:m=4,﹣4,5,﹣5,8.5,﹣8.5;∴整数m的值有4个,故选:A.5.从图形的几何性质考虑,下列图形中有一个与其他三个不同,它是()A. B.C.D.【考点】轴对称图形.【分析】根据图形的轴对称性来解答.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是中心对称图形;D、是轴对称图形.故选C.6.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(6a+15)cm2B.(3a+15)cm2C.(6a+9)cm2D.(2a2+5a)cm2【考点】完全平方公式的几何背景.【分析】矩形的面积等于第一个图形中两个正方形的面积的差,根据完全平方公式化简即可.【解答】解:矩形的面积(a+4)2﹣(a+1)2=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.二、填空题:(本大题共12题,每题2分,满分24分)7.如果是六次单项式,那么m=2,它的系数是.【考点】单项式.【分析】先根据已知条件确定m的值,再根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:∵是六次单项式,∴3+m+1=6,∴m=2,它的系数是﹣.故答案为2,﹣.8.对于分式,当x=﹣2时,分式的值为零.【考点】分式的值为零的条件.【分析】根据分式为零的条件列出方程和不等式,解方程和不等式即可.【解答】解:由题意得,x2﹣4=0,﹣2x+4≠0,解得,x=﹣2,故答案为:﹣2.9.若分式无意义,则x=.【考点】分式有意义的条件.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:3x﹣1=0,解得:x=,故答案是:.10.把化成不含分母的形式3ax2y2(m+2n)﹣3.【考点】负整数指数幂.【分析】将分式化为负整数指数幂的形式即可.【解答】解:化成不含分母的形式为3ax2y2(m+2n)﹣3,故答案为:3ax2y2(m+2n)﹣311.计算:(﹣0.5)0÷=﹣.【考点】实数的运算;零指数幂;负整数指数幂.【分析】注意:(﹣0.5)0=1.(﹣)﹣3=(﹣2)3=﹣8.【解答】解:(﹣0.5)0÷,=1÷(﹣8),=﹣;故答案为:.12.计算(结果不含负整数指数幂):=.【考点】负整数指数幂.【分析】结合负整数指数幂的概念和运算法则进行求解即可.【解答】解:===.故答案为:.13.若分式方程有增根,则增根是x=1,k=2.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(x﹣1),得2=x﹣1+k,即k=3﹣x.分式方程的增根是x=1,∵原方程增根为x=1,∴把x=1代入整式方程,得k=2,故答案为:x=1,2.14.已知在0摄氏度及一个标准大气压下1cm3空气的质量是0.001293克,数0.001293用科学记数法表示为 1.293×10﹣3.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.001293=1.293×10﹣3,故答案为:1.293×10﹣3.15.一小包柠檬茶冲剂,用235克开水可冲泡成浓度为6%的饮料,这包柠檬茶冲剂有15克.【考点】分式方程的应用.【分析】根据百分比,可得关于x的方程,根据解方程,可得答案.【解答】解:设柠檬有x克,根据题意,得=6%,解得x=15,故答案为:15.16.当3x+3﹣x=3时,代数式32x+3﹣2x的值是7.【考点】代数式求值.【分析】原式利用完全平方公式化简后,将已知等式代入计算即可求出值.【解答】解:∵3x+3﹣x=3,∴原式=(3x+3﹣x)2﹣2=9﹣2=7,故答案为:717.如图,长、宽分别为a、b的长方形硬纸片拼成一个“带孔”正方形,利用面积的不同表示方法,写出一个等式(a+b)2=(a﹣b)2+4ab.【考点】完全平方公式的几何背景.【分析】通过观察可以得大正方形边长为a+b,小正方形边长为a﹣b,利用大正方形面积减去小正方形面积即为阴影部分面积,得出答案.【解答】解:观察图形得:大正方形边长为:a+b,小正方形边长为:a﹣b,根据大正方形面积﹣小正方形面积=阴影面积得:(a+b)2﹣(a﹣b)2=4ab.故答案为:(a+b)2﹣(a﹣b)2=4ab.18.在长方形ABCD中,AB=2cm,BC=3cm,E、F分别是AD、BC的中点,如果长方形ABFE绕点F顺时针旋转90°,则旋转后的长方形与长方形CDEF重叠部分的面积是 2.25cm2.【考点】旋转的性质;矩形的性质.【分析】将长方形ABFE绕点F顺时针旋转90度,旋转后的长方形与长方形CDEF 重叠部分是一个正方形,其边长为FC=1.5cm,根据正方形的面积公式即可求解.【解答】解:如图,将长方形ABFE绕点F顺时针旋转90度,得到长方形A′B′FE′,设A′B′与DC交于点G,则FC=FB=FB′=BC=1.5cm,所以旋转后的长方形A′B′FE′与长方形CDEF重叠部分B′FCG是正方形,边长为1.5cm,所以,面积S=1.5×1.5=2.25(cm2).故答案是:2.25.三、计算题:(本大题共7题,每题6分,共42分)19.计算:(4x2﹣2x3+6x)÷(﹣2x)﹣x(2x﹣1)【考点】整式的除法;单项式乘多项式.【分析】根据整式的乘除法去掉括号,再合并同类项即可得出结论.【解答】解:原式=﹣2x+x2﹣3﹣2x2+x,=﹣x2﹣x﹣3.20.计算:(3x﹣y)2﹣(x﹣2y)(x+2y)【考点】平方差公式;完全平方公式.【分析】原式利用完全平方公式,以及平方差公式计算即可得到结果.【解答】解:原式=9x2﹣6xy+y2﹣x2+4y2=8x2﹣6xy+5y2.21.分解因式:x3+3x2﹣4x﹣12.【考点】因式分解﹣分组分解法.【分析】将前两项分组后两项分组,进而提取公因式再利用平方差公式分解因式.【解答】解:x3+3x2﹣4x﹣12=x2(x+3)﹣4(x+3)=(x+3)(x2﹣4)=(x+3)(x+2)(x﹣2).22.分解因式:(a2+2a)2﹣7(a2+2a)﹣8.【考点】因式分解﹣十字相乘法等.【分析】原式利用十字相乘法分解即可.【解答】解:原式=(a2+2a﹣8)(a2+2a+1)=(a+4)(a﹣2)(a+1)2.23.计算:.【考点】分式的加减法.【分析】首先把异分母转化成同分母,然后进行加减运算.【解答】解:原式=﹣﹣==.24.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边乘以(2x﹣3)(x﹣3)得:(6x﹣1)(x﹣3)=3x(2x﹣3),解得:,经检验:是原方程的根,∴.25.先化简,后求值:,其中x=﹣1.【考点】分式的化简求值.【分析】先将括号内的部分通分,再将括号外的分式因式分解,然后根据分式的除法法则,将除法转化为乘法解答.【解答】解:原式===当x=﹣1时,原式=.四、解答题:(本大题共3题,26、27每题7分,28题8分,满分22分)26.如图,已知三角形ABC、直线MN以及线段AB的延长线上一点O.(1)画出三角形ABC关于直线MN对称的图形;(2)画出三角形绕着点O旋转180度后的图形;(3)如果AB=5厘米,BO=3厘米,计算在这次旋转运动中,线段AB扫过的面积.【考点】作图﹣旋转变换;扇形面积的计算;作图﹣轴对称变换.【分析】(1)分别作出各点关于直线MN的对称点,再顺次连接即可;(2)作出各点关于O点的对称点,再顺次连接即可;(3)根据扇形的面积公式即可得出结论.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,△A″B″C″即为所求;(3)S=(25π﹣9π)=8π.27.某区为治理污水,需要铺设一段全长为300米的污水排放管道.铺设120 米后,为了尽量减少施工对城市交通所造成的影响,以后每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.【考点】分式方程的应用.【分析】设原计划每天铺设管道的长度为xm,则增加后每天的工作效率为(1+20%)x,找出等量关系:铺设120m的时间+铺设m的时间=30天,列方程求解即可.【解答】解:原计划每天铺设管道x米;列方程:,解得x=9,经检验x=9是原方程的解且符合题意;答:原计划每天铺设管道9 米.28.生活中,有人喜欢把传送的便条折成“”形状,折叠过程按图①、②、③、④的顺序进行(其中阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为2 6 厘米,分别回答下列问题:(1)如果长方形纸条的宽为2厘米,并且开始折叠时起点M与点A的距离为3厘米,那么在图②中,BE=21厘米;在图③中,BF=19厘米;在图④中,BM=15厘米.(2)如果长方形纸条的宽为x厘米,现不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离(结果用x表示).【考点】翻折变换(折叠问题);列代数式.【分析】(1)结合图形、根据旋转的性质计算即可;(2)根据纸条两端超出点P的长度相等、轴对称图形的概念计算即可.【解答】解:(1)图②中BE=AB﹣AM﹣EM=21厘米,图③中BF=19 厘米,图④中BM=15厘米,故答案为:21;19;15;(2)因为图④为轴对称图形所以AP=BM=,AM=AP+PM=+x=13﹣x,即开始折叠时点M与点A的距离是()厘米.2017年2月28日。

2016-2017年上海市七年级上学期期末考试数学试卷

2016-2017年上海市七年级上学期期末考试数学试卷

2016学年第一学期七年级数学期终考试试卷2017.1(考试时间90分钟,满分100分)一、填空题(本大题共14题,每题2分,满分28分)1.单项式542ba -的系数是_____________.2.计算:=--22)(y x _____________________. 3.分解因式:=--22145y xy x _____________. 4.计算:=÷n na a392_____________.(其中n 为整数) 5.计算:=÷-+2432)21()456x x x x (_____________.6.当=x _________时,分式3212-+-x x x 值为零.7.计算:=-⋅-223)(39)(2y x a bc c y x a _____________. 8.计算:=---22442x x x _____________.9.把32)(2b a x -化成不含分母的式子:____________________. 10.如果方程23222-=-+-x xx k x 会产生增根,那么=k _____________. 11.分解因式:=--29n ny y _____________.(其中n ≥2且n 为整数.)12.如图,将周长为8厘米的三角形ABC 沿射线BC 方向平移1厘米后得到三角形DEF ,那 么四边形ABFD 的周长等于________厘米.第12题图 第13题图13.如图,已知正方形OPQR 的顶点O 是正方形ABCD 的对角线AC 与BD 的交点,正方形 OPQR 绕点O 逆时针旋转一定角度后,三角形OPR 能与三角形OBC 重合.已知︒=∠55BOR , 那么旋转角等于________°.14.已知512=+a a ,那么=++1242a a a ________.二、选择题(本大题共4题,每题3分,满分12分) 15.如果分式yx xy-中的x 、y 的值同时扩大到原来的3倍,那么所得新分式的值( ). (A )保持不变; (B )是原分式值的3倍; (C )是原分式值的6倍; (D )是原分式值的9倍. 16.将5-102.47⨯用科学记数法表示,结果正确的是( ).(A )000472.0; (B )-41072.4⨯; (C )-61072.4⨯; (D )-310472⨯.. 17.下列图形中对称轴的条数最少的是( ).(A )正五边形; (B )等边三角形; (C )正方形; (D )长宽不等的长方形. 18.一件商品的成本为a 元,售价b 元,实际因促销活动打九折后出售(仍可盈利),那么该商品的盈利率是( ). (A )%10090⨯-a a b )(; (B )%1009.0⨯-aa b ; (C )%1009.0⨯-b a b ; (D )%100⨯-aab .三、简答题(本大题共6题,每题6分,满分36分)19.计算:()()a a 2121--+-. 20.分解因式:3212123a a a +-.解: 解:21.分解因式:xy x y x 215652--+. 22.计算:24)44822(2+-÷+++-+-a a a a a a a . 解: 解:23.解方程:. 24、计算.32020162-3220161)()()(+--π-+---. 解: 解:四、解答题(本大题共3题,第25题7分,第26题7分,第27题10分,满分24分)25.作图题(保留作图痕迹,不必写出画法)(1)将点A向右平移3个单位可到达点B,再向上平移2个单位可到达点C,标出点B、点C,并联结AB、BC和AC.(2)在方格图中分别画出三角形A1B1C1和三角形A2B2C2,使三角形A1B1C1和三角形ABC关于直线MN成轴对称;三角形A2B2C2和三角形ABC关于点O成中心对称.(3)三角形A1B1C1和三角形A2B2C2有没有对称关系?如果有,成怎样的对称关系?解:26.甲、乙两名同学各在电脑上输入1500个汉字,乙的输入速度是甲的3倍,因此比甲少用20分钟完成任务,那么它们两个平均每分钟各输入多少个汉字?解:27.如图,将直角三角形ABC (︒=∠90BAC )经过平移、旋转、翻折三种运动中的一种或多于一种运动后,得到三角形DCE ,其中点D 、点C 、点E 分别是点A 、点B 、点C 的对应点,且A 、C 、D 三点在同一直线上.联结BE ,得到四边形ABED .已知︒=∠37ABC ,︒=∠53ACB . (1)直角三角形ABC (︒=∠90BAC )如何经过一种或几种运动后得到三角形DCE ?请写出具体的运动过程 .(可能有多种方法,只要写出一种方法即可) (2)三角形BCE 是个怎样的三角形?请简单说明理由 . (3)已知AB =8,四边形ABED 的面积为98,求CE 的长.A第27题图2016学年第一学期七年级数学学科期终试卷参考答案及评分标准一、填空题(本大题共14题,每题2分,满分28分)1.45;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14..二、选择题(本大题共4题,每题3分,满分12分)15.B;16.B;17.D;18.B.三、简答题(本大题共6题,每题6分,满分36分)19、计算:.解:原式=.4分=.2分20、分解因式:.解:原式=3分=.3分21、分解因式:.解:原式=2分=2分=.2分22、计算:解:原式= 1分= 1分= 1分= 1分= 1分=.1分23、解方程:解:……………………………………………………………………1分x(x-2)+x(x+3)=2(x+3)(x-2)……………………………………………………1分x2-2x+x2+3x=2(x2+x-6)……………………………………………………1分2x2+x=2x2+2x-12……………………………………………………1分x=2x-12x=12………………………………………………………………1分经检验,x=12是原方程的解。

上海市七年级上学期数学期末考试试卷

上海市七年级上学期数学期末考试试卷

上海市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016八上·东莞开学考) 下列各式正确的是()A . ﹣|﹣3|=3B . +(﹣3)=3C . ﹣(﹣3)=3D . ﹣(﹣3)=﹣32. (2分) (2019七下·海港期中) 如图,已知直线AB、CD、EF、MN相交于点O,CD⊥AB,OC平分∠EOM,图中∠EOC的余角的个数是()A . 1B . 2C . 3D . 43. (2分) (2017七上·天门期中) 下列说法正确的是()A . 5不是单项式B . 多项式﹣2x2+5x中的二次项的系数是2C . 单项式的系数是,次数是4D . 多项式3x2y﹣xy2+2xy是三次二项式4. (2分)(2019·从化模拟) 如图所示的几何体的左视图是()A .B .C .D .5. (2分)(2014·桂林) 下列各式中,与2a的同类项的是()A . 3aB . 2abC . ﹣3a2D . a2b6. (2分) (2019七上·云安期末) 下列各组整式中是同类项的是()A . a3与b3B . 2a2b与﹣a2bC . ﹣ab2c与﹣5b2cD . x2与2x7. (2分) (2019七上·开州月考) 数轴上到点-2的距离为4的点有().A . 2B . -6或2C . 0D . -68. (2分)某书店按标价的八折售出,仍可获利20%,若该书的进价为18元,则标价为()A . 27元B . 28元C . 29元D . 30元9. (2分) (2017七上·沂水期末) 小李同学的座右铭是“态度决定一切“,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“切”相对的字是()A . 态B . 度C . 决D . 定10. (2分)一件工作,甲单独做20h完成,乙单独做12h完成,现甲单独做4h后,乙加入和甲一起做,还要几小时完成?若设还要x h完成,则依题意可列方程为()A . =1B . -+=1C . +-=1D . ++=111. (2分)计算(m+n)-2(m-n)的结果是()A . 3n-2mB . 3n+mC . 3n-mD . 3n+2m12. (2分)如图,数轴上有A,B,C,D四个点,其中绝对值为2的数对应的点是()A . 点A与点CB . 点A与点DC . 点B与点CD . 点B与点D二、填空题 (共6题;共6分)13. (1分)(2017·大理模拟) |﹣ |=________.14. (1分) (2019七上·东阳期末) 若∠α=39°21′,则∠α的余角为________.15. (1分) (2019七上·江北期末) 若关于x的方程2x+a=5的解为x=﹣1,则a=________.16. (1分)(2019·兰坪模拟) 已知x2+x-1=0,则3x2+3x-5=________.17. (1分)(2016·赤峰) 甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转________周,时针和分针第一次相遇.18. (1分)如图,∠α=120°,∠β=90°,则∠γ的度数是________ °.三、解答题 (共8题;共57分)19. (5分) (2019七上·深圳期末) 某文艺团体为“希望工程”募捐组织了一场义演,共售出2000张票,筹得票款13600元.已知学生票5元/张,成人票8元/张,问成人票与学生票各售出多少张?20. (11分) (2019七上·湖州期末) 如图1,已知数轴上有三点A、B、C,它们对应的数分别为a、b、c,且c-b=b-a;点C对应的数是10.(1)若BC=15,求a、b的值;(2)如图2,在(1)的条件下,O为原点,动点P、Q分别从A、C同时出发,点P向左运动,运动速度为2个单位长度/秒,点Q向右运动,运动速度为1个单位长度/秒,N为OP的中点,M为BQ的中点.①用含t代数式表示PQ、 MN;②在P、Q的运动过程中,PQ与MN存在一个确定的等量关系,请指出他们之间的关系,并说明理由.21. (10分) (2019七上·吉林期末) 计算(﹣10)3+[(﹣4)2﹣(1﹣32)×2].22. (5分)如果方程3(x−1)−2(x+1)=−3和的解相同,求出a的值.23. (5分) (2017八上·江门月考) a,b分别代表铁路和公路,点M、N分别代表蔬菜和杂货批发市场.现要建中转站O点,使O点到铁路、公路距离相等,且到两市场距离相等.请用尺规画出O点位置(不写作法,保留作图痕迹).24. (5分) (2020八上·长丰期末) 如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求△BDC的面积.25. (10分)如图,△ABC是等边三角形,D是边BC上(除B,C外)的任意一点,∠ADE=60°,且DE交∠ACF的平分线CE于点E.求证:(1)∠1=∠2;(2) AD=DE.26. (6分) (2018七上·武昌期中) 已知|a+4|+(b﹣2)2=0,数轴上A、B两点所对应的数分别是a和b(1)填空:a=________,b=________(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共57分)19-1、20-1、20-2、21-1、22-1、23-1、24-1、25-1、25-2、26-1、26-2、26-3、。

上海版2016学年初一年级第一学期期末考试数学试卷(附答案)

上海版2016学年初一年级第一学期期末考试数学试卷(附答案)

2016学年第一学期期末考试七年级数学试卷 ⋯ (考试时间90分钟,满分100分)⋯ ⋯ ⋯ ⋯ ⋯线 题 号一 二 三 四 五 总 分 ⋯ ⋯⋯_ 封 得 分_⋯ __ ⋯一、填 空题: __ ⋯(每小题2 分,共 28分) __密_ : ⋯1.“a 的立方与b 的平方的差”用代数式表示为: _____________________________。

号 ⋯4x 3 2xy 2 3x 2y y 3 按字母y 降幂排列:_______________________。

3.已 学 ⋯2.将多项式过_ ⋯⋯知x mnx mn x 6,则m=__________________。

⋯__超3 912 _ 4.已知M 是单项式,且 M _ ab ,则M=______________________。

_⋯ __ ⋯_⋯_ 5.计算: (a 2b)(2b a)=_________________________。

__得 _ _⋯ 1 _=________________________________。

名 ⋯6.分解因式:x 2姓 ⋯16 不 ⋯7.分解因式:(x5)(3x 2)3(x 5)=___________________。

⋯_ ⋯x 1_题的值为零。

_ 8.当x=___________时,分式 _1_ ⋯ x _⋯ __⋯5x 7 4x 11 __答9.化简:22=____________________。

_ x 4x x 4x_⋯0.0000197=_____________________。

:⋯10.用科学计数法表示:级⋯班生11.设x 2z 3y,则代数式x 24z24xz 9y2的值是__________________。

⋯⋯12.下列图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5⋯考个,则第n幅图中共有个。

⋯⋯⋯⋯⋯⋯⋯图(1)图(2)图(3) A 图B(n)N ⋯13.如图右,三个大小一样的正方形,正方形CDFE绕点C旋转后 DC M能与正方形CMNB重合,那么旋转角为______________度。

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷含答案解析

2016-2017学年度七年级(上)期末数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.6.已知x=3是关于x的方程5(x﹣1)﹣3a=﹣2的解,则a的值是()A.﹣4 B.4 C.6 D.﹣67.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=.三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程:=1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2016-2017学年度七年级(上)期末数学试卷参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m ﹣n=﹣4.故选A .【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( ) A .﹣4 B .4 C .6 D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6°.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92%.【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)=﹣7.【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n=16.【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程:=1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林B:汽车限行C:拆除燃煤小锅炉D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年上海市闵行区九校联考七年级(上)期末数学试卷一、选择题(每题2分,满分12分)1.(2分)下列代数式中,单项式的个数是①2x﹣3y;②xy;③x2;④﹣a;⑤2x+1;⑥1π;⑦﹣7x2y;⑧0()A.3个B.4个C.5个D.6个2.(2分)下列运算正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6÷a2=a3D.a2•a3=a53.(2分)若分式2y3x−3y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小到原来的23D.无法判断4.(2分)下列从左到右的变形,其中是因式分解的是()A.2(a﹣b)=2a﹣2b B.x2﹣2x+1=x(x﹣2)+1C.(m+1)(m﹣1)=m2﹣1D.3a(a﹣1)+(1﹣a)=(3a﹣1)(a﹣1)5.(2分)很多图标在设计时都考虑对称美.下列是几所国内知名大学的图标,若不考虑图标上的文字、字母和数字,其中是中心对称图形的是()A.清华大学B.浙江大学C.北京大学D.中南大学6.(2分)如图,小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要怎样操作?()A .先绕点O 逆时针旋转90°,再向右平移3个单位,向下平移6个单位B .先绕点O 顺时针旋转90°,再向右平移4个单位,向下平移6个单位C .先绕点O 逆时针旋转90°,再向右平移4个单位,向下平移5个单位D .先绕点O 顺时针旋转90°,再向右平移3个单位,向下平移6个单位二、填空题(每题2分,满分24分)7. (2分)计算:(﹣13a 2b )3= . 8. (2分)计算:(x ﹣1)(x +3)= .9. (2分)计算:(8a 2b ﹣4ab 2)÷(﹣12ab )= . 10. (2分)PM2.5是指大气中直径小于或等于2.5微米(0.0000000025米)的颗粒物,也称为可入肺颗粒物,2.5微米用科学记数法表示为 米. 11. (2分)分解因式:4x 2﹣12xy +9y 2= .12. (2分)如果关于x 的多项式x 2﹣kx +9是一个完全平方式,那么k = . 13. (2分)如果单项式﹣xy b +1与13x a ﹣2y 3是同类项,那么(b ﹣a )2016= . 14. (2分)当x = 时,分式x 2−9x+3无意义. 15. (2分)关于x 的方程5x x−4+3+mx 4−x=2有增根,则m = . 16. (2分)如图所示,把△ABC 沿直线DE 翻折后得到△A′DE ,如果∠A′EC=32°,那么∠A′ED= .17. (2分)已知a ,b ,c 是三角形ABC 的三边,且b 2+2ab =c 2+2ac ,则三角形ABC 的形状是 三角形.18.(2分)若2x+3y﹣2=0,则9x﹣3•27y+1=.三、计算题(每题6分,满分42分)19.(6分)计算:(2x﹣1)2﹣2(x+3)(x﹣3).20.(6分)计算:x−2−y−2x−1+y−1+1y﹣1x.21.(6分)分解因式:9a2(x﹣y)+(y﹣x)22.(6分)因式分解:(x2+x)2﹣8(x2+x)+12.23.(6分)解方程:x3+x−x2−x=2.24.(6分)计算:x2−y2x2+6xy+5y2•x+5yx2−2x−y2+2y.25.(6分)先化简,后求值:(x+1﹣8x−1)÷x2+x−6x−1,其中x=12.四、解答题(满分22分)26.(6分)如图,(1)请画出△ABC关于直线MN的对称图形△A1B1C1.(2)如果点A2是点A关于某点成中心对称,请标出这个对称中心O,并画出△ABC关于点O成中心对称的图形△A2B2C2.27.(7分)“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?28.(9分)如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.(1)图中△ADF可以绕点按顺时针方向旋转°后能与△重合;(2)用x、y的代数式表示△AEM与△EFC的面积.2016-2017学年上海市闵行区九校联考七年级(上)期末数学试卷参考答案与试题解析一、选择题(每题2分,满分12分)1.(2分)下列代数式中,单项式的个数是①2x﹣3y;②xy;③x2;④﹣a;⑤2x+1;⑥1π;⑦﹣7x2y;⑧0()A.3个B.4个C.5个D.6个【解答】解:③x2;④﹣a;⑥1π;⑦﹣7x2y;⑧0是单项式,故选(C)2.(2分)下列运算正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6÷a2=a3D.a2•a3=a5【解答】解:A、2a+3b无法计算,故此选项错误;B、(3a3)2=9a6,故此选项错误;C、a6÷a2=a4,故此选项错误;D、a2•a3=a5,故此选项正确;故选:D.3.(2分)若分式2y 3x−3y中的x 和y 都扩大5倍,那么分式的值( ) A .不变 B .扩大5倍C .缩小到原来的23D .无法判断 【解答】解:分式2y 3x−3y 中的x 和y 都扩大5倍,那么分式的值不变, 故选:A .4.(2分)下列从左到右的变形,其中是因式分解的是( )A .2(a ﹣b )=2a ﹣2bB .x 2﹣2x +1=x (x ﹣2)+1C .(m +1)(m ﹣1)=m 2﹣1D .3a (a ﹣1)+(1﹣a )=(3a ﹣1)(a ﹣1)【解答】解:选项A 、C 是多项式的乘法,选项B 不是积的形式,不是因式分解.选项D 把多项式变形成了整式积的形式,属于因式分解.故选D .5.(2分)很多图标在设计时都考虑对称美.下列是几所国内知名大学的图标,若不考虑图标上的文字、字母和数字,其中是中心对称图形的是( )A .清华大学B .浙江大学C .北京大学D .中南大学【解答】解:A 、不中心对称的图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选:D .6.(2分)如图,小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要怎样操作?( )A .先绕点O 逆时针旋转90°,再向右平移3个单位,向下平移6个单位B .先绕点O 顺时针旋转90°,再向右平移4个单位,向下平移6个单位C .先绕点O 逆时针旋转90°,再向右平移4个单位,向下平移5个单位D .先绕点O 顺时针旋转90°,再向右平移3个单位,向下平移6个单位【解答】解:小明正在玩俄罗斯方块,他想将正在下降的“L”型插入图中①的位置,他需要先绕点O 顺时针旋转90°,再向右平移3个单位,向下平移6个单位; 故选:D .二、填空题(每题2分,满分24分)7.(2分)计算:(﹣13a 2b )3= ﹣127a 6b 3 . 【解答】解:原式=﹣127a 6b 3. 故答案是=﹣127a 6b 3.8.(2分)计算:(x ﹣1)(x +3)= x 2+2x ﹣3 .【解答】解:(x ﹣1)(x +3)=x 2+3x ﹣x ﹣3=x 2+2x ﹣3.故答案为:x 2+2x ﹣3.9.(2分)计算:(8a 2b ﹣4ab 2)÷(﹣12ab )= ﹣16a +8b . 【解答】解:(8a 2b ﹣4ab 2)÷(﹣12ab ) =8a 2b ÷(﹣12ab )﹣4ab 2÷(﹣12ab ) =﹣16a +8b .故答案为:﹣16a+8b.10.(2分)PM2.5是指大气中直径小于或等于2.5微米(0.0000000025米)的颗粒物,也称为可入肺颗粒物,2.5微米用科学记数法表示为 2.5×10﹣9米.【解答】解:0.00 000 000 25=2.5×10﹣9,故答案为:2.5×10﹣9.11.(2分)分解因式:4x2﹣12xy+9y2=(2x﹣3y)2.【解答】解:原式=(2x﹣3y)2.故答案是:(2x﹣3y)2.12.(2分)如果关于x的多项式x2﹣kx+9是一个完全平方式,那么k=±6.【解答】解:∵关于x的多项式x2﹣kx+9是一个完全平方式,∴k=±6,故答案为:±613.(2分)如果单项式﹣xy b+1与13x a﹣2y3是同类项,那么(b﹣a)2016=1.【解答】解:由题意,得a﹣2=1,b+1=3,解得a=3,b=2.(b﹣a)2016=(﹣1)2016=1,故答案为日:1.14.(2分)当x=﹣3时,分式x2−9x+3无意义.【解答】解:由题意得:x+3=0,解得:x=﹣3,故答案为:﹣3.15.(2分)关于x 的方程5x x−4+3+mx 4−x =2有增根,则m = 174. 【解答】解:去分母得:5x ﹣3﹣mx =2x ﹣8,由分式方程有增根,得到x ﹣4=0,即x =4,把x =4代入整式方程得:20﹣3﹣4m =0,快捷得:m =174, 故答案为:17416.(2分)如图所示,把△ABC 沿直线DE 翻折后得到△A′DE ,如果∠A′EC=32°,那么∠A′ED= 74° .【解答】解:∵把△ABC 沿直线DE 翻折后得到△A′DE ,∴∠A′ED=∠AED ,∵∠A′EC=32°,∴∠A′ED=(180°﹣32°)÷2=74°.故答案为:74°.17.(2分)已知a ,b ,c 是三角形ABC 的三边,且b 2+2ab =c 2+2ac ,则三角形ABC 的形状是 等腰 三角形.【解答】解:∵b 2+2ab =c 2+2ac ,∴b 2+2ab +a 2=c 2+2ac +a 2,∴(a +b )2=(a +c )2,∴a +b =a +c ,∴b =c ,∴三角形ABC 是等腰三角形,故答案为:等腰.18.(2分)若2x +3y ﹣2=0,则9x ﹣3•27y +1=13. 【解答】解:∵2x +3y ﹣2=0,∴2x +3y =2,9x ﹣3•27y +1=(32)x ﹣3•(33)y +1=32x ﹣6•33y +3=32x +3y ﹣3,=3﹣1=13. 故答案为:13. 三、计算题(每题6分,满分42分)19.(6分)计算:(2x ﹣1)2﹣2(x +3)(x ﹣3).【解答】解:(2x ﹣1)2﹣2(x +3)(x ﹣3) =4x 2﹣4x +1﹣2x 2+18=2x 2﹣4x +19.20.(6分)计算:x −2−y −2x −1+y −1+1y ﹣1x. 【解答】解:原式=1x 2−1y 21x −1y +1y ﹣1x =(1x +1y )(1x −1y )1x +1y +1y ﹣1x =1x ﹣1y +1y ﹣1x =021.(6分)分解因式:9a 2(x ﹣y )+(y ﹣x )【解答】解:9a 2(x ﹣y )+(y ﹣x )=(x﹣y)(9a2﹣1)=(x﹣y)(3a+1)(3a﹣1).22.(6分)因式分解:(x2+x)2﹣8(x2+x)+12.【解答】解:(x2+x)2﹣8(x2+x)+12,=(x2+x﹣2)(x2+x﹣6),=(x﹣1)(x+2)(x﹣2)(x+3).23.(6分)解方程:x3+x −x2−x=2.【解答】解:方程两边同乘以(x+3)(2﹣x),得(1分)x(2﹣x)﹣x(x+3)=2(x+3)(2﹣x)(2分)2x﹣x2﹣3x﹣x2=12﹣2x﹣2x2∴x=12(3分)检验:当x=12时,(x+3)(2﹣x)≠0∴原方程的解为x=12.(4分)24.(6分)计算:x2−y2x2+6xy+5y2•x+5yx2−2x−y2+2y.【解答】解:原式=(x−y)(x+y)(x+y)(x+5y)•x+5y(x−y)(x+y)−2(x−y)=(x−y)(x+y)(x+y)(x+5y)•x+5y(x−y)(x+y−2)=1x+y−225.(6分)先化简,后求值:(x+1﹣8x−1)÷x2+x−6x−1,其中x=12.【解答】解:原式=(x+1)(x−1)−8x−1•x−1(x+3)(x−2)=(x+3)(x−3)x−1•x−1(x+3)(x−2)=x−3 x−2.当x =12时,原式=12−312−2=53. 四、解答题(满分22分)26.(6分)如图,(1)请画出△ABC 关于直线MN 的对称图形△A 1B 1C 1.(2)如果点A 2是点A 关于某点成中心对称,请标出这个对称中心O ,并画出△ABC 关于点O 成中心对称的图形△A 2B 2C 2.【解答】解:(1)如图所示:画出△ABC 关于直线MN 的对称图形△A 1B 1C 1;(2)如图所示:找出对称中心O ,画出△ABC 关于点O 成中心对称的图形△A 2B 2C 2.27.(7分)“新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?【解答】解:设这种新型儿童玩具第一次进价为x 元/个,则第二次进价为1.2x 元/个,根据题意,得15001.2x ﹣1200x=10, 变形为:1500﹣1440=12x ,解得:x =5,经检验,x=5是原方程的解,则该老板这两次购买玩具一共盈利为:15001.2×5×(8﹣1.2×5)+12005×(7﹣5)=980(元).答:该老板两次一共赚了980元.28.(9分)如图,四边形ABCD是正方形,BM=DF,AF垂直AM,M、B、C在一条直线上,且△AEM与△AEF恰好关于AE所在直线成轴对称,已知EF=x,正方形边长为y.(1)图中△ADF可以绕点A按顺时针方向旋转90°后能与△ABM重合;(2)用x、y的代数式表示△AEM与△EFC的面积.【解答】解:(1)图中△ADF可以绕点A按顺时针方向旋转90°后能够与△ABM 重合;故答案为:A、90°,ABM.(2)∵△AEM与△AEF恰好关于所在直线成轴对称,∴EF=EM,即x=BE+BM,∵BM=DF,∴x=DF+BE,∴S△AME =12•AB•ME=12xy,S△CEF=S正方形ABCD﹣S△AEF﹣S△ABE﹣S△ADF=y2﹣12xy﹣12•y•BE﹣12•y•DF=y2﹣12xy﹣12•y(BE+DF)=y2﹣12xy﹣12•y•x=y2﹣xy.。

相关文档
最新文档