2012年高考新课标全国卷数学(理)

合集下载

2012年高考真题——数学理全国卷解析版

2012年高考真题——数学理全国卷解析版

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页.考试结束,务必将试卷和答题卡一并上交. 第I 卷注意事项:全卷满分150分,考试时间120分钟. 考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准该条形码上的准考证号、姓名和科目.2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.第I 卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 【解析】i ii i i i i i 21242)1)(1()1)(31(131+=+=-+-+-=++-,选C. 【答案】C2、已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B.【答案】B3 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-c a ,所以842==c a ,448222=-=-=c a b ,所以椭圆的方程为14822=+y x ,选C.【答案】C4 已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B3 C 2 D 1【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.【答案】D(5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101(C) 99100 (D) 101100 【解析】由15,555==S a ,得1,11==d a ,所以n n a n =-+=)1(1,所以111)1(111+-=+=+n n n n a a n n ,又1011001011110111001312121111110110021=-=-++-+-=+ a a a a ,选A.【答案】A(6)△ABC 中,AB 边的高为CD ,若a ·b=0,|a|=1,|b|=2,则(A) (B ) (C) (D)【解析】在直角三角形中,521===AB CA CB ,,,则52=CD ,所以5454422=-=-=CD CA AD ,所以54=AB AD ,即b a b a AB AD 5454)(5454-=-==,选D. 【答案】D(7)已知α为第二象限角,33cos sin =+αα,则cos2α= (A) 5-3 (B )5-9 (C) 59 (D)53【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 【答案】A(8)已知F 1、F 2为双曲线C :x ²-y ²=2的左、右焦点,点P 在C 上,|PF 1|=|2PF 2|,则cos ∠F 1PF 2= (A)14 (B )35 (C)34 (D)45【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 【答案】C(9)已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【解析】1ln >=πx ,215log 12log 25<==y ,ee z 121==-,1121<<e ,所以x z y <<,选D.【答案】D(10) 已知函数y =x ²-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1【解析】若函数c x x y +-=33的图象与x 轴恰有两个公共点,则说明函数的两个极值中有一个为0,函数的导数为33'2-=x y ,令033'2=-=x y ,解得1±=x ,可知当极大值为c f +=-2)1(,极小值为2)1(-=c f .由02)1(=+=-c f ,解得2-=c ,由02)1(=-=c f ,解得2=c ,所以2-=c 或2=c ,选A.【答案】A(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种(B )18种(C )24种(D )36种【解析】第一步先排第一列有633=A ,在排第二列,当第一列确定时,第二列有两种方法,如图,所以共有1226=⨯种,选A.【答案】A(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =73.动点P 从E 出发沿直线喜爱那个F 运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 (A )16(B )14(C )12(D)10【解析】结合已知中的点E,F 的位置,进行作图,推理可知,在反射的过程中,直线是平行的,那么利用平行关系,作图,可以得到回到EA 点时,需要碰撞14次即可. 【答案】B2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 第Ⅱ卷 注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上得准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效......... 3.第Ⅱ卷共10小题,共90分.二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13)若x ,y 满足约束条件则z=3x-y 的最小值为_________.【解析】做出做出不等式所表示的区域如图,由y x z -=3得z x y -=3,平移直线x y 3=,由图象可知当直线经过点)1,0(C 时,直线z x y -=3的截距最 大,此时z 最小,最小值为1-3=-=y x z . 【答案】1-(14)当函数取得最大值时,x=___________.【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 【答案】65π=x (15)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为_________.【解析】因为展开式中的第3项和第7项的二项式系数相同,即62n n C C =,所以8=n ,所以展开式的通项为k k k kk k x C xxC T 288881)1(--+==,令228-=-k ,解得5=k ,所以2586)1(x C T =,所以21x的系数为5658=C .【答案】56(16)三菱柱ABC-A 1B 1C 1中,底面边长和侧棱长都相等, BAA 1=CAA 1=60°则异面直线AB 1与BC 1所成角的余弦值为____________.【解析】如图设,,,1c AC b AB a AA ===设棱长为1,则,1b a AB +=b c a BC a BC -1+=+=,因为底面边长和侧棱长都相等,且01160=∠=∠CAA BAA 所以21=•=•=•c b c a b a ,所以3)(21=+=b a AB ,2)-(21=+=b c a BC ,2)-()(11=+•+=•b c a b a BC AB ,设异面直线的夹角为θ,所以36322cos 1111=⨯=•=BC AB BC AB θ. 【答案】36 三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试卷上作答无效...........) △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.(18)(本小题满分12分)(注意:在试题卷上作答无效.........)如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥底面ABCD,AC=22,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19. (本小题满分12分)(注意:在试题卷上作答无效.........)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球. (Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)表示开始第4次发球时乙的得分,求的期望.(20)(本小题满分12分)(注意:在试题卷上作答无效.........)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(本小题满分12分)(注意:在试卷上作答无效........)已知抛物线C:y=(x+1)2与圆M:(x-1)2+(12y )2=r2(r>0)有一个公共点,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m、n是异于l且与C及M都相切的两条直线,m、n的交点为D,求D到l的距离.22(本小题满分12分)(注意:在试卷上作答无效........)函数f(x)=x2-2x-3,定义数列{x n}如下:x1=2,x n+1是过两点P(4,5)、Q n(x n,f(x n))的直线PQ n 与x轴交点的横坐标.(Ⅰ)证明:2 x n<x n+1<3;(Ⅱ)求数列{x n}的通项公式.。

2012年全国高考理科数学试题及答案-全国卷(含答案)

2012年全国高考理科数学试题及答案-全国卷(含答案)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{1A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A BC D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101 (C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a = ,CA b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=,则cos 2α= (A) (B) (C(D(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012大纲全国卷高考数学试题(理科)及答案

2012大纲全国卷高考数学试题(理科)及答案

2012年普通高等学校招生全国统一考试理科数学(必修+选修II)本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1、复数131ii-++=A 2+IB 2-IC 1+2iD 1- 2i2、已知集合A=},B={1,m} ,A B=A, 则m=A 0或3 C 1或33 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为A216x+212y=1 B212x+28y=1C28x+24y=1 D212x+24y=14 已知正四棱柱ABCD- A1B1C1D1中,AB=2,CC1=为CC1的中点,则直线AC1与平面BED的距离为(5)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为(A)100101(B)99101(C)99100(D)101100(6)△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则(A)(B) (C) (D)(7)已知α为第二象限角,sinα+sinβcos2α=(A) (B)(8)已知F1、F2为双曲线C:x²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos ∠F1PF2=(A)14(B)35(C)34(D)45(9)已知x=lnπ,y=log52,12z=e,则(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x(10) 已知函数y=x²-3x+c的图像与x恰有两个公共点,则c=(A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1(11)将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不相同,梅列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

2012高考理科数学(全国卷)及答案(高清版)

2012高考理科数学(全国卷)及答案(高清版)

2012年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第Ⅰ卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1.复数13i 1i-+=+( )A .2+iB .2-iC .1+2iD .1-2i2.已知集合A ={1,3},B ={1,m },A ∪B =A ,则m =( )A .0或 B .0或3 C .1D .1或33.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为( ) A .2211612x y += B .221128x y += C .22184xy+= D .221124xy+=4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,1CC =E 为CC 1的中点,则直线AC 1与平面BED 的距离为( )A .2 BCD .15.已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{11n n a a +}的前100项和为( )A .100101 B .99101 C .99100 D .1011006.△ABC 中,AB 边的高为CD .若C B =a ,C A =b ,a ·b =0,|a |=1,|b |=2,则AD=( )A .1133-a bB .2233-a bC .3355-a b D .4455-a b7.已知α为第二象限角,sin α+cos α3,则cos2α=( )A.3-B.9-C9D38.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A .14B .35C .34D .459.已知x =ln π,y =log 52,12=e z -,则( )A .x <y <zB .z <x <yC .z <y <xD .y <z <x10.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=()A.-2或2 B.-9或3 C.-1或1 D.-3或111.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=37.动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16 B.14 C.12 D.10第Ⅱ卷第Ⅱ卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.若x,y满足约束条件10,30,330,x yx yx y-+≥⎧⎪+-≤⎨⎪+-≥⎩则z=3x-y的最小值为__________.14.)当函数y=sin xx(0≤x<2π)取得最大值时,x=__________.15.若(x+1x)n的展开式中第3项与第7项的二项式系数相等,则该展开式中21x的系数为__________.16.三棱柱ABC-A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为__________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.△ABC的内角A,B,C的对边分别为a,b,c,已知cos(A-C)+cos B=1,a=2c,求C.18.如图,四棱锥P-ABCD中,底面ABCD为菱形,P A⊥底面ABCD,AC=,PA=2,E是PC上的一点,PE=2EC.(1)证明:PC⊥平面BED;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.19.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.21.已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-12)2=r2(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(1)求r;(2)设m ,n 是异于l 且与C 及M 都相切的两条直线,m ,n 的交点为D ,求D 到l 的距离.22.函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过两点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴交点的横坐标.(1)证明:2≤x n <x n +1<3; (2)求数列{x n }的通项公式.1. C213i (13i)(1i)1+i+3i 3i24i 12i 1i(1i)(1i)22-+-+---+====+++-.2. B ∵A ={1,3},B ={1,m },A ∪B =A , ∴m =3或m =∴m =3或m =0或m =1.当m =1时,与集合中元素的互异性不符,故选B 项. 3. C ∵焦距为4,即2c =4,∴c =2. 又∵准线x =-4,∴24ac-=-.∴a 2=8.∴b 2=a 2-c 2=8-4=4.∴椭圆的方程为22184xy+=,故选C 项. 4. D 连结AC 交BD 于点O ,连结OE ,∵AB =2,∴AC =.又1CC =AC =CC 1.作CH ⊥AC 1于点H ,交OE 于点M . 由OE 为△ACC 1的中位线知, CM ⊥OE ,M 为C H 的中点.由BD ⊥AC ,EC ⊥BD 知,BD ⊥面EOC , ∴CM ⊥BD .∴CM ⊥面BDE .∴HM 为直线AC 1到平面BDE 的距离.又△AC C 1为等腰直角三角形,∴CH =2.∴HM =1. 5. A 15155()5(5)1522a a a S ++===,∴a 1=1.∴515115151a a d --===--.∴a n =1+(n -1)×1=n .∴111(1)n n a a n n +=+.设11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为T n ,则100111 1223100101T=+++⨯⨯⨯…=11111 1223100101 -+-++-…=1100 1101101 -=.6.D∵a·b=0,∴a⊥b. 又∵|a|=1,|b|=2,∴||AB=∴12||5C D⨯==.∴||5AD==.∴4444()5555AD AB AB===-=-a b a b.7.A∵sinα+cosα=3,且α为第二象限角,∴α∈(2kπ+π2,2kπ+3π4)(k∈Z).∴2α∈(4kπ+π,4kπ+3π2)(k∈Z).由(sinα+cosα)2=1+sin2α=13,∴2sin23α-=.∴cos23α==-.9.D∵x=ln π>1,y=log52>51log2=,121e2z-==>=,且12e-<e0=1,∴y<z<x.10.A y′=3x-3=3(x+1)(x-1).当y′>0时,x<-1或x>1;当y′<0时,-1<x<1.∴函数的递增区间为(-∞,-1)和(1,+∞),递减区间为(-1,1).∴x=-1时,取得极大值;x=1时,取得极小值.要使函数图象与x轴恰有两个公共点,只需:f(-1)=0或f(1)=0,即(-1)3-3×(-1)+c=0或13-3×1+c=0,∴c=-2或c=2.11. A如图,由于每行、每列的字母都互不相同,故只须排好1,2,3号格即可,显然1号格有3种选择,2,3号格均有两种选择,所以不同的排法共有3×2×2=12种.12. B 结合已知中的点E ,F 的位置,由反射与对称的关系,可将点P 的运动路线展开成直线,如图.当点P 碰到E 时,m 为偶数,且333477m n =+-,即4m =3n .故m 的最小值为6,n =8,线段PE 与网格线交点的个数为(除E 点外)6+8=14个. (PE 的方程为39428y x =-,即4y =3x -97,x ,y 不能同时为整数,所以PE 不过网格交点)13.答案:-1解析:由题意画出可行域,由z =3x -y 得y =3x -z ,要使z 取最小值,只需截距最大即可,故直线过A (0,1)时,z 最大.∴z max =3×0-1=-1. 14.答案:5π6解析:y =sin xcos x=1π2(sin )2sin()223x x x -=-.当y 取最大值时,ππ2π32x k -=+,∴x =2k π+5π6.又∵0≤x <2π,∴5π6x =.15.答案:56解析:∵26C C n n =,∴n =8.T r +1=8C rx 8-r (1x)r =8C rx 8-2r ,令8-2r =-2,解得r =5.∴系数为58C 56=.16.答案:6解析:取BC 的中点O ,连结AO ,A 1O ,BA 1,CA 1,易证BC ⊥AO ,BC ⊥A 1O ,从而BC ⊥AA 1,又BB 1∥AA 1,BB 1⊥BC .延长CB 至D ,使BD =BC ,连结B 1D ,则B 1D ∥BC 1,设BC =1,则1B D =,1AB AD ===.6=17.解:由B =π-(A +C ),得cos B =-cos(A +C ).于是cos(A -C )+cos B =cos(A -C )-cos(A +C )=2sin A sin C ,由已知得sin A sin C =12.①由a =2c 及正弦定理得sin A =2sin C .② 由①②得21sin 4C =,于是1sin 2C -=(舍去)或1sin 2C =.又a =2c ,所以π6C =.18.解法一:(1)证明:因为底面ABCD 为菱形,所以BD ⊥AC .又PA ⊥底面ABCD , 所以PC ⊥BD .设AC ∩BD =F ,连结EF .因为AC =PA =2,PE =2EC ,故PC =3EC =,FC =从而P C F C =A C E C=因为P C A C F CE C=,∠FCE =∠PCA ,所以△FCE ∽△PCA ,∠FEC =∠PAC =90°, 由此知PC ⊥EF .PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面PAB ⊥平面PBC . 又平面PAB ∩平面PBC =PB ,故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直, 故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,P D ==. 设D 到平面PBC 的距离为d .因为AD ∥BC ,且AD 平面PBC ,BC 平面PBC ,故AD ∥平面PBC ,A ,D 两点到平面PBC 的距离相等,即d =AG 设PD 与平面PBC 所成的角为α,则1sin 2d P Dα==.所以PD 与平面PBC 所成的角为30°.解法二:(1)证明:以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .设C (0,0),D ,b,0),其中b >0,则P (0,0,2),E (3,0,23),B b,0).于是PC =(,0,-2),BE =(3,b ,23),D E =(3,-b ,23),从而0PC BE ⋅= ,0PC DE ⋅=,故PC ⊥BE ,PC ⊥DE .又BE ∩DE =E ,所以PC ⊥平面BDE .(2)AP =(0,0,2),AB=b,0). 设m =(x ,y ,z )为平面P AB 的法向量,则m ·AP =0,m ·AB =0,即2z =0-by =0,令x =b ,则m =(b 0).设n =(p ,q ,r )为平面PBC 的法向量,则n ·PC =0,n ·BE =0,即20r -=且2033bq r ++=,令p =1,则r =q b=-,n =(1,b-).因为面PAB ⊥面PBC ,故m·n =0,即20b b-=,故b =,于是n =(1,-1,DP=(2),1cos ,2||||D P D P D P ⋅== n n n ,〈n ,DP 〉=60°. 因为PD 与平面PBC 所成角和〈n ,DP〉互余,故PD 与平面PBC 所成的角为30°.19.解:记A i 表示事件:第1次和第2次这两次发球,甲共得i 分,i =0,1,2; B i 表示事件:第3次和第4次这两次发球,甲共得i 分,i =0,1,2; A 表示事件:第3次发球,甲得1分;B 表示事件:开始第4次发球时,甲、乙的比分为1比2;C 表示事件:开始第5次发球时,甲得分领先.(1)B =A 0·A +A 1·A ,P (A )=0.4,P (A 0)=0.42=0.16,P (A 1)=2×0.6×0.4=0.48, P (B )=P (A 0·A +A 1·A ) =P (A 0·A )+P (A 1·A )=P (A 0)P (A )+P (A 1)P (A )=0.16×0.4+0.48×(1-0.4)=0.352. (2)(理)P (A 2)=0.62=0.36. ξ的可能取值为0,1,2,3. P (ξ=0)=P (A 2·A )=P (A 2)P (A )=0.36×0.4=0.144, P (ξ=2)=P (B )=0.352,P (ξ=3)=P (A 0·A )=P (A 0)P (A )=0.16×0.6=0.096, P (ξ=1)=1-P (ξ=0)-P (ξ=2)-P (ξ=3) =1-0.144-0.352-0.096=0.408.Eξ=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=0.408+2×0.352+3×0.096=1.400.20.解:(1)f ′(x )=a -sin x .①当a ≥1时,f ′(x )≥0,且仅当a =1,π2x =时,f ′(x )=0,所以f (x )在[0,π]是增函数;②当a ≤0时,f ′(x )≤0,且仅当a =0,x =0或x =π时,f ′(x )=0,所以f (x )在[0,π]是减函数;③当0<a <1时,由f ′(x )=0,解得x 1=arcsin a ,x 2=π-arcsin a . 当x ∈[0,x 1)时,sin x <a ,f ′(x )>0,f (x )是增函数; 当x ∈(x 1,x 2)时,sin x >a ,f ′(x )<0,f (x )是减函数; 当x ∈(x 2,π]时,sin x <a ,f ′(x )>0,f (x )是增函数. (2)由f (x )≤1+sin x ,得f (π)≤1,a π-1≤1, 所以2πa ≤.令g (x )=sin x -2πx (0≤x ≤π2),则g ′(x )=cos x -2π.当x ∈(0,arccos 2π)时,g ′(x )>0, 当x ∈(arccos 2π,π2)时,g ′(x )<0.又g (0)=g (π2)=0,所以g (x )≥0,即2πx ≤sin x (0≤x ≤π2).当a ≤2π时,有f (x )≤2πx +cos x .①当0≤x ≤π2时,2πx ≤sin x ,cos x ≤1,所以f (x )≤1+sin x ; ②当π2≤x ≤π时,f (x )≤2πx +cos x =1+2π(x -π2)-sin(x -π2)≤1+sin x .综上,a 的取值范围是(-∞,2π].21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1. 圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1,即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |2=,即2r =.(2)设(t ,(t +1))为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M2,2=,化简得t (t -4t -6)=0,解得t 0=0,12t =+,22t =-抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==.将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离5d ==.22.解:(1)用数学归纳法证明:2≤x n <x n +1<3. ①当n =1时,x 1=2,直线PQ 1的方程为(2)55(4)24f y x --=--, 令y =0,解得2114x =,所以2≤x 1<x 2<3.②假设当n =k 时,结论成立,即2≤x k <x k +1<3. 直线PQ k +1的方程为11()55(4)4k k f x y x x ++--=--,令y =0,解得121342k k k x x x ++++=+,由归纳假设知121134554432223k k k k x x x x +++++==-<-=+++;x k +2-x k +1=111(3)(1)02k k k x x x +++-+>+,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由①②知对任意的正整数n,2≤x n <x n +1<3. (2)由(1)及题意得1342n n n x x x ++=+.设b n =x n -3,则1151n nb b +=+,111115()44n nb b ++=+,数列{114nb +}是首项为34-,公比为5的等比数列.因此1113544n nb -+=-⋅,即14351n n b -=-⋅+, 所以数列{x n }的通项公式为143351n n x --⋅+=.。

2012年高考理科数学试卷及答案全国卷word版

2012年高考理科数学试卷及答案全国卷word版

2012年高考理科数学试卷及答案全国卷word版2012年高考理科数学试卷及答案全国卷word版第一部分:选择题1. 根据分式的定义,下列分式正确的是()A. 0/1B. -1/0C. 1/-1D. 0/0答案: A解析: 根据分式的定义,分母不能为0,所以选项B、C均不正确;0/0是不确定的数,所以选项D也不正确。

2. 在(1,2)处的切线方程是()A. y=x-1B. y=x+1C. y=2x-3D. y=2x-1答案: D解析: 函数y=x^2-1在点(1,0)处的切线斜率为2,因此在(1,2)处的切线斜率也为2,即y=2x+b。

同时,该点在函数图像上,所以代入函数方程可得b=0-1=-1,因此切线方程为y=2x-1。

3. 若x, y>0,且log3x-log3y=log9x-log9y,则x/y等于()A. 1/3B. 1/9C. 3D. 9答案: B解析: 按照对数的性质,log9x=log3( x^(1/2) ),所以原式可以变形为log3(x/y)=log3( x^(1/2)/y^(1/2) )。

然后两边取3的指数,得到x/y=(x/y)^(1/2),解得x/y=1/9。

4. 如图,在正方形ABCD中,点P在AC边上,$AP=\frac{1}{3}AC$,点Q在AD边上,$AQ=\frac{1}{4}AD$,则三角形CPQ的面积是正方形ABCD的面积的()A. 1/12B. 1/16C. 1/24D. 1/36答案: C解析: 因为AP:AC=1:3、AQ:AD=1:4,所以$$\frac{AP}{AC}=\frac{AQ}{AD}=\frac{1}{12}$$因此,三角形APQ与三角形ACD相似。

可以设正方形边长为a,则AC=AD=a√2,AP=1/3×a√2=√2/3a,AQ=1/4×a√2=√2/4a,因此PQ=AP+AQ=7√2/12a,h=AC×PQ/2=49/72a^2,所以三角形CPQ的面积为S=h×PQ/2=7/144a^2,也就是正方形ABCD面积的1/24。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年高考理科数学全国卷1(含答案解析)

2012年高考理科数学全国卷1(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题: 1:||2p z =;22:2i p z =;3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x y a b a b +=>>的左、右焦点,P 为直线32ax =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2B . 22C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是 ( ) A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A . 26B . 36C . 23D . 2212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( )A . 1ln2-B . 2(1ln 2)-C . 1ln2+D .2(1ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|10-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为_________.16. 数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △的面积为3,求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10201616151310以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为42,求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e(0)2x f x f f x x -'=-+.(Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =; (Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PB PC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集;(Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.FGDE AB C2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12naa a,,,中最大的数和最小的数其中A为12naa a,,,中最大的数,B为12naa a,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12na a a,,中最大的数和最小的数.【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3;,12ω>∴,验证三角函数的角的范围,排除选项,得到结的范围即可.的部分图象确定其解析式.22222(2)44|a b|a b a a b b-=-=-+224||4||||cos45||a ab b=-︒+24|||10b b=-+=,解得||32b=【提示】由已知可得,2||||cos45||2ba ab b=︒=,代入2222(2)44a b|ab a a b b-=-=-+242||||10b b=-+=可求【考点】平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角.14.【答案】[]3,3-【解析】画出可行域,易知当直线2z x y=-经过点(1,2)时,z取最小值z x=-经过点(3,0)时,60(a++-(1117++=315959(()a a a a=++++奇177********S S=+=+⨯=奇偶141n nb a++=142242n na a++++++--{}na的前60sin0C>,0πA<<,由余弦定理可得222a b caab+-,22a b+-cos1A=,0πA<<ππ66=A∴(2)ABCS=△,2a A=,222a b c∴=+-.解得b c=【提示】(Ⅰ)由正弦定理及两角和的正弦公式可得sin cos sin sin cosA C A C++整理可求AX 的数学期望()550.1650.2750.16850.5476.4E X =⨯+⨯+⨯+⨯=,因为76.4>76,所以,直三棱柱,又1DC BD ⊥1DC D =2AB a =BDC ,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =Rt ABD △3,90a AD =AB ∴2AC BC +AC BC ∴⊥1BDA ,连结30. 30.轴,CB 为建立空间直角坐标系1(,0,2,0)(,0,A a a D a ,(,,DB a a =--1(,0,DC a =-11(,n x y =111100n DB ax az n DC ax ⎧=--=⎪⎨=-=⎪⎩,不妨令,故可取1(1,2,1)n =同理,可求得平面1DBA 的一个法向量2(1,1,0)n =设1n 与2n 的夹角为θ,则1212cos ||||6n n n n =⨯30.由图可知,二面角的大小为锐角,故二面角1A -.【提示】(Ⅰ)证明只需证明1DC DC ⊥⊥,(Ⅱ)证明BC ⊥BC AC ⊥取A 重合且C DO ∠()e h x '=x →-∞时,(2)当a (3)当a ()0f x '>10a +>CF ABCF AD,=∴=CD AF∥CF AB(Ⅱ)由(Ⅰ)知,BCD∴△∽△【提示】(Ⅰ)角,即可得到结论;(Ⅱ)证明两组对应角相等,即可证得。

2012年高考理科数学(新课标卷)试题及答案[1]

2012年高考理科数学(新课标卷)试题及答案[1]

2012年全国卷新课标——数学理科(适用地区:吉林 黑龙江 山西、河南、新疆、宁夏、河北、云南、内蒙古) 本试卷包括必考题和选考题两部分,第1-21题为必考题,每个考生都必须作答.第22题~第24题,考生根据要求作答.一、选择题:本大题共12小题,在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为 A. 3B. 6C. 8D. 10【解析】选D.法一:按x y -的值为1,2,3,4计数,共432110+++=个;法二:其实就是要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.2. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种 【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案. 3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z的共轭复数为i +1:4P z的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P【解析】选C.经计算, 221,21 z i z i i ==--=-+.4. 设21,F F 是椭圆:E12222=+by ax )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21 B.32 C.43 D.54【解析】选C.画图易得,21F PF △是底角为30 的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a==.5. 已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a a A.7B. 5C.5-D. 7-【解析】选D.472a a +=,56478a a a a ==-,474,2a a ∴==-或472,4a a =-=,14710,,,a a a a 成等比数列,1107a a ∴+=-. 6. 如果执行右边的程序框图,输入正整数N )2(≥N 和实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2B A +为N a a a ,,,21 的算术平均数C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数 【解析】选C.7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 18【解析】选B.由三视图可知,此几何体是底面为俯视图三角形,高为3的三棱锥,113932V =⨯⨯=.8. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 8【解析】选C.易知点(4,-在222x y a -=上,得24a =,24a =. 9. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(【解析】选A. 由322,22442Zk k k ππππππωπωπ+≤+<+≤+∈得,1542,24Zk k k ω+≤≤+∈,15024ωω>∴≤≤.10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为【解析】选B.易知ln(1)0y x x =+-≤对()1,x ∈-+∞恒成立,当且仅当0x =时,取等号. 11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63C.32 D.22【解析】选A.易知点S到平面ABC的距离是点O到平面ABC的距离的2倍.显然O A B C-是棱长为1的正四面体,其高为3,故1234312O A B CV-=⨯⨯=,26S ABC O ABCV V--==12. 设点P在曲线x ey21=上,点Q在曲线)2ln(xy=上,则||PQ的最小值为A. 2ln1- B. )2ln1(2- C. 2ln1+ D. )2ln1(2+【解析】选B.12xy e=与ln(2)y x=互为反函数,曲线12xy e=与曲线ln(2)y x=关于直线y x=对称,只需求曲线12xy e=上的点P到直线y x=距离的最小值的2倍即可.设点1,2xP x e⎛⎫⎪⎝⎭,点P到直线y x=距离d=令()12xf x e x=-,则()112xf x e'=-.由()0f x'>得ln2x>;由()0f x'<得ln2x<,故当l n2x=时,()f x取最小值1ln2-.所以d=1xe x-=,mind=所以)min min||21ln2PQ d==-.二、填空题.本大题共4小题,每小题5分.13.已知向量a,b夹角为︒45,且1=||a,102=-||ba,则=||b.【解析】由已知得,()22222244||-=-=-a b a b a a b+b2244cos45=-a a b+b2410=-=+b,解得=b14.设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x Z 2-=的取值范围为 .【解析】[]3,3-.画出可行域,易知当直线2Z x y =-经过点()1,2时,Z 取最小值3-;当直线2Z x y =-经过点()3,0时,Z 取最大值3.故2Z x y =-的取值范围为[]3,3-.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.使用寿命(单位:小时)服从正态分布)50,1000(2N 那么该部件的使用寿命超过1000小时的概率为 . 【解析】38 .由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.16. 数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a 的前60项和为 . 【解析】1830.由1(1)21n n n a a n ++-=-得,22143k k a a k --=-……① 21241k k a a k +-=-……②,再由②-①得, 21212k k a a +-+=……③由①得, ()()()214365S S a a a a a a -=-+-+-+奇偶…()6059a a +-159=+++…117+()11173017702+⨯==由③得, ()()()3175119S a a a a a a =++++++奇…()5959a a ++21530=⨯=所以, ()217702301830S S S S S S =+=-+=+⨯=60奇奇奇偶偶.三、解答题:解答题应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分) 已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0s i n 3c o s =--+c b C a C a .(Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .解:(Ⅰ)法一:由cos sin 0a C C b c +--=及正弦定理可得sin cos sin sin sin 0A C A CBC +--=,()sin cos sin sin sin 0A C A C A C C +-+-=,sin cos sin sin 0A C A C C --=,sin 0C > ,cos 10A A ∴--=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-=⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=法二:由正弦定理可得sin sin a Cc A=,由余弦定理可得 222cos 2a b cC ab+-=.再由cos sin 0a C C b c +--=可得,222sin 02a b ca Abc ab+-⋅+--=,即2222sin 220a b c A b bc +-+--=,2222sin 220a b c A b bc +-+--=22212b c aA bc+--+=cos 1A A -=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-=⎪⎝⎭, 0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=(Ⅱ)ABC S = △,1sin 24bc A bc ∴==4bc ∴=,2,3a A π==, 222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=.解得2b c ==. 18. (本小题满分12分) 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由. 解:(Ⅰ)()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N∈);(Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.X X的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花.19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==,D 是棱1AA 的中点,BDDC ⊥1(Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.(Ⅰ) 证明:设112A CBC A A a ===, 直三棱柱111C B A A B C -,1DC DC ∴==, 12C C a=,22211D C D C C C ∴+=,1D C D C ∴⊥.又1D C BD ⊥ ,1D C D C D = ,1DC ∴⊥平面B D C .B C ⊂平面B D C ,1D C BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC =,1BC =,又已知BD DC ⊥1,BD ∴=. 在R t A B D △中,,,90BD AD a D AB ==∠= ,AB ∴=. 222AC BC AB ∴+=,A C B C ∴⊥.法一:取11A B 的中点E ,则易证1C E ⊥平面1B D A ,连结D E ,则1C E ⊥B D , 已知BD DC ⊥1,B D ∴⊥平面1D C E ,B D ∴⊥D E ,1C D E∴∠是二面角11C BD A --平面角.在1Rt C D E △中,1111sin 2C E C D E C D∠===,130C D E ∴∠= .即二面角11C BD A --的大小为30 .法二:以点C 为坐标原点,为x 轴,C B 为y 轴,1C C 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B a D a a C a .()()1,,,,0,DB a a a DC a a =--=- ,设平面1D B C 的法向量为()1111,,n x y z =,则1111110n D B ax ay az n D C ax az ⎧=-+-=⎪⎨=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取()11,2,1n =. 同理,可求得平面1D B A 的一个法向量()21,1,0n =.设1n 与2n 的夹角为θ,则1212cos 2n n n n θ⋅===, 30θ∴= .由图可知, 二面角的大小为锐角,故二面角11C BD A --的大小为30 . 20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90B F D ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l的距离d FB FD ===.由ABD S =△, 11222B D d p ⨯⨯=⨯⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段A B 是圆F 的在直径,90oADB ∠=,2BD p ∴=,32A y p∴=,代入抛物线:C py x 22=得A x =.直线m的斜率为3AF k ==直线m的方程为02x -+=.由py x 22= 得22xy p=,x y p'=.由3x y p'==, 3x p =.故直线n 与抛物线C的切点坐标为,36p ⎛⎫⎪⎪⎝⎭, 直线n的方程为06x --=.所以坐标原点到m ,n312=.21. (本小题满分12分)已知函数121()(1)(0)2x f x f e f x x-'=-+.(Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值解: (Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令1x =得,(0)1f =, 再由121()(1)(0)2x f x f e f x x-'=-+,令0x =得()1f e '=.所以)(x f 的解析式为21()2x f x e x x=-+.()1xf x e x'=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔<所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞. (Ⅱ) 若b ax x x f ++≥221)(恒成立, 即()()21()102xh x f x x ax b e a x b =---=-+-≥恒成立,()()1xh x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时,()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1x h x e a '=-+为增函数,由()0h x '=得()ln 1x a =+,故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-. 依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥, 即()()11ln 1b a a a ≤+-++,10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-,()00()0u x x u x x ''>⇔<<<⇔>所以当x =, ()u x 取最大值2e u =.故当12a b +==, ()1a b +取最大值2e.综上, 若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e .请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号.22. (本小题满分10分)选修4—1:几何证明选讲 如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明: (Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.证明:(Ⅰ) ∵D ,E 分别为ABC △边AB ,AC 的中点, ∴//D E B C .//C F A B ,//D F BC,∴且 =C F B D ,又∵D 为AB 的中点,∴且 =C F A D ,C D A F ∴=.//C F A B,B C A F ∴=.C D B C ∴=.(Ⅱ)由(Ⅰ)知,BC GF ,G B C F BD ∴==, B G D B D G D B C B D C ∠=∠=∠=∠B C D G B D∴△∽△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.解:(Ⅰ)依题意,点A ,B ,C ,D 的极坐标分别为.所以点A ,B ,C ,D 的直角坐标分别为(1,、(、(1,-、1)-; (Ⅱ) 设()2cos ,3sin P ϕϕ,则 2222||||||||PD PC PB PA +++())2212cos 3sin ϕϕ=-+()()222cos 13sin ϕϕ++-()()2212cos 3sin ϕϕ+--+)()222cos 13sin ϕϕ++--2216cos 36sin 16ϕϕ=++[]23220sin 32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52. 24. (本小题满分10分)选修4—5:不等式选讲已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集;(Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[, 即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立, 即||2x a +≤对[]1,2x ∈恒成立, 即22a x a --≤≤-对[]1,2x ∈恒成立,所以2122aa--≤⎧⎨-≥⎩,即30a-≤≤.所以a的取值范围为[]3,0-.。

2012年高考理科数学全国卷1试卷及答案

2012年高考理科数学全国卷1试卷及答案

数学试卷 第1页(共18页)数学试卷 第2页(共18页)数学试卷 第3页(共18页)绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题:1:||2p z =;22:2i p z =; 3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x ya b a b +=>>的左、右焦点,P 为直线32a x =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为 ( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =则C 的实轴长为( )A .B .C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是( )A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .B .C . 3D . 212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为()A . 1ln2-B . ln2)- C . 1ln2+D .ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共18页)数学试卷 第5页(共18页)数学试卷 第6页(共18页)小时的概率为_________.16. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e (0)2x f x f f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =;(Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PBPC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集; (Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.G数学试卷 第8页(共18页)数学试卷 第9页(共18页)2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; ,102ω>∴,验证三角函数的角的范围,排除选项,得到结。

2012年高考理科数学全国卷1-答案

2012年高考理科数学全国卷1-答案

2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序, 可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; 底面三角形斜边长为6,高为3的等腰直角三角形,,12ω>∴,验证三角函数的角的范围,排除选项,得到结果.的范围即可.【解析】由已知得22222(2)44|a b|a b a a b b -=-=-+224||4||||cos45||a a b b =-︒+24|||10b b =-+=,解得||32b =【提示】由已知可得,2||||cos45||2b a a b b =︒=,代入 2222(2)44a b|a b a a b b -=-=-+242||||10b b =-+=可求14.【答案】[]3,3-60(a ++-117++=59(a +++,sin 0C >,0πA <<π5π66A -<法二:由正弦定理可得sin a 222a b c a ab+-,0πA <<)ABC S =△,2a A =,,直又1DC BD ⊥1DC D =2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.x 轴,(,DB a =-,1(,0,DC a =-的法向量为11(,n x y =111n DB ax n DC ax ⎧=-⎪⎨=-⎪⎩,故可取1(1,2,1)n =的一个法向量2(1,1,0)n =设1n 与2n 的夹角为1212||||6n n n n =⨯30.由图可知,二面角的大小为锐角,故二面角1A -'=h x()eh x→-∞()(2)当aa+>,10,所以当x ∥CF AB∥CF AB(Ⅱ)由(Ⅰ)知,∴△∽△BCD。

2012年高考数学试题及答案(全国卷理数2套)

2012年高考数学试题及答案(全国卷理数2套)
2012 年全国统一高考数学试卷(理科)(新课标)
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符
合题目要求的.
1.(5 分)(2012•新课标)已知集合 A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A}, 则 B 中所含元素的个数为( )
A.
B.
C.
D.
12.(5 分)(2012•新课标)设点 P 在曲线
上,点 Q 在曲线 y=ln(2x)上,则|PQ|
最小值为( )
A.1﹣ln2
B.
C.1+ln2
二.填空题:本大题共 4 小题,每小题 5 分.
13.(5 分)(2012•新课标)已知向量
夹角为 45°,且


D. ,则
14.(5 分)(2012•新课标)设 x,y 满足约束条件:
A.A+B 为 a1,a2,…,an 的和 B. 为 a1,a2,…,an 的算术平均数
C.A 和 B 分别是 a1,a2,…,an 中最大的数和最小的数 D.A 和 B 分别是 a1,a2,…,an 中最小的数和最大的数 7.(5 分)(2012•新课标)如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的 三视图,则此几何体的体积为( )
21.(12 分)(2012•新课标)已知函数 f(x)满足 f(x)=f′(1)ex﹣1﹣f(0)x+ x2;
(1)求 f(x)的解析式及单调区间;
(2)若
,求(a+1)b 的最大值.
四、请考生在第 22,23,24 题中任选一题作答,如果多做,则按所做的第一题计分,作答 时请写清题号. 22.(10 分)(2012•新课标)如图,D,E 分别为△ABC 边 AB,AC 的中点,直线 DE 交△

2012年高考数学试题

2012年高考数学试题

2012年全国统一高考数学试卷(新课标版)(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3B.6C.8D.10考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种考点:排列、组合及简单计数问题.专题:计算题.分析:将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果解答:解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A点评:本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数的四个命题:其中的真命题为(),p1:|z|=2,,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4考点:复数的基本概念;命题的真假判断与应用.专题:计算题.分析:由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.解答:解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.点评:本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.4.(5分)设F1、F2是椭圆的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:计算题.分析:利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.解答:解:∵△F2PF1是底角为30°的等腰三角形∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.点评:本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题5.(5分)已知{a n} 为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5 D.﹣7考点:等比数列的性质;等比数列的通项公式.专题:计算题.分析:由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可解答:解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D点评:本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数考点:循环结构.专题:计算题.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n 中最大的数和最小的数.解答:解:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选C.点评:本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12 D.18考点:由三视图求面积、体积.专题:计算题.分析:通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.解答:解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为.故选B.点评:本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,,则C的实轴长为()A.B.C.4D.8考点:圆锥曲线的综合.专题:计算题.分析:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.解答:解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.点评:本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)(2012•黑龙江)已知ω>0,函数在上单调递减.则ω的取值范围是()A.B.C.D.(0,2]考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.解答:解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.点评:本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数;则y=f(x )的图象大致为()A.B.C.D.考点:对数函数图象与性质的综合应用;对数函数的图像与性质.专题:计算题.分析:考虑函数f(x )的分母的函数值恒小于零,即可排除A,C,D,这一性质可利用导数加以证明解答:解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,D故选B点评:本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.考点:球内接多面体;棱柱、棱锥、棱台的体积.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径,∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.考点:点到直线的距离公式;反函数.专题:计算题.分析:由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求解答:解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称函数上的点到直线y=x的距离为设g(x)=,(x>0)则由≥0可得x≥ln2,由<0可得0<x<ln2∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增∴当x=ln2时,函数g(x)min=1﹣ln2由图象关于y=x对称得:|PQ|最小值为故选B点评:本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•黑龙江)已知向量夹角为45°,且,则=3.考点:平面向量数量积的运算;平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:由已知可得,=,代入|2|====可求解答:解:∵,=1∴=∴|2|====解得故答案为:3点评:本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为[﹣3,3].考点:简单线性规划.专题:计算题.分析:先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围解答:解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A 时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]点评:平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题.分析:先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可解答:解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为点评:本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,(1)求A;(2)若a=2,△ABC的面积为;求b,c.考点:解三角形.专题:计算题.分析:(1)由正弦定理及两角和的正弦公式可得sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A(2)由(1)所求A及S=可求bc,然后由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA 可求b+c,进而可求b,c解答:解:(1)∵acosC+asinC﹣b﹣c=0∴sinAcosC+sinAsinC﹣sinB﹣sinC=0∴sinAcosC+sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC∵sinC≠0∴sinA﹣cosA=1∴sin(A﹣30°)=∴A﹣30°=30°∴A=60°(2)由由余弦定理可得,a2=b2+c2﹣2bccosA=(b+c)2﹣2bc﹣2bccosA即4=(b+c)2﹣3bc=(b+c)2﹣12∴b+c=4解得:b=c=2点评:本题综合考查了三角公式中的正弦定理、余弦定理、三角形的面积公式的综合应用,诱导公式与辅助角公式在三角函数化简中的应用是求解的基础,解题的关键是熟练掌握基本公式18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.考点:概率的应用;离散型随机变量的期望与方差.专题:综合题.分析:(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.解答:解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80P(X=60)=0.1,P(X=70)=0.2,P(X=80)=0.7X的分布列为X 60 70 80P 0.1 0.2 0.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4 ∵76.4>76,∴应购进17枝点评:本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC(2)求二面角A1﹣BD﹣C1的大小.考点:二面角的平面角及求法;空间中直线与直线之间的位置关系.专题:综合题.分析:(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.解答:(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD∵OH⊥BD,∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l 于B,D两点;(1)若∠BFD=90°,△ABD的面积为;求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.考点:圆锥曲线的综合;圆的标准方程;抛物线的简单性质.专题:综合题.分析:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD 的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.解答:解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线切点直线坐标原点到m,n距离的比值为.点评:本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)(2012•黑龙江)已知函数f(x)满足;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.专题:综合题;探究型;转化思想.分析:(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值解答:解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b ∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为点评:本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,难度较大,计算量也大,易马虎出错四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•黑龙江)选修4﹣1:几何证明选讲如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD~△GBD.考点:综合法与分析法(选修).专题:证明题.分析:(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,根据等弧对等角,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.解答:证明:(1)∵AB∥CF,∴∠DAE=∠ECF.根据等弧对等角可知,,∴∠BDC=∠ADF.∵D,E分别为△ABC边AB,AC的中点∴DE∥BC∴∠ADF=∠DBC.∴∠BDC=∠DBC∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.点评:本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是,以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.考点:椭圆的参数方程;简单曲线的极坐标方程;点的极坐标和直角坐标的互化.专题:综合题.分析:(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解答:解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]点评:本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.选修4﹣5:不等式选讲已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:计算题.分析:(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.解答:解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].点评:本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.参与本试卷答题和审题的老师有:吕静;qiss;席泽林;邢新丽;刘长柏;xintrl;caoqz;minqi5;zlzhan(排名不分先后)菁优网2013年5月30日。

河南省_2012年_高考新课标全国卷数学真题(理科数学)(附答案)_历年历届试题(详解)

河南省_2012年_高考新课标全国卷数学真题(理科数学)(附答案)_历年历届试题(详解)

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30 的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5()D -7(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) ()A 6 ()B 9 ()C 12 ()D 18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012高考新课标数学全国卷答案解析(理科)

2012高考新课标数学全国卷答案解析(理科)

2012⾼考新课标数学全国卷答案解析(理科)绝密*启⽤前2012年普通⾼等学校招⽣全国统⼀考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分。

答卷前,考⽣务必将⾃⼰的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每⼩题答案后,⽤铅笔把答题卡上对应题⽬的答案标号涂⿊。

如需改动.⽤橡⽪擦⼲净后,再选涂其它答案标号。

写在本试卷上⽆效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上⽆效·4.考试结束后.将本试卷和答且卡⼀并交回。

第⼀卷⼀.选择题:本⼤题共12⼩题,每⼩题5分,在每⼩题给同的四个选项中,只有⼀项是符合题⽬要求的。

(1)已知集合A?{1,2,3,4,5},B?{(x,y)x?A,y?A,x?y?A};,则B中所含元素的个数为()(A)3 (B)6 (C)? (D)??【解析】选Dx?5,y?1,2,3,4,x?4,y?1,2,3,x?3,y?1,2,x?2,y?1共10个(2)将2名教师,4名学⽣分成2个⼩组,分别安排到甲、⼄两地参加社会实践活动,每个⼩组由1名教师和2名学⽣组成,不同的安排⽅案共有()(A)12种 (B)10种 (C)?种 (D)?种【解析】选A12甲地由1名教师和2名学⽣:C2C4?12种(3)下⾯是关于复数z?2的四个命题:其中的真命题为() ?1?ip1:z?2 p2:z2?2i p3:z的共轭复数为1?i p4:z的虚部为?1(A)p2,p3 (B) p1,p2 (C)p?,p? (D)p?,p?【解析】选C z?22(?1?i)1?i ?1?i(?1?i)(?1?i)p1:z?p2:z2?2i,p3:z的共轭复数为?1?i,p4:z的虚部为?1x2y23a(4)设F1F2是椭圆E:2?2?1(a?b?0)的左、右焦点,P为直线x?上⼀点,2abE的离⼼率为() ?F2PF1是底⾓为30的等腰三⾓形,则12?(B) (C) 23?【解析】选C(A)(D)32c3? a4F2PF是底⾓为的等腰三⾓形?PF2?F2F1?2(a?c)?2c?e?301(5)已知?an为等⽐数列,a4?a7?2,a5a6??8,则a1?a10?()(A)7 (B) 5 (C)?? (D)??【解析】选Da4?a7?2,a5a6?a4a7??8?a4?4,a7??2或a4??2,a7?4a4?4,a7??2?a1??8,a10?1?a1?a10??7a4??2,a7?4?a10??8,a1?1?a1?a10??7(6)如果执⾏右边的程序框图,输⼊正整数N(N?2)和实数a1,a2,...,an,输出A,B,则() (A)A?B为a1,a2,...,an的和 (B)A?B为a1,a2,...,an的算术平均数 2(C)A和B分别是a1,a2,...,an中最⼤的数和最⼩的数 (D)A和B分别是a1,a2,...,an中最⼩的数和最⼤的数【解析】选C(7)如图,⽹格纸上⼩正⽅形的边长为1,粗线画出的是某⼏何体的三视图,则此⼏何体的体积为()(A)6 (B) 9 (C)?? (D)??【解析】选B该⼏何体是三棱锥,底⾯是俯视图,⾼为3 此⼏何体的体积为V?(8)等轴双曲线C的中⼼在原点,焦点在x轴上,C与抛物线y2?16x的准线交于A,B 两点,AB?C的实轴长为()116?3?3?9 32(A)(B) (C)? (D)?【解析】选C设C:x2?y2?a2(a?0)交y2?16x的准线l:x??4于A(?B(?4,?得:a2?(?4)2?2?4?a?2?2a?4)在(,?)上单调递减。

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)

2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则=.14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC ﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•新课标)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y ∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选D2.(5分)(2012•新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种 D.8种【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选A3.(5分)(2012•新课标)下面是关于复数z=的四个命题:其中的真命题为(),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【分析】由z===﹣1﹣i,知,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选C.4.(5分)(2012•新课标)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()A.B.C.D.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选C.5.(5分)(2012•新课标)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7 B.5 C.﹣5 D.﹣7【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选D6.(5分)(2012•新课标)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则()A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.7.(5分)(2012•新课标)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选B.8.(5分)(2012•新课标)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()A.B.C.4 D.8【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选C.9.(5分)(2012•新课标)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C. D.(0,2]【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选A.10.(5分)(2012•新课标)已知函数f(x)=,则y=f(x)的图象大致为()A.B.C.D.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选B11.(5分)(2012•新课标)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,=,∴S△ABC∴V==.三棱锥S﹣ABC故选:C.12.(5分)(2012•新课标)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选B.二.填空题:本大题共4小题,每小题5分.13.(5分)(2012•新课标)已知向量夹角为45°,且,则=3.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:314.(5分)(2012•新课标)设x,y满足约束条件:;则z=x﹣2y的取值范围为.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]15.(5分)(2012•新课标)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为16.(5分)(2012•新课标)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和+(﹣1)n a n=2n﹣1,【解答】解:∵a n+1∴有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.∴{a n}的前60项和为15×2+(15×8+)=1830,故答案为:1830.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2012•新课标)已知a,b,c分别为△ABC三个内角A,B,C的对边,c=asinC﹣ccosA.(1)求A;(2)若a=2,△ABC的面积为,求b,c.【分析】(1)由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,可以求出A;(2)有三角形面积以及余弦定理,可以求出b、c.【解答】解:(1)c=asinC﹣ccosA,由正弦定理有:sinAsinC﹣sinCcosA﹣sinC=0,即sinC•(sinA﹣cosA﹣1)=0,又,sinC≠0,所以sinA﹣cosA﹣1=0,即2sin(A﹣)=1,所以A=;(2)S=bcsinA=,所以bc=4,△ABCa=2,由余弦定理得:a2=b2+c2﹣2bccosA,即4=b2+c2﹣bc,即有,解得b=c=2.18.(12分)(2012•新课标)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝19.(12分)(2012•新课标)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D 是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°20.(12分)(2012•新课标)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的=,知距离,由△ABD的面积S△ABD=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,=,∵△ABD的面积S△ABD∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.21.(12分)(2012•新课标)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)令x=1得:f(0)=1∴令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴当时,即当时,(a+1)b的最大值为四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)(2012•新课标)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.23.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]24.(2012•新课标)已知函数f(x)=|x+a|+|x﹣2|(1)当a=﹣3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.【分析】(1)不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即①,或②,或③.解①可得x≤1,解②可得x∈∅,解③可得x≥4.把①、②、③的解集取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i+-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-.【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3.},B ={1,m } ,A B =A , 则m =A. 0或B. 0或 3C. 1或D. 1或3 【考点】集合【难度】容易 【答案】B 【解析】(1,3,),(1,)30,1()3A B A B AA mB m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为A. 216x +212y =1 B.212x +28y =1 C.28x +24y =1 D.212x +24y =1【考点】椭圆的基本方程 【难度】容易 【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a=∴椭圆的方程为22=184x y +【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年高考试题:理科数学(全国卷)——含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至2页,第II 卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第I 卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. },B ={1,m } ,A B =A , 则m =A. 0B. 0或3C. 1D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m ⋃=∴⊆==∴∈∴=====或舍去Q .【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

2012年全国高考理科数学试题及答案-新课标1

2012年全国高考理科数学试题及答案-新课标1

2012年普通高等学校招生全国统一考试理科数学 第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为 (A ) 3 (B ) 6 (C ) 8 (D ) 10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有(A ) 12种 (B ) 10种 (C ) 9种 (D )8种 (3)下面是关于复数21z i=-+的四个命题 1p :||2z = 2p : 22z i = 3p :z 的共轭复数为1i + 4p :z 的虚部为1-其中真命题为(A ) 2p , 3p (B ) 1p , 2p (C ) 2p ,4p (D ) 3p , 4p(4)设12,F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上的一点,21F PF ∆是底角为30的等腰三角形,则 E 的离心率为(A) 12 (B) 23 (C) 34 (D) 45(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=(A) 7 (B) 5 (C) 5- (D) 7- (6)如果执行右边的程序图,输入正整数(2)N N ≥和实数12,,...,N a a a 输入,A B ,则 (A)A B +为12,,...,N a a a 的和 (B )2A B+为12,,...,N a a a 的算式平均数 (C )A 和B 分别是12,,...,N a a a 中最大的数和最小的数(D )A 和B 分别是12,,...,N a a a 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B)9 (C )12 (D )18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于,A B 两点,||43AB =,则C 的实轴长为(A )2 (B )22 (C )4 (D )8 (9)已知0ω>,函数()sin()4f x x πω=+在,2ππ⎛⎫⎪⎝⎭单调递减,则ω的取值范围 (A) 15[,]24 (B) 13[,]24 (C) 1(0,]2(D)(0,2](10)已知函数1()ln(1)f x x x=+-,则()y f x =的图像大致为(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为O的直径,且2SC =,则此棱锥的体积为(A)26 (B)36 (C)23 (D)22(12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为 (A)1ln 2- (B)2(1ln 2)- (C)1ln 2+ (D)2(1ln 2)+第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年新课标理科数学高考卷
一、选择题
(1)已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为( )
(A) 3
(B) 6
(C) 8
(D) 10
(2)将2名老师、4名学生分成两个小组,分别安排到甲、已两地参加社会实践活动,每个小组由1名教师和2名同学组成,不同的安排方案有( )
(A) 12种
(B) 10种
(C) 9种
(D) 8种
(3)下面是关于复数i
z +-=12
的四个命题: p1:2||=z
p2:i z 22
= p3:z 的共轭复数为i +1 p4:z 的虚部为1-
其中的真命题为( )
(A) p2,p3
(B) p1,p2
(C) p2,p4
(D) p3,p4
(4)设21,F F 是椭圆)0(1:2222>>=+b a b y a x E 的左、右焦点,P 为直线2
3a
x =上一点,
12PF F 是底角为︒30的等腰三角形,则E 的离心率为( )
(A)
2
1
(B)
3
2 (C)
4
3 (D)
5
4 (5)已知}{n a 为等比数列,274=+a a ,865-=⋅a a ,则=+101a a
(A) 7
(B) 5
(C) -5
(D) -7
(6)如果执行右边的程序框图,输入正整数)2(≥N N 和实数N a a a a ...,,321, 输出B A ,,则( )
(A)B A +为N a a a ,...,,21的和 (B)
2
B
A +为N a a a ,...,,21的算术平均数 (C)A 和
B 分别是N a a a ,...,,21中最大的数和最小的数 (D)A 和B 分别是N a a a ,...,,21中最小的数和最大的数 (7)如图是某几何体的三视图,则此几何体的体积为( )
(A)6 (B)9 (C)12
(D)18
(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162
=的准线交于B A ,两点,
34||=AB ,则C 的实轴长为( )
(A)2
(B) 22
(C) 4
(D) 8
(9)已知0>w ,函数)4sin()(π+=wx x f 在),2
(ππ
单调递减。

则w 的取值范围是( )
(A)]4
5,21[
(B) ]4
3,21[
(C)]2
1
,0( (D) ]2,0(
(10)已知函数x
x x f -+=
)1ln(1
)(,则)(x f y =的图像大致为( )
(11)已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为( )
(A)
6
2
(B)
6
3 (C)
3
2 (D)
2
2 (12)设点P 在曲线x
e y 2
1=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( )
(A) 2ln 1-
(B) )2ln 1(2-
(C) 2ln 1+
(D) )2ln 1(2+
二、填空题
(13)已知向量b a ,夹角为45°,且1||=a ,10|2|=-b a ,则=||b __________。

(14)设y x ,满足约束条件⎪⎪⎩⎪
⎪⎨⎧≥≥≤+-≥-0
031y x y x y x ,则y x z 2-=的取值范围为__________。

(15)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件使用寿命(单位:小时)均服从正态分布)50,1000(2
N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________。

(16)数列}{n a 满足12)1(1-=-++n a a n n
n ,则}{n a 的前60项和为__________。

三、解答题
(17)已知c b a ,,分别为ABC ∆三个内角A,B,C 的对边,0sin 3cos =--+c b C a C a 。

(I )求A ;
(II )若a=2,ABC ∆的面积为3,求b,c 。

(18)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。

如果当天卖不完,剩下的玫瑰花作垃圾处理。

(I )若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;
(II )花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 如需求量n 14 15 16 17 18 19 20 频数
10
20
16
16
15
13
10
以100天记录的各需求量的频率作为各需求量发生的概率。

(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学
期望及方差;
(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理
由。

(19)如图,直三棱柱111C B A ABC -中,12
1
AA BC AC =
=,D 是棱1AA 的中点,BD DC ⊥1。

(I )证明:BC DC ⊥1;
(II )求二面角11C BD A --的大小。

(20)设抛物线)0(2:2
>=p py x C 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,
FA 为半径的圆F 交l 于D B ,两点。

(I )若︒=∠90BFD ,ABD ∆的面积为24,求p 的值以及圆F 的方程;
(II )若F B A ,,三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐
标原点到n m ,距离的比值。

(21)已知函数)(x f 满足2
1
2
1)0()1(')(x x f e f x f x +
-=-。

(I )求)(x f 的解析式及单调区间;
(II )若b ax x x f ++≥
2
2
1)(,求b a )1(+的最大值。

(22)选修4—1:几何证明
如图,E D ,分别为ABC ∆边AC AB ,的中点,直线DE 交ABC ∆的外接圆于G F ,两点,若AB CF //,证明: (I )BC CD =;
(II )GBD BCD ∆∆∽。

(23)选修4—4:坐标系与参数方程 已知曲线1C 的参数方程是⎩⎨
⎧==,
sin 3,
cos 2ϕϕy x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴
建立极坐标系,曲线2C 的极坐标方程是2=ρ。

正方形ABCD 的顶点都在2C 上,且D C B A ,,,依逆时针次序排列,点A 的极坐标为)3
,2(π。

(I )求点D C B A ,,,的直角坐标;
(II )设P 为1C 上任意一点,求2
2
2
2
||||||||PD PC PB PA +++的取值范围。

(24)选修4—5:不等式选讲 已知函数|2|||)(-++=x a x x f 。

(I )当3-=a 时,求不等式3)(≥x f 的解集;
(II )若|4|)(-≤x x f 的解集包含[1,2],求a 的取值范围。

相关文档
最新文档