2015广东惠州中考数学

合集下载

2015年广东省中考数学试题(word版带答案)

2015年广东省中考数学试题(word版带答案)

2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过 BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2 四、解答题(二) 20.(1)(2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)23.(1)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐标为(1,1) 代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MDMEHE ⋅=2 ∴NH=MD ME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅) =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。

广东省2015年九年级全一册数学中考真题试卷

广东省2015年九年级全一册数学中考真题试卷

广东省2015年九年级全一册数学中考真题试卷(考试时间:100 总分:120)一、选择题(本题共10小题,共30分)1、(3分)=( )A、2B、-2C、D、【标准答案】 A【解析】本题主要考查绝对值的性质。

根据绝对值的性质可得:负数的绝对值等于它的相反数。

属于简单试题。

所以-2的绝对值是2。

故A正确。

【end】2、(3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13573000吨,将13573000用科学记数法表示为( )A、1.3573×106B、1.3573×107C、1.3573×108D、1.3573×109【标准答案】 B【解析】本题主要考查的科学记数法。

表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同。

得:13573000=1.3573×107,故B正确。

【end】3、(3分)一组数据2,6,5,2,4,则这组数据的中位数是( )A、2B、4C、5D、6【标准答案】 B【解析】本题主要考查数据的中位数定义。

将一组数据从小到大排列,处于最中间的数字就是中位数。

本题有5个数字,则排在第三个的就是中位数。

由小到大排列,得:2,2,4,5,6,所以,中位数为4。

【end】4、(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A、75°B、55°C、40°D、35°【标准答案】 C【解析】本题主要考查的是平行线的性质和三角形外角和。

两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以75°=∠2+∠3,所以,∠3=40°。

【end】5、(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A、矩形B、平行四边形C、正五边形D、正三角形【标准答案】 A【解析】本题主要考查中心对称图形和轴对称图形的性质。

广东省2015年中考数学试卷(解析版)

广东省2015年中考数学试卷(解析版)

2015年广东省中考数学试卷解析(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)1. (2015年广东3分)2-=【 】A.2B.2-C.12D.12- 【答案】A. 【考点】绝对值.【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣错误!未找到引用源。

到原点的距离是2错误!未找到引用源。

,所以,22-=.故选A.2. (2015年广东3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为【 】A. 61.357310⨯B. 71.357310⨯C. 81.357310⨯D. 91.357310⨯ 【答案】B.【考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 在确定n 的值时,看该数是大于或等于1还是小于1. 当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 因此,∵13 573 000一共8位,∴713573000 1.357310=⨯. 故选B.3. (2015年广东3分)一组数据2,6,5,2,4,则这组数据的中位数是【 】A.2B. 4C. 5D. 6 【答案】B. 【考点】中位数.【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).因此,∵将这组数据重新排序为2,2,4,5,6,∴中位数是按从小到大排列后第3个数为:4. 故选B.4(2015年广东3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是【 】A. 75°B. 55°C. 40°D. 35° 【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a ∥b ,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°. 故选C.5. (2015年广东3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是【 】A. 矩形B. 平行四边形C. 正五边形D. 正三角形 【答案】A.【考点】轴对称图形和中心对称图形.【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,既是轴对称图形,又是中心对称图形的是矩形. 故选A.6. (2015年广东3分)2(4)x -=【 】A. 28x -B. 28xC. 216x -D. 216x 【答案】D.【考点】幂的乘方和积的乘方.【分析】根据“幂的乘方,底数不变,指数相乘”的幂的乘方法则和“积的乘方等于每一个因数乘方的积” 的积的乘方法则得()()22224416-=-=x x x .故选D.7. (2015年广东3分)在0,2,0(3)-,5-这四个数中,最大的数是【 】A. 0B. 2C. 0(3)-D. 5- 【答案】B.【考点】零指数幂;有理数的大小比较. 【分析】∵()031-=,∴根据有理数“正数大于0,0大于负数,两个负数相比,绝对值大的反而小”的大小比较法则,得()053-<0<-<2.∴最大的数是2. 故选B.8. (2015年广东3分)若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】A. 2a ≥B. 2a ≤C. 2a >D. 2a < 【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式. 【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a .故选C.9. (2015年广东3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为【 】A.6B.7C. 8D. 9 【答案】D.【考点】正方形的性质;扇形的计算.【分析】∵扇形DAB 的弧长»DB等于正方形两边长的和6+=BC CD ,扇形DAB 的半径为正方形的边长3,∴16392=⋅⋅=扇形DAB S . 或由变形前后面积不变得:339==⨯=正方形扇形ABCD DAB S S . 故选D.10. (2015年广东3分)如图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【 】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,2==-,AE x AG x ,∴()13224=⋅⋅⋅=-V AEG S AE AG sinA x x . ∴()2333333323442=-=-⋅-=-+V V ABC AEG y S S x x x x . ∴其图象为开口向上的二次函数. 故选D.二、填空题(本大题6小题,每小题4分,共24分)11.(2015年广东4分)正五边形的外角和等于▲ (度).【答案】360.【考点】多边形外角性质.【分析】根据“n边形的外角和都等于360度”的性质,正五边形的外角和等于360度.12.(2015年广东4分)如图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质.【分析】∵四边形ABCD是菱形,∴AB=B C=6.∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=B C=6.13.(2015年广东4分)分式方程321=+x x的解是▲ .【答案】2=x.【考点】解分式方程【分析】去分母,得:()321=+x x,解得:2=x,经检验,2=x是原方程的解,∴原方程的解是2=x.14.(2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是▲ .【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.15.(2015年广东4分)观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是▲ .【答案】1221. 【考点】探索规律题(数字的变化类).【分析】观察得该组数的排列规律为:分母为奇数,分子为自然数,第n 个数为21+nn ,所以,第10个数是1012210121=⨯+.16. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥.∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4.三、解答题(一)(本大题3小题,每小题6分,共18分)17. (2015年广东6分)解方程:2320x x -+=. 【答案】解:(1)(2)0--=x x ,∴10-=x 或20-=x . ∴11=x ,22=x .【考点】因式分解法解一元二次方程.【分析】因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题(数学化归思想). 18. (2015年广东6分)先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【答案】解:原式=11(1)(1)1-⋅=+-+x x x x x x .当21=+x 时,原式=1112122112===+-+x . 【考点】分式的化简;二次根式化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简,然后代x 的值,进行二次根式化简. 19. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A为圆心画弧交BC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两交于点G;③连接AG,即为BC边的垂线MN,交BC于点D.(2)在Rt△ABD中,根据正切函数定义求出BD的长,从而由BC的长,根据等量减等量差相等求出DC的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(2015年广东7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【答案】解:(1)补全树状图如答图:(2)∵由(1)树状图可知,小明同学两次抽到卡片上的数字之积的情况有9种:1,2,3,2,4,6,3,6,9,数字之积是奇数的情况有4种:1,3,3,9,∵小明同学两次抽到卡片上的数字之积是奇数的概率是4 9 .【考点】画树状图法;概率.【分析】(1)根据题意补全树状图.(2)根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.21. (2015年广东7分)如题图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将△ADE 沿AE 对折至△AFE ,延长交BC 于点G ,连接AG . (1)求证:△ABG ≌△AFG ; (2)求BG 的长.【答案】解:(1)∵四边形ABCD 是正方形,∴∠B =∠D =90°,AD =AB .由折叠的性质可知,AD =AF ,∠AFE =∠D =90°,∴∠AFG =90°,AB =AF . ∴∠AFG =∠B .又∵AG =AG ,∴△ABG ≌△AFG (HL ). (2)∵△ABG ≌△AFG ,∴BG =FG .设BG =FG =x ,则GC =6-x ,∵E 为CD 的中点,∴CF =EF =DE =3,∴EG =3+x ,在∆Rt CEG 中,由勾股定理,得2223(6)(3)+-=+x x ,解得2=x , ∴BG =2.【考点】折叠问题;正方形的性质;折叠对称的性质;全等三角形的判定和性质;勾股定理;方程思想的应用.【分析】(1)根据正方形和折叠对称的性质,应用HL 即可证明△ABG ≌△AFG (HL ).(2)根据全等三角形的性质,得到BG =FG ,设BG =FG =x ,将GC 和EG 用x 的代数式表示,从而在∆Rt CEG 中应用勾股定理列方程求解即可.22. (2015年广东7分)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元. (2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.五、解答题(三)(本大题3小题,每小题9分,共27分)23. (2015年广东9分)如图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标.【答案】解:(1)∵A (1,3),∴OB =1,AB =3.又∵AB =3BD ,∴BD =1. ∴D (1,1). ∵反比例函数=k y x(0≠k ,0>x )的图象经过点D ,∴111=⨯=k . (2)由(1)知反比例函数的解析式为1=y x , 解方程组31=⎧⎪⎨=⎪⎩y x y x ,得333⎧=⎪⎨⎪=⎩x y 或333⎧=-⎪⎨⎪=-⎩x y (舍去), ∴点C 的坐标为(33,3). (3)如答图,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为=+y kx b ,则3331⎧+=⎪⎨⎪-+=⎩k b k b ,解得233232⎧=-⎪⎨=-⎪⎩k b , ∴直线CE 的解析式为(233)232=-+-y x .当x =0时,y =232-,∴点M 的坐标为(0,232-).【考点】反比例函数和一次函数综合问题;曲线上点的坐标与方程的关系;待定系数法的应用;轴对称的应用(最短距离问题);方程思想的应用.【分析】(1)求出点D 的坐标,即可根据点在曲线上点的坐标满足方程的关系,求出k 的值.(2)由于点C 是反比例函数1=y x的图象和直线3=y x 的交点,二者联立即可求得点C 的坐标. (3)根据轴对称的应用,作点D 关于y 轴对称点E ,则E (1-,1),连接CE 交y 轴于点M ,即为所求.24.(2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC 于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.25.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B 的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N作NE⊥AD于E,作NF⊥DC延长线于F,则NE=DF.∵∠ACD=60°,∠ACB=45°,∴∠NCF=75°,∠FNC=15°.∴sin15°=FC NC.又∵NC=x,sin15°=624-,∴624-=FC x.∴NE =DF =62224-+x . ∴点N 到AD的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FN NC,且sin 75°=624+∴624+=FN x , ∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x · 即22673222384---=++y x x . ∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---. 【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.。

【真题】2015年广东省中考数学试卷及参考答案PDF

【真题】2015年广东省中考数学试卷及参考答案PDF

= 的解是
. .
14. (4 分)若两个相似三角形的周长比为 2:3,则它们的面积比是 15. (4 分)观察下列一组数: 可推出第 10 个数是 .
第 2 页(共 23 页)
,…,根据该组数的排列规律,
16. (4 分)如图,△ABC 三边的中线 AD、BE、CF 的公共点为 G,若 S△ABC=12, 则图中阴影部分的面积是 .
B.8x2 C.﹣16x2 D.16x2 )
7. (3 分)在 0,2, (﹣3)0,﹣5 这四个数中,最大的数是( A.0 B.2 C. (﹣3)0 D.﹣5
8. (3 分)ቤተ መጻሕፍቲ ባይዱ关于 x 的方程 x2+x﹣a+ =0 有两个不相等的实数根,则实数 a 的取 值范围是( A.a≥2 ) B.a≤2 C.a>2 D.a<2
三、解答题(一) :本大题 3 小题,每小题 6 分,共 18 分。 17. (6 分)解方程:x2﹣3x+2=0. 18. (6 分)先化简,再求值: ÷(1+ ) ,其中 x= ﹣1.
19. (6 分)如图,已知锐角△ABC. (1)过点 A 作 BC 边的垂线 MN,交 BC 于点 D(用尺规作图法,保留作图痕迹, 不要求写作法) ; (2)在(1)的条件下,若 BC=5,AD=4,tan∠BAD= ,求 DC 的长.
24. (9 分)⊙O 是△ABC 的外接圆,AB 是直径,过 交弦 BC 于点 D,连接 AG、CP、PB.
第 4 页(共 23 页)
的中点 P 作⊙O 的直径 PG
(1)如图 1,若 D 是线段 OP 的中点,求∠BAC 的度数; (2)如图 2,在 DG 上取一点 K,使 DK=DP,连接 CK,求证:四边形 AGKC 是平 行四边形; (3)如图 3,取 CP 的中点 E,连接 ED 并延长 ED 交 AB 于点 H,连接 PH,求证: PH⊥AB.

广东省2015年中考数学试卷(含参考答案)

广东省2015年中考数学试卷(含参考答案)

2015年广东省初中毕业生学业考试数学满分120分,考试时间100分钟一、选择题(本大题10小题,每小题3分,共30分)1.2-= ( )A.2 B.-2 C.12D.12-【答案】A2.据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109【答案】B3.一组数据2,6,5,2,4,则这组数据的中位数是( )A.2 B.4 C.5 D.6【答案】B【解答过程】解:先将所给的一组数据按从小到大的顺序排列,得:2,2,4,5,6,∵处在最中间的数是4,∴这5个数据的中位数是4,因此,本题选B.4.如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°【答案】C【解答过程】解:∵直线a∥b,∴∠1=∠4.∵∠4=∠2+∠3,∴∠1=∠2+∠3.∵∠1=75°,∠2=35°,∴∠3=40°,故选择C.5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形【答案】A【解答过程】解:对各个支项逐一加以分析、讨论.显然,平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合,故选择A.6.(-4x)2= ( )A.-8x2B.8x2C.-16x2D.16x2【答案】D【解答过程】解:原式=(-4x)2=(-4)2x2=16x2,故选择D.7.在0,2,(-3)0,-5这四个数中,最大的数是( )A.0 B.2 C.(-3)0D.-5 【答案】B【解答过程】解:∵(-3)0=1,∴在0,2,(-3)0,-5这四个数中,最大的数为2,故选择B.8.若关于x的方程290 4x x a+-+=有两个不相等的实数根,则实数a的取值范围是( )A.a≥2 B.a≤2 C.a>2 D.a<2【答案】C【解答过程】解:由题意得:b2-4ac=12-4×1×(94a-+)>0,即1+4a-9>0,解得a>2,故选择C.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为( )A.6 B.7 C.8 D.9【解答过程】解:由条件可知:扇形的弧DCB的长就是正方形的BC与CD长的和为6,半径为3,则16392S=⨯⨯=扇形,故选择D.10.如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是( )【答案】D【解答过程】解:由题意知:AE=BF=CG,且正三角形ABC的边长为2,则BE=CF=AG=2-x,所以可得△AEG、△BEF、△CFG这三个三角形都是全等的.在△AEG中,AE=x,AG=2-x,则S△AEG =12AE×AG×sin A3(2-x),所以y=S△ABC-3S△AEG=34×22-3⨯3x(2-x3(3x2-6x+4),故可得其图象为二次函数,且开口向上,故选择D .二、填空题(本大题6小题,每小题4分,共24分) 11.正五边形的外角和等于 度 . 【答案】36012.如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.【答案】6【解答过程】解:由菱形的性质可知AB =BC ,并根据“∠ABC =60°”可得△ABC 为等边三角形,从而知道AC =BC =6,故答案为6.13.分式方程321x x =+的解是. 【答案】x =2【解答过程】解:去分母,得:3x =2x +2,解得:x =2.经检验:当x =2时,x (x +1)≠0,所以原分式方程的解为x =2,故答案为x =2.14.若两个相似三角形的周长比为2:3,则它们的面积比是 . 【答案】4:9【解答过程】解:因为两个相似三角形的周长比为2:3,所以这两个相似三角形的相似比为2:3,它们的面积比是4:9,故答案为4:9.15.观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是. 【答案】1021【解答过程】解:分母为奇数,分子为自然数,所以,它的规律用含n 的代数式表示为21nn +,则n =10时可得结果为1021,故答案为1021.16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若S △ABC =12,则图中阴影部分面积是.【答案】4【解答过程】解:由三角形的重心性质,可得AG =2GD ,则S △BGF =11212111222232326ABG ABD ABC S S S =⨯=⨯⨯=⨯=△△△,同理,S △CGE 11212111222232326ACG ACD ABC S S S =⨯=⨯⨯=⨯=△△△,∴阴影部分的面积为4,故答案为4.三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程:2320x x -+=.【解答过程】方法1:原方程可化为(x -1)(x -2)=0,∴x -1=0或x -2=0,因此x 1=1,x 2=2;方法2:将a =1,b =-3,c =2代入24b b ac x -±-=得:x 1=1,x 2=2;方法3:由方程x 2-3x +2=0,得:x 2-3x =-2, 则x 2-3x +49=-2+49, (x -23)2=41,开方得,x -23=±21, ∴ x 1=1,x 2=2,【易错点津】此类问题容易出错的地方是方法不当、公式记忆不清.18.先化简,再求值:21(1)11x x x ÷+--,其中21x =-. 【解答过程】原式=1(1)(1)x x x x x -⋅+-=11x +当21x =+时,原式=2211=-+. 【易错点津】此类问题容易出错的地方是分式运算顺序出错或结果未化简或二次根式化简错误.19.如图,已知锐角△ABC .(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法);(2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【解答过程】(1)如图所示,MN 为所作;(2)在Rt △ABD 中,tan ∠BAD =34AD BD =, ∴344BD =, ∴BD =3,∴DC =BC -BD =5-3=2.【易错点津】此类问题容易出错的地方是不会应用基本的尺规作图进行画图.四、解答题(二)(本大题3小题,每小题7分,共21分)20.老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,如图是小明同学所画的正确树状图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上的数字之积是奇数的概率.【解答过程】(1) 如图,补全树状图;(2) 从树状图可知,共有9种等可能结果,其中两次抽取卡片上的数字之积为奇数的有4种结果,∴P(积为奇数)=49.【易错点津】此类问题容易出错的地方是误认为是不放回式试验.21.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2) 求BG的长.【解答过程】(1) ∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB,由折叠的性质可知AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF,∴∠AFG=∠B,又AG=AG,∴△ABG≌△AFG(HL);(2) ∵△ABG ≌△AFG ,∴BG =FG ,设BG =FG =x ,则GC =6-x , ∵E 为CD 的中点, ∴CF =EF =DE =3, ∴EG =x +3,∴32+(6-x )2=(x +3)2, 解得x =2, ∴BG =2.【易错点津】此类问题容易出错的地方是不能从图形折叠前后寻找相等的边或角.22.某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格) (2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【解答过程】(1) 设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120x y x y -+-=⎧⎨-+-=⎩,,解得4256x y =⎧⎨=⎩,, 答:A ,B 两种型号计算器的销售价格分别为42元、56元; (2) 设需要购进A 型号的计算a 台,得:30a +40(70-a )≤2500,解得a ≥30.答:最少需要购进A 型号的计算器30台.【易错点津】此类问题容易出错的地方是审题不清,找错不等关系.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,反比例函数ky x=(0k ≠,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3BD . (1) 求k 的值;(2) 求点C 的坐标;(3) 在y 轴上确定一点M ,使点M 到C ,D 两点距离之和d =MC +MD 最小,求点M 的坐标.【解答过程】(1) ∵A (1,3),∴OB =1,AB =3, 又AB =3BD ,∴BD =1, ∴D (1,1), ∴k =1×1=1;(2) 由(1)知反比例函数的解析式为1y x=, 解方程组31y x y x =⎧⎪⎨=⎪⎩,,得33x y ⎧=⎪⎨⎪=⎩,或33x y ⎧=-⎪⎨⎪=-⎩,(舍去), ∴点C 的坐标为(3,3); (3) 如图,作点D 关于y 轴对称点E ,则E (-1,1),连接CE 交y 轴于点M ,即为所求.设直线CE 的解析式为y kx b =+,则331k b k b ⎧+=⎪⎪-+=⎩,,解得233k =-,232b =-, ∴直线CE 的解析式为(233)232y x =-+-, 当x =0时,y =232-, ∴点M 的坐标为(0,232-).【易错点津】此类问题容易出错的地方是不能探求某条直线上一个点到直线同旁的两点距离和最小24.⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,PB .(1)如图①,若D 是线段OP 的中点,求∠BAC 的度数;(2)如图②,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3)如图③,取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥AB .① ② ③【解答过程】(1) 连接OC .∵AB 为⊙O 直径, ⌒BP =⌒PC , ∴∠COP =∠BOP .∵在⊙O 中,OC =OB ,∴PG ⊥BC ,即∠ODB =90°, ∵D 为OP 的中点,∴OD =1122OP OB =,∴cos ∠BOD =12OD OB =,∴∠BOD=60°,∵AB为⊙O直径,∴∠ACB=90°,∴∠ACB=∠ODB,∴AC∥PG,∴∠BAC=∠BOD=60°;(2) 由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK,∴CK=BP,∠OPB=∠CKD,∵∠AOG=∠BOP,∴AG=BP,∴AG=CK∵OP=OB,∴∠OPB=∠OBP,又∠G=∠OBP,∴AG∥CK,∴四边形AGCK是平行四边形;(3) ∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB∵∠G=∠OPB,∴PB∥AG,∴DH∥AG,∴∠OAG=∠OHD,∵OA=OG,∴∠OAG=∠G,∴∠ODH=∠OHD,∴OD=OH,又∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP,∴∠OHP=∠ODB=90°,∴PH⊥AB.【易错点津】此类问题容易出错的地方是不能综合应用图形中所涉基本图形的相关性质25.如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC 完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.(1) 填空:AD= (cm),DC= (cm);(2) 点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);(3) 在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.(参考数据:sin75°62+sin15°62-【解答过程】(1) 在Rt △ABC 中, AB =BC =4cm , AC =22AB BC +=2244+=42,在Rt △ADC中,cos ∠CAD =AD AC ,AD =AC ·cos ∠CAD =42×32=26;在Rt △ADC 中,sin ∠CAD =CD AC,CD =AC ·sin ∠CAD =42×12=22,故答案为26,22;(2)如图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°, ∴∠NCF =75°,∠FNC =15°,∴sin15°=FCNC,又NC =x ,∴62FC -=, ∴NE =DF 6222-+. ∴点N 到AD 6222-+cm ; (3) ∵sin75°=FNNC,∴62FN +=, ∵PD =CP 2, ∴PF 622- ∴162621162(26)(22)(26)2(2)222y x x +--=++-·62()+ 即226732223y ---=+∵2-68<0,当73224262x --=-⨯=732262---时,y 有最大值为6673102304246+---=83+236+92-1616.【易错点津】此类问题容易出错的地方是不能灵活应用三角函数和二次函数的数学模型进行解答.。

2015广东中考数学

2015广东中考数学

2015广东中考数学2015年广东中考数学科目是广东省中考的重要科目之一,考察学生对数学知识的掌握和应用能力。

本文将围绕2015年广东中考数学科目展开,详细介绍该科目的题型和考点,并给出一些备考建议和解题技巧。

2015年广东中考数学科目共分为选择题和解答题两部分,满分为150分。

选择题占80分,共40小题,每小题2分;解答题占70分,共7小题,每小题10分。

选择题部分主要考察学生对数学知识点的掌握和运用能力。

题型包括单项选择题、多项选择题和判断题。

其中,单项选择题和多项选择题要求学生从给出的选项中选择正确答案,判断题要求学生判断题目的正误。

解答题部分主要考察学生的解题能力和思维逻辑。

题型包括填空题、计算题和证明题。

填空题要求学生根据题目中给出的条件,填写正确的答案;计算题要求学生进行数学运算,解答问题;证明题要求学生运用数学知识和推理能力,给出严谨的证明过程。

2015年广东中考数学科目的考点主要涵盖了初中数学的各个章节,如整数与有理数、代数式与方程式、平面图形、立体图形等。

在备考过程中,学生应注重以下几个方面:首先,复习数学基础知识。

数学是一门基础学科,各个章节的知识点相互关联。

在备考过程中,学生应全面复习各个章节的基础知识,牢固掌握概念、公式和定理等。

其次,强化解题能力。

数学是一门实践性很强的学科,解题是学习数学的重要手段。

学生在备考过程中,应多进行题目练习,提高解题能力和应用能力。

同时,要学会灵活运用数学知识,善于分析问题,找到解题的方法和思路。

此外,要注重题目的解题思路和方法。

数学题目的解题思路和方法是解决问题的关键。

学生在备考过程中,应熟悉各种题型的解题思路和方法,学会灵活运用。

要注意题目的命题思路和解题技巧,掌握解题的常用方法和技巧,提高解题的效率。

最后,要注重做题的时间管理。

广东中考数学科目的考试时间有限,学生在备考过程中要注意控制做题的时间。

要学会分配时间,合理安排做题的顺序,避免做题时间的浪费。

2015年广东省中考数学试卷及答案

2015年广东省中考数学试卷及答案

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前广东省2015年初中毕业生学业考试数学 .............................................................................. 1 广东省2015年初中毕业生学业考试数学答案解析 .. (4)广东省2015年初中毕业生学业考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.|2|=-( ) A .2B .2-C .12D .12-2.据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13573000吨,将13573000用科学记数法表示为 ( ) A .61.357310⨯ B .71.357310⨯ C .81.357310⨯D .91.357310⨯3.一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4 C .5D .64.如图,直线a b ∥,175∠=,235∠=,则3∠的度数是 ( )A .75B .55C .40D .35 5.下列所述图形中,既是中心对称图形,又是轴对称图形的是( ) A .矩形B .平行四边形C .正五边形D .正三角形 6.2(4)=x -( )A .28x -B .28xC .216x -D .216x 7.在0,02,(3)-,5-这四个数中,最大的数是( ) A .0B.2C .0(3)-D . 5-8.若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( ) A .2a ≥B .2a ≤C .2a >D .2a <9.如图,某数学兴趣小组将边长为3的正方形铁丝网ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形DAB 的面积为 ( )A .6B .7C .8D .910.如图,已知正ABC △的边长为2.E ,F ,G 分别是,,AB BC CA 上的点,且AE BF CG ==,设EFG △的面积为y , AE 的长为x ,则y 关于x 的函数图像大致是( )ABCD第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.正五边形的外角和等于 度.12.如图,菱形ABCD 的边长为6,60ABC ∠=,则对角线AC 的长是 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)13.分式方程321x x=+的解是 . 14.若两个相似三角形的周长比为2:3,则它们的面积比是 .15.观察下列一组数:13,25,37,49,511,……,根据该组数的排列规律,可推出第10个数是 .16.如图, ABC △三边的中线,,AD BF CF ,的公共点为G ,若12ABC S =△,则图中阴影部分的面积是 .三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 解方程:2320x x -+=.18.(本小题满分6分) 先化简,再求值:21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中1x .19.(本小题满分6分) 如图,已知锐角ABC △.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法)(2)在(1)的条件下,若5BC =,4AD =,3tan =4BAD ∠,求DC 的长.20.(本小题满分7分)老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标 有数字1,2,3,的卡片,卡片除数字外其余都相同.老师要求小明同学两次随机抽取 一张卡片,并计算两次抽到卡片上数字之积是奇数的概率.于是小明同学用画树枝 图的方法寻求他两次抽取卡片的所有可能结果.如图是小明同学所画的正确树状 图的一部分.(1)补全小明同学所画的树状图;(2)求小明同学两次抽到卡片上数字之积是奇数的概率.21.(本小题满分7分)如图,在边长为6的正方形ABCD 中E 是边CD 的中点,将ADE △沿AE 对折至AFE △,延长EF 交边BC 于点G ,连接AG . (1)求证:ABG AFG ≌△△; (2)求BG 的长.22.(本小题满分7)某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格-进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?数学试卷 第5页(共14页) 数学试卷 第6页(共14页)23.(本小题满分9分)如图,反比例函数ky x=(0k ≠,0x >)的图像与直线3y x =相交与点C ,过直线上点(1,3)A 作AB x ⊥轴于点B ,交反比例函数图像于点D ,且3AB BD =.(1)求k 的值;(2)求点C 的坐标;(3)在y 轴确定一点M ,使点M 到C ,D 两点距离之和d MC MD =+最小,求点M 的坐标.24.(本小题满分9分)O 是ABC △的外接圆,AB 是直径.过BC 的中点P 作O 的直径PG 交弦BC 于点D ,连接AG ,CP ,PB .(1)如图1,若D 是线段OP 的中点,求BAC ∠的度数;(2)如图2,在DG 上取一点K ,使DK DP =,连接CK ,求证:四边形AGKC 是平行四边形;(3)如图3,取CP 得中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH AB ⊥.25.(本小题满分9分)如图,在同一平面上,两块斜边相等的直角三角板Rt ABC △和Rt ADC △拼在一起,使斜边AC 完全重合,且顶点,B D 分别在AC 的两旁,90ABC ADC ==∠∠,30CAD =∠,4cm AB BC ==.(1)填空:AD = cm ,DC = cm ;(2)点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A D →,C B →方向运动,当N 点运动到B 点时,M ,N 两点同时停止运动,连接MN .求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3)在(2)的条件下,取DC 的中点P ,连接MP ,NP ,设PMN △的面积为y (2cm )在整个运动过程中,PMN △的面积y 存在最大值,请求出y 的最大值. (参考数据6sin 75=6sin15=)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

【圆派教育】2015年广东省中考数学试卷

【圆派教育】2015年广东省中考数学试卷

2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.(3分)|﹣2|=( )A .2B .﹣2C .12D .−122.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A .1.3573×106B .1.3573×107C .1.3573×108D .1.3573×1093.(3分)一组数据2,6,5,2,4,则这组数据的中位数是( )A .2B .4C .5D .64.(3分)如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A .75°B .55°C .40°D .35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A .矩形B .平行四边形C .正五边形D .正三角形6.(3分)(﹣4x )2=( )A .﹣8x 2B .8x 2C .﹣16x 2D .16x 27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是( )A .0B .2C .(﹣3)0D .﹣5 8.(3分)若关于x 的方程x 2+x ﹣a +94=0有两个不相等的实数根,则实数a 的取值范围是( ) A .a ≥2 B .a ≤2 C .a >2 D .a <29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得扇形DAB 的面积为( )A .6B .7C .8D .910.(3分)如图,已知正△ABC 的边长为2,E 、F 、G 分别是AB 、BC 、CA 上的点,且AE=BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )A .B .C .D .二、填空题:本大题6小题,每小题4分,共24分。

2015年中考数学试题(含答案)

2015年中考数学试题(含答案)

2015年河南初中学业水平暨高级中等学校招生考试试题数 学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟。

2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的。

1. 下列各数中最大的数是( )A. 5B.3C. πD. -8 2. 如图所示的几何体的俯视图是( )3. 据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( ) A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124. 如图,直线a ,b 被直线c ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ) A. 55° B. 60° C.70° D. 75°5. 不等式组⎩⎨⎧>-≥+13,05x x 的解集在数轴上表示为( )6. 小王参加某企业招聘测试,他的笔试,面试、技能操作得分分别为85分,80分,90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A. 255分B. 84分C. 84.5分D.86分7. 如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为( )C DB A 正面 第2题dc ba第4题-52 0 -520 -52 0 -520 CDBAA. 4B. 6C. 8D. 108. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2015秒时,点P 的坐标是( )A.(2014,0)B.(2015,-1)C. (2015,1)D. (2016,0)二、填空题(每小题3分,共21分) 9.计算:(-3)0+3-1=.10. 如图,△ABC 中,点D 、E 分别在边AB ,BC 上,DE //AC ,若DB =4,DA =2,BE =3,则EC = . 11. 如图,直线y =kx 与双曲线)0(2>=x xy 交于点 A (1,a ),则k = .12. 已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是 . 13. 现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再 背面朝上洗匀,从中随机抽取一张,则两次抽出的卡片所标数 字不同的概率是 .14. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径 作CD 交OB 于点D ,若OA =2,则阴影部分的面积为 .15. 如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 .E FCDBGA第7图第8题E CDBA第14题EFCDBA 第15题B ′三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)11(22222ab b a b ab a -÷-+-,其中15+=a ,15-=b .17.(9分)如图,AB 是半圆O 的直径,点P 是半圆上不与点A 、B 重合的一个动点,延长BP 到点C ,使PC =PB ,D 是AC 的中点,连接PD ,PO . (1)求证:△CDP ≌△POB ; (2)填空:① 若AB =4,则四边形AOPD 的最大面积为 ; ② 连接OD ,当∠PBA 的度数为 时,四边形BPDO18.(9分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图。

2015年广东省中考数学试题(word版带答案)

2015年广东省中考数学试题(word版带答案)

2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-=B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )°°°°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是.14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题 20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D.(1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过BC 的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG , CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形;(3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=624+,sin 15°=624-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=2219.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3∴CD=5-3=2 四、解答题(二) 20.(1) (2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得:⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)∵AB=3BD,AB=3 ∴BD=1 ∴D 点23.(1)坐标为(1,1)代入xk y =得:k=1(2)联立y=3x 与x y 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--=资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MD ME HE ⋅=2 ∴NH=MDME NE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅) =)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。

2015年广东省中考数学试卷

2015年广东省中考数学试卷

2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.(3分)|﹣2|=()A.2B.﹣2C.D.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×109 3.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形6.(3分)(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣58.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE =BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。

请将下列各题的正确答案填写在答题卡相应的位置上。

2015广东中考数学

2015广东中考数学

2015广东中考数学2015广东中考数学试卷是中学生们迎接人生转折点的一场重要考试。

作为数学这门学科在中考中的一部分,它对考生的逻辑思维、数学基本知识的运用以及解决实际问题的能力都提出了很高的要求。

本文将围绕2015广东中考数学试卷展开讨论,对试卷中的内容和出题风格进行分析和评价。

I. 试卷总体分析2015广东中考数学试卷总体难度适中,题型涵盖了选择题、填空题、应用题等各类题型。

试卷设计有合理的难度分布,能够全面考察学生的数学能力。

II. 选择题分析选择题在试卷中占据了一定的比重,旨在检验学生对知识点的掌握能力。

其中,题目设置合理,覆盖了数学课程标准中的各个章节,考察了学生对概念和基本知识的掌握程度。

题目形式多样,有计算题、解决问题题和理论题,能够全面评估学生的数学能力。

III. 填空题分析填空题是考查学生的计算能力和解题技巧的重要环节。

2015广东中考数学试卷的填空题设置了多种难度的题目,涉及到了不同的数学概念和知识点。

通过填空题,考生需要熟练运用所学的数学方法和规则,在有限的时间内准确无误地填写结果。

IV. 应用题分析应用题是检验学生对数学知识应用能力和解决实际问题能力的重要环节。

2015广东中考数学试卷的应用题涉及到了实际生活中的各种情境,并要求学生将数学知识与实际问题相结合,快速解决问题。

这些应用题既考察了学生对数学的理解和掌握程度,也锻炼了学生的实际运用能力。

V. 解题思路分析2015广东中考数学试卷的解题思路多样,考生需要根据题目的要求选择不同的方法和策略。

试卷中的部分题目设计了多种解题路径,给予考生更多的思考空间。

解题思路的多样性要求考生具备一定的灵活性和创新能力,培养了学生独立思考和解决实际问题的能力。

综上所述,2015广东中考数学试卷是一套难度适中、设计合理的试卷。

通过对试卷的分析和评价,我们可以看到试卷充分考察了学生的数学基础知识、解题能力以及实际问题的应用能力。

同时,试卷的设计也促使学生发展出创新思维和解决实际问题的能力。

2015年广东省中考数学试题及解析

2015年广东省中考数学试题及解析

2015年广东省中考数学试卷一、选择题:本大题10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑。

1.(3分)|﹣2|=()A.2B.﹣2 C.D.2.(3分)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573×106B.1.3573×107C.1.3573×108D.1.3573×1093.(3分)一组数据2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64.(3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°5.(3分)下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形B.平行四边形C.正五边形D.正三角形6.(3分)(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x27.(3分)在0,2,(﹣3)0,﹣5这四个数中,最大的数是()A.0B.2C.(﹣3)0D.﹣58.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a<29.(3分)如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6B.7C.8D.910.(3分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()A.B.C.D.二、填空题:本大题6小题,每小题4分,共24分。

请将下列各题的正确答案填写在答题卡相应的位置上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档