2005年全国1卷高考数学试卷(理科)q

合集下载

2005年高考数学试题全集32套

2005年高考数学试题全集32套

2005年全国高考数学试题全集(3)(10套)目录2005年普通高等学校招生全国统一考试(辽宁卷) (2)2005年普通高等学校招生全国统一考试理科数学(山东卷) (15)2005年普通高等学校招生全国统一考试文科数学(山东卷) (25)2005年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷) (34)2005年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷) (46)2005年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷) (57)2005年普通高等学校招生全国统一考试数学(文史类)(浙江卷) (68)2005年普通高等学校春季招生考试数学(理工农医类)(北京卷) (77)2005年普通高等学校春季招生考试数学(文史类)(北京卷) (86)2005年上海市普通高等学校春季招生考试 (94)2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2x x e e y --= D .2xx e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范 围是( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.nxx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的球面上,求△ABC 的边长. 18.(本小题满分12分)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=最大?最大值是多少? (解答时须给出图示) 21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷及解析(理)

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅ D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.B. C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x 有两个交点时,其斜率k的取值范围是()A.B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A. B.C. D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A. B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,其面积S△ABC=×(2×1+2×)=,故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m= 155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指【分析】利用二项式定理的通项公式T r+1数幂运算后令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9【解答】解:由通项公式得T r+1﹣r=(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知x 0 πy ﹣﹣1 0 1 0 ﹣故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M 是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB 为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n >0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n 的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是ξ0 10 20 30P0.670 0.287 0.041 0.002∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x 轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年高考浙江理科数学试题及答案

2005年高考浙江理科数学试题及答案

2005年普通高等学校招生全国统一考试(浙江卷)数学(理工类)第Ⅰ卷 (选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++++∞→2321limnnn( )A .2B .1C .21 D .0 2.点(1,-1)到直线01=+-y x 的距离是( )A .21 B .23 C .22 D .2233.设=⎪⎩⎪⎨⎧>+≤--=)]21([,1||,11,1||,2|1|)(2f f x xx x x f 则( )A .21B .134C .59-D .41254.在复平面内,复数2)31(1i ii+++对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在8765)1()1()1()1(x x x x -+-+-+-的展开式中,含3x 的项的系数是 ( )A .74B .121C .-74D .-1216.设α、β为两个不同的平面,l 、m 为两条不同的直线,且βα⊂⊂m l ,. 有如下两个命 题:①若m l //,//则βα;②若.,βα⊥⊥则m l 那么( )A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题7.设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边 界的阴影部分)是( )A .B .C .D .8.已知4-<k ,则函数)1(cos 2cos -+=x k x y 的最小值是 ( )A .1B .-1C .12+kD .12+-k9.设})(|{}.7,6,5,4,3{},5,4,3,2,1{),(12)(P n f N n P Q P N n n n f ∈∈===∈+=记, P Q n f N n Q (},)(|{则∈∈=)Q Q ( =)P( )A .{0,3}B .{1,2}C .{3,4,5}D .{1,2,6,7}10.已知向量a ≠e ,|e |=1满足:对任意∈t R ,恒有|a -t e |≥|a -e |. 则 ( )A .a ⊥eB .a ⊥(a -e )C .e ⊥(a -e )D .(a +e )⊥(a -e )第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 11.函数∈+=x x x y (2R ,且)2-≠x 的反函数是 .12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E(如图).现将△ADE 沿DE 折起,使二面角A —DE —B 为45°,此时点A 在平面BCDE 内的射影恰为点B , 则M 、N 的连线与AE 所成角的大小等于 . 13.过双曲线)0,0(12222>>=-b a by ax 的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于 . 14.从集合{O ,P ,Q ,R ,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O 、Q 和数字0至多只出现一个的不同排法种 数是 (用数字作答).三、解答题:本大题共6小题,每小题14分,共84分. 解答应写出文字说明,证明过程或演算步骤.15.已知函数.cos sin sin 3)(2x x x x f +-=(Ⅰ)求)625(πf 的值;(Ⅱ)设ααπαsin ,2341)2(),,0(求-=∈f 的值.NDABC16.已知函数)xgf和的图象关于原点对称,且.(x()f+=x)2(2xx (Ⅰ)求函数)g的解析式;(x(Ⅱ)解不等式.|1fxg≥xx)|)((--17.如图,已知椭圆的中心在坐标原点,焦点F 1、F 2在x 轴上,长轴A 1A 2的长为4,左准线x l 与轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线11),1|(|:l P x m x l 为>=上的动点,使21PF F ∠最大的点P 记为Q ,求点Q的坐标(用m 表示).18.如图,在三棱锥P —ABC 中,,,kPA BC AB BC AB ==⊥点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC.(Ⅰ)求证OD//平面PAB ; (Ⅱ)当21=k 时,求直线PA 与平面PBC 所成角的大小;(Ⅲ)当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?BCPDAo19.袋子A 和B 中装有若干个均匀的红球和白球, 从A 中摸出一个红球的概率是31,从B中摸出一个红球的概率为p .(Ⅰ)从A 中有放回地摸球, 每次摸出一个, 有3次摸到红球即停止. ( i ) 求恰好摸5次停止的概率; ( ii ) 记5次之内 (含5次) 摸到红球的次数为ξ, 求随机变量ξ的分布列及数学期望E ξ.(Ⅱ)若A 、B 两个袋子中的球数之比为1∶2,将A 、B 中的球装在一起后, 从中摸出一个红球的概率是52, 求p 的值.20.设点)2.(),0,(1-n n n n n x P x A 和抛物线),(:2*∈++=N n b x a x y C n n n 其中n n n x n a ,21421----=由以下方法得到:)2,(,1221x P x 点=在抛物线1121:b x a x y C ++=上,点A 1(x 1,0)到P 2的距离是A 1到C 1上的最短距离,……,点)2,(11n n n x P ++在抛物线上n n n b x a x y C ++=2:上,点1)0,(+n n n P x A 到的距离是A n到C n 上点的最短距离. (Ⅰ)求12C x 及的方程; (Ⅱ)证明}{n x 是等差数列.数学试题(理科)参考答案一.选择题:本题考查基本知识和基本运算。

2005年高考数学试卷

2005年高考数学试卷

2005年普通高等学校招生全国统一考试 理科数学(全国卷Ⅰ)无答案解析本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181- (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32(B )33 (C )34 (D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23 (C )26(D )332 (6)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对(12)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年高考理科数学全国卷Ⅰ试题含答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题含答案(河北、河南、安徽、山西、海南等地区用)

2
sin 2x
(A)2
(B) 2 3
(C)4
(D) 2 3 3
(D) 4 3
(8)设 b 0 ,二次函数 y = ax2 + bx + a2 −1的图像为下列之一
y
y
y
y
-1 o 1
x
-1 o 1
x
o
xo
x
则 a 的值为
(A)1
(B) −1
(C) −1 − 5 2
(D) − 1 + 5 2
(9)设 0 a 1,函数 f (x) = log a (a2x − 2a x − 2) ,则使 f (x) 0 的 x 的取值范围是
范围是
(A)(− 2 2,2 2) (B)(− 2,2) (C)(− 2 , 2 ) (D)(− 1,1)
44
88
(5)如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 1 的正方形,且 ADE、BCF
均为正三角形,EF∥AB,EF=2,则该多面体的体积为
(A) 2 (B) 3
3
3
(C) 4 3
新,用铅笔把答题卡上对应题目的答案标号涂黑
新疆 王新敞
如需改动,用橡皮
奎屯
擦干净后,再选涂其它答案标号 不能答在试题卷上
新疆
新疆
王新敞
王新敞
奎屯
奎屯
3.本卷共
12
小题,每小题
5
分,共
60
分 在每小题给出的四个选项中,只有一项是符 新疆 王新敞
奎屯
合题目要求的 新疆 王新敞 奎屯
方法二:因为 PA⊥PD,PA⊥AB,AD⊥AB,以 A 为坐标原点 AD 长为单位长度,如图建 立空间直角坐标系,则各点坐标为

2005年全国1卷高考数学试卷(理科)q

2005年全国1卷高考数学试卷(理科)q

2005年全国1卷高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.C I S1∩(S2∪S3)=ΦB.S1⊆(C I S2∩C I S3)C.C I S1∩C I S2∩C I S3)=ΦD.S1⊆(C I S2∪C I S3)2.(5分)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()A.B.8πC.D.4π3.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A.B.C.D.4.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.5.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A.B.C.D.6.(5分)当0<x<时,函数的最小值为()A.2B.C.4D.7.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1B.﹣1 C.D.8.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)9.(5分)在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域B={(x+y,x ﹣y)|(x,y)∈A}的面积为()A.2B.1C.D.10.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③11.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对12.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=_________.(lg2≈0。

2005高考理科数学试题及答案(北京)

2005高考理科数学试题及答案(北京)

2005年普通高等学校招生全国统一测试(北京卷)数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两局部,第 I 卷1至2页,第II 卷3至9页,共 150分.测试时间120分钟.测试结束,将本试卷和做题卡一并交回.第I 卷(选择题共40分)考前须知:1 .答第I 卷前,考生务必将自己的姓名、准考证号、测试科目涂写在做题卡上.2 .每题选出答案后,用铅笔把做题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后, 再选涂其他答案标号.不能答在试卷上.一、本大题共8小题.每题5分,共40分.在每题列出的四个选项中,选出符合题目要求的一项 .(1)设全集U=R,集合M={x| x>1 , P={x| x 2>1},那么以下关系中正确的选项是(A) M=P(B) P uM(C) M u P ( D) eUM QP=0(2) "mu 1"是"直线(m+2)x+3my+1=0 与直线(m —2)x+(m+2)y —3=0 相互垂直〞的2(A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件(D)既不充分也不必要条件(3)假设|a| = 1,|b|=2,c = a+b,且c_La,那么向量a 与b 的夹角为(4)从原点向圆x 2+y2—12y+27=0作两条切线,那么该圆夹在两条切线间的劣弧长为14名志愿者参加接待工作.假设每天排早、中、晚三班,每班(A) 30°(B) 60° (C) 120° (D) 150°(5) (A)兀 (B) 2兀(C) 4兀 (D) 6 天对任意的锐角 〞,3 ,以下不等关系中正确的选项是(A) sin( a+ 9>sin o+sin 3 (B) sin( +- 3)>cos o+cos 3 (C) cos(c+,<sin 仆 sin (D) cos(o+/cos 时cos 3(6) 在正四面体P —ABC 中,D, E, F 分别是AB, BC, CA 的中点,下面四个结论中不成立的是(A) BC 〃平面 PDF (B) D F,平面PAE (C)平面PDF ,平面 ABC(D) 平面PAE ,平面ABC北京?财富?全球论坛期间,某高校有人,每人每天最多值一班,那么开幕式当天不同的排班种数为1244(B) CHA4 (C)竺业 (D) c ;2Ci :cX1 -cos2x (8)函数 f(x)= ---------------------cosx3 二 3 二(A)在[0,—),(一,五]上递增,在[冗,一),(一,2n ]上递减 22 2 2 ._ 二3 二 ............... 二 3二一 ...(B)在[0,一),[巩——)上递增,在(一,叫,(——,2山上递减 22 2 2.二 3 三 三 3 二...(C)在(一,町(一,2冗]上递增,在[0,—),[%—)上递减 2 22 2 ..3二、,3二(D)在[%——),(——,2冗]上递增,在[0,一),(一1]上递减 2222二、填空题:本大题共 6小题;每题5分,共30分.把答案填在题中横线上. (9)假设 4 =a+2i , z 2 =3—4i ,且至为纯虚数,那么实数 a 的值为Z 2—— Q... .冗 .......................(10)tan — =2,那么tan 由勺值为, tan (.+7)的值为.(11) (x-;)6的展开式中的常数项是 (用数字作答)(12)过原点作曲线y=e x 的切线,那么切点的坐标为 ,切线的斜率为 . (13)对于函数f(x)定义域中任意的xi, x 2 (X I WX2),有如下结论:当f(x)=lgx 时,上述结论中正确结论的序号是 (14) n 次多项式 F n (x) =a 0x n +a i x n ^i +IU + a n ^x + a n ,如果在一种算法中,计算 x 0k (k = 2, 3, 4,…,n)的值需要k —1次乘法,计算F 3(x 0)的值共需要9 次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要 次运算.P0(x) =a°,Fk 卡(x) =xR(x)+ak 由(k=0, i, 2,…,n —i).利用该算法,计算F 3(X 0)的值共需要6次运算,计算P n (%)的(A )G 1C C :①f(x i + x 2)=f(x i ) f(X 2);② f(x i X 2)=f(X l )+f(X 2);f (X i ) - f (X 2)X i X 2f (X i ) f (X 2)X 1-X 2 >0;④“一"2卜面给出一种减少运算次数的算法:值共需要次运算.三、解做题:本大题共6小题,共80分.解容许出文字说明,证实过程或演算步骤.(15)(本小题共13分)函数f(x)= —x3 + 3x2+9x+a,(I)求f(x)的单调递减区间;(II)假设f(x)在区间[— 2, 2]上的最大值为20,它在该区间上的最小值.GC B(16)(本小题共14分)如图,在直四棱柱ABCD —A1B1C1D1 中,AB=AD = 2, DC =2^3, AA〔=J3, ADXDC, ACXBD, 足未E,(I)求证:BDXA1C;(II)求二面角A 1 —BD—C1的大小;(III)求异面直线AD与BC1所成角的大小.(17)(本小题共13分) (1)甲、乙两人各进行3次射击,甲每次击中目标的概率为一,乙每次击中目标的概率2(I)记甲击中目标的次数为已求E的概率分布及数学期望EE;(II)求乙至多击中目标2次的概率;(III)求甲恰好比乙多击中目标2次的概率.(18)(本小题共14分)如图,直线11:y= kx (k>0)与直线l2: y = —kx之间的阴影区域(不含边界)记为W,其左半局部记为W I,右半局部记为W2.(I)分别用不等式组表小W I和W2;(II)假设区域W中的动点P(x, y)到11, 12的距离之积等于d2,求点P的轨迹C的方程;(III)设不过原点O的直线1与(II)中的曲线C相交于M i, M2两点,且与1i, 12分别交于M3, M4两点.求证△ 0M l M2的重心与^ OM3M4的重心重合.(19)(本小题共12分)[-a n n为偶数1 - 2设数列{a n}的首项a i=aw —,且a n+ = {a a n+—n为奇数4 (1)记b n= a2n1 —— , n==1, 2, 3,…:4(I)求a2, a3;(II)判断数列{%}是否为等比数列,并证实你的结论;(III)求n吗n +b2 +/ + 川+b n).(20)(本小题共14分)设f(x)是定义在[0, 1]上的函数,假设存在x*C(0, 1),使得f(x)在[0, x*]上单调递增,在[x*, 1]上单调递减,那么称f(x)为[0, 1]上的单峰函数,x*为峰点,包含峰点的区间为含峰区间.对任意的[0, 1]上的单峰函数f(x),下面研究缩短其含峰区间长度的方法.(I)证实:对任意的x1, x2C(0, 1), x1vx2,假设f(x1) A f(x2),那么(0, x2)为含峰区间;假设f(x1)Wf(x2),那么(x* ,1)为含峰区间;(II)对给定的r (0vrv0.5),证实:存在x1,x26 (0, 1),满足x?—为>2r,使得由(I)所确定的含峰区间的长度不大于0.5+r;(III)选取x〔,x zC (0,1), x1vx2,由(I)可确定含峰区间为(0, x2)或(x1,1),在所得的含峰区间内选取x3,由x3与x1或x3与x2类似地可确定一个新的含峰区间.在第一次确定的含峰区间为(0, x2)的情况下,试确定x1, x2, x3的值,满足两两之差的绝对值不小于0.02,且使得新的含峰区间的长度缩短到0.34.(区间长度等于区间的右端点与左端点之差)2005年普通高等学校招生全国统一测试数学(理工农医类)(北京卷)参考答案(II)由于 f(-2)=8+12-18+a=2+a, f(2)=- 8+ 12+ 18+a=22 + a,所以f(2)>f(-2).由于在(一1, 3)上f (x)>0,所以f(x)在[-1,2]上单调递增,又由于 f(x)在[ — 2,— 1]上单调递减,因此 f(2)和f(—1)分别是f(x)在区间[ — 2, 2]上的最大值和最小值,于是有 22+a = 20,解得故 f(x)= —x 3+3x 2+9x — 2,因此 f(-1)= 1 + 3-9-2=- 7, 即函数f(x)在区间[―2, 2]上的最小值为一7.(II)连结 A I E, C I E, A I C I .与(I)同理可证 BDXA I E, BDXC I E,又 A I D I =AD = 2, D I C I = DC=2 <3 , AA I =J 3且、选择题 (本大题共8小题,每题 5分,共40分)(1)C (2)(3) C(4) B (5) D (6) C (7) A(8) A二、填空题 (本大题共 6小题,每题5分,共 30分)(13) ②③三、解做题 (15 ) ,、4 (10)——;(本大题共 (共13分)37 , (1)(14)n(n+3); 2n26小题,共80分)(11) 15(12) (1, e); e解:⑴ f ,(x) = —3x 2+6x + 9.令 f (X)<0, 解得x<- 1或x>3, 所以函数f(x)的单调递减区间为(一8,—1) , (3, +8).影.(16)(共 14 分)(I)在直四棱柱 ABCD —AB I C I D I 中,AA I ,底面 ABCD. AC 是 A I C 在平面 ABCD••• BDXAC.BD± A I C;/A 1EC 1为二面角 A I —BD —C I 的平面角.ADXDC, ••• /A I D I C I = /ADC = 90° ,ACXBD ,上的射CBAiCi = 4, A E= 1, EC= 3, •'- A I E=2,C I E=25/3,在^A i EC i 中,A I C I2=A I E2+C I E2, /A i EC i = 90°,即二面角A i —BD —C i的大小为90°.(III )过B 作BF//AD 交AC 于F,连结FC i,那么 / C i BF 就是AD 与BC i 所成的角.AB = AD=2, BDXAC, AE=i, 「. BF=2, EF = i , FC =2, BC=DC, FC i=", BC i= Vi5,i5 4 -7 i5 J5在△ BFC i 中,cosZC i BF = ------------ = ---------- ,ZC i BF= arccosi 2 i5 5 5即异面直线AD与BC i所成角的大小为arccos解法二:(I)同解法一.(U)如图,以.为坐标原点,DA t DC, DD X所在直线分别为黑轴,y轴,工轴,建立空间直角坐标系,连结4& G% 4G.与(I )同理可证,HD1A.E, ED_L GE,£&EG为二面角4-BD-G的平面角.由4(2, 0,百),G(.,2百,⑶,矶方,亨,0), JW 乙得可=©,-亨,⑶,居=(等明⑶,EA। * EC, —— 3 - -7- + 3=0,4 4可>L启,即画L_LEG.,二面角A, -BD-C,的大小为90t(皿)如图,由.(.,0, 0), 乂(2, 0, 0), G(.,2 万,以),8(3,百,0), 得;® =( -2, 0,0),居=(-3,有,有),二万•居=6,电| =2, |困| =/1?,—►——►AD,RC、西/Tc-/. cos(AZ), BCt)= 1—二--- -=~~~福||耐| 2715 5 ' A异面直线AD与g 所成角的大小为arsos 争.解法三:(I)同解法一.(II)如图,建立空间直角坐标系,坐标原点为£ 连结A 逐,GE, 4G.与(I )同理可证,RD工%E, RD工GE, A SEC】为二面角4 -如-G的平面角.由-0,0, 0), 4(0, -1,4), 0(0, 3,⑶, 得初=(0, -1,丹),居=(0, 3,4).班t ■ EC] - -3+3=0,;就_1 弱,即EA I_LEG,二二面角4-HD-G的大小为90 L(17)(共13 分)A A A Q AQ 解:(I) P(E=o)=c;(一)3 =—, P(^=1)=C3(-)3 -- ,P(^2)=cf(-)2 8 2 8 28八1,3八3八1 ,一 ,、 1 EE= 0,一+1,-+2+ 31-=1.5,(或 E 乒3 •— =1.5);8 8 88232 3 19 (II)乙至多击中目标 2次的概率为1— C3(—)=——;327(III)设甲恰比乙多击中目标 2次为事件A,甲恰击中目标 2次且乙恰击中目标 0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,那么人=31+32,B 1, B 2为互斥事件.所以,甲恰好比乙多击中目标 2次的概率为 —.24(18)(共 14 分) 解:(I) W [={( x, y)| kx<y<— kx, x<0} , W 2={(x, y)| — kx<y<kx, x>0},(II)直线1I : kx-y=0,直线l2: kx+y=0,由题意得2 2 2|kx -y| |kx y| 2 |k x -y | 2। 1—, = d ,即 ------- 2 ------------- = d .k 21.k 21k 1由 P(x, y) e W ,知 k 2x 2-y 2>0,所以动点P 的轨迹C 的方程为k 2x 2 — y 2 —(k 2+1)d 2 =0 ;(III)当直线l 与x 轴垂直时,可设直线l 的方程为x=a (aw0).由于直线l,曲线C 关于x 轴对称,且1I 与l 2关于x 轴对称,于是 M 1M 2, M 3M 4的中点坐标都为(a, 0),所以△OM 1M 2, 4OM 3M 4的重心坐标都 、,2为(一a, 0),即匕们的重心重合,3当直线1I 与x 轴不垂直时,设直线 l 的方程为y=mx+n (nw .).-L k 2x 2 -y 2 -(k 2 1)d 2 =0222 2222由 «,得(k —m )x -2mnx-n -k d -d =0y 二 mx n由直线l 与曲线C 有两个不同交点,可知 k 2—m 2w0且31 31P( E= 3)= C 3 (-) =q , 2 8E 的概率分布如下表:3 1 1 2 HAXP^+P.二百+8’9124所以.2 2 2k x -y k 2 1=d 2,即 k 2x 2 -y 2 -(k 2 +1)d 2=0,_2 2 2 2 2 2 2△ = (2mn)2 4(k 2 -m 2) (n 2 k 2d 2 d 2)>0设M i, M 2的坐标分别为(x i , y i ), (x 2, y 2),那么 x 1 x 2 二 2mn 2 , y 1 y 2 ; m(x , x 2) 2n , k -m 设M 3, M 4的坐标分别为(x 3, y 3), (x 4, y 4),, y = kx p y - -kxn由?,及%'得x 3 = -------- , x 4y=mxn y=mxn k - m2mn从而 x 3 + x 4 = - ------- 2 = X + x 2,k - m所以 y 3+y 4=m(x 3+x 4)+2n= m(x 1+x 2)+2n= y 1+y 2, 于是△ OM 1M 2的重心与^ OM 3M 4的重心也重合. (19)(共 12 分)1斛:(I) a 2 = a [+ 一4证实如下:所以{b n }是首项为a-1,公比为1的等比数列• 4 2a .- 2 (111) lim(bi +b 2 +l"+b n )=圾 ----------- 2 n n 1 -2(20)(共 14 分)(I)证实:设x*为f(x)的峰点,那么由单峰函数定义可知,f(x)在[0, x*]上单调递增,在[x*, 1]上单调递 减.当 f(x 1)Rf(x 2)时,假设 x* 更(0, x 2),那么 x 1<x 2<x* ,从而 f(x*) Af(x 2)>f(x 1), 这与f(x 1)>f(x 2)矛盾,所以x* € (0, x 2),即(0, x 2)是含峰区间.当 f(x 1)Wf(x 2)时,假设 x* 2 ( x 2, 1),那么 x*< < x 1<x 2,从而 f(x*) Af(x 1)>f(x 2),-n k m=a+ — , a 3= - a 2= - a+ 一 ;(11)a4=a3+ — = — a+ —,所以 a5= - a4= — a+ —,4 1 所以 b 1=a 1=a — 4 猜测:{b n }是公比为2 8 1 1 ,b 2=a 3- 4 41 ,一,一1的等比数列221 2(" 4 1611),b 3=a 5一44("1 4),由于bn+1 = a 2n+1 --------- = — a 2n -------- =一 (a 2n 1 ------------ )= 一 b n , (nC N*) b 1 = ------------1-1 2 1二2(aZ )这与f(X l)W f(X2)矛盾,所以x* C (x i, 1),即(x i, 1)是含峰区间.(II)证实:由(I)的结论可知:当f(X l)Rf(X2)时,含峰区间的长度为l l=X2;当f(X l)Wf(X2)时,含峰区间的长度为12 = 1-X1;对于上述两种情况,由题意得f X2 0 0.5 + r22①1 -X1 < 0.5+r由①得 1 + X2—x1w 1+2r,即x1一x1w 2r.又由于X2-X1>2r,所以X2 —X1=2r, ②将②代入①得X1<0.5-r, X2>0.5-r, ③由①和③解得X1 = 0.5-r, X2= 0.5+r.所以这时含峰区间的长度11= 11= 0.5+r,即存在X1, X2使得所确定的含峰区间的长度不大于0.5+r. (III)解:对先选择的X" x2, x1<x2,由(II)可知X1 + X2 = 1, ④在第一次确定的含峰区间为(0, X2)的情况下,X3的取值应满足X3 + X1 = x2 , ⑤x2 = 1 - X1由④与⑤可得,X3 =1 -2X1当X1>X3时,含峰区间的长度为X1,由条件X1-X3>0.02,得X1-(1-2X1)>0.02,从而X1>0.34. 因此,为了将含峰区间的长度缩短到0.34,只要取X1 = 0.34, X2 = 0.66, X3=0.32.。

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北、河南、安徽、山西、海南等地区用)

2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)源头学子小屋本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分1至2页第Ⅱ卷3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22- (C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34(D )23(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23(B )23(C )26 (D )332 (7)当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞(B )),0(+∞(C ))3log ,(a -∞(D )),3(log +∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23 (C )223 (D )2(11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上 2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(m ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明n p p p p p p p p n n -≥++++222323222121log log log log2005年高考理科数学全国卷Ⅰ试题及答案(河北河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为 (Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤ 所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>, 所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD. (Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角 ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM.在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==.510,cos ,2,5||,2||=>=<=⋅==PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x z y x要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN 0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4|||.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即1,2,0,.2n n n n q q T S T S =-=-==当或时即ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+by a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c b c a c x x ===+ 22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力 满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+- 22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数, 当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立 (ⅱ)假设当n=k 时命题成立即若正数1232,,,,k p p p p 满足12321k p p p p ++++= , 则121222323222log log log log k k p p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= , 令1232k x p p p p =++++11p q x =,22pq x =,……,22k k p q x= 则1232,,,,k q q q q 为正数,且12321k q q q q ++++= ,由归纳假定知121222323222log log log log k k q q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221k k k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++--1(1)k k≥--=-+ 即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。

2005年高考数学试题全集32套

2005年高考数学试题全集32套

2005年全国高考数学试题全集(3)(10套)目录2005年普通高等学校招生全国统一考试(辽宁卷) (2)2005年普通高等学校招生全国统一考试理科数学(山东卷) (15)2005年普通高等学校招生全国统一考试文科数学(山东卷) (25)2005年普通高等学校招生全国统一考试数学(理工农医类)(重庆卷) (34)2005年普通高等学校招生全国统一考试数学试题(文史类)(重庆卷) (46)2005年普通高等学校招生全国统一考试数学(理工农医类)(浙江卷) (57)2005年普通高等学校招生全国统一考试数学(文史类)(浙江卷) (68)2005年普通高等学校春季招生考试数学(理工农医类)(北京卷) (77)2005年普通高等学校春季招生考试数学(文史类)(北京卷) (86)2005年上海市普通高等学校春季招生考试 (94)2005年普通高等学校招生全国统一考试(辽宁卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择)题两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 P ,那么n 次独立重复试验中恰好发生k 334R V π=球次的概率k n kk n n P P C k P --=)1()(其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数.111-++-=iiz 在复平面内,z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.极限)(lim 0x f x x →存在是函数)(x f 在点0x x =处连续的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )A .10100610480C C C ⋅ B .10100410680C C C ⋅ C .10100620480C C C ⋅ D .10100420680C C C ⋅ 4.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命 题:①若βαβα//,,则⊥⊥m m ; ②若βααβγα//,,则⊥⊥;③若βαβα//,//,,则n m n m ⊂⊂; ④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂其中真命题是( )A .①和②B .①和③C .③和④D .①和④ 5.函数1ln(2++=x x y 的反函数是( )A .2x x e e y -+=B .2x x e e y -+-=C .2x x e e y --= D .2xx e e y ---=6.若011log 22<++aa a,则a 的取值范围是( )A .),21(+∞B .),1(+∞C .)1,21(D .)21,0(7.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立, 则( )A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的范 围是( )A .(1,2)B .(2,+∞)C .[3,+∞)D .(3,+∞)9.若直线02=+-c y x 按向量)1,1(-=平移后与圆522=+y x 相切,则c 的值为( )A .8或-2B .6或-4C .4或-6D .2或-810.已知)(x f y =是定义在R 上的单调函数,实数21x x ≠,,1,121λλλ++=-≠x x aλλβ++=112x x ,若|)()(||)()(|21βαf f x f x f -<-,则( )A .0<λB .0=λC .10<<λD .1≥λ11.已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42=的准线重合,则该双曲线与抛物线x y 42=的交点到原点的距离是 ( )A .23+6B .21C .21218+D .2112.一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是( )A B C D第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.nxx )2(2121--的展开式中常数项是 .14.如图,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻, 5与6相邻,而7与8不.相邻,这样的八位数共有 个.(用数字作答) 16.ω是正实数,设)](cos[)(|{θωθω+==x x f S 是奇函数},若对每个实数a ,)1,(+⋂a a S ω的元素不超过2个,且有a 使)1,(+⋂a a S ω含2个元素,则ω的取值范围是 . 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的球面上,求△ABC 的边长. 18.(本小题满分12分)如图,在直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中.0>>x y(Ⅰ)将十字形的面积表示为θ的函数;(Ⅱ)θ为何值时,十字形的面积最大?最大面积是多少?19.(本小题满分12分)已知函数).1(13)(-≠++=x x x x f 设数列n a {}满足)(,111n n a f a a ==+,数列n b {}满足).(|,3|*21N n b b b S a b n n n n ∈+++=-=(Ⅰ)用数学归纳法证明12)13(--≤n nn b ;(Ⅱ)证明.332<n S20.(本小题满分12分)某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A 、B 两个等级.对每种产品,两道工序的加工结果都为A 级时,产品为一等品,其余均为二等品.(Ⅰ)已知甲、乙两种产品每一道工序的加工结 果为A 级的概率如表一所示,分别求生产 出的甲、乙产品为一等品的概率P 甲、P 乙; (Ⅱ)已知一件产品的利润如表二所示,用ξ、 η分别表示一件甲、乙产品的利润,在 (I )的条件下,求ξ、η的分布列及E ξ、E η;(Ⅲ)已知生产一件产品需用的工人数和资金额 如表三所示.该工厂有工人40名,可用资. 金60万元.设x 、y 分别表示生产甲、乙产 品的数量,在(II )的条件下,x 、y 为何 值时,ηξyE xE z +=最大?最大值是多少? (解答时须给出图示) 21.(本小题满分14分)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是F 1(-c ,0)、F 2(c ,0),Q 是椭圆外的动点,满足.2||1a Q F =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足.0||,022≠=⋅TF TF PT(Ⅰ)设x 为点P 的横坐标,证明x aca F +=||1; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)试问:在点T 的轨迹C 上,是否存在点M , 使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.22.(本小题满分12分)函数)(x f y =在区间(0,+∞)内可导,导函数)(x f '是减函数,且.0)(>'x f 设m kx y x +=+∞∈),,0(0是曲线)(x f y =在点()(,00x f x )得的切线方程,并设函数.)(m kx x g +=(Ⅰ)用0x 、)(0x f 、)(0x f '表示m ; (Ⅱ)证明:当)()(,),0(0x f x g x ≥+∞∈时;(Ⅲ)若关于x 的不等式),0[231322+∞≥+≥+在x b ax x 上恒成立,其中a 、b 为实数,求b 的取值范围及a 与b 所满足的关系.2005年普通高等学校招生全国统一考试(辽宁卷)数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则。

2005高考数学理科(全国卷Ⅰ)

2005高考数学理科(全国卷Ⅰ)

2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33(C )34 (D )23(5)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为(A )23 (B )23(C )26 (D )332(6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2 (B )32 (C )4 (D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin cos cos =+ 其中正确的是 (A )①③(B )②④(C )①④(D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对(C )30对(D )36对(12)复数ii 2123--=(A )i (B )i - (C )i -22 (D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)

2005年高考.全国卷Ⅰ.理科数学试题精析详解(河北、河南、安徽、山西)

2005年普通高等学校招生全国统一考试 理科数学(全国卷Ⅰ)河南河北山西安徽第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 2π4R S =如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么3π34R V =n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k n P P k P --=)1(C )(k n 一.选择题 (1)复数=--i21i 23( )(A )i(B )i -(C )i 22-(D )i 22+-【解析】∵i i21i i)21(i21i 2i21i 23=--=-+=--,故选A .【点拨】对于复数运算应先观察其特点再计算,会简化运算.(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =321 ,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂()(C )Φ=⋂⋂321S C S C S C I I I (D )123I I S C S C S ⊆⋃()【解析】∵)S (S C S C S C 32I 3I 2I ⋃= 所表示的部分是图中蓝色的部分,I I S C 所表示的部分是图中除去1S 的部分,∴Φ==⋂⋂)S S (C S C 32I I I 321 S C S C S C I I I ,故选C【点拨】利用韦恩图求解.(3)一个与球心距离为1的平面截球所得的圆面面积为π)(A )π28 (B )π8 (C )π24 (D )π4【解析】∵截面圆面积为π,∴截面圆半径1=r ,∴球的半径为2221=+=r OO R ,∴球的表面积为π8,故选B. 【点拨】找相关的直角三角形.(4)已知直线l 过点)02(,-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181- 【解析】将x y x 222=+化为1)1(22=+-y x ,∴该圆的圆心为)0,1(,半径1=r ,设直线的方程为)2(+=x k y ,即02=+-k y kx ,设直线l 到圆心的距离为d ,则 ∵直线l 与圆x y x 222=+有两个交点,∴r d ≤, ∴11|2|2≤++=k k k d ,∴4242≤≤-k .故选C . 【点拨】利用圆心到直线的距离解直线与圆的位置关系.(5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) (A )32(B )33 (C )34(D )23【解析】过A 、B 两点分别作AM 、BN 垂直于EF ,垂足分别为M 、N ,连结DM 、CN ,可证得DM ⊥EF 、CN ⊥EF ,多面体ABCDEF 分为三部分,多面体的体积V 为+=-BNC AMD ABCDEF V VBNC F AMD E V V --+,∵21=NF ,1=BF ,∴23=BN ,作NH 垂直于点H ,则H 为BC的中点,则22=NH ,∴4221=⋅⋅=∆NH BC S BNC ,∴24231=⋅⋅=∆-NF S V BNC BNC F ,242==--BNC F AMD E V V ,42=⋅=∆-MN S V BNC BNC AMD ,∴32=ABCDEF V ,故选A .【点拨】将不规则的多面体分割或补全为规则的几何体进行计算.(6)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )(A )23 (B )23 (C )26 (D )332 【解析】由)0( 1222>=-a y ax 得1=b ,∴221c a =+,抛物线x y 62-=的准线为23=x ,因为双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,所以232=c a ,解得2=c ,所以3=a ,所以离心率为33232===a c e ,故选D . 【点拨】熟悉圆锥曲线各准线方程.(7)当2π0<<x 时,函数x x x x f 2sin sin 82cos 1)(2++=的最小值为( )(A )2 (B )32 (C )4 (D )34【解析】x xx x x x x x x x x x f cos sin 4sin cos cos sin 2sin 8cos 22sin sin 82cos 1)(222+=+=++=4c o s s i n 4s i n c o s 2=⋅≥x x x x ,当且仅当x x x x cos sin 4sin cos =,即21tan =x 时,取“=”,∵2π0<<x ,∴存在x 使21tan =x ,这时4)(max =x f ,故选C .E FA BCDM N H【点拨】熟练运用三角函数公式进行化简运算.(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a (A )1(B )1-(C )251-- (D)251+- 【解析】∵0>b ,∴图像不能以轴为对称轴,∴一、二两个图不符;第四个图可知,0>a ,故其对称轴为02<-=abx ,所以也不符合;只有第三个图可以,由图象过原点,得012=-a ,开口向下,所以1-=a ,故选B .【点拨】熟悉二次函数图象的特点,分析对称轴、与轴的交点等形与数的关系.(9)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(∞+(C ))3log ,(a -∞(D )),3(log ∞+a【解析】∵10<<a ,0)(<x f ,∴1222>--x x a a ,解得 3>x a 或1-<x a (舍去), ∴3log a a <,故选C . 【点拨】熟悉对数的性质. (10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||31x y x y 所表示的平面区域的面积为( )(A )2 (B )23(C )223 (D )2 【解析】原不等式化为⎩⎨⎧≥+-≤-≥)0(,131x x y x y 或⎩⎨⎧<+≤-≥)0(,131x x y x y ,所表示的平面区域如右图所示,)2,1(--A ,)21,21(-B , ∴23=S 【点拨】分类讨论,通过画出区域,计算面积. (11)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是( ) (A )①③ (B )②④(C )①④(D )②③【解析】∵2sin2cos2cot 2πtan 2tan C CC C B A ==-=+,2cos 2sin 2sin C C C =, ∴222sin =C ,∴︒=90C ,∵A B A 2tan cot tan =⋅,∴①不一定成立,∵=+=+A A B A cos sin sin sin )sin(2θ+A ,∴2sin sin 0≤+<B A ,∴②成立,∵A A A B A 22222sin 2sin sin cos sin =+=+,∴③不一定成立,∵C A A B A 22222sin 1sin cos cos cos ==+=+,∴④成立,故选B .【点拨】考查三角公式的灵活运用.(12)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对 (D )36对 【解析】解法一:(直接法)①与上底面的11B A 、11C A 、11C B 成异面直线的有15对;②与下底面的AB 、AC 、BC 成异面直线的有9对(除去与上底面的); ③与侧棱1AA 、1BB 、1CC 成异面直线的有6对(除去与上下底面的);④侧面对角线之间成异面直线的有6对; 所以异面直线总共有36对. 解法二:(间接法)①共一顶点的共面直线有60C 625=对; ②侧面互相平行的直线有6对; ③侧面的对角线有3对共面;所以异面直线总共有363660C 215=---对. 【点拨】解排列组合题的关键是分好类.第Ⅱ卷二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上.(13)若正整数m 满足m m 102105121<<-,则m = 155 .)3010.02(lg ≈ 【解析】∵m m 102105121<<-,∴m m 10lg 2lg 10lg 5121<<-,即m m <<-2lg 5121,∴m m <<-112.1541,即 112.155112.154<<m ,∴155=m .【点拨】把指数形式化成对数形式.(14)9)12(xx -的展开式中,常数项为 672 .(用数字作答) 【解析】9)12(xx -的通项公式为23999992C )1()1()2(C rrr r r rrx xx ---⋅⋅⋅-=-⋅⋅,令0239=-r 得,6=r ,∴常数项为6722C )1(69696=⋅⋅-- 【点拨】熟悉二项式定理的展开式的通项公式.(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数=m .【解析】(特例法)设ABC ∆为一个直角三角形,则O 点斜边的中点,H 点为直角顶点,这时有OH ++=,∴1=m .1A 1B 1C ABC【点拨】由特殊情况去检验一般情况.(16)在正方体''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则①四边形E BFD '一定是平行四边形 ②四边形E BFD '有可能是正方形③四边形E BFD '在底面ABCD 内的投影一定是正方形 ④四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 .(写出所有正确结论的编号) 【解析】①平面E BFD '与相对侧面相交,交线互相平行,∴四边形E BFD '一定是平行四边形;②四边形E BFD '若是正方形,则D E BE '⊥,又EB AD ⊥,∴⊥EB 平面A ADD ',产生矛盾;③四边形E BFD '在底面ABCD 内的投影是正方形ABCD ;④当E 、F 分别是'AA 、'CC 的中点时,AC EF //,又⊥AC 平面D BB ',∴四边形E BFD '有可能垂直于平面D BB '; 【点拨】边观察、边推导.三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本大题满分12分)设函数)(),0π( )2sin()(x f y x x f =<<-+=ϕϕ图像的一条对称轴是直线8π=x . (Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切.17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分. 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:,2|)432cos(2||))432(sin(|||≤-='-='ππx x y所以曲线)(x f y =的切线斜率取值范围为[-2,2],而直线025=+-c y x 的斜率为225>,所以直线025=+-c y x 与函数)432sin(π-=x y 的图像不相切.(18)(本大题满分12分)已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90底面ABCD ,且ABPMABCDA 'B 'C 'D 'EFP A =AD =DC =21AB =1,M 是PB 的中点. (Ⅰ)证明:面P AD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小.18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE .510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==.510||||,cos ,2,5||,2||=⋅>=<=⋅==PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x z y x要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角. ).32arccos(.32),cos(.54,530||,530||--==∴-=⋅==故所求的二面角为BN AN BN AN(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n . (Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小. 19. 本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分. 解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得 当;0,11>==na S q n 时),2,1(,011,01)1(,11 =>-->--=≠n qqq q a S q nn n 即时当上式等价于不等式组:),2,1(,01,01 =⎩⎨⎧<-<-n q q n① 或),2,1(,01,01 =⎩⎨⎧>->-n q q n② 解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃- (Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n ).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到01.0)20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补 种的概率为 .87811=-3个坑都不需要补种的概率,670.0)87()81(303=⨯⨯ C恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C恰有2个坑需要补种的概率为,041.087)81(223=⨯⨯C3个坑都需要补种的概率为.002.0)87()81(0333=⨯⨯C补种费用ξ的分布为75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与)1,3(-=共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值.21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知训,考查综合运用数学知识解决问题及推理的能力,满分14分.(I )解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a . 令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x ++=+由与+-=),1,3(共线,得 .0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a c ba c a cx x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x μλ+==由已知得设⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x 又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ故22μλ+为定值,定值为1.(22)(本大题满分12分)(Ⅰ)设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (Ⅱ)设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明:n p p p p p p p p n n -≥++++222323222121log log log log22.本小题主要考查数学归纳法及导数应用等知识,考查综合运用数学知识解决问题的能力.满分12分.(Ⅰ)解:对函数)(x f 求导数:])1(log )1[()log ()(22'--+'='x x x x x f.2ln 12ln 1)1(log log 22-+--=x x ).1(log log 22x x --= 于是.0)21(='f当)(,0)1(log log )(,2122x f x x x f x <--='<时在区间)21,0(是减函数, 当)(,0)1(log log )(,2122x f x x x f x >--='>时在区间)1,21(是增函数.所以21)(=x x f 在时取得最小值,1)21(-=f ,(Ⅱ)证法一:用数学归纳法证明.(i )当n=1时,由(Ⅰ)知命题成立.(ii )假定当k n =时命题成立,即若正数1,,,221221=+++k k p p p p p p 满足, 则.log log log 222222121k p p p p p p k k -≥+++当1+=k n 时,若正数,1,,,11221221=+++++k k p p p p p p 满足令.,,,,222211221xp q x p q x p q p p p x k k k ===+++= 则k q q q 221,,, 为正数,且.1221=+++k q q q由归纳假定知.log log log 222222121k q q p p p q k k -≥+++kk k k q q q q q q x p p p p p p 222222121222222121log log log (log log log +++=+++,l o g )()l o g 22x x k x x +-≥+ ①同理,由x p p p k kk-=++++++1122212 可得1122212212log log ++++++k k k k p p p p).1(log )1())(1(2x x k x --+--≥ ②综合①、②两式11222222121log log log +++++k k p p p p p p).1()1(log )1(log ))](1([22+-≥--++--+≥k x x x x k x x 即当1+=k n 时命题也成立.根据(i )、(ii )可知对一切正整数n 命题成立. 证法二:令函数那么常数)),,0(,0)((log )(log )(22c x c x c x c x x x g ∈>--+=],log )1(log )1(log [)(222c cxc x c x c x c x g +--+=利用(Ⅰ)知,当.)(,)2(21取得最小值函数时即x g cx c x ==对任意都有,0,021>>x x2log 22log log 21221222121x x x x x x x x ++⋅≥+ ]1)()[log (21221-++=x x x x . ① 下面用数学归纳法证明结论.(i )当n=1时,由(I )知命题成立.(ii )设当n=k 时命题成立,即若正数有满足,1,,,221221=+++k k p p p p p p11111122212212222121221221222222121log log log log .1,,,,1.log log log ++++++++++==++++=-≥+++--k k k k k k k k p p p p p p p p H p p p p p p k n k p p p p p p 令满足时当由①得到,1)()(],1)()[log (]1)()[log (11111121221212221221221=++++-++++-++≥++++++---k k k k k k p p p p p p p p p p p p H 因为由归纳法假设得到,)(log )()(log )(1111212221221221k p p p p p p p p k k k k -≥++++++++++-- ).1()(1121221+-=++++--≥+++k p p p p k H k k 即当1+=k n 时命题也成立. 所以对一切正整数n 命题成立.。

2005年普通高等学校招生全国统一考试数学试卷全国卷I理

2005年普通高等学校招生全国统一考试数学试卷全国卷I理

2005年全国普通高等学校招生全国统一考试理科数学(必修+选修II )第Ⅰ卷参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn k kn n P P C k P --=)1()(一、选择题 ( 本大题 共 12 题, 共计 60 分)1.复数=(A ) (B )(C )(D )2.设为全集,是的三个非空子集,且,则下面论断正确的是(A )C I S 1∩(S 2∪S 3)=Φ (B )S 1(C I S 2∩C I S 3) (C )C I S 1∩C I S 2∩C I S 3=Φ (D )S 1(C I S 2∪C I S 3)3.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为 (A )(B )(C )(D )4.已知直线过点,当直线与圆有两个交点时,其斜率k的取值范围是(A)(B)(C)(D)5.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为(A)(B)(C)(D)6.已知双曲线的一条准线与抛物线的准线重合,则该双曲线的离心率为(A)(B)(C)(D)7.当时,函数的最小值为(A)2 (B)(C)4 (D)8.设,二次函数的图像为下列之一则的值为(A)(B)a(C)1 (D)-19.设,函数,则使的的取值范围是(A)(B)(C)(D)10.在坐标平面上,不等式组所表示的平面区域的面积为(A)(B)(C)(D)211.在中,已知,给出以下四个论断:①②③④其中正确的是(A)①③(B)②④(C)①④(D)②③12.过三棱柱任意两个顶点的直线共15条,其中异面直线有(A)18对(B)24对(C)30对(D)36对二、填空题 ( 本大题共 4 题, 共计 16 分)(13)若正整数m满足,则m = 。

2005年高考试题——理数(陕西卷)

2005年高考试题——理数(陕西卷)

2005年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I 卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第I 卷注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P(A·B)=P(A)·P(B)如果事件A 在一次试验中发生的概率是 球的体积公式P ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率k n kk n n P P C k P --=)1()( 其中R 表示球的半径一、选择题:1.函数f (x )=|sin x +cos x |的最小正周期是 ( )A .4πB .2π C .πD .2π2.正方体ABCD —A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、B 1C 1的中点。

那么,正方体的过P 、Q 、R 的截面图形是 ( ) A .三角形 B .四边形 C .五边形 D .六边形 3.函数21(0)y x x =-≤的反函数是 ( )A .)1(1-≥+=x x yB .)1(1-≥+-=x x yC .)0(1≥+=x x yD .)0(1≥+-=x x y4.已知函数)2,2(tan ππω-=在x y 内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1 5.设a 、b 、c 、d ∈R ,若dic bia ++为实数,则( )A .bc+a d≠0B .bc -a d≠0C .bc -a d=0D .bc+a d=06.已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A .563 B .665 C .56 D .65 7.锐角三角形的内角A 、B 满足tanA -A2sin 1=tanB ,则有( )A .sin2A -cosB=0B .sin2A+cosB=0C .sin2A -sinB=0D .sin2A+sinB=08.已知点A (3,1),B (0,0)C (3,0).设∠BAC 的平分线AE 与BC 相交于E , 那么有λλ其中,CE BC =等于 ( )A .2B .21C .-3D .-31 9.已知集合M={x |x 2-3x -28≤0}, N={x |x 2-x -6>0},则M∩N 为 ( ) A .{x |-4≤x <-2或3<x ≤7} B .{x |-4<x ≤-2或3≤x <7} C .{x |x ≤-2或x >3} D .{x |x <-2或x ≥3}10.点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 ( )A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)11.如果a 1, a 2, …,a 8为各项都大于零的等差数列,公差d≠0,则 ( )A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 512.将半径都为1的4个钢球完全装人形状为正四面体的容器里,这个正四面体的高最小值为( )A .3623+B .3622+C .3624+ D .36234+第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中。

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案

2005年浙江高考普通高等学校招生全国统一考试(理科数学)理及答案第Ⅰ卷 (选择题 共60分)一、选择题:本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的1.limn →∞2123nn ++++=( )(A) 2 (B) 4 (C)21(D)0 2.点(1,-1)到直线x -y +1=0的距离是( ) (A)21 (B) 32(C) 2(D)2 3.设f (x )=2|1|2,||1,1, ||11x x x x--≤⎧⎪⎨>⎪+⎩,则f [f (21)]=( )(A)21 (B)413 (C)-95 (D) 25414.在复平面内,复数1i i++(1+3i )2对应的点位于( )(A) 第一象限 (B) 第二象限 (C) 第三象限 (D)第四象限5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) (A) 74 (B) 121 (C) -74 (D) -1216.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 (A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题 (C) ①②都是真命题 (D) ①②都是假命题7.设集合{}(,)|,,1A x y x y x y --=是三角形的三边长,则A 所表示的平面区域(不含边界的阴影部分)是( )(A) (B) (C) (D)8.已知k <-4,则函数y =cos2x +k (cos x -1)的最小值是( ) (A) 1 (B) -1 (C) 2k +1 (D) -2k +19.设f (n )=2n +1(n ∈N ),P ={1,2,3,4,5},Q ={3,4,5,6,7},记P ∧={n ∈N |f (n )∈P },Q ∧={n ∈N |f (n )∈Q },则(P ∧∩N ðQ ∧)∪(Q ∧∩N ðP ∧)=( ) (A) {0,3} (B){1,2} (C) (3,4,5} (D){1,2,6,7}10.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,则 (A) a ⊥e (B) a ⊥(a -e ) (C) e ⊥(a -e ) (D) (a +e )⊥(a -e )第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分把答案填在答题卡的相应位置11.函数y =2xx +(x ∈R ,且x ≠-2)的反函数是_________. 12.设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 13.过双曲线22221x y a b-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于_________.14.从集合{O ,P ,Q ,R ,S }与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O ,Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答).三、解答题:本大题共6小题,每小题14分,共84分解答应写出文字说明,证明过程或演算步骤15.已知函数f (x )=-3sin 2x +sin x cos x . (Ⅰ) 求f (256π)的值; (Ⅱ) 设α∈(0,π),f (2α)=41sin α的值.N16.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2=2x . (Ⅰ)求函数g (x )的解析式;(Ⅱ)解不等式g (x )≥f (x )-|x -1|.17.如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF 最大的点P 记为Q ,求点Q 的坐标(用m 表示).18.如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =kPA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC . (Ⅰ)当k =21时,求直线PA 与平面PBC 所成角的大小; (Ⅱ) 当k 取何值时,O 在平面PBC 内的射影恰好为△PBC 的重心?19.袋子A 和B 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是31,从B 中摸出一个红球的概率为p .(Ⅰ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止.(i )求恰好摸5次停止的概率;(ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布率及数学期望E ξ.(Ⅱ) 若A 、B 两个袋子中的球数之比为12,将A 、B 中的球装在一起后,从中摸出一个红球的概率是25,求p 的值.20.设点n A (n x ,0),1(,2)n n n P x -和抛物线n C :y =x 2+a n x +b n (n ∈N *),其中a n =-2-4n -112n -,n x 由以下方法得到:x 1=1,点P 2(x 2,2)在抛物线C 1:y =x 2+a 1x +b 1上,点A 1(x 1,0)到P 2的距离是A 1到C 1上点的最短距离,…,点11(,2)nn n P x ++在抛物线n C :y =x 2+a n x +b n 上,点n A (n x ,0)到1n P +的距离是n A 到n C 上点的最短距离. (Ⅰ)求x 2及C 1的方程. (Ⅱ)证明{n x }是等差数列.2005浙江卷试题及答案参考答案一、选择题:本题考查基本知识和基本运算每小题5分,满分50分(1)C (2)D (3)B (4)B (5)D (6)D (7)A (8)A (9)A (10)C 二、填空题:本题考查基本知识和基本运算每小题4分,满分16分(11)()2,11xy x R x x=∈≠-且;(12)90︒;(13)2;(14)8424 三、解答题:(15)本题主要考查三角函数的诱导公式、倍角公式等基础知识和基本的运算能力满分14分解:(1)25125sin,cos 6262ππ==,225252525sin cos 6666f ππππ⎛⎫∴=+=⎪⎝⎭(2)()12sin 22f x x x =+11sin 224f ααα⎛⎫∴=+= ⎪⎝⎭ 216sin 4sin 110αα--=,解得sin α=()0,,sin 0απα∈∴>故sin α=(16)本题主要考查函数图象的对称、中点坐标公式、解不等式等基础知识,以及运算和推理能力满分14分解:(Ⅰ)设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故 (Ⅱ)由()()21210g x f x x x x ≥----≤, 可得 当1x ≥时,2210x x -+≤,此时不等式无解当1x <时,2210x x +-≤,解得12x -≤≤因此,原不等式的解集为11,2⎡⎤-⎢⎥⎣⎦(17)本题主要考查椭圆的几何性质、椭圆方程、两条直线的夹角,点的坐标等基础知识,考查解析几何的基本思想方法和综合解题能力满分14分解:(Ⅰ)设椭圆方程为()222210x y a b a b+=>>,半焦距为c ,则2111,a MA a A F a c c=-=-()2222224a a a c c a abc ⎧-=-⎪⎪⎪=⎨⎪=+⎪⎪⎩由题意,得2,1a b c ∴== 221.43x y +=故椭圆方程为(Ⅱ) 设()0,,||1P m y m >, 当00y >时,120F PF ∠=;当00y ≠时,22102F PF PF M π<∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m =+,直线2PF 的斜率021y k m =-,021********||tan 11y k k F PF k k m y -∴∠==≤=+-+0||y =时,12F PF ∠最大,(,,||1Q m m ∴>(18)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力满分14分解:方法一:(Ⅰ) ∵O 、D 分别为AC 、PC 中点,OD PA ∴ ∥PA PAB ⊂又平面, OD PAB ∴ 平面∥(Ⅱ)AB BC OA OC ⊥= ,,OA OB OC ∴== ,OP ABC ⊥又 平面,.PA PB PC ∴==E PE BC POE ⊥取BC 中点,连结,则平面OF PE F DF OF PBC ⊥⊥作于,连结,则平面 ODF OD PBC ∴∠ 是与平面所成的角. 又OD PA ∥,∴PA 与平面PBC 所成的角的大小等于ODF ∠,sin OF Rt ODF ODF OD ∆∠==在中,PBC ∴ PA 与平面所成的角为 (Ⅲ)由(Ⅱ)知,OF PBC ⊥平面,∴F 是O 在平面PBC 内的射影 ∵D 是PC 的中点,若点F 是PBC ∆的重心,则B ,F ,D 三点共线, ∴直线OB 在平面PBC 内的射影为直线BD ,,,OB PC PC BD PB PC ⊥∴⊥∴=,即k =反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心方法二:OP ABC ⊥平面,,OA OC AB BC ==,A,,.OA OB OA OP OB OP ∴⊥⊥⊥以O 为原点,射线OP 为非负z 轴,建立空间直角坐标系O xyz -(如图)设,AB a =则,0,0,0,,0,222A a B C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设OP h =,则()0,0,P h (Ⅰ)D 为PC 的中点,1,0,2OD h ⎛⎫∴=- ⎪ ⎪⎝⎭,又21,0,,,//2PA a h OD PA OD PA ⎛⎫=-∴=-∴⎪⎪⎝⎭, OD PAB ∴ 平面∥(Ⅱ)12k =,即22,,,0,PA a hPA ⎛⎫=∴=∴= ⎪⎪⎝⎭, 可求得平面PBC 的法向量1,1,n ⎛=- ⎝, 210cos ,||||PA n PA n PA n ⋅∴〈〉==⋅, 设PA 与平面PBC 所成的角为θ,则210sin |cos ,|PA n θ=〈〉=, (Ⅲ)PBC ∆的重心1,3G h ⎛⎫⎪ ⎪⎝⎭,1,3OG h ⎛⎫∴=- ⎪ ⎪⎝⎭,,OG PBC OG PB ⊥∴⊥平面,又222110,,,0,63PB a h OG PB a h h ⎛⎫=-∴⋅=-=∴= ⎪ ⎪⎝⎭,PA a ∴=,即1k =,反之,当1k =时,三棱锥O PBC -为正三棱锥, ∴O 在平面PBC 内的射影为PBC ∆的重心(19)本题主要考查相互独立事件同时发生的概率和随机变量的分布列、数学期望等概念,同时考查学生的逻辑思维能力14分解:(Ⅰ)(i )2224121833381C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭(ii)随机变量ξ的取值为0,1,2,3,;由n 次独立重复试验概率公式()()1n kk kn n P k C p p -=-,得()505132013243P C ξ⎛⎫==⨯-=⎪⎝⎭; ()41511801133243P C ξ⎛⎫==⨯⨯-=⎪⎝⎭ ()232511802133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭ ()323511173133243P C ξ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭(或()328021731243243P ξ+⨯==-=) 随机变量ξ的分布列是ξ的数学期望是32808017012324324324324381E ξ=⨯+⨯+⨯+⨯= (Ⅱ)设袋子A 中有m 个球,则袋子B 中有2m 个球由122335m mp m +=,得1330p =(20)本题主要考查二次函数的求导、导数的应用、等差数列、数学归纳法等基础知识,以及综合运用所学知识分析和解决问题的能力满分14分解:(Ⅰ)由题意得()21111,0,:7A C y x x b =-+, 设点(),P x y 是1C 上任意一点,则1||A P ==令()()()222117f x x x x b =-+-+则()()()()21212727f x x x x b x '=-+-+-由题意得()20f x '=,即()()()222122127270x x x b x-+-+-=又()22,2P x 在1C 上,222127x x b∴=-+ 解得213,14x b ==故1C 的方程为2714y x x =-+ (Ⅱ)设点(),P x y 是n C 上任意一点,则||n A P ==令()()()222n n ng x x x x a x b =-+++则()()()()2222n n nng x x x x a x b x a '=-++++由题意得()10n g x +'=即()()()21112220n n n n nn n x x x a x b xa +++-++++=又1212n n n n n x a x b ++=++, ()()()112201n n n n n x x x a n ++∴-++=≥,即()()111220*n n n n n x x a +++-+=下面用数学归纳法证明21n x n =-, ①当1n =时,11x =,等式成立;②假设当n k =时,等式成立,即21k x k =-,则当1n k =+时,由()*知()111220k k k k k x x a +++-+=, 又11242k k a k -=---,1122112k k k k k x a x k ++-∴==++, 即1n k =+时,等式成立由①②知,等式对*n N ∈成立,故{}n x 是等差数列。

2005年全国统一高考数学试卷一(理)及答案

2005年全国统一高考数学试卷一(理)及答案

2005年全国统一高考数学试卷ⅰ(理)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数=()A.﹣i B.i C.2﹣i D.﹣2+i2.(5分)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)3.(5分)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.4.(5分)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A. B.C.D.5.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.6.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A.B.C.D.7.(5分)当0<x<时,函数的最小值为()A.2 B.C.4 D.8.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.9.(5分)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)10.(5分)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.311.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③12.(5分)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对二、填空题(共4小题,每小题4分,满分16分)13.(4分)若正整数m满足10m﹣1<2512<10m,则m=.(lg2≈0.3010)14.(4分)的展开式中,常数项为.(用数字作答)15.(4分)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=度.16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形BFD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为.(写出所有正确结论的编号)三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA ⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.2005年河北省高考数学试卷Ⅰ(理)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2005•安徽)复数=()A.﹣i B.i C.2﹣i D.﹣2+i【分析】两个复数相除,分子、分母同时乘以分母的共轭复数,复数的乘法按多项式乘以多项式的方法进行.【解答】解:复数====i,故选B.2.(5分)(2005•安徽)设I为全集,S1、S2、S3是I的三个非空子集,且S1∪S2∪S3=I,则下面论断正确的是()A.∁I S1∩(S2∪S3)=∅B.S1⊆(∁I S2∩∁I S3)C.∁I S1∩∁I S2∩∁I S3=∅D.S1⊆(∁I S2∪∁I S3)【分析】根据公式C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B),容易判断.【解答】解:∵S1∪S2∪S3=I,∴C I S1∩C I S2∩C I S3)=C I(S1∪S2∪S3)=C I I=∅.故答案选C.3.(5分)(2008•湖北)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A. B.C.D.【分析】做该题需要将球转换成圆,再利用圆的性质,获得球的半径,解出该题即可.【解答】解:截面面积为π⇒截面圆半径为1,又与球心距离为1⇒球的半径是,所以根据球的体积公式知,故选B.4.(5分)(2005•安徽)已知直线l过点(﹣2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是()A. B.C.D.【分析】圆心到直线的距离小于半径即可求出k的范围.【解答】解:直线l为kx﹣y+2k=0,又直线l与圆x2+y2=2x有两个交点故∴故选C.5.(5分)(2005•安徽)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.B.C.D.【分析】该几何体是一个三棱柱截取两个四棱锥,体积相减即为该多面体的体积.【解答】解:一个完整的三棱柱的图象为:棱柱的高为2;底面三角形的底为1,高为:,其体积为:;割去的四棱锥体积为:,所以,几何体的体积为:,故选A.6.(5分)(2005•安徽)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为()A.B.C.D.【分析】先根据抛物线和双曲线方程求出各自的准线方程,然后让二者相等即可求得a,进而根据c=求得c,双曲线的离心率可得.【解答】解:双曲线的准线为抛物线y2=﹣6x的准线为因为两准线重合,故=,a2=3,∴c==2∴该双曲线的离心率为=故选D7.(5分)(2005•安徽)当0<x<时,函数的最小值为()A.2 B.C.4 D.【分析】利用二倍角公式化简整理后,分子分母同时除以cosx,转化成关于tanx 的函数解析式,进而利用x的范围确定tanx>0,最后利用均值不等式求得函数的最小值.【解答】解:=.∵0<x<,∴tanx>0.∴.当时,f(x)min=4.故选C.8.(5分)(2005•安徽)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()A.1 B.﹣1 C.D.【分析】根据题中条件可先排除前两个图形,然后根据后两个图象都经过原点可求出a的两个值,再根据抛物线的开口方向就可确定a的值【解答】解:∵b>0∴抛物线对称轴不能为y轴,∴可排除掉前两个图象.∵剩下两个图象都经过原点,∴a2﹣1=0,∴a=±1.∵当a=1时,抛物线开口向上,对称轴在y轴左方,∴第四个图象也不对,∴a=﹣1,故选B.9.(5分)(2005•安徽)设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),则使f(x)<0的x的取值范围是()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,log a3)D.(log a3,+∞)【分析】结合对数函数、指数函数的性质和复合函数的单调性可知:当0<a<1,log a(a2x﹣2a x﹣2)<0时,有a2x﹣2a x﹣2>1,解可得答案.【解答】解:设0<a<1,函数f(x)=log a(a2x﹣2a x﹣2),若f(x)<0则log a(a2x﹣2a x﹣2)<0,∴a2x﹣2a x﹣2>1∴(a x﹣3)(a x+1)>0∴a x﹣3>0,∴x<log a3,故选C.10.(5分)(2005•安徽)在直角坐标平面上,不等式组所表示的平面区域面积为()A.B.C.D.3【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用三角形的面积公式计算即可.【解答】解:原不等式组可化为:或画出它们表示的可行域,如图所示.可解得A(,﹣),C(﹣1,﹣2),B(0,1)原不等式组表示的平面区域是一个三角形,=×(2×1+2×)=,其面积S△ABC故选C.11.(5分)(2005•安徽)在△ABC中,已知tan=sinC,给出以下四个论断:①tanA•cotB=1,②1<sinA+sinB≤,③sin2A+cos2B=1,④cos2A+cos2B=sin2C,其中正确的是()A.①③B.②④C.①④D.②③【分析】先利用同角三角函数的基本关系和二倍角公式化简整理题设等式求得cos=进而求得A+B=90°进而求得①tanA•cotB=tanA•tanA等式不一定成立,排除;②利用两角和公式化简,利用正弦函数的性质求得其范围符合,②正确;③sin2A+cos2B=2sin2A不一定等于1,排除③;④利用同角三角函数的基本关系可知cos2A+cos2B=cos2A+sin2A=1,进而根据C=90°可知sinC=1,进而可知二者相等.④正确.【解答】解:∵tan=sinC∴=2sin cos整理求得cos(A+B)=0∴A+B=90°.∴tanA•cotB=tanA•tanA不一定等于1,①不正确.∴sinA+sinB=sinA+cosA=sin(A+45°)45°<A+45°<135°,<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C.所以④正确.sin2A+cos2B=sin2A+sin2A=2sin2A=1不一定成立,故③不正确.综上知②④正确故选B.12.(5分)(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对【分析】直接解答,看下底面上的一条边的异面直线的条数,类推到上底面的边;再求侧面上的异面直线的对数;即可.【解答】解:三棱柱的底面三角形的一条边与侧面之间的线段有3条异面直线,这样3条底边一共有9对,上下底面共有18对.上下两个底边三角形就有6对;侧面之间的一条侧棱有6对,侧面面对角线之间有6对.加在一起就是36对.(其中棱对应的两条是体对角线和对面的面与其不平行的另一条对角线).故选D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2005•安徽)若正整数m满足10m﹣1<2512<10m,则m=155.(lg2≈0.3010)【分析】利用题中提示lg2≈0.3010,把不等式同时取以10为底的对数,再利用对数的运算性质,转化为关于m的不等式求解即可.【解答】解:∵10m﹣1<2512<10m,取以10为底的对数得lg10m﹣1<lg2512<lg10m,即m﹣1<512×lg2<m又∵lg2≈0.3010∴m﹣1<154.112<m,因为m是正整数,所以m=155故答案为155.14.(4分)(2005•安徽)的展开式中,常数项为672.(用数字作答)=C n r a n﹣r b r求出通项,进行指数幂运算后【分析】利用二项式定理的通项公式T r+1令x的指数幂为0解出r=6,由组合数运算即可求出答案.=C9r(2x)9﹣r=(﹣1)r29﹣r C9r x9﹣r=【解答】解:由通项公式得T r+1(﹣1)r29﹣r C9r,令9﹣=0得r=6,所以常数项为(﹣1)623C96=8C93=8×=672故答案为67215.(4分)(2005•山西)如图,已知⊙O是△ABC的内切圆,且∠ABC=50°,∠ACB=80°,则∠BOC=115度.【分析】由三角形内切定义可知:OB、OC是∠ABC、∠ACB的角平分线;再利用角平分线的定义可知∠OBC+∠OCB=(∠ABC+∠ACB),代入数值即可求答案.【解答】解:∵OB、OC是∠ABC、∠ACB的角平分线,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(50°+80°)=65°,∴∠BOC=180°﹣65°=115°.故答案为:115°.16.(4分)(2005•安徽)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:①四边形BFD′E一定是平行四边形;②四边形BFD′E有可能是正方形;③四边形B FD′E在底面ABCD内的投影一定是正方形;④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为①③④.(写出所有正确结论的编号)【分析】由平行平面的性质可得①是正确的,当E、F为棱中点时,四边形为菱形,但不可能为正方形,故③④正确,②错误.【解答】解:①:∵平面AB′∥平面DC′,平面BFD′E∩平面AB′=EB,平面BFD′E∩平面DC′=D′F,∴EB∥D′F,同理可证:D′E∥FB,故四边形BFD′E一定是平行四边形,即①正确;②:当E、F为棱中点时,四边形为菱形,但不可能为正方形,故②错误;③:四边形BFD′E在底面ABCD内的投影为四边形ABCD,所以一定是正方形,即③正确;④:当E、F为棱中点时,EF⊥平面BB′D,又∵EF⊂平面BFD′E,∴此时:平面BFD′E⊥平面BB′D,即④正确.故答案为:①③④三、解答题(共6小题,17~20、22题每题12分,21题14分,满分74分)17.(12分)(2005•山西)设函数f(x)=sin(2x+φ)(﹣π<φ<0),y=f(x)图象的一条对称轴是直线.(Ⅰ)求φ,并指出y=f(x)由y=sin2x作怎样变换所得.(Ⅱ)求函数y=f(x)的单调增区间;(Ⅲ)画出函数y=f(x)在区间[0,π]上的图象.【分析】(I)由图象的一条对称轴是直线,从而可得,解的∅,根据平移法则判断平移量及平移方向(II)令,解x的范围即为所要找的单调增区间(III)利用“五点作图法”做出函数的图象【解答】解:(Ⅰ)∵x=是函数y=f(x)的图象的对称轴,∴,∴,k∈Z.∵.由y=sin2x向右平移得到.(4分)(Ⅱ)由(Ⅰ)知ϕ=﹣,因此y=.由题意得,k∈Z.所以函数的单调增区间为,k∈Z.(3分)(Ⅲ)由知故函数y=f(x)在区间[0,π]上图象是(4分)18.(12分)(2005•安徽)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=1,AB=2,M是PB的中点.(Ⅰ)证明:面PAD⊥面PCD;(Ⅱ)求AC与PB所成的角;(Ⅲ)求面AMC与面BMC所成二面角的大小.【分析】法一:(Ⅰ)证明面PAD⊥面PCD,只需证明面PCD内的直线CD,垂直平面PAD内的两条相交直线AD、PD即可;(Ⅱ)过点B作BE∥CA,且BE=CA,∠PBE是AC与PB所成的角,解直角三角形PEB求AC与PB所成的角;(Ⅲ)作AN⊥CM,垂足为N,连接BN,说明∠ANB为所求二面角的平面角,在三角形AMC中,用余弦定理求面AMC与面BMC所成二面角的大小.法二:以A为坐标原点AD长为单位长度,建立空间直角坐标系,(Ⅰ)求出,计算,推出AP⊥DC.,然后证明CD垂直平面PAD,即可证明面PAD⊥面PCD;(Ⅱ),计算.即可求得结果.(Ⅲ)在MC上取一点N(x,y,z),则存在使,说明∠ANB为所求二面角的平面角.求出,计算即可取得结果.【解答】法一:(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,∴由三垂线定理得:CD⊥PD.因而,CD与面PAD内两条相交直线AD,PD都垂直,∴CD⊥面PAD.又CD⊂面PCD,∴面PAD⊥面PCD.(Ⅱ)解:过点B作BE∥CA,且BE=CA,则∠PBE是AC与PB所成的角.连接AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形.由PA⊥面ABCD得∠PEB=90°在Rt△PEB中BE=a2=3b2,PB=,∴.∴AC与PB所成的角为.(Ⅲ)解:作AN⊥CM,垂足为N,连接BN.在Rt△PAB中,AM=MB,又AC=CB,∴△AMC≌△BMC,∴BN⊥CM,故∠ANB为所求二面角的平面角∵CB⊥AC,由三垂线定理,得CB⊥PC,在Rt△PCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,AN•MC=,∴.∴AB=2,∴故所求的二面角为.法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(Ⅰ)证明:因为,故,所以AP⊥DC.又由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.又DC在面PCD上,故面PAD⊥面PCD(Ⅱ)解:因,故=,所以由此得AC与PB所成的角为.(Ⅲ)解:在MC上取一点N(x,y,z),则存在使,,∴x=1﹣λ,y=1,z=λ.要使AN⊥MC,只需即,解得.可知当时,N点坐标为,能使.,有由得AN⊥MC,BN⊥MC.所以∠ANB为所求二面角的平面角.∵,∴.故所求的二面角为arccos.19.(12分)(2005•安徽)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.【分析】(Ⅰ)设等比数列通式a n=a1q(n﹣1),根据S1>0可知a1大于零,当q不等于1时,根据等比数列前n项和公式,进而可推知1﹣q n>0且1﹣q>0,或1﹣q n<0且1﹣q<0,进而求得q的范围,当q=1时仍满足条件,进而得到答案.(Ⅱ)把a n的通项公式代入,可得a n和b n的关系,进而可知T n和S n的关系,再根据(1)中q的范围来判断S n与T n的大小.【解答】解:(Ⅰ)设等比数列通式a n=a1q(n﹣1)根据S n>0,显然a1>0,当q不等于1时,前n项和s n=所以>0 所以﹣1<q<0或0<q<1或q>1当q=1时仍满足条件综上q>0或﹣1<q<0(Ⅱ)∵∴b n==a n q2﹣a n q=a n(2q2﹣3q)∴T n=(2q2﹣3q)S n∴T n﹣S n=S n(2q2﹣3q﹣2)=S n(q﹣2)(2q+1)又因为S n>0,且﹣1<q<0或q>0,所以,当﹣1<q<﹣或q>2时,T n﹣S n>0,即T n>S n;当﹣<q<2且q≠0时,T n﹣S n<0,即T n<S n;当q=﹣,或q=2时,T n﹣S n=0,即T n=S n.20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)【分析】首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率,由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元,得到变量ξ的可能取值是0,10,20,30,根据独立重复试验得到概率的分布列.【解答】解:首先根据独立重复试验的概率公式计算出一个坑不需要补种的概率p=1﹣C330.53=0.875由题意知一共种了3个坑,每个坑至多补种一次,每补种1个坑需10元得到变量ξ的可能取值是0,10,20,30,ξ=0,表示没有坑需要补种,根据独立重复试验得到概率P(ξ=0)=C330.8753=0.670P(ξ=10)=C320.8752×0.125=0.287P(ξ=20)=C31×0.875×0.1252=0.041P(ξ=30)=0.1253=0.002∴变量的分布列是∴ξ的数学期望为:Eξ=0×0.670+10×0.287+20×0.041+30×0.002=3.7521.(14分)(2005•安徽)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且=λ+μ(λ,μ∈R),证明λ2+μ2为定值.【分析】(Ⅰ)直线与椭圆方程联立用未达定理的A、B两点坐标的关系,据向量共线的条件得椭圆中a,b,c的关系,从而求得椭圆的离心率(Ⅱ)用向量运算将λμ用坐标表示,再用坐标的关系求出λ2+μ2的值.【解答】解:(1)设椭圆方程为则直线AB的方程为y=x﹣c,代入,化简得(a2+b2)x2﹣2a2cx+a2c2﹣a2b2=0.令A(x1,y1),B(x2,y2),则.∵与共线,∴3(y1+y2)+(x1+x2)=0,又y1=x1﹣c,y2=x2﹣c,∴3(x1+x2﹣2c)+(x1+x2)=0,∴.即,所以a2=3b2.∴,故离心率.(II)证明:由(1)知a2=3b2,所以椭圆可化为x2+3y2=3b2.设M(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),∴∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2.即λ2(x12+3y12)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2.①由(1)知.∴,∴x1x2+3y1y2=x1x2+3(x1﹣c)(x2﹣c)=4x1x2﹣3(x1+x2)c+3c2==0.又x12+3y12=3b2,x22+3y22=3b2,代入①得λ2+μ2=1.故λ2+μ2为定值,定值为1.22.(12分)(2005•安徽)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.(1)指出这个问题中的总体;(2)求竞赛成绩在79.5~89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.【分析】(1)根据总体的概念:所要考查的对象的全体即总体进行回答;(2)根据频率=频数÷总数进行计算;(3)首先计算样本中的频率,再进一步估计总体.【解答】解:(1)总体是某校2000名学生参加环保知识竞赛的成绩.(2),答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3),答:估计全校约有300人获得奖励.。

2005年高考理科数学试题全国卷1(河北、河南、山西、安徽).doc

2005年高考理科数学试题全国卷1(河北、河南、山西、安徽).doc

2005年普通高考全国数学卷(一)考区(河北理科卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是( )(A )Φ=⋃⋂)(321S S S C I (B ))(221S C S C S I I ⋂⊆ (C )Φ=⋂⋂)321S C S C S C I I I(D ))(221S C S C S I I ⋃⊆ (2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为()(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181-(4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为()(A )32 (B )33(C )34 (D )23(5)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为( )(A )23 (B )23 (C )26 (D )332(6)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为( )(A )2(B )32 (C )4 (D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(8)设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是( )(A ))0,(-∞(B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为()(A )2 (B )23 (C )223 (D )2(10)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A③1cossin22=+B A④C B A 222sin cos cos =+其中正确的是(A )①③(B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有( )(A )18对 (B )24对 (C )30对(D )36对 (12)复数ii 2123--=( )(A )i (B )i - (C )i -22 (D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年全国高考理科数学试题及答案-安徽

2005年全国高考理科数学试题及答案-安徽

2005年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ) 河南 河北 安徽 山西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3到10页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

3.本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一.选择题(1)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I (B )123I I S C S C S ⊆⋂() (C )Φ=⋂⋂)321S C S C S C I I I(D )123I I S C S C S ⊆⋃()(2)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(3)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222-(B )),(22-(C )),(4242- (D )),(8181- (4)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34(D )23 (5)已知双曲线)0( 1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332 (6)当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为(A )2(B )32(C )4(D )34(7)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+- (8)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞(C ))3log ,(a -∞ (D )),3(log +∞a(9)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2(B )23(C )223 (D )2(10)在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④ (D )②③ (11)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对 (B )24对 (C )30对(D )36对(12)复数ii 2123--=(A )i(B )i -(C )i -22(D )i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上。

2005年高考理科数学全国卷Ⅰ试题及答案

2005年高考理科数学全国卷Ⅰ试题及答案

2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)源头学子小屋 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页3到10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑擦干净后,再选涂其它答案标号不能答在试题卷上3.本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的 参考公式:如果事件A 、B 互斥,那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、相互独立,那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径kn kkn n P P C k P --=)1()(一、选择题 (1)复数ii 2123--=(A )i (B )i - (C )i -22 (D )i +-22(2)设I 为全集,321S S S 、、是I 的三个非空子集,且I S S S =⋃⋃321,则下面论断正确的是(A )Φ=⋃⋂)(321S S S C I(B )123I I S C S C S ⊆⋂()(C )123I I I C S C S C S ⋂⋂=Φ(D )123I I S C S C S ⊆⋃()(3)一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为(A )π28(B )π8(C )π24(D )π4(4)已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是(A )),(2222- (B )),(22-(C )),(4242-(D )),(8181- (5)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCFADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为(A )32 (B )33 (C )34 (D )23 (6)已知双曲线)0( 1222>=-a yax 的一条准线与抛物线x y62-=的准线重合,则该双曲线的离心率为(A )23 (B )23 (C )26 (D )332(7)当20π<<x 时,函数xxx x f 2sin sin82cos 1)(2++=的最小值为(A )2(B )32 (C )4(D )34(8)设0>b ,二次函数122-++=a bx ax y 的图像为下列之一则a 的值为 (A )1(B )1-(C )251-- (D )251+-(9)设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是(A ))0,(-∞ (B )),0(+∞ (C ))3log,(a-∞ (D )),3(log+∞a(10)在坐标平面上,不等式组⎩⎨⎧+-≤-≥131x y x y 所表示的平面区域的面积为(A )2 (B )23 (C )223 (D )2(11)在ABC ∆中,已知C B A sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A②2sin sin 0≤+<B A③1cossin22=+B A ④C B A 222sin cos cos =+其中正确的是 (A )①③ (B )②④ (C )①④(D )②③ (12)过三棱柱任意两个顶点的直线共15条,其中异面直线有(A )18对(B )24对(C )30对(D )36对第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷上2.答卷前将密封线内的项目填写清楚 3.本卷共10小题,共90分二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上(13)若正整数m 满足m m 102105121<<-,则m = )3010.02l g ≈(14)9)12(xx -的展开式中,常数项为 (用数字作答)(15)ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =(16)在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 于函数)(x f y =的图像不相切(18)(本大题满分12分)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点(Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角;(Ⅲ)求面AMC 与面BMC 所成二面角的大小(19)(本大题满分12分)设等比数列{}n a 的公比为q ,前n 项和,2,1( 0 =>n S n(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小(20)(本大题满分12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为5.0,若一个坑内至少有1粒种子发芽,则这个坑不需要补种; 若一个坑内的种子都没发芽,则这个坑需要补种坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望(精确到01.0)(21)(本大题满分14分)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值(22)(本大题满分12分) (Ⅰ)设函数)10( )1(log )1(log)(22<<--+=x x x x x x f ,求)(x f 的最小值;(Ⅱ)设正数np p p p 2321,,,, 满足12321=++++np p p p ,证明n p p p p p p p p n n -≥++++222323222121loglogloglog2005年高考理科数学全国卷Ⅰ试题及答案(河南安徽山西海南)参考答案一、选择题:1.A 2.C 3.B 4.C 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D二、填空题: 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<-(Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:∵ 33|||(sin(2))||2cos(2)|244y x x ππ''=-=-≤所以曲线)(x f y =的切线斜率的取值范围为[-2,2], 而直线025=+-c y x 的斜率为522>,所以直线025=+-c y x 于函数3()sin(2)4y f x x π==-的图像不相切18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD ,∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA , 则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90°在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PBBE PBE.510arccos所成的角为与PB AC ∴(Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM⋅-22)2(,5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BNAN ABBNANANB故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21.(Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故又由题设知AD ⊥DC ,且AP 与与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD(Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510,cos ,2,5||,2||=>=<=⋅==PB AC PB AC PB AC 所以故由此得AC 与PB 所成的角为.510arccos(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN0),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.4||,||,.555AN BN AN BN ==⋅=-2cos(,).3||||AN BN AN BN AN BN ⋅∴==-⋅2arccos().3-故所求的二面角为19.(Ⅰ)).,0()0,1(+∞⋃-(Ⅱ)0,100,n S q q >-<<>又因为且或1,12,0,;2n n n n q q T S T S -<<->->>所以当或时即120,0,;2n n n n q q T S T S -<<≠-<<当且时即 1,2,0,.2n n n n q q T S T S =-=-==当或时即20.(Ⅰ)ξ的数学期望为:75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分(1)解:设椭圆方程为)0,(),0(12222c F b a by ax >>=+则直线AB 的方程为c x y -=,代入12222=+by ax ,化简得02)(22222222=-+-+ba c a cx a xb a .令A (11,y x ),B 22,(y x ),则.,22222222122221ba b a c a x x b a c a x x +-=+=+由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与a 共线,得 ,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴即232222c ba c a =+,所以36.32222a ba cb a =-=∴=,故离心率.36==ac e(II )证明:(1)知223b a =,所以椭圆12222=+by ax 可化为.33222b yx =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ①由(1)知.21,23,23222221c bc ac x x ===+22.本小题考查数学归纳法及导数应用知识,考查综合运用数学知识解决问题的能力满分12分(Ⅰ)解:对函数()f x 求导数:22()(log )[(1)log (1)]f x x x x x '''=+--2211log log (1)ln 2ln 2x x =--+-22log log (1)x x =-- 于是1()02f '=,当12x <时,22()log log (1)0f x x x '=--<,()f x 在区间1(0,)2是减函数,当12x >时,22()log log (1)0f x x x '=-->,()f x 在区间1(,1)2是增函数,所以21)(=x x f 在时取得最小值,1)21(-=f ,(II )用数学归纳法证明(ⅰ)当n=1时,由(Ⅰ)知命题成立(ⅱ)假设当n=k 时命题成立即若正数1232,,,,kp p p p 满足12321kp p p p ++++= ,则121222323222log log log log kkp p p p p p p p k ++++≥-当n=k+1时,若正数11232,,,,k p p p p + 满足112321k p p p p +++++= ,令1232kx p p p p =++++11p q x=,22p q x=, (22)k p q =则1232,,,,kq q q q 为正数,且12321kq q q q ++++= ,由归纳假定知121222323222log log log log kkq q q q q q q q k ++++≥-121222323222log log log log k kp p p p p p p p ++++1212223232222(log log log log log )k k x q q q q q q q q x =+++++2()l o g x k x x ≥-+ ①同理,由1212221kk k p p p x ++++++=- ,可得112222*********log log log k k k k k k p p p p p p +++++++++2(1)()(1)log (1)x k x x ≥--+-- ②综合①、②两式11121222323222log log log log k k p p p p p p p p ++++++22()log (1)()(1)log (1)x k x x x k x x ≥-++--+-- 22()log (1)log (1)k x x x x =-++-- 1(1k k ≥--=-+即当n=k+1时命题也成立根据(ⅰ)、(ⅱ)可知对一切正整数n 命题成立。

2005年普通高校招生全国统一考试理科数学试题(全国卷Ⅰ)及参考答案

2005年普通高校招生全国统一考试理科数学试题(全国卷Ⅰ)及参考答案

2005年普通高校招生全国统一考试理科数学试题(全国卷Ⅰ)
及参考答案
佚名
【期刊名称】《中学数学月刊》
【年(卷),期】2005(000)007
【总页数】4页(P42-45)
【正文语种】中文
【中图分类】G4
【相关文献】
1.2002年普通高校招生全国统一考试数学试题及解答 [J],
2.2001年普通高校招生全国统一考试数学试题及解答 [J],
3.2000年普通高校招生全国统一考试数学试题及解答 [J],
4.2005年普通高等学校招生全国统一考试(广东卷)数学试题和参考答案 [J], 无
5.1999年普通高校招生全国统一考试数学试题及解答 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年全国1卷高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)
.D
22
.C D.
4.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()
.C D.
5.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为().C D.
6.(5分)当0<x<时,函数的最小值为()
C.
7.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()
D.
2x x
9.(5分)在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域B={(x+y,
D.
10.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:
①tanA•cotB=1,
②1<sinA+sinB≤,
③sin2A+cos2B=1,
④cos2A+cos2B=sin2C,
12.(5分)复数=()

二、填空题(共4小题,每小题4分,满分16分)
13.(4分)若正整数m满足10m﹣1<2512<10m,则m=_________.(lg2≈0.3010)
14.(4分)的展开式中,常数项为_________.(用数字作答)
15.(4分)△ABC的外接圆的圆心为O,两条边上的高的交点为H,,则实数m=_________.
16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为_________.(写出所有正确结论的编号)
三、解答题(共6小题,满分74分)
17.(12分)设函数f(x)=sin(2π+ϕ)(﹣π<ϕ<0),y=f(x)图象的一条对称轴是直线.
(Ⅰ)求ϕ;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x﹣2y+c=0与函数y=f(x)的图象不相切.
18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=,
AB=1,M是PB的中点.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.
19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).
(Ⅰ)求q的取值范围;
(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.
20.(12分)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)
21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两
点,与=(3,﹣1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明λ2+μ2为定值.
22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.
(1)指出这个问题中的总体;
(2)求竞赛成绩在79.5~89.5这一小组的频率;
(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
2005年全国1卷高考数学试卷(理科)
参考答案与试题解析
一、选择题(共12小题,每小题5分,满分60分)
.D
R=
=8
22
.C D.

4.(5分)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE、△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()
.C D.
,高为:
其体积为:
5.(5分)已知双曲线﹣y2=1(a>0)的一条准线与抛物线y2=﹣6x的准线重合,则该双曲线的离心率为().C D.
求得解:双曲线的准线为
的准线为
因为两准线重合,故,
c==2
该双曲线的离心率为=
6.(5分)当0<x<时,函数的最小值为()
C.
=


7.(5分)设b>0,二次函数y=ax2+bx+a2﹣1的图象为下列之一,则a的值为()
D.
2x x
9.(5分)在平面直角坐标系xOy中,已知平面区域A={(x,y)|x+y≤1,且x≥0,y≥0},则平面区域B={(x+y,
D.
10.(5分)在△ABC中,已知tan=sinC,给出以下四个论断:
①tanA•cotB=1,
②1<sinA+sinB≤,
③sin2A+cos2B=1,
④cos2A+cos2B=sin2C,
cos进而求得
tan=sinC
∴=2sin cos
sinA+sinB=sinA+cosA=sin

12.(5分)复数=()

解:复数=i
二、填空题(共4小题,每小题4分,满分16分)
13.(4分)若正整数m满足10m﹣1<2512<10m,则m=155.(lg2≈0.3010)
14.(4分)的展开式中,常数项为672.(用数字作答)
r r r =0
×=672
15.(4分)△ABC的外接圆的圆心为O,两条边上的高的交点为H,,则实数m=1.
+,由向量相等和向量的减法运算进行转化,直到用、和
由图得,﹣
是平行四边形,∴=
又∵=﹣+,
∴+=+=+,对比系数得到
16.(4分)在正方体ABCD﹣A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为①③④.(写出所有正确结论的编号)
三、解答题(共6小题,满分74分)
17.(12分)设函数f(x)=sin(2π+ϕ)(﹣π<ϕ<0),y=f(x)图象的一条对称轴是直线.
(Ⅰ)求ϕ;
(Ⅱ)求函数y=f(x)的单调增区间;
(Ⅲ)证明直线5x﹣2y+c=0与函数y=f(x)的图象不相切.
)图象的一条对称轴是直线.就是
x=
∴,∴

﹣,因此

所以函数.
的斜率为>
18.(12分)已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=,
AB=1,M是PB的中点.
(Ⅰ)证明:面PAD⊥面PCD;
(Ⅱ)求AC与PB所成的角;
(Ⅲ)求面AMC与面BMC所成二面角的大小.
)求出,计算
,计算
则存在使求出
,又
PB=,

MC=,∴

故所求的二面角为
M
)解:因
λ
,只需
.可知当点坐标为,能使


arccos
19.(12分)设等比数列{a n}的公比为q,前n项和S n>0(n=1,2,…).(Ⅰ)求q的取值范围;
(Ⅱ)设,记{b n}的前n项和为T n,试比较S n与T n的大小.
=
)∵
a
(S
<﹣

,或
20.(12分)(2005•安徽)9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01)
21.(14分)已知椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与=(3,﹣1)共线.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设M为椭圆上任意一点,且,证明λ2+μ2为定值.
)设椭圆方程为
,代入,
∵共线,


故离心率
所以椭圆

)知

=
22.(12分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图),请结合图形解答下列问题.
(1)指出这个问题中的总体;
(2)求竞赛成绩在79.5~89.5这一小组的频率;
(3)如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
,。

相关文档
最新文档